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32 Onesentence summary

33  Whole genome sequencing of clinical M. tuberculosis isolates accurately predicts drug
34  resistance profiles and may replace culture-based drug susceptibility testing in the future.
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35 Abstract

36  Whole genome sequencing allows rapid detection of drug-resistant M. tuberculosis isolates.
37 However, high-quality data linking quantitative phenotypic drug susceptibility testing (DST)
38  and genomic data have thus far been lacking.

39 We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis
40 isolates from Democratic Republic of the Congo, Ivory Coast, Peru, Thailand and
41  Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD
42  BACTEC MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic
43  DST readout. We compared phenotypic drug susceptibility results with predicted drug

44  resistance profilesinferred by whole genome sequencing.

45  Both phenotypic DST methods identically classified the strains into resistant/susceptible in
46 73-99% of the cases, depending on the drug. Changes in minimal inhibitory concentrations
47  were readily explained by mutations identified by whole genome sequencing. Using the
48  whole genome sequences we were able to predict quantitative drug resistance levels where
49  wild type and mutant MIC distributions did not overlap. The utility of genome sequences to
50 predict quantitative levels of drug resistance was partially limited due to incompletely
51  understood mechanisms influencing the expression of phenotypic drug resistance. The overall

52 sengtivity and specificity of whole genome-based DST were 86.8% and 94.5%, respectively.

53 Despite some limitations, whole genome sequencing has high predictive power to infer

54  resistance profiles without the need for time-consuming phenotypic methods.
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55 Introduction

56  Timely and accurate drug susceptibility testing (DST) of M. tuberculosis isolates is vital to
57  prevent the transmission of multidrug-resistant strains (MDR — resistance to rifampicin and
58 isoniazid)[1]. However, the slow growth and stringent biosafety requirements of M.
59  tuberculosis make obtaining afull DST profile by culture-based techniques a matter of weeks
60  or months. In addition, culture-based DST is notoriously challenging for severa drugs, e.g.
61  pyrazinamide and ethionamide due to poor drug solubility in commonly used culture media
62 [2].

63  Drug resistance in M. tuberculosis is mainly conferred by chromosoma mutations in a few
64  genes [3], making it possible to detect drug resistance by sequencing these genes or probing
65 them by molecular hybridisation [4]. Several commercial tests for the detection of resistance-
66  associated mutations are available, e.g. the GenoType MTBDRplus V2 (Hain Lifescience
67 GmbH, Nehren, DE) [5], the AID TB Resistance Line Probe Assay (AID GmbH, Strassberg,
68 DE) [6]. Line probe assays and the GeneXpert® system (Cepheid, Sunnyvale, CA, USA) are
69  endorsed by the World Health Organisation (WHO) the detection of rifampicin resistance as
70  surrogate marker for MDR [7]. These molecular tests demonstrate high sensitivities for drugs
71 with established target(s) of resistance and for which only a few mutations are responsible for
72 most resistance in clinico (e.g. rifampicin, isoniazid) [4]. However, molecular tests show low
73 sengtivity for heteroresistant strains (concomitant presence of wild type (wt) and resistant or
74  multiple different resistant variants in patient isolates), when frequencies of resistant variants
75  drop below 5-50 % [8, 9]. Furthermore, there are no commercially available tests for many
76  drugs currently/prospectively in use (e.g. bedaquiline, delamanid, linezolid, p-aminosalicylic
77  acid).

78  The past years have seen a wealth of genomic data on drug-resistant M. tuberculosis become
79 available [10, 11]. However, phenotypic DST data are lacking for most of the genetic data
80  sets. In addition, DST data are often limited as the strains were classified as susceptible or
81  redistant using only a single drug concentration. Thereis an urgent need to link genotypic and
82  phenotypic drug resistance readouts to obtain a better understanding of the mechanisms

83 influencing the evolution and spread of drug resistance in M. tuberculosis.

