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One sentence summary  32 

Whole genome sequencing of clinical M. tuberculosis isolates accurately predicts drug 33 

resistance profiles and may replace culture-based drug susceptibility testing in the future. 34 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/401703doi: bioRxiv preprint 

https://doi.org/10.1101/401703
http://creativecommons.org/licenses/by-nc/4.0/


3 

 

Abstract 35 

Whole genome sequencing allows rapid detection of drug-resistant M. tuberculosis isolates. 36 

However, high-quality data linking quantitative phenotypic drug susceptibility testing (DST) 37 

and genomic data have thus far been lacking. 38 

We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis 39 

isolates from Democratic Republic of the Congo, Ivory Coast, Peru, Thailand and 40 

Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD 41 

BACTEC MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic 42 

DST readout. We compared phenotypic drug susceptibility results with predicted drug 43 

resistance profiles inferred by whole genome sequencing. 44 

Both phenotypic DST methods identically classified the strains into resistant/susceptible in 45 

73-99% of the cases, depending on the drug. Changes in minimal inhibitory concentrations 46 

were readily explained by mutations identified by whole genome sequencing. Using the 47 

whole genome sequences we were able to predict quantitative drug resistance levels where 48 

wild type and mutant MIC distributions did not overlap. The utility of genome sequences to 49 

predict quantitative levels of drug resistance was partially limited due to incompletely 50 

understood mechanisms influencing the expression of phenotypic drug resistance. The overall 51 

sensitivity and specificity of whole genome-based DST were 86.8% and 94.5%, respectively.  52 

Despite some limitations, whole genome sequencing has high predictive power to infer 53 

resistance profiles without the need for time-consuming phenotypic methods.   54 
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Introduction 55 

Timely and accurate drug susceptibility testing (DST) of M. tuberculosis isolates is vital to 56 

prevent the transmission of multidrug-resistant strains (MDR – resistance to rifampicin and 57 

isoniazid)[1]. However, the slow growth and stringent biosafety requirements of M. 58 

tuberculosis make obtaining a full DST profile by culture-based techniques a matter of weeks 59 

or months. In addition, culture-based DST is notoriously challenging for several drugs, e.g. 60 

pyrazinamide and ethionamide due to poor drug solubility in commonly used culture media 61 

[2]. 62 

Drug resistance in M. tuberculosis is mainly conferred by chromosomal mutations in a few 63 

genes [3], making it possible to detect drug resistance by sequencing these genes or probing 64 

them by molecular hybridisation [4]. Several commercial tests for the detection of resistance-65 

associated mutations are available, e.g. the GenoType MTBDRplus V2 (Hain Lifescience 66 

GmbH, Nehren, DE) [5], the AID TB Resistance Line Probe Assay (AID GmbH, Strassberg, 67 

DE) [6]. Line probe assays and the GeneXpert® system (Cepheid, Sunnyvale, CA, USA) are 68 

endorsed by the World Health Organisation (WHO) the detection of rifampicin resistance as 69 

surrogate marker for MDR [7]. These molecular tests demonstrate high sensitivities for drugs 70 

with established target(s) of resistance and for which only a few mutations are responsible for 71 

most resistance in clinico (e.g. rifampicin, isoniazid) [4]. However, molecular tests show low 72 

sensitivity for heteroresistant strains (concomitant presence of wild type (wt) and resistant or 73 

multiple different resistant variants in patient isolates), when frequencies of resistant variants 74 

drop below 5-50 % [8, 9]. Furthermore, there are no commercially available tests for many 75 

drugs currently/prospectively in use (e.g. bedaquiline, delamanid, linezolid, p-aminosalicylic 76 

acid).  77 

The past years have seen a wealth of genomic data on drug-resistant M. tuberculosis become 78 

available [10, 11]. However, phenotypic DST data are lacking for most of the genetic data 79 

sets. In addition, DST data are often limited as the strains were classified as susceptible or 80 

resistant using only a single drug concentration. There is an urgent need to link genotypic and 81 

phenotypic drug resistance readouts to obtain a better understanding of the mechanisms 82 

influencing the evolution and spread of drug resistance in M. tuberculosis.  83 

WGS of clinical isolates allows for accurate identification of established-resistance-84 

conferring chromosomal mutations [10, 12, 13]  and may ensure adequate treatment in days 85 
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instead of months. We compared whole genome-based drug resistance profiles with two 86 

culture-based quantitative DST methods for a total of 11 drugs, including all first-line drugs 87 

