

Where did you come from, where did you go: Refining Metagenomic Analysis Tools for HGT characterisation

Enrico Seiler^{1,2ψ}, Kathrin Trappe^{1ψ*}, Bernhard Y. Renard¹

¹ Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany

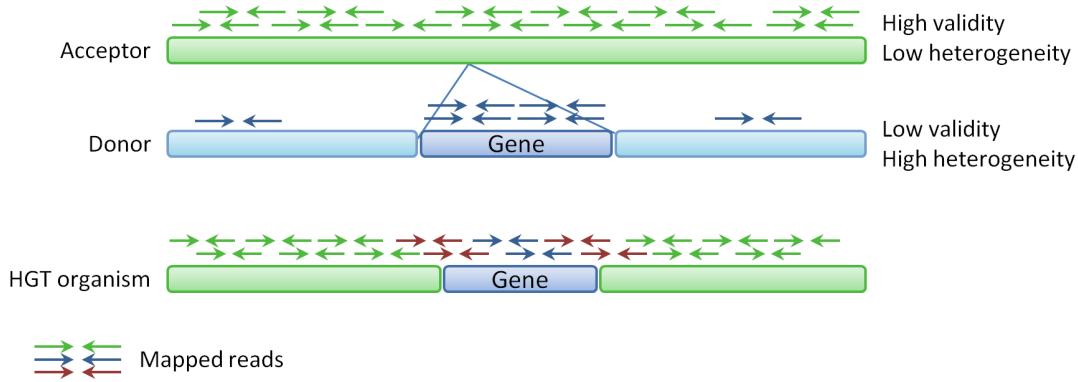
² Efficient Algorithms for Omics Data, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, and Algorithmic Bioinformatics, Institute for Bioinformatics, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany

*corresponding, ψ joint first author

E-mail: trappek@rki.de

Abstract

Horizontal gene transfer (HGT) has changed the way we regard evolution. Instead of waiting for the next generation to establish new traits, especially bacteria are able to take a shortcut via HGT that enables them to pass on genes from one individual to another, even across species boundaries. Existing HGT detection approaches usually first identify genes of foreign nature, e.g., using composition-based methods, and then exploit phylogenetic discrepancies of the corresponding gene tree compared to a species tree. These approaches depend on fully sequenced HGT organisms and computable phylogenetic species trees. The tool Daisy offers a different approach based on read mapping that provides complementary evidence compared to existing methods at the cost of relying on the acceptor and donor references of the HGT organism being known. Acceptor and donor identification is akin to species identification in metagenomic samples based on sequencing reads, a problem addressed by metagenomic profiling tools. However, acceptor and donor references have certain properties such that these methods can not be directly applied. We propose DaisyGPS, a mapping-based pipeline that is able to identify acceptor and donor candidates of an HGT organism based on sequencing reads. To do that, DaisyGPS leverages metagenomic profiling strategies and refines them for HGT candidate identification. These candidates can then be further evaluated by tools like Daisy to establish HGT regions. We successfully validated our approach on both simulated and real data, and show its benefits in an investigation of MRSA outbreak data. DaisyGPS is freely available from https://gitlab.com/rki_bioinformatics/.