84 WGS of clinical isolates allows for accurate identification of established-resistance-

85  conferring chromosomal mutations [10, 12, 13] and may ensure adequate treatment in days
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86 instead of months. We compared whole genome-based drug resistance profiles with two
87  culture-based quantitative DST methods for atotal of 11 drugs, including all first-line drugs
88  (rifampicin, isoniazid, ethambutol, pyrazinamide, streptomycin) and an array of second-line

89  drugs (rifabutin, amikacin, kanamycin A, capreomycin, moxifloxacin, ethionamide).
90 Material and methods

91 M. tuberculosisisolates

92 Theinitial data-set consisted of 190 M. tuberculosis isolates. A subset of 61 strains was used
93  to establish the phenotypic DST methodology. These 61 strains were collected by the Swiss
94  National Center for Mycobacteria between 2004-2015, and represent a broad spectrum in
95 geographic origin and drug resistance profiles [14-16]. We then applied the quantitative
96 DST methodology to 125 clinical isolates from clinics participating in the International
97  Epidemiology Databases to Evaluate AIDS (IeDEA) [17] in Peru, Thailand, Ivory Coast and
98 the Democratic Republic of the Congo (supplementary Table S3). Thirteen strains had to be
99  excluded due to failed WGS (n = 4, failed library preparation due to low DNA quality),
100  irreproducible DST results (n = 1), no growth in the 7H10 agar dilution assay (n = 3),
101  duplication (n = 1), mixed cultures (n = 2, cross-contamination or patient infected with

102  multiple strains) or transmission clusters (n = 2). The final set consisted of 176 strains.
103  Phenotypic DST

104 MGIT 960- and 7H10 agar dilution-based phenotypic DST were performed as described
105  previously [14]. Table 1 lists the epidemiological cut-offs (ECOFF) used [18], supplementary
106  Table S2 the drug concentrations tested with the MGIT 960 and 7H10 agar-dilution assays
107  and Table 2 the genes screened for mutations with WGS. Further details are available in the
108  supplementary materials.

109 Dataanalysis

110  The categorical agreement between the MIC determination by MGIT 960 and 7H10 agar
111 dilution was determined based on the ECOFFS (Table 1).

112 The numerical variation between the two methods was quantified as the geometric standard
113 deviation (SD, given with its standard error) of the ratio MIC MGIT 960/MIC agar dilution,
114  expressed as anumber of 2-fold dilutions and denoted by ¢. The geometric SD was computed
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115 by fitting a log-normal distribution to the ratio MIC MGIT 960/MIC agar dilution as
116  implemented in the R package fitdistrplus (v.1.0-9) [19]. If the data was compatible with ¢ =
117 0, the geometric standard deviation could not be estimated and was defined as “not
118  applicable” (NA). The approach is a generalization of the Bland and Altman method [20],
119  taking censoring of the data into account. Strains for which the MGIT 960 MIC and 7H10
120  agar dilution MIC were both left-censored or both right-censored were excluded since no

121  information on the ratio could be derived.

122 Goodman and Kruskal’s gamma was used to quantify the rank correlation between the two
123 methods. No correlation could be calculated if the variance for either method was 0 (NA).

124  Distributions of wt and mutant MICs were analysed qualitatively based on the results of
125  7H10 agar dilution. We divided the dataset into two groups. drugs for which the MIC
126  distributions of wt and mutant strains did not overlap, and those for which MIC distributions

127  overlapped.

128  Senditivities and specificities of WGS-based resistance profile inference were calculated
129  based on the 7H10 agar dilution results for all drugs, except pyrazinamide — for which the
130  MGIT 960 results were used, based on resistance/susceptibility at the WHO-defined critical

131  concentrations and the presence or absence of a putative resistance-associated mutation.
132 Defining clinical breakpoints for high/low-level resistance

133  The therapeutic window of a drug is defined as the maximal serum concentration which is
134  considered safe [21]. Mutations can increase the MIC beyond the therapeutic window and
135  render the drug clinically ineffective. Drugs may have large therapeutic windows beyond the
136 ECOFF. For these, MIC increases caused by mutations may still be within the therapeutic
137  window of a drug: these strains might still be treatable by increasing the drug dose. We
138  anaysed the distribution of MICs of mutant strains, and assessed if cut-offs for low-level
139  (within the therapeutic window) and high-level (beyond the therapeutic window) resistance
140  weredefinable.

141 WGS and single nucleotide polymor phism (SNP) calling

142  WGS and data analysis was performed as previously described [22] and summarised in the
143 supplementary materials. The performance of WGS-based DST greatly depends on the
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144  availability of robust markers of resistance. We therefore focussed on a set of high-

145  confidence resistance-associated genes [4, 12] (Table 2).
146  Ethics

147  Local institutional review board or ethics committee approval was obtained at all local study
148  dites. Informed consent was obtained where requested per local regulations. This project was
149  approved by the Swiss Ethics Committee on research involving humans (swissethics, Bern,
150  Switzerland).

