

1 Leimbach – Maus et al. – *Gypsophila paniculata* microsatellites

2

3 **Microsatellite primer development for invasive perennial herb, *Gypsophila paniculata***
4 **(Caryophyllaceae)¹**

5

6 Hailee B. Leimbach-Maus^{2,3}, Syndell R. Parks², and Charlyn G. Partridge²

7

8 ²Annis Water Resources Institute, Grand Valley State University (AWRI-GVSU), 740 W.
9 Shoreline Dr., Muskegon, MI 49441 USA

10

11 Email addresses: HBLM: hailee.leimbachmaus@gmail.com

12 SRP: syndell.parks@gmail.com

13 CGP: partridc@gvsu.edu

14 Number of words: 1,191.

15

16 ¹Manuscript received ____; revision accepted ____.

17 ³Author for correspondence: hailee.leimbachmaus@gmail.com

18 The authors thank the Grand Valley State University Center for Scholarly and Creative
19 Excellence Catalyst Grant (C.G.P) and the Environmental Protection Agency – Great Lakes
20 Restoration Initiative Grant (C.G.P., Grant #00E01934) for financial support. The authors also
21 thank E.K. Rice for help in field sampling, and M. Kienitz for help in the laboratory.

22

23

24

ABSTRACT

25 ● *Premise of the study:* *Gypsophila paniculata* L. (baby's breath) is an herbaceous
26 perennial that has invaded much of northern and western United States and Canada,
27 outcompeting and crowding out native and endemic species. Microsatellite primers were
28 developed to analyze the genetic structure of invasive populations.

29 ● *Methods and Results:* We have identified 16 polymorphic nuclear microsatellite loci for
30 *G. paniculata* out of 73 loci that successfully amplified from a primer library created
31 using Illumina sequencing technology. The developed primers amplified microsatellite
32 loci in 3 invasive populations in Michigan. Primers amplified di-, tri-, and tetra-
33 nucleotide repeats.

34 ● *Conclusions:* These markers will be useful in characterizing the genetic structure of
35 invasive populations throughout North America to aid targeted management efforts, and
36 in native Eurasian populations to better understand invasion history. Five of these
37 developed primers also amplified in *G. elegans*.

38

39 **Key words:** Genetic diversity; *Gypsophila paniculata*; invasive species; microsatellites.

40

41

42

43

44

45

46

47

INTRODUCTION

48 The herbaceous perennial forb, *Gypsophila paniculata* L., was introduced to North
49 America in the late 1800's (Darwent and Coupland, 1966). Invasive populations have since been
50 documented throughout the northern and western United States and Canada, specifically in
51 agriculture fields, rangeland, roadsides, and sandy coastlines along the Great Lakes (Darwent,
52 1975; Emery and Doran, 2013). Despite its wide invasive range, little information exists on how
53 populations throughout North America are related or spreading. Due to its aggressive invasion,
54 negative impacts on native biota (Emery and Doran, 2013), and a lack of data regarding its
55 spread, it is important to develop molecular markers that can characterize the genetic structure of
56 invasive populations of *G. paniculata*. These markers will be directly used to investigate
57 invasions within the Lake Michigan coastal dune system where an 1,800-acre infestation occurs
58 (TNC, 2013). These markers and optimized protocols can be used to characterize populations of
59 *G. paniculata* throughout its invasive and native ranges to further assess its invasion history and
60 spread.

61 Calistri et al. (2014) examined the genetic relationship of five *Gypsophila* spp. (including
62 *G. paniculata*) within their native range and 13 commercial hybrid strains using a combination of
63 amplified fragment length polymorphisms (AFLPs), inter simple sequence repeats (ISSRs),
64 target region amplification polymorphism (TRAP), and universal chloroplast simple sequence
65 repeats (cpSSRs). However, the majority of these markers are dominant and thus do not fully
66 distinguish between homozygotes and heterozygotes, a characteristic that would allow for fine-
67 scale population genetic analyses (Freeland et al., 2011). Thus, the development of microsatellite
68 markers for *G. paniculata* is necessary to adequately characterize invasive populations
69 throughout North America.