(rifampicin, isoniazid, ethambutol, pyrazinamide, streptomycin) and an array of second-line 88 

drugs (rifabutin, amikacin, kanamycin A, capreomycin, moxifloxacin, ethionamide).  89 

Material and methods 90 

M. tuberculosis isolates 91 

The initial data-set consisted of 190 M. tuberculosis isolates. A subset of 61 strains was used 92 

to establish the phenotypic DST methodology. These 61 strains were collected by the Swiss 93 

National Center for Mycobacteria between 2004-2015, and represent a broad spectrum in 94 

geographic origin and drug resistance profiles [14–16].  We then applied the quantitative 95 

DST methodology to 125 clinical isolates from clinics participating in the International 96 

Epidemiology Databases to Evaluate AIDS (IeDEA) [17] in Peru, Thailand, Ivory Coast and 97 

the Democratic Republic of the Congo (supplementary Table S3). Thirteen strains had to be 98 

excluded due to failed WGS (n = 4, failed library preparation due to low DNA quality), 99 

irreproducible DST results (n = 1), no growth in the 7H10 agar dilution assay (n = 3), 100 

duplication (n = 1), mixed cultures (n = 2, cross-contamination or patient infected with 101 

multiple strains) or transmission clusters (n = 2). The final set consisted of 176 strains.  102 

Phenotypic DST 103 

MGIT 960- and 7H10 agar dilution-based phenotypic DST were performed as described 104 

previously [14]. Table 1 lists the epidemiological cut-offs (ECOFF) used [18], supplementary 105 

Table S2 the drug concentrations tested with the MGIT 960 and 7H10 agar-dilution assays 106 

and Table 2 the genes screened for mutations with WGS.  Further details are available in the 107 

supplementary materials. 108 

Data analysis 109 

The categorical agreement between the MIC determination by MGIT 960 and 7H10 agar 110 

dilution was determined based on the ECOFFS (Table 1). 111 

The numerical variation between the two methods was quantified as the geometric standard 112 

deviation (SD, given with its standard error) of the ratio MIC MGIT 960/MIC agar dilution, 113 

expressed as a number of 2-fold dilutions and denoted by σ. The geometric SD was computed 114 
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by fitting a log-normal distribution to the ratio MIC MGIT 960/MIC agar dilution as 115 

implemented in the R package fitdistrplus (v.1.0-9) [19]. If the data was compatible with σ = 116 

0, the geometric standard deviation could not be estimated and was defined as “not 117 

applicable” (NA). The approach is a generalization of the Bland and Altman method [20], 118 

taking censoring of the data into account. Strains for which the MGIT 960 MIC and 7H10 119 

agar dilution MIC were both left-censored or both right-censored were excluded since no 120 

information on the ratio could be derived. 121 

Goodman and Kruskal’s gamma was used to quantify the rank correlation between the two 122 

methods. No correlation could be calculated if the variance for either method was 0 (NA). 123 

Distributions of wt and mutant MICs were analysed qualitatively based on the results of 124 

7H10 agar dilution. We divided the dataset into two groups: drugs for which the MIC 125 

distributions of wt and mutant strains did not overlap, and those for which MIC distributions 126 

overlapped.  127 

Sensitivities and specificities of WGS-based resistance profile inference were calculated 128 

based on the 7H10 agar dilution results for all drugs, except pyrazinamide – for which the 129 

MGIT 960 results were used, based on resistance/susceptibility at the WHO-defined critical 130 

concentrations and the presence or absence of a putative resistance-associated mutation.  131 