151 Results

152 Agreement between MGIT 960 and 7H10 agar dilution phenotypic DST

153  Table 3 and Figure 2 summarize the agreement between the semi-quantitative/quantitative

154  MIC determination by MGIT 960 and 7H10 agar dilution in terms of classifying strains as
155  resistant or susceptible according to ECOFFs (Table 1). Agreement was high for al drugs,
156  except ethambutol (see below). For most drugs, the MGIT 960-based MICs were higher than
157  the 7H10 agar dilution-based MICs. MICs obtained using the two methods were within 1-2
158  two-fold dilution steps of each other. The classifications into resistant or susceptible

159  demonstrated high rank correlations (Table 3 and Figure 2), except for capreomycin

160  (supplementary Figure $4) due to few resistant strainsincluded in the study.
161  WGSand in silico resistance profile prediction

162 A total of 176 WGS with a median coverage of 67.6X (interquartile range (IQR) = 37.48)
163  were obtained. Median mapping percentage and percentage of genome covered were 98.7%
164  (IQR=0.94) and 99.4% (IQR = 0.4), respectively. All major M. tuberculosis lineages, except
165 lineage 7, were represented inthestudy (L1=6,L2=36,L3=11,L4=123,L.5=1,L6=1).
166  The strains showed a range of drug resistance profiles (Figure 1). Based on the set of
167  analysed genes (Table 2), 25 strains were predicted to be fully susceptible against all assayed
168  drugs, 59 strains were mono-/poly-resistant, 91 strains demonstrated MDR phenotypes and
169  two strains were extensively drug resistant (XDR: isoniazid, rifampicin, fluoroquinolone and

170  aminoglycoside resistant).

171 Drugresistance profile prediction by WGS vs. phenotypic DST
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172 After exclusion of known phylogenetic markers not involved in resistance, WGS-based
173 prediction of drug resistance using a defined set of target genes (Table 2) was highly
174  congruent with the categorical classification based on the phenotypic DST for most drugs
175  (Table 3 and Figure 2). Based on the in silico resistance prediction, the MICs of mutant and

176  wit strains frequently followed a Gaussian distribution. However, the same resistance marker

177  may conferre different MICs in different strains (supplementary Figures S1C, S2C, S3C,

178  S8C, S9C, S10C). In some cases, the increase in the MIC conferred by a certain resistance

179  mutation fell within the distribution the of wt MIC (e.g. for gidB, eis promotor mutations,
180  supplementary Figures S3C, S6C).

181  Distinct wt and mutant M1 C distributions

182  MIC distributions of wt and mutant strains were well separated for rifampicin, rifabutin,
183  isoniazid, kanamycin A, amikacin, capreomycin, streptomycin and pyrazinamide, indicating
184  that the resistance markers used had a high positive predictive power (88.9% overall positive
185  predictive power of resistance markers). For streptomycin, two strains harboured no

186 mutations in the target genes, yet demonstrated high-level phenotypic resistance
187  (supplementary Figure S3C).

188  Overlapping wt and mutant M1C distributions

189  MIC distributions of wt and mutant strains overlapped for ethambutol, moxifloxacin and
190 ethionamide. For ethambutol and ethionamide, overlapping MIC distributions of wt and
191 mutant strains were associated with a large number of polymorphisms in resistance-
192  conferring genes (ethambutol resistance: 22 polymorphisms in embB, ethionamide resistance:
193 28 in ehA, 3 in inhA, 6 in inhA promoter). Solubility issues with ethionamide led to
194  guantitative differences in MGIT 960 vs. 7H10 agar dilution-based DST (Table 3, Figure 3).

195 The overlap in MIC distributions between wt and strains carrying an embB mutation was

196  reduced by adjusting the critical concentration for ethambutol resistance from 5 mg/L to 2.5
197 mg/L (MGIT 960). However, there was variability in the MICs for the same mutation (e.g.
198 MIC EmbB M3061/V in 7H10 agar dilution: 4-16 mg/L —supplementary Figure S2C).
199  Moxifloxacin resistance was rare (n = 9, MGIT 960, critical concentration 0.25 mg/L) and
200 MIC distributions of mutant strains partially overlapped with those of wt. Sensitivity of the
201 genome-based moxifloxacin resistance prediction was 80.0% (Table 4).