70

METHODS AND RESULTS

71 ***Microsatellite Library Development, Assembly and Identification—***

72 Adventitious buds growing from the caudex of five *G. paniculata* plants were collected
73 from Sleeping Bear Dunes National Lakeshore (hereafter Sleeping Bear Dunes or SBDNL) in
74 2015 to develop the microsatellite library. Tissue was stored in indicator silica until DNA
75 extraction. Genomic DNA was extracted using DNeasy plant mini kits (QIAGEN, Hilden,
76 Germany), with modifications including extra wash steps with AW2 buffer. Extracted DNA was
77 run through Zymo OneStep PCR Inhibitor Removal Columns twice (Irvine, California, USA),
78 and checked using a Thermo Fisher Scientific Nanodrop 2000 (Waltham, Massachusetts, USA).
79 For microsatellite library development, each sample was diluted to 50 ng/µL and submitted to
80 Cornell University, Department of Ecology and Evolutionary Biology. Libraries were then
81 submitted to the Sequencing and Genotyping Facility at the Cornell Life Science Core
82 Laboratory Center for sequencing using a 2x250 paired-end format on an Illumina MiSeq
83 (Appendix S1). Raw sequence files for the microsatellite library have been deposited to NCBI's
84 Short Read Archive (Bioproject No: PRJNA431197). A total of 58,907 contigs containing
85 microsatellite loci were obtained. Msatcommander (v 1.0.3) (Faircloth, 2008) identified 3,892
86 potentially unique primers that yielded products of 150-450 bp, had a GC content between 30-
87 70%, and that had a T_m between 58-62°C, with an optimum of 60°C (Appendix S2).

88

89 ***Primer Optimization—***

90 Prior to PCR optimization, contigs containing potential primers were aligned using
91 ClustalOmega (Sievers et al., 2011) to ensure they were targeting unique microsatellite regions.
92 We tested 107 primer pairs that consisted of either tetrameric, trimeric, or dimeric motifs, and

93 yielded products between 150-300 bp. Of these, 73 successfully amplified, and 16 were
94 determined to be polymorphic and easily scorable (Appendix S3). DNA from leaf tissue
95 collected in 2016 from three populations (Zetterberg Preserve, SBDNL, Petoskey State Park)
96 along eastern Lake Michigan was used for primer optimization (see Table 2 for population
97 geographic coordinates). A minimum of 30 tissue samples were collected from each population.
98 Tissue storage and DNA extraction methods are the same as previously stated.

99 PCR reactions consisted of 1x KCl buffer (Thermo Fisher, Waltham, Massachusetts,
100 USA), 2.0-2.5 mM MgCl₂ (Table 1^b) (Thermo Fisher, Waltham, Massachusetts, USA), 300 μM
101 dNTP (New England BioLabs, Ipswich, Massachusetts, USA), 0.08 mg/mL BSA (Thermo
102 Fisher, Waltham, Massachusetts, USA), 0.4 μM forward primer fluorescently labeled with either
103 FAM, VIC, NED, or PET (Applied Biosystems, Foster City, California, USA), 0.4 μM reverse
104 primer (Integrated DNA Technologies, Coralville, Iowa, USA), 0.25 units of *Taq* polymerase
105 (Thermo Fisher, Waltham, Massachusetts, USA), and a minimum of 50 ng DNA template, all in
106 a 10.0 μL reaction volume. The thermal cycle profile consisted of 94°C for 5 minutes, 35 cycles
107 of 94°C for 1 minute, primer-specific annealing temperature (Table 1) for 1 min, 72°C for 1 min,
108 and a final elongation step of 72°C for 10 minutes. Successful amplification was determined by
109 visualizing the amplicons on a 2% agarose gel stained with ethidium bromide. Fragment analysis
110 of the amplicons was performed on an ABI3130xl Genetic Analyzer (Applied Biosystems,
111 Foster City, California, USA).

