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ABSTRACT
Premise of the study: Gypsophila paniculata L. (baby’s breath) is an herbaceous
perennial that has invaded much of northern and western United States and Canada,
outcompeting and crowding out native and endemic species. Microsatellite primers were
developed to analyze the genetic structure of invasive populations.
Methods and Results: We have identified 16 polymorphic nuclear microsatellite loci for
G. paniculata out of 73 loci that successfully amplified from a primer library created
using [llumina sequencing technology. The developed primers amplified microsatellite
loci in 3 invasive populations in Michigan. Primers amplified di-, tri-, and tetra-
nucleotide repeats.
Conclusions: These markers will be useful in characterizing the genetic structure of
invasive populations throughout North America to aid targeted management efforts, and
in native Eurasian populations to better understand invasion history. Five of these

developed primers also amplified in G. elegans.

Key words: Genetic diversity; Gypsophila paniculata; invasive species; microsatellites.
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INTRODUCTION

The herbaceous perennial forb, Gypsophila paniculata L., was introduced to North
America in the late 1800’s (Darwent and Coupland, 1966). Invasive populations have since been
documented throughout the northern and western United States and Canada, specifically in
agriculture fields, rangeland, roadsides, and sandy coastlines along the Great Lakes (Darwent,
1975; Emery and Doran, 2013). Despite its wide invasive range, little information exists on how
populations throughout North America are related or spreading. Due to its aggressive invasion,
negative impacts on native biota (Emery and Doran, 2013), and a lack of data regarding its
spread, it is important to develop molecular markers that can characterize the genetic structure of
invasive populations of G. paniculata. These markers will be directly used to investigate
invasions within the Lake Michigan coastal dune system where an 1,800-acre infestation occurs
(TNC, 2013). These markers and optimized protocols can be used to characterize populations of
G. paniculata throughout its invasive and native ranges to further assess its invasion history and
spread.

Calistri et al. (2014) examined the genetic relationship of five Gypsophila spp. (including
G. paniculata) within their native range and 13 commercial hybrid strains using a combination of
amplified fragment length polymorphisms (AFLPs), inter simple sequence repeats (ISSRs),
target region amplification polymorphism (TRAP), and universal chloroplast simple sequence
repeats (cpSSRs). However, the majority of these markers are dominant and thus do not fully
distinguish between homozygotes and heterozygotes, a characteristic that would allow for fine-
scale population genetic analyses (Freeland et al., 2011). Thus, the development of microsatellite
markers for G. paniculata is necessary to adequately characterize invasive populations

throughout North America.
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METHODS AND RESULTS
Microsatellite Library Development, Assembly and Ildentification—

Adventitious buds growing from the caudex of five G. paniculata plants were collected
from Sleeping Bear Dunes National Lakeshore (hereafter Sleeping Bear Dunes or SBDNL) in
2015 to develop the microsatellite library. Tissue was stored in indicator silica until DNA
extraction. Genomic DNA was extracted using DNeasy plant mini kits (QIAGEN, Hilden,
Germany), with modifications including extra wash steps with AW2 buffer. Extracted DNA was
run through Zymo OneStep PCR Inhibitor Removal Columns twice (Irvine, California, USA),
and checked using a Thermo Fisher Scientific Nanodrop 2000 (Waltham, Massachusetts, USA).
For microsatellite library development, each sample was diluted to 50 ng/uL and submitted to
Cornell University, Department of Ecology and Evolutionary Biology. Libraries were then
submitted to the Sequencing and Genotyping Facility at the Cornell Life Science Core
Laboratory Center for sequencing using a 2x250 paired-end format on an Illumina MiSeq
(Appendix S1). Raw sequence files for the microsatellite library have been deposited to NCBI’s
Short Read Archive (Bioproject No: PRINA431197). A total of 58,907 contigs containing
microsatellite loci were obtained. Msatcommander (v 1.0.3) (Faircloth, 2008) identified 3,892
potentially unique primers that yielded products of 150-450 bp, had a GC content between 30-

70%, and that had a Ty, between 58-62°C, with an optimum of 60°C (Appendix S2).

Primer Optimization—
Prior to PCR optimization, contigs containing potential primers were aligned using
ClustalOmega (Sievers et al., 2011) to ensure they were targeting unique microsatellite regions.