202  Defining high-/low-level clinical breakpoint concentrations


https://doi.org/10.1101/401703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/401703; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

203 Isoniazid

204  Mutations in the promoter of inhA conferred low-level resistance <1 mg/L (7H10 agar
205  dilution), compared to strains harbouring mutations in  katG or combinations of inhA
206  promoter and katG mutations which demonstrated MIC levels ranging from >1 mg/L to >32
207 mg/L in 7H10 agar dilution (supplementary Figure S8C). Defining clinical breakpoint
208  concentrations (CBC) for low- (<1 mg/L for MGIT 960/7H10 agar dilution) and high-level
209 (>1mg/L MGIT 960/7H10 agar dilution) isoniazid resistance is warranted.

210 Rifampicin/Rifabutin

211  Most mutations in rpoB increased the MIC for rifamycins beyond the therapeutic window
212 (peak serum concentration 10 mg/L [21, 23]). However, some rare rpoB mutations (e.g.
213 RpoB L452P, H445Y — supplementary Figure 9C) demonstrated MICs within the therapeutic
214 window. Defining low- and high-level CBC may thus be justified.

215  For rifampicin, CBC were <4/2 mg/L for MGIT 960/7H10 agar dilution and >4/2 mg/L for
216  MGIT 960/7H10 agar dilution, respectively.

217  For rifabutin, our data suggests CBC for low- and high-level resistance of <0.4/0.25 or 0.5
218 mg/L for MGIT 960/7H10 agar dilution and >0.4/0.25 or 0.5 mg/L for MGIT 960/7H10 agar
219  dilution, respectively.

220 Mutations in rpoB conferring resistance to rifampicin and rifabutin showed highly correlated
221 increases (Figure 4) of MICs beyond the therapeutic window for most rpoB mutations
222 (Figure 3 and supplementary Figure S9C & S10C), indicating that both drugs are rendered

223 clinically ineffective and cannot substitute each other.
224  Amikacin

225  Few strains had mutations in the regions of rrs relevant for amikacin resistance or the eis
226 promoter (n=12). Mutations in rrs were associated with high-level (>128 mg/L in 7H10 agar
227  dilution) and mutations in the promoter region of eis with low-level level (2-4 mg/L in 7H10
228  agar dilution) amikacin resistance. Given the peak serum concentrations of amikacin (20-40
229 mg/L [21]), a CBC for low- (< 4 mg/L for MGIT 960/7H10 agar dilution) and high-level (4
230  mg/L for MGIT 960/7H10 agar dilution) amikacin resistance may be warranted.

231  Streptomycin
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232 Certain mutations lead to MICs well beyond the peak serum concentrations [21] of
233  streptomycin (e.g. RpsL K43R, MIC 7H10 agar dilution >128 mg/L, supplementary Figure
234 S3C). On the other hand, gidB mutations increase the MIC only moderately (MIC 7H10 agar
235  dilution 1-4 mg/L, supplementary Figure 3C). Mutational combinations in gidB, rrs, rpsL
236 were common and produced a range of different MICs. However, there were mutations that
237  systematically lead to MICs beyond the therapeutic window, e.g. RpsL K43R. Defining low-
238 level (MGIT 960 <4 mg/L, 7H10 agar dilution <4-8 mg/L) and high-level CBC for
239  streptomycin resistance (MGIT 960 >4 mg/L, 7H10 agar dilution >4-8 mg/L) is warranted.

240 Discussion

241  We compared quantitative phenotypic DST with in silico or genomic resistance profile

242 prediction inferred from WGS using 176 clinical M. tuberculosis isolates.

243  The results of MGIT 960 and 7H10 agar dilution-based phenotypic DST methods were
244  highly correlated and suitable to separate susceptible from resistant variants. After exclusion
245  of known phylogenetic markers, genome-based resistance profile prediction displayed high
246  sengtivity and specificity for detecting resistance. Based on phenotypic DST results and
247  WGS, we were able to define CBC for high- and low-level resistance for isoniazid,
248  rifampicin, streptomycin and amikacin. Defining such breakpoints is important for preserving

249  efficacious drugs for treatment of resistant M. tuberculosis variants.