112

113 ***Microsatellite marker data analysis—***

114 Alleles were scored using Genemapper v5 (Applied Biosystems, Foster City, California,
115 USA), and Micro-Checker v2.2.3 (Van Oosterhout et al., 2004; Van Oosterhout et al., 2006) was

116 used to identify null alleles and potential scoring errors from stuttering or large allele dropout.
117 There was no significant evidence of null alleles ($p > 0.05$) in the Zetterberg Preserve and
118 SBDNL populations. However, null alleles were suggested for loci BB_3968, BB_5021, and
119 BB_8681 in the Petoskey State Park population (Table 2). Homozygote excess for Petoskey
120 State Park is not surprising, given this population's reduced number of alleles at each locus and
121 small comparative population size. We characterized genetic diversity by examining the number
122 of alleles, and expected and observed heterozygosity for each locus averaged over each
123 population (Table 2) using the package STRATAG in the R statistical program (Archer et al.,
124 2016). The number of observed alleles ranged from 1 – 10. Some loci were monomorphic for
125 one population, but polymorphic when analysis included all populations (e.g., BB_4258).

126 The Zetterberg Preserve population displayed slightly higher heterozygosity values than
127 Sleeping Bear Dunes, but the Petoskey State Park population had much lower heterozygosity
128 values in comparison. A probability test for Hardy-Weinberg Equilibrium (HWE), calculation of
129 the fixation index (F_{IS}), and linkage disequilibrium were performed in GENEPOP 4.2 (Raymond
130 and Rousset, 1995; Rousset, 2008). The default parameters for Markov Chain Monte Carlo
131 (MCMC) iterations were used to calculate HWE. All loci were in HWE except locus BB_3968
132 for SBDNL, and locus BB_21680 for Petoskey State Park (Table 2). The F_{IS} estimates were
133 calculated using the probability model following Robertson and Hill (1984). Statistical tests for
134 genetic linkage disequilibrium were performed using the log likelihood ratio statistic (G-test) and
135 MCMC algorithm by Raymond and Rousset (1995). Two pairs of loci were significantly out of
136 linkage disequilibrium ($p < 0.05$) for both Zetterberg Preserve and Sleeping Bear Dunes:
137 BB_5021 and BB_2888, and BB_3913 and BB_1355. Out of 16 loci, five successfully amplified
138 in a related species *G. elegans* (BB_4443, BB_4258, BB_7213, BB_5151, BB_1355) (Table 3).

139

140

CONCLUSIONS

141 The 16 microsatellite primers developed for *G. paniculata* provide a tool for estimating
142 genetic diversity and structure of invasive populations, which will aid in understanding its
143 invasion history, identifying source populations, and examining dispersal patterns. Though we
144 developed these markers to study the Lake Michigan dune system invasion, it is invasive
145 throughout North America. With these markers, we can begin to understand the invasion of *G.*
146 *paniculata* in North America in order to improve management efforts and prevent the further
147 spread of this species.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

LITERATURE CITED

163 Archer, F.I., P.E. Adams, and B.B. Schneiders. 2016. STRATAG: An R package for
164 manipulating, summarizing and analysing population genetic data. *Molecular Ecology*
165 *Resources*. 17: 5–11.

166 Calistri, E., M. Buiatti, and P. Bogani. 2014. Characterization of *Gypsophila* species and
167 commercial hybrids with nuclear whole-genome and cytoplasmic molecular markers.
168 *Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology*.
169 150: 1–11.

170 Darwent, A.L. 1975. The biology of Canadian weeds. 14. *Gypsophila paniculata* L. *Canadian*
171 *Journal of Plant Science*. 55: 1049–1058.