Defining clinical breakpoints for high/low-level resistance 132 

The therapeutic window of a drug is defined as the maximal serum concentration which is 133 

considered safe [21]. Mutations can increase the MIC beyond the therapeutic window and 134 

render the drug clinically ineffective. Drugs may have large therapeutic windows beyond the 135 

ECOFF. For these, MIC increases caused by mutations may still be within the therapeutic 136 

window of a drug: these strains might still be treatable by increasing the drug dose. We 137 

analysed the distribution of MICs of mutant strains, and assessed if cut-offs for low-level 138 

(within the therapeutic window) and high-level (beyond the therapeutic window) resistance 139 

were definable. 140 

WGS and single nucleotide polymorphism (SNP) calling 141 

WGS and data analysis was performed as previously described [22] and summarised in the 142 

supplementary materials. The performance of WGS-based DST greatly depends on the 143 
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availability of robust markers of resistance. We therefore focussed on a set of high-144 

confidence resistance-associated genes [4, 12] (Table 2).  145 

Ethics 146 

Local institutional review board or ethics committee approval was obtained at all local study 147 

sites. Informed consent was obtained where requested per local regulations. This project was 148 

approved by the Swiss Ethics Committee on research involving humans (swissethics, Bern, 149 

Switzerland). 150 

Results 151 

Agreement between MGIT 960 and 7H10 agar dilution phenotypic DST 152 

Table 3 and Figure 2 summarize the agreement between the semi-quantitative/quantitative 153 

MIC determination by MGIT 960 and 7H10 agar dilution in terms of classifying strains as 154 

resistant or susceptible according to ECOFFs (Table 1). Agreement was high for all drugs, 155 

except ethambutol (see below). For most drugs, the MGIT 960-based MICs were higher than 156 

the 7H10 agar dilution-based MICs. MICs obtained using the two methods were within 1-2 157 

two-fold dilution steps of each other. The classifications into resistant or susceptible 158 

demonstrated high rank correlations (Table 3 and Figure 2), except for capreomycin 159 

(supplementary Figure S4) due to few resistant strains included in the study.  160 

WGS and in silico resistance profile prediction 161 

A total of 176 WGS with a median coverage of 67.6X (interquartile range (IQR) = 37.48) 162 

were obtained. Median mapping percentage and percentage of genome covered were 98.7% 163 

(IQR = 0.94) and 99.4% (IQR = 0.4), respectively. All major M. tuberculosis lineages, except 164 

lineage 7, were represented in the study (L1 = 6, L2 = 36, L3 = 11, L4 = 123, L5 = 1, L6 = 1). 165 

The strains showed a range of drug resistance profiles (Figure 1).  Based on the set of 166 

analysed genes (Table 2), 25 strains were predicted to be fully susceptible against all assayed 167 

drugs, 59 strains were mono-/poly-resistant, 91 strains demonstrated MDR phenotypes and 168 

two strains were extensively drug resistant (XDR: isoniazid, rifampicin, fluoroquinolone and 169 

aminoglycoside resistant). 170 

Drug resistance profile prediction by WGS vs. phenotypic DST  171 
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After exclusion of known phylogenetic markers not involved in resistance, WGS-based 172 

prediction of drug resistance using a defined set of target genes (Table 2) was highly 173 

congruent with the categorical classification based on the phenotypic DST for most drugs 174 

(Table 3 and Figure 2). Based on the in silico resistance prediction, the MICs of mutant and 175 

wt strains frequently followed a Gaussian distribution. However, the same resistance marker 176 

may conferre different MICs in different strains (supplementary Figures S1C, S2C, S3C, 177 