We tested 107 primer pairs that consisted of either tetrameric, trimeric, or dimeric motifs, and
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yielded products between 150-300 bp. Of these, 73 successfully amplified, and 16 were
determined to be polymorphic and easily scorable (Appendix S3). DNA from leaf tissue
collected in 2016 from three populations (Zetterberg Preserve, SBDNL, Petoskey State Park)
along eastern Lake Michigan was used for primer optimization (see Table 2 for population
geographic coordinates). A minimum of 30 tissue samples were collected from each population.
Tissue storage and DNA extraction methods are the same as previously stated.

PCR reactions consisted of 1x KCI buffer (Thermo Fisher, Waltham, Massachusetts,
USA), 2.0-2.5 mM MgCl, (Table 1°) (Thermo Fisher, Waltham, Massachusetts, USA), 300 uM
dNTP (New England BioLabs, Ipswich, Massachusetts, USA), 0.08 mg/mL BSA (Thermo
Fisher, Waltham, Massachusetts, USA), 0.4 uM forward primer fluorescently labeled with either
FAM, VIC, NED, or PET (Applied Biosystems, Foster City, California, USA), 0.4 uM reverse
primer (Integrated DNA Technologies, Coralville, lowa, USA), 0.25 units of 7aq polymerase
(Thermo Fisher, Waltham, Massachusetts, USA), and a minimum of 50 ng DNA template, all in
a 10.0 pL reaction volume. The thermal cycle profile consisted of 94°C for 5 minutes, 35 cycles
of 94°C for 1 minute, primer-specific annealing temperature (Table 1) for 1 min, 72°C for 1 min,
and a final elongation step of 72°C for 10 minutes. Successful amplification was determined by
visualizing the amplicons on a 2% agarose gel stained with ethidium bromide. Fragment analysis
of the amplicons was performed on an ABI3130x1 Genetic Analyzer (Applied Biosystems,

Foster City, California, USA).

Microsatellite marker data analysis—
Alleles were scored using Genemapper v5 (Applied Biosystems, Foster City, California,

USA), and Micro-Checker v2.2.3 (Van Oosterhout et al., 2004; Van Oosterhout et al., 2006) was
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used to identify null alleles and potential scoring errors from stuttering or large allele dropout.
There was no significant evidence of null alleles (p > 0.05) in the Zetterberg Preserve and
SBDNL populations. However, null alleles were suggested for loci BB 3968, BB 5021, and
BB_ 8681 in the Petoskey State Park population (Table 2). Homozygote excess for Petoskey
State Park is not surprising, given this population’s reduced number of alleles at each locus and
small comparative population size. We characterized genetic diversity by examining the number
of alleles, and expected and observed heterozygosity for each locus averaged over each
population (Table 2) using the package STRATAG in the R statistical program (Archer et al.,
2016). The number of observed alleles ranged from 1 — 10. Some loci were monomorphic for
one population, but polymorphic when analysis included all populations (e.g., BB_4258).

The Zetterberg Preserve population displayed slightly higher heterozygosity values than
Sleeping Bear Dunes, but the Petoskey State Park population had much lower heterozygosity
values in comparison. A probability test for Hardy-Weinberg Equilibrium (HWE), calculation of
the fixation index (Fis), and linkage disequilibrium were performed in GENEPOP 4.2 (Raymond
and Rousset, 1995; Rousset, 2008). The default parameters for Markov Chain Monte Carlo
(MCMC) iterations were used to calculate HWE. All loci were in HWE except locus BB_3968
for SBDNL, and locus BB 21680 for Petoskey State Park (Table 2). The Fis estimates were
calculated using the probability model following Robertson and Hill (1984). Statistical tests for
genetic linkage disequilibrium were performed using the log likelihood ratio statistic (G-test) and
MCMC algorithm by Raymond and Rousset (1995). Two pairs of loci were significantly out of
linkage disequilibrium (p < 0.05) for both Zetterberg Preserve and Sleeping Bear Dunes:

BB 5021 and BB_2888, and BB 3913 and BB_1355. Out of 16 loci, five successfully amplified

in a related species G. elegans (BB_4443, BB 4258, BB 7213, BB 5151, BB 1355) (Table 3).
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139
140 CONCLUSIONS
141 The 16 microsatellite primers developed for G. paniculata provide a tool for estimating

142 genetic diversity and structure of invasive populations, which will aid in understanding its

143 invasion history, identifying source populations, and examining dispersal patterns. Though we
144 developed these markers to study the Lake Michigan dune system invasion, it is invasive