172 Darwent, A.L., and R.T. Coupland. 1966. Life history of *Gypsophila paniculata*. *Weeds*. 14:
173 313–318.

174 Emery, S.M., and P.J. Doran. 2013. Presence and management of the invasive plant *Gypsophila*
175 *paniculata* (baby's breath) on sand dunes alters arthropod abundance and community
176 structure. *Biological Conservation*. 161: 174–181.

177 Faircloth, B.C. 2008. Msatcommander: Detection of microsatellite repeat arrays and
178 automated, locus-specific primer design. *Molecular Ecology Resources*. 8: 92–94.

179 Freeland, J.R., S.D. Petersen, and H. Kirk. 2011. Molecular Ecology, 2nd ed. Wiley-Blackwell,
180 Hoboken, New Jersey, USA.

181 Raymond, M., and F. Rousset. 1995. GENEPOP (version 4.2): Population genetics software for
182 exact tests and ecumenicism. *Journal of Heredity*. 86: 248–249.

183 Robertson, A., and W.G. Hill. 1984. Deviations from Hardy-Weinberg proportions: sampling
184 variances and use in estimation of inbreeding coefficients. *Genetics*. 107: 703–718.

185 Rousset, F. 2008. Genepop'007: a complete reimplementaon of the Genepop software for
186 Windows and Linux. *Molecular Ecology Resources*. 8: 103–106.

187 Sievers, F., A. Wilm, D.G. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez et al. 2011. Fast,
188 scalable generaon of high-quality protein mulple sequence alignments using Clustal
189 Omega. *Molecular Systems Biology*. 7: 539.

190 The Nature Conservancy, and partners. 2013. Lake Michigan Coastal Dunes Restoration Report.
191 The Nature Conservancy. Website
192 [https://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/michigan/lake-](https://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/michigan/lake-michigan-dune-report-2013.pdf)
193 [michigan-dune-report-2013.pdf](https://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/michigan/lake-michigan-dune-report-2013.pdf) [accessed 01 November 2017].

194 Van Oosterhout, C., W.F. Hutchinson, D.P.M. Wills, and P. Shipley. 2004. MICRO-CHECKER:
195 software for identifying and correctng genotyping errors in microsatellite data.
196 *Molecular Ecology Resources*. 4: 535–538.

197 Van Oosterhout, C., D. Weetman, and W.F. Hutchinson. 2006. Estimation and adjustment of
198 microsatellite null alleles in nonequilibrium populations. *Molecular Ecology Resources*.
199 6: 255–256.

200

201

202

203

204

205

206

207

208

DATA ACCESSIBILITY

209 A summary of the microsatellite library development and sequence analysis protocols
210 (unpublished data) provided to us by Cornell University, Department of Ecology and
211 Evolutionary Biology are in Appendix S1. Fasta sequences for the 16 microsatellite primers
212 developed here are in Appendix S5. The fasta file listing all identified contigs containing
213 microsatellite regions are in Appendix S4. Potential primer pairs for the identified microsatellite-
214 containing contigs are in Appendix S2. The 107 *G. paniculata* – specific primer pairs tested
215 during primer optimization are in Appendix S3. Raw sequence files for the microsatellite library
216 have been deposited to NCBI's Short Read Archive (Bioproject No: PRJNA431197) and
217 microsatellite sequences have been deposited to GenBank (Table 1). Voucher specimen for each
218 population have been deposited into the Grand Valley State University Herbarium (GVSC),
219 Grand Valley State University Department of Biology, Allendale, MI, USA. (Appendix S6).

220

221

222

223

224

225

226

227

228

229

230

231

TABLES

232

233

Table 1. Characteristics of 16 nuclear microsatellite loci developed for *Gypsophila paniculata*.