S8C, S9C, S10C). In some cases, the increase in the MIC conferred by a certain resistance 178 

mutation fell within the distribution the of wt MIC (e.g. for gidB, eis promotor mutations, 179 

supplementary Figures S3C, S6C).  180 

Distinct wt and mutant MIC distributions 181 

MIC distributions of wt and mutant strains were well separated for rifampicin, rifabutin, 182 

isoniazid, kanamycin A, amikacin, capreomycin, streptomycin and pyrazinamide, indicating 183 

that the resistance markers used had a high positive predictive power (88.9% overall positive 184 

predictive power of resistance markers). For streptomycin, two strains harboured no 185 

mutations in the target genes, yet demonstrated high-level phenotypic resistance 186 

(supplementary Figure S3C). 187 

Overlapping wt and mutant MIC distributions 188 

MIC distributions of wt and mutant strains overlapped for ethambutol, moxifloxacin and 189 

ethionamide. For ethambutol and ethionamide, overlapping MIC distributions of wt and 190 

mutant strains were associated with a large number of polymorphisms in resistance-191 

conferring genes (ethambutol resistance: 22 polymorphisms in embB, ethionamide resistance: 192 

28 in ethA, 3 in inhA, 6 in inhA promoter). Solubility issues with ethionamide led to 193 

quantitative differences in MGIT 960 vs. 7H10 agar dilution-based DST (Table 3, Figure 3). 194 

The overlap in MIC distributions between wt and strains carrying an embB mutation was 195 

reduced by adjusting the critical concentration for ethambutol resistance from 5 mg/L to 2.5 196 

mg/L (MGIT 960). However, there was variability in the MICs for the same mutation (e.g. 197 

MIC EmbB M306I/V in 7H10 agar dilution: 4-16 mg/L –supplementary Figure S2C). 198 

Moxifloxacin resistance was rare (n = 9, MGIT 960, critical concentration 0.25 mg/L) and 199 

MIC distributions of mutant strains partially overlapped with those of wt. Sensitivity of the 200 

genome-based moxifloxacin resistance prediction was 80.0% (Table 4). 201 

Defining high-/low-level clinical breakpoint concentrations 202 
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Isoniazid 203 

Mutations in the promoter of inhA conferred low-level resistance <1 mg/L (7H10 agar 204 

dilution), compared to strains harbouring mutations in  katG or combinations of inhA 205 

promoter and katG mutations which demonstrated MIC levels ranging from >1 mg/L to >32 206 

mg/L in 7H10 agar dilution (supplementary Figure S8C). Defining clinical breakpoint 207 

concentrations (CBC) for low- (≤1 mg/L for MGIT 960/7H10 agar dilution) and high-level 208 

(>1 mg/L MGIT 960/7H10 agar dilution) isoniazid resistance is warranted. 209 

Rifampicin/Rifabutin 210 

Most mutations in rpoB increased the MIC for rifamycins beyond the therapeutic window 211 

(peak serum concentration 10 mg/L [21, 23]). However, some rare rpoB mutations (e.g. 212 

RpoB L452P, H445Y – supplementary Figure 9C) demonstrated MICs within the therapeutic 213 

window. Defining low- and high-level CBC may thus be justified.  214 

For rifampicin, CBC were ≤4/2 mg/L for MGIT 960/7H10 agar dilution and >4/2 mg/L for 215 

MGIT 960/7H10 agar dilution, respectively. 216 

For rifabutin, our data suggests CBC for low- and high-level resistance of ≤0.4/0.25 or 0.5 217 

mg/L for MGIT 960/7H10 agar dilution and >0.4/0.25 or 0.5 mg/L for MGIT 960/7H10 agar 218 

dilution, respectively. 219 

Mutations in rpoB conferring resistance to rifampicin and rifabutin showed highly correlated 220 

increases (Figure 4) of MICs beyond the therapeutic window for most rpoB mutations 221 