145  throughout North America. With these markers, we can begin to understand the invasion of G.
146  paniculata in North America in order to improve management efforts and prevent the further
147  spread of this species.
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208 DATA ACCESSIBILITY

209 A summary of the microsatellite library development and sequence analysis protocols
210  (unpublished data) provided to us by Cornell University, Department of Ecology and

211  Evolutionary Biology are in Appendix S1. Fasta sequences for the 16 microsatellite primers

212 developed here are in Appendix S5. The fasta file listing all identified contigs containing

213 microsatellite regions are in Appendix S4. Potential primer pairs for the identified microsatellite-
214  containing contigs are in Appendix S2. The 107 G. paniculata — specific primer pairs tested

215  during primer optimization are in Appendix S3. Raw sequence files for the microsatellite library
216  have been deposited to NCBI’s Short Read Archive (Bioproject No: PRINA431197) and

217  microsatellite sequences have been deposited to GenBank (Table 1). Voucher specimen for each
218  population have been deposited into the Grand Valley State University Herbarium (GVSC),

219  Grand Valley State University Department of Biology, Allendale, MI, USA. (Appendix S6).
220
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231 TABLES
232

233

Table 1. Characteristics of 16 nuclear microsatellite loci developed for Gypsophila paniculata.

Annealing
Repeat  Allele size temperature Fluorescent = GenBank

Locus” Primer sequences (5' - 3") motif range (bp) (C) label Accession No.

BB 3335° F: TCCACCAAACTCTTAAACTGCC (AGG) 215244 0 NED MHT04701
R: CACAGACACAAAGGATCCAACC

BB 3913 F:. GGCTGTCGGGTAATAAACACAG (ACAG)  159-171 62 PET MH704702
R: TCCCAACTCAAGTCATAGCCTAG

BB 5567 F: GGCTAGGGAAAGTAGGAAGACC (AAT) 198 - 222 62 VIC ME704703
R: CGTGTCCTGTTTCTCCATGATC >

BB 4443 F: TAGGGTGGGTGCTTGTACTAAC (AAG) 171 - 211 62 NED MH704704
R: AAAGTGGTGCTGCAGAAGAATC 10

BB 21680 F: ACTACACACAGACTCGATCCTC (AAAG);s 199 -218 62 PET MH704705
R: CTTTGATTGTTTGGTGTAAGTTGC

BB 3968 F: CATGGAGGACAATGAGAAGACG (AGG),  207-219 62 FAM MH704706
R: ACGGTGGTAATGAAGTTTGGTG

BB 1355 F:. GCTGATCTTTGTCGTCAGGAAG (AAAC) 220 - 224 62 NED MH704711
R: ACTCTAGGTGTTAGGAAGGCAC

BB 5151 F: TCCACCTTATAACTCACCACCC (ACO) 205-210 62 PET MH704712
R: TGAGGAAGGATAACAGCTCTCG >

]3]3_14751b F: CCTCAAACCCTAACAATGCTCC (AAG) 195 - 248 62 FAM MH704713
R: TCAGCCGATCCTCTAACACG .

]3]3_4258b F: TCACAAGAGGCCCAATTTCTTC (AAT) 178 - 195 62 VIC MH704714
R: ACTTGAACCCGAACCTATACCC °

BB 6627 F:- CAAACTCAACCAACCAGACACC (AAAC) 151 -155 62 FAM MH704715
R: CACCTCAGCAACAACAGAGTG

BB 5021 F: ATTGTCGGTGGTCATTGGTTTC (AC), 162 - 207 62 VIC MH704707
R: CTTAGTCCGCAGTGTAAACAAAG s

13377213" F: TTGCATTCCCACCATTTCATCC (AC) 161 - 248 62 PET MH704708
R: AGCCAACCTCGTATTAATTGCC ’

BB 2888" F: CTTCATTCATGTACAAGAGCGC (AC) 219 -932 63 FAM ME704709
R: AGAACTGGCTATGGATCGAAATG

BB 8681° F: ATCTCCAGTTTCCGTGATTTGC (ACC) 204222 0 NED MHT04710
R: TACGTCACAAGAGCTTTCAACC ’

BB 31555 F: TGTATAACTGAGATAACCCAGACG (AC), 150 - 156 62 VIC MH704716

R: TTGTTACCTTGTTCCGGCAAAG
*Optimal annealing temperature was 62°C for all loci except for BB_2888, where it was 63 °C. "Used 2.5 mM MgCl, per

sample to amplify locus.
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