Locus ^a	Primer sequences (5' - 3')	Repeat motif	Annealing			GenBank Accession No.
			Allele size range (bp)	temperature (°C)	Fluorescent label	
BB_3335 ^b	F: TCCACCAAACTCTAAACTGCC R: CACAGACACAAAGGATCCAACC	(AGG) ₅	215 - 244	62	NED	MH704701
BB_3913	F: GGCTGTGGGTAATAAACACAG R: TCCCAACTCAAGTCATAGCCTAG	(ACAG) ₅	159 - 171	62	PET	MH704702
BB_5567	F: GGCTAGGGAAAGTAGGAAGACC R: CGTGTCTGTTCTCCATGATC	(AAT) ₅	198 - 222	62	VIC	MH704703
BB_4443	F: TAGGGTGGGTGCTGTACTAAC R: AAAGTGGTGCTGCAGAAGAAC	(AAG) ₁₆	171 - 211	62	NED	MH704704
BB_21680	F: ACTACACACAGACTCGATCCTC R: CTTTGATTGTTGGTAAAGTTG	(AAAG) ₅	199 - 218	62	PET	MH704705
BB_3968	F: CATGGAGGACAATGAGAACG R: ACGGTGGTAATGAAGTTGGT	(AGG) ₆	207 - 219	62	FAM	MH704706
BB_1355	F: GCTGATCTTGTCTCAGGAAG R: ACTCTAGGTGTTAGGAAGGCAC	(AAAC) ₅	220 - 224	62	NED	MH704711
BB_5151	F: TCCACCTTATAACTCACCACCC R: TGAGGAAGGATAACAGCTCTCG	(ACC) ₅	205 - 210	62	PET	MH704712
BB_14751 ^b	F: CCTCAAACCTAACAAATGCTCC R: TCAGCCGATCCTCTAACACG	(AAG) ₁₂	195 - 248	62	FAM	MH704713
BB_4258 ^b	F: TCACAAGAGGCCAACATTCTTC R: ACTTGAACCCGAACCTATACCC	(AAT) ₅	178 - 195	62	VIC	MH704714
BB_6627	F: CAAACTCAACCAACCAGACACC R: CACCTCAGCAACAAACAGAGTG	(AAAC) ₅	151 - 155	62	FAM	MH704715
BB_5021	F: ATTGTGGTGGTCATTGGTTTC R: CTTAGTCCGCAGTGTAAACAAAG	(AC) ₈	162 - 207	62	VIC	MH704707
BB_7213 ^b	F: TTGCATTCCCACCATTTCATCC R: AGCCAACCTCGTATTAATTGCC	(AC) ₇	161 - 248	62	PET	MH704708
BB_2888 ^b	F: CTTCATTCATGTACAAGAGCCG R: AGAACTGGCTATGGATCGAAATG	(AC) ₁₆	219 - 232	63	FAM	MH704709
BB_8681 ^b	F: ATCTCCAGTTCCGTGATTTGC R: TACGTACAAGAGCTTCAACC	(ACC) ₈	204 - 222	62	NED	MH704710
BB_31555	F: TGTATAACTGAGATAACCCAGACG R: TTGTTACCTTGTCCGGCAAAG	(AC) ₇	150 - 156	62	VIC	MH704716

^aOptimal annealing temperature was 62°C for all loci except for BB_2888, where it was 63 °C. ^bUsed 2.5 mM MgCl₂ per sample to amplify locus.

234

235

236

237

238

239

240

Table 2. Genetic properties of the 16 developed nuclear microsatellite loci for 3 populations of *Gypsignophila paniculata*.