(Figure 3 and supplementary Figure S9C & S10C), indicating that both drugs are rendered 222 

clinically ineffective and cannot substitute each other. 223 

Amikacin 224 

Few strains had mutations in the regions of rrs relevant for amikacin resistance or the eis 225 

promoter (n=12). Mutations in rrs were associated with high-level (>128 mg/L in 7H10 agar 226 

dilution) and mutations in the promoter region of eis with low-level level (2-4 mg/L in 7H10 227 

agar dilution) amikacin resistance. Given the peak serum concentrations of amikacin (20-40 228 

mg/L [21]), a CBC for low- (≤ 4 mg/L for MGIT 960/7H10 agar dilution) and high-level (4 229 

mg/L for MGIT 960/7H10 agar dilution) amikacin resistance may be warranted. 230 

Streptomycin 231 
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Certain mutations lead to MICs well beyond the peak serum concentrations [21] of 232 

streptomycin (e.g. RpsL K43R, MIC 7H10 agar dilution >128 mg/L, supplementary Figure 233 

S3C). On the other hand, gidB mutations increase the MIC only moderately (MIC 7H10 agar 234 

dilution 1-4 mg/L, supplementary Figure 3C). Mutational combinations in gidB, rrs, rpsL 235 

were common and produced a range of different MICs. However, there were mutations that 236 

systematically lead to MICs beyond the therapeutic window, e.g. RpsL K43R. Defining low-237 

level (MGIT 960 ≤4 mg/L, 7H10 agar dilution ≤4-8 mg/L) and high-level CBC for 238 

streptomycin resistance (MGIT 960 >4 mg/L, 7H10 agar dilution >4-8 mg/L) is warranted. 239 

Discussion 240 

We compared quantitative phenotypic DST with in silico or genomic resistance profile 241 

prediction inferred from WGS using 176 clinical M. tuberculosis isolates. 242 

The results of MGIT 960 and 7H10 agar dilution-based phenotypic DST methods were 243 

highly correlated and suitable to separate susceptible from resistant variants. After exclusion 244 

of known phylogenetic markers, genome-based resistance profile prediction displayed high 245 

sensitivity and specificity for detecting resistance. Based on phenotypic DST results and 246 

WGS, we were able to define CBC for high- and low-level resistance for isoniazid, 247 

rifampicin, streptomycin and amikacin. Defining such breakpoints is important for preserving 248 

efficacious drugs for treatment of resistant M. tuberculosis variants. 249 

Our data suggest that the current WHO-defined critical concentration for phenotypic DST of 250 

ethambutol by MGIT 960 (5 mg/L) is too high and may misclassify strains as susceptible 251 

when compared to the 7H10 agar dilution-based classification. Given the low peak serum 252 

concentrations for ethambutol, this may lead to mistreatment due to presumed ethambutol 253 

susceptibility. After adjusting the critical concentration to 2.5 mg/L for MGIT 960, we 254 

observed a strong improvement of the categorical agreement between MGIT 960- and 7H10 255 

agar dilution-based classification. 256 

The mutations identified by WGS had a high predictive power to classify strains as resistant. 257 

However, the predictive power depends on a number of factors. For instance, the increase in 258 

MIC conferred by an identical resistance mutation can vary greatly in different strains (e.g. 259 

EmbB M306I/V, RpsL K88R). Such variation is clinically relevant if there is a significant 260 

overlap between the MICs of mutant and wt strains, as was the case for ethionamide, 261 

ethambutol and streptomycin (e.g. gidB) resistance mutations. Furthermore, it is difficult to 262 
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classify strains as resistant or susceptible if the MIC increase lies within the therapeutic 263 

window of a drug. The overlap between MICs of mutant and wt strains is confounded by the 264 

fact that we only screened for mutations in genes which had previously been associated with 265 

drug resistance. We might thus have missed possible resistance-confering mutations in other 266 

genes. Additionally, WGS will always produce distributions of coverages which in term will 267 

inevitably lead to certain regions in the genome suffering from low coverage, preventing the 268 

detection of mutations. The inability to call mutations due to low coverage will therefore lead 269 

to false negatives, reducing sensitivity. Furthermore, the strain genetic background [24], non-270 

mutational mechanisms (e.g. modulation of gene expression) [25], as well as drug efflux 271 

mechanisms [26] may contribute to the variability in increase of the MIC conferred by 272 