1 Introduction

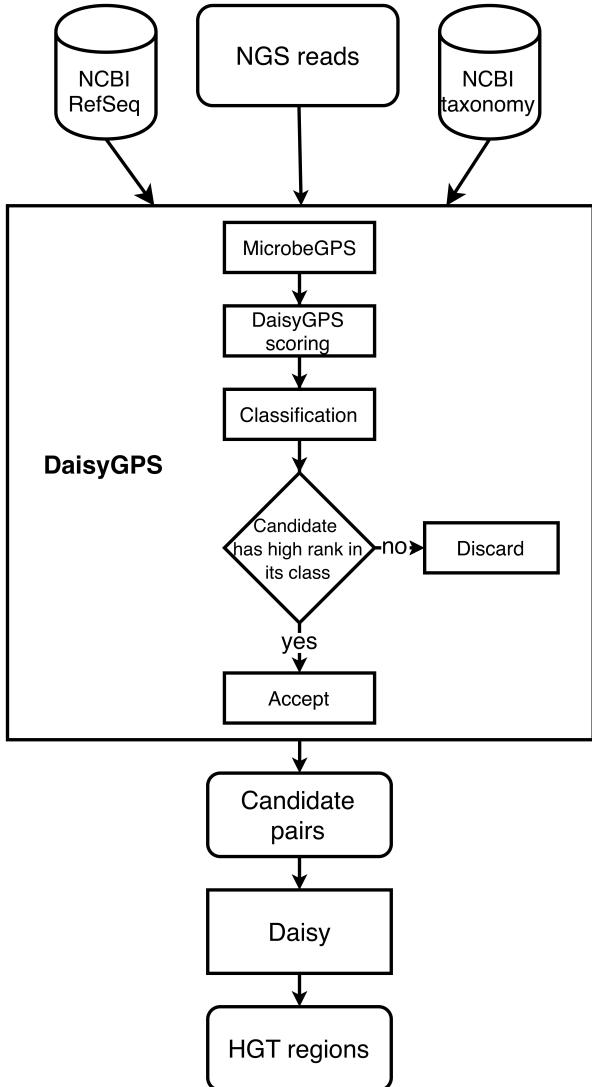
For a long time, evolution in terms of gene transfer was thought to happen only along the tree of life, i.e. from parent to offspring generation. The discovery of horizontal gene transfer (HGT) (Ochman et al., 2005, Boto, 2009, Wiedenbeck and Cohan, 2011, Daubin and Szöllősi, 2016) has revolutionised this dogma, and revealed the

mechanism that enables bacteria to quickly adapt to environmental pressure (Hu et al., 2011, McElroy et al., 2014, Gyles and Boerlin, 2013). Via HGT, bacteria can directly transfer one or multiple genes from one individual to another across species boundaries. The known and prominent mechanisms of HGT are transformation (uptake of nascent DNA from the environment), conjugation (direct transfer from cell to cell), and transduction (transfer via bacteriophages) (Gyles and Boerlin, 2013). In all cases, a piece of DNA sequence is - directly or indirectly - transferred from the so called donor organism to the acceptor organism and integrated into the genome (see also Figure 1). Especially conjugation and transduction facilitate the transfer of pathogenicity islands and mobile genetic elements involving antimicrobial resistance (AMR) genes (Barlow, 2009, Warnes et al., 2012, Juhas, 2013). Today, we are facing the rise of so called "superbugs" (Juhas, 2013, Perry et al., 2014) as a result of bacterial adaptation and gain of resistance to antibiotic treatment, showing the need for methods to identify, characterise and trace HGT events.

The discrepancy to phylogenetic evolution inspired existing genome-based HGT methods. For a fixed set of species and a potential horizontally transferred gene, these methods detect HGT events by looking at inconsistencies between the gene tree and a phylogenetic tree built for the set of species (Ravenhall et al. (2015)). As a prerequisite, a candidate gene for which to run the calculation and comparison has to be known. Sequence content based methods aim to identify genes of foreign origin in a given genome by exploiting sequence pattern such as *k-mer* frequencies or GC content which vary between different species (Jaron et al. (2013), Metzler and Kalinina (2014)). All methods are based on an assembled HGT organism, meaning they are also prone to the problems of misassemblies. Although AMRs are a prominent example for horizontally transferred genes, methods to directly identify antimicrobial resistance (AMR) genes do not necessarily connect the presence of an AMR gene to an HGT event (e.g., KmerResistance Clausen et al. (2016)).