Locus	Zetterberg Preserve (n = 30)					Sleeping Bear Dunes (n = 33)					Petoskey State Park (n = 30)				
	<i>A</i>	H_0^a	H_E	F_{IS}	<i>r</i>	<i>A</i>	H_0^a	H_E	F_{IS}	<i>r</i>	<i>A</i>	H_0^a	H_E	F_{IS}	<i>r</i>
BB_3335	8	0.70	0.82	0.09	0.07	7	0.80	0.80	-0.01	0.00	3	0.50	0.56	0.02	0.05
BB_3913	4	0.74	0.68	-0.04	-0.06	4	0.59	0.61	0.05	0.00	2	0.13	0.13	-0.06	-0.06
BB_5567	4	0.63	0.60	-0.04	-0.04	4	0.63	0.63	0.01	-0.01	3	0.53	0.62	0.14	0.05
BB_4443	10	0.60	0.64	0.03	0.03	8	0.76	0.77	-0.02	0.00	5	0.80	0.71	-0.06	-0.09
BB_21680	4	0.53	0.56	0.01	0.02	3	0.52	0.56	0.02	0.05	4	0.67*	0.58	0.23	-0.10
BB_3968	3	0.50	0.42	-0.14	-0.11	4	0.35*	0.49	0.15	0.13	2	0.04	0.04	-	0.28
BB_5021	5	0.77	0.73	0.00	-0.05	5	0.54	0.60	0.15	0.02	1	-	-	-	0.30
BB_7213	5	0.63	0.61	-0.05	-0.02	3	0.59	0.58	-0.13	0.04	2	0.37	0.38	0.04	0.01
BB_2888	6	0.90	0.80	-0.11	-0.07	6	0.71	0.82	0.20	0.06	2	0.57	0.50	-0.13	-0.08
BB_8681	4	0.47	0.51	0.23	0.01	4	0.38	0.36	-0.07	-0.05	3	0.41	0.53	0.28	0.17
BB_1355	2	0.17	0.26	0.37	0.13	2	0.14	0.13	-0.07	-0.08	2	0.37	0.51	0.29	0.13
BB_5151	2	0.20	0.18	-0.10	-0.11	2	0.49	0.51	0.11	0.00	2	0.03	0.03	-	-0.02
BB_14751	6	0.79	0.71	-0.06	-0.07	6	0.76	0.76	-0.02	-0.01	3	0.20	0.29	0.21	0.12
BB_4258	3	0.40	0.33	-0.11	-0.22	1	0.00	0.00	-	0.00	1	-	-	-	0.00
BB_6627	2	0.30	0.26	-0.16	-0.16	2	0.46	0.49	-0.03	0.04	1	-	-	-	0.00
BB_31555	4	0.60	0.67	0.07	0.05	4	0.46	0.59	0.11	0.12	2	0.23	0.26	0.10	0.04

Note: *n* = number of individuals sampled; *A* = number of alleles; H_0 = observed heterozygosity; H_E = expected heterozygosity; F_{IS} = fixation index; *r* = null allele frequency; - = data not available because only 1 allele present at locus or because *A* > 1 is due to rare allele.

Data based on 3 populations with the following geographic coordinates: Zetterberg Preserve = 44.68231, -86.25322; Sleeping Bear Dunes = 44.87372, -86.06170; Petoskey State Park = 44.40859, -84.91238. All 3 populations are located in the northwest region of Michigan's lower peninsula.

*Significant deviation from Hardy-Weinberg equilibrium: * $P < 0.05$.

241

242

Table 3. Results of cross - amplification of microsatellite loci isolated from *Gypsoiphila paniculata* and tested in 12 *G. elegans* individuals.^a

Locus	Allele size range (bp)	Successful amplification (X) in each <i>G. elegans</i> individuals (<i>n</i> = 12).										
		GYEL01	GYEL02	GYEL03	GYEL04	GYEL07	GYEL08	GYEL09	GYEL12	GYEL13	GYEL15	GYEL18
BB_3335												
BB_3913												
BB_5567												
BB_4443	152	X	X	X	X	X	X	X	X	X	X	X
BB_21680												
BB_3968												
BB_1355	209 - 222	X	X	X	X	X	X	X	X	X	X	X
BB_5151	202 - 205	X	X	X	X	X	X	X	X	X	X	X
BB_14751												
BB_4258	160 - 169	X	X	X	X	X	X	X	X	X	X	X
BB_6627												
BB_5021												
BB_7213	161 - 171	X	X	X	X	X	X	X	X	X	X	X
BB_2888												
BB_8681												
BB_31555												

^a*G. elegans* tissue sourced from individuals grown in greenhouse at AWRI-GVSU facilities.

243

244

245