resistance mutations.  273 

The predictive power of mutations in target genes also depends on removing phylogenetic 274 

markers not involved in resistance. Separating phylogenetic from resistance-associated 275 

markers works well for essential (highly conserved) genes such as rpoB, rpsL, rrs but is 276 

problematic in non-essential genes involved in the conversion of prodrugs into their active 277 

forms like pncA (pyrazinamide), ethA (ethionamide) or in genes that generally exhibit higher 278 

numbers of polymorphisms e.g. embB. Of note, the embABC operon is highly polymorphic, 279 

harbouring more polymorphisms than expected by chance (mutations in embABC operon = 280 

81, expected = 44.8, p = 9.174e-07, binomial test). Mutations conferring ethambutol resistance 281 

[27] will therefore inevitably evolve in the presence of phylogenetic SNPs and may interact 282 

epistatically to produce the variability in MICs we observed for wt strains and for the most 283 

common ethambutol resistance markers embB M306I/V. The embABC operon is involved in 284 

the biosynthesis of decaprenylphosphoryl-β-d-arabinose, which is an integral component of 285 

the mycobacterial cell wall. The cell envelope interacts with the host immune system and the 286 

high levels of diversity of these genes might be the product of diversifying selection due to 287 

host immune pressure. The influence of polymorphisms in the embABC operon on MICs in 288 

general is supported by the observation that sub-inhibitory concentrations of ethambutol 289 

lower the MICs for isoniazid, rifampicin and streptomycin [28]. Even small changes in 290 

activity of the decaprenylphosphoryl-β-d-arabinose biosynthetic and utilisation pathway 291 

might thus alter cell wall permeability and influence MICs of several drugs. 292 

Similarly, in the case of streptomycin resistance, the RpsL substitution K88R exhibited a 293 

range in MICs from low to high-level resistance making it difficult to judge the susceptibility 294 

of a strain harbouring this mutation based on the genotype. Streptomycin was the first 295 
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effective antituberculous drug discovered [29] and has been used for decades. The long-term 296 

use has produced complex resistance profiles with multiple streptomycin resistance mutations 297 

(e.g. in gidB, rpsL, rrs) occurring concomitantly, producing wide ranges of MICs. 298 

Furthermore, many streptomycin resistant strains displayed MDR/XDR phenotypes. 299 

Streptomycin resistance mutations are frequently found in backgrounds which have mutations 300 

in genes affecting the information pathway (DNA -> RNA -> proteins) – e.g. gyrA (DNA 301 

gyrase), rpoB (DNA-dependent RNA polymerase), rrs (ribosomal RNA). The simultaneous 302 

presence of multiple resistance mutations may alter the adaptive landscape [30, 31]. In 303 

addition, non-mutational processes (e.g. alteration of gene expression) may compensate for 304 

fitness costs of drug resistance and at the same time alter the MIC for the drug [25]. This has 305 

not been demonstrated for streptomycin resistance in M. tuberculosis, but it seems possible 306 

that compensation of fitness costs in MDR phenotypes might alter the MIC for streptomycin 307 

[30], considering that streptomycin is not part of the current standard treatment regimen and 308 

selection for high-level streptomycin resistance is relaxed.  309 

In conclusion, we demonstrate that MGIT 960 and 7H10 agar dilution-based phenotypic DST 310 

provide highly congruent classifications of strains into resistant or susceptible. WGS has high 311 

predictive power to infer resistance profiles without the need for time-consuming phenotypic 312 

methods. Limitations due to overlapping distributions of wt and mutant MICs, varying MICs 313 

for the same resistance mutations in different strains, presence of phylogenetic markers in 314 

resistance-associated genes and rare resistance markers with low frequencies will likely be 315 

resolved by on-going large-scale projects (e.g. ReSeqTB [32]) combining phenotypic DST 316 

with WGS of thousands of M. tuberculosis isolates. Our findings, together with those of on-317 

going studies will pave the way for the replacement of phenotypic DST with drug resistance 318 

profile prediction based on WGS in the coming years. 319 
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Antibiotic 