250  Our data suggest that the current WHO-defined critical concentration for phenotypic DST of
251  ethambutol by MGIT 960 (5 mg/L) is too high and may misclassify strains as susceptible
252 when compared to the 7H10 agar dilution-based classification. Given the low peak serum
253 concentrations for ethambutol, this may lead to mistreatment due to presumed ethambutol
254  susceptibility. After adjusting the critical concentration to 2.5 mg/L for MGIT 960, we
255  observed a strong improvement of the categorical agreement between MGIT 960- and 7H10
256  agar dilution-based classification.

257  The mutations identified by WGS had a high predictive power to classify strains as resistant.
258  However, the predictive power depends on a number of factors. For instance, the increase in
259  MIC conferred by an identical resistance mutation can vary greatly in different strains (e.g.
260 EmbB M3061/V, RpsL K88R). Such variation is clinicaly relevant if there is a significant
261 overlap between the MICs of mutant and wt strains, as was the case for ethionamide,

262  ethambutol and streptomycin (e.g. gidB) resistance mutations. Furthermore, it is difficult to

10


https://doi.org/10.1101/401703
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/401703; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

263 classify strains as resistant or susceptible if the MIC increase lies within the therapeutic
264  window of adrug. The overlap between MICs of mutant and wt strains is confounded by the
265  fact that we only screened for mutations in genes which had previously been associated with
266  drug resistance. We might thus have missed possible resistance-confering mutations in other
267  genes. Additionally, WGS will aways produce distributions of coverages which in term will
268  inevitably lead to certain regions in the genome suffering from low coverage, preventing the
269  detection of mutations. The inability to call mutations due to low coverage will therefore lead
270  to false negatives, reducing sensitivity. Furthermore, the strain genetic background [24], non-
271 mutational mechanisms (e.g. modulation of gene expression) [25], as well as drug efflux
272 mechanisms [26] may contribute to the variability in increase of the MIC conferred by

273  resistance mutations.

274  The predictive power of mutations in target genes also depends on removing phylogenetic
275 markers not involved in resistance. Separating phylogenetic from resistance-associated
276 markers works well for essential (highly conserved) genes such as rpoB, rpsL, rrs but is
277  problematic in non-essential genes involved in the conversion of prodrugs into their active
278  forms like pncA (pyrazinamide), ethA (ethionamide) or in genes that generally exhibit higher
279  numbers of polymorphisms e.g. embB. Of note, the embABC operon is highly polymorphic,
280  harbouring more polymorphisms than expected by chance (mutations in embABC operon =
281 81, expected = 44.8, p =9.174e-07, binomial test). M utations conferring ethambutol resistance
282 [27] will therefore inevitably evolve in the presence of phylogenetic SNPs and may interact
283  epistatically to produce the variability in MICs we observed for wt strains and for the most
284  common ethambutol resistance markers embB M3061/V. The embABC operon is involved in
285  the biosynthesis of decaprenylphosphoryl-B-d-arabinose, which is an integral component of
286  the mycobacteria cell wall. The cell envelope interacts with the host immune system and the
287  high levels of diversity of these genes might be the product of diversifying selection due to
288  host immune pressure. The influence of polymorphisms in the embABC operon on MICs in
289 genera is supported by the observation that sub-inhibitory concentrations of ethambutol
290 lower the MICs for isoniazid, rifampicin and streptomycin [28]. Even small changes in
291  activity of the decaprenylphosphoryl-3-d-arabinose biosynthetic and utilisation pathway
292 might thus ater cell wall permeability and influence MICs of several drugs.

293  Similarly, in the case of streptomycin resistance, the RpsL substitution K88R exhibited a
294  rangein MICs from low to high-level resistance making it difficult to judge the susceptibility
295 of a strain harbouring this mutation based on the genotype. Streptomycin was the first

11
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296  effective antituberculous drug discovered [29] and has been used for decades. The long-term
297  use has produced complex resistance profiles with multiple streptomycin resistance mutations
298 (e.g. in gidB, rpsL, rrs) occurring concomitantly, producing wide ranges of MICs.
299  Furthermore, many streptomycin resistant strains displayed MDR/XDR phenotypes.
300  Streptomycin resistance mutations are frequently found in backgrounds which have mutations
301 in genes affecting the information pathway (DNA -> RNA -> proteins) — e.g. gyrA (DNA
302 gyrase), rpoB (DNA-dependent RNA polymerase), rrs (ribosoma RNA). The simultaneous
303 presence of multiple resistance mutations may alter the adaptive landscape [30, 31]. In
304  addition, non-mutational processes (e.g. alteration of gene expression) may compensate for
305 fitness costs of drug resistance and at the same time ater the MIC for the drug [25]. This has
306 not been demonstrated for streptomycin resistance in M. tuberculosis, but it seems possible
307 that compensation of fitness costs in MDR phenotypes might alter the MIC for streptomycin
308  [30], considering that streptomycin is not part of the current standard treatment regimen and

309  selection for high-level streptomycin resistance is relaxed.