ECOFF  
agar 

dilution 
(mg/L) 

ECOFF 
MGIT 

960 
(mg/L) 

Ethionamide 1 5 
Ethambutol 2 5 

Capreomycin 4 2.5 
Streptomycin 0.5 1 
Kanamycin A 2 2 

Amikacin 1 1 
Moxifloxacin 0.25 0.25 

Isoniazid 0.125 0.1 
Rifampicin 0.5 1 
Rifabutin 0.0625 0.1 

Pyrazinamide NA 100 
 
Table 1 Epidemiological cutoffs (ECOFF) used for 
7H10 agar dilution and MGIT 960 phenotypic DST [14] 
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Drug Target gene(s) 

Ethionamide ethA, inhA, inhA promoter 

Ethambutol embB 

Capreomycin rrs, eis promoter, tlyA 

Streptomycin rrs, gidB, rpsL 

Kanamycin A rrs, eis promoter 

Amikacin rrs, eis promoter 

Moxifloxacin gyrA 

Isoniazid katG, inhA promoter 

Rifampicin/rifabutin rpoB 

Pyrazinamide pncA, pncA promoter 

 
Table 2 List of genes implicated in drug resistance in M. tuberculosis which were screened for 
polymorphisms by WGS. List adapted from [3, 21]  

Drug Sensitivity (%) Specificity (%) 
Ethionamide 75.0 92.9 
Ethambutol 89.6 94.2 
Capreomycin 75.0 94 
Streptomycin 68.0 92.1 
Kanamycin A 83.3 98.8 
Amikacin 63.6 96.9 
Moxifloxacin 80.0 90.2 
Isoniazid 93.6 96.8 
Rifampicin 100 94.0 
Rifabutin 98.9 94.0 
Pyrazinamide 80.8 88.9 
 
Table 4 Sensitivity and specificity of the genome-based drug resistance profile prediction 
using the 7H10 agar dilution-based categorical classification as the gold standard for all 
drugs except pyrazinamide, for which the MGIT 960 categorical classification was used 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

  361 

Antibiotic n 
Categorical 

agreement (%) 

SD of  
log2(MIC MGIT 960/MIC 

agar dilution) γ 
Ethionamide 56 95 1.9 ± 0.3 0.91 
Ethambutol 171 73 1.9 ± 0.5 0.94 

Capreomycin 56 98 1.5 ± 0.5 0.65 
Streptomycin 56 93 1.5 ± 0.3 0.98 
Kanamycin A 56 98 1.2 ± 0.2 0.8 

Amikacin 174 98 1.4 ± 0.6 1 
Moxifloxacin 173 99 1 ± 0.2 1 

Isoniazid 173 96 1.2 ± 0.1 1 
Rifampicin 174 99 NA 1 
Rifabutin 56 96 0.8 ± 0.1 0.98 

 
Table 3 Summary statistics of the method agreement between 7H10 agar dilution- and MGIT 960-based 
phenotypic DST for all drugs assayed in this study 
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Figure 1 Maximum likelihood phylogeny of 176 M. tuberculosis strains based on 20510 variable positions. Reference strains labeled with 
green tip labels. Main lineages are highlighted as follows: red L4, purple L3, blue L2, pink L1, green L6, brown L5. Scale bar indicates 
number of substitutions per site. Phylogeny rooted on M. canettii. Colored bars indicate resistance mutations per gene and within a distinct 
column (gene) each colored bar represents a distinct mutation. Black bars indicate no mutation, i.e. wt.
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Figure 2 Histograms of MICs (7H10 agar dilution) for all drugs assayed in this study 
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Figure 3 Method agreement between phenotypic DST performed with MGIT 960 and 7H10 agar 
dilution represented as Bland-Altman plots for all drugs tested in this study.
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Figure 4 Correlation between 7H10 agar dilution MICs for 
rifampicin and rifabutin
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