310 Inconclusion, we demonstrate that MGIT 960 and 7H10 agar dilution-based phenotypic DST
311  provide highly congruent classifications of strains into resistant or susceptible. WGS has high
312 predictive power to infer resistance profiles without the need for time-consuming phenotypic
313  methods. Limitations due to overlapping distributions of wt and mutant MICs, varying MICs
314 for the same resistance mutations in different strains, presence of phylogenetic markers in
315  resistance-associated genes and rare resistance markers with low frequencies will likely be
316  resolved by on-going large-scale projects (e.g. ReSeqTB [32]) combining phenotypic DST
317 with WGS of thousands of M. tuberculosis isolates. Our findings, together with those of on-
318 going studies will pave the way for the replacement of phenotypic DST with drug resistance
319  profile prediction based on WGSin the coming years.
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Tables
ECOFF ECOFF
S agar MGIT
Antibiotic | R 960
(mg/L) (mg/L)
Ethionamide 1 5
Ethambutol 2 5
Capreomycin 4 25
Streptomycin 0.5 1
Kanamycin A 2 2
Amikacin 1 1
Moxifloxacin 0.25 0.25
Isoniazid 0.125 0.1
Rifampicin 0.5 1
Rifabutin 0.0625 0.1
Pyrazinamide NA 100

Table 1 Epidemiological cutoffs (ECOFF) used for
7H10 agar dilution and MGIT 960 phenotypic DST [14]
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Drug Target gene(s)
342
Ethionamide ethA, inhA, inhA promoter
343 Ethambutol embB
Capreomycin rrs, eis promoter, tlyA
344 - -
Streptomycin rrs, gidB, rpsL
345 Kanamycin A rrs, eis promoter
Amikacin rrs, eispromoter
346 Moxifloxacin gyrA
347 Isoniazid katG, inhA promoter
Rifampicin/rifabutin rpoB
348 Pyrazinamide pncA, pncA promoter
349 Table 2 List of genes implicated in drug resistance in M. tuberculosis which were screened for
polymorphisms by WGS. List adapted from [3, 21]
350
SD of
351 Categorical log(MIC MGIT 960/M1C
Antibiotic n agreement (%) agar dilution) v
352 Ethionamide 56 95 1.9+0.3 0.91
Ethambutol 171 73 19+05 0.94
353 Capreomycin 56 98 15+05 0.65
Streptomycin 56 93 15+0.3 0.98
Kanamycin A 56 98 12+0.2 0.8
354 Amikacin 174 98 14+06 1
Moxifloxacin 173 99 1+£02 1
355 Isoniazid 173 96 1.2+0.1 1
Rifampicin 174 99 NA 1
356 Rifabutin 56 96 0.8+0.1 0.98
Table 3 Summary statistics of the method agreement between 7H10 agar dilution- and MGIT 960-based
357 phenotypic DST for all drugs assayed in this study
358 Y o
Drug Sensitivity (%) Specificity (%)
Ethionamide 75.0 92.9
359 Ethambutol 89.6 94.2
Capreomycin 75.0 94
360 Streptomycin 68.0 92.1
Kanamycin A 83.3 98.8
361 Amikacin 63.6 96.9
Moxifloxacin 80.0 90.2
Isoniazid 93.6 96.8
Rifampicin 100 94.0
Rifabutin 98.9 94.0
Pyrazinamide 80.8 88.9

Table 4 Sensitivity and specificity of the genome-based drug resistance profile prediction
using the 7H10 agar dilution-based categorical classification as the gold standard for all
drugs except pyrazinamide, for which the MGIT 960 categorical classification was used
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Figure 2 Histograms of MICs (7H10 agar dilution) for all drugs assayed in this study
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