In previous work, we developed an approach that aims to call HGT events directly from next-generation se-

Figure 1: HGT overview and evidence. The sequence of an HGT organism consists mainly of the sequence of the acceptor genome (green), and only the transferred part (blue gene) is represented by the donor genome. Hence, reads from the HGT organism should mainly map homogeneously to the acceptor (green arrows), only few reads should map locally to the donor (blue arrows), and some read pairs (red arrows) will span the boundary between the green parts from the acceptor and the blue part from the donor. These mapping patterns can be represented by scores based on the mapping coverage profile. An acceptor with a homogeneous coverage has a high validity score and a low heterogeneity score, a donor has opposite score ranges (low validity and high heterogeneity). Based on these scores, the *DaisyGPS acceptor-score* is $\in [0, 1]$ and *donor-score* is $\in [-1, 0]$.


quencing (NGS) data (Trappe et al., 2016) in a tool called Daisy. Instead of focusing on the sequence content of the HGT organism, Daisy examines the origin of the transfer, namely the prespecified acceptor and the donor organisms, and directly maps the NGS reads to these references. By facilitating structural variant detection methods, we can thereby identify the transferred region from the donor and the insertion site within the acceptor. A prerequisite for Daisy is therefore that both acceptor and donor references are known. This, however, is not always the case, and hence requires methods that are able to infer acceptor and donor candidates from the NGS reads of the HGT organism. Such methods are not yet available.

However, the problem of acceptor and donor identification directly from NGS data of the HGT organism is akin to the problem tackled by metagenomic profiling studies that aim to unravel metagenomic samples. Here, so called metagenomic classification approaches aim at identifying all organisms present in a sample by directly analysing sequencing data with a complex mixture of various organisms (Breitwieser et al., 2017). While in this classical scenario all reads of a single organism in the sample can theoretically be assigned to one reference organism during identification, this is not the case for an organism that carries foreign genes acquired via HGT. Most reads will be assigned to the acceptor genome but only a fraction can map to the donor genome (see mapped reads in Figure 1). Hence, we have to account for this two mapping properties of the reads during analysis. Another requirement is the resolution of classification on strain level, if possible, since two strains of the same species can already significantly differ in their sequence content.

Metagenomic classification approaches follow either a taxonomy dependent or taxonomy independent approach (Lindgreen et al. (2016), Sedlar et al. (2017)). The gen-

eral procedure for both approaches is to assign sequencing reads stemming from the same organism in the sample into the same group, a process also referred to as binning. Taxonomic dependent binning approaches assign the reads to specific taxonomic groups, and hereby infer the presence of these taxa in the sample. These methods either also make use of sequence composition patterns, e.g., Kraken (Wood and Salzberg, 2014), or they determine mapping-based sequence similarities for the read assignment, e.g., MEGAN (Huson et al., 2007), Clinical PathoScope (Byrd et al., 2014) or DUDes (Piro et al., 2016). Both approaches will most likely identify the acceptor reference of an HGT organism due to the homogeneous coverage and comparatively high number of reads. The drawback of all read assignment approaches is the limitation in the presence of mobile genetic elements, e.g., integrated via HGT or of hitherto unknown - or unsequenced - organisms in the sample. Reads belonging to these genes or unknown organisms are either assigned to a similar but incorrect taxa or not assigned at all, leading to wrong identifications and biases in abundance estimation. To ensure robustness, many approaches deliberately discard taxonomic candidates with only low and local coverage. Hence these approaches will likely discard any donor candidate references. Composition-based methods such as Kraken would also perform poorly pinpointing the correct donor based on evidence of only few reads given the fairly large number of usually detected species.

In our group, we developed MicrobeGPS (Lindner and Renard, 2015), a metagenomics approach that accounts for sequences not yet present in the database. Instead of reporting fixed taxa with assigned reads, MicrobeGPS in turn uses the candidate taxa to describe the organisms in the sample in terms of a genomic distance measure. That is, it uses available references to model the composition of

Figure 2: Workflow of DaisySuite. The input NGS reads are first processed by DaisyGPS. The reads are mapped to the NCBI RefSeq and then analysed by MicrobeGPS which also incorporates taxonomic information acquired through the NCBI taxonomy database. Based on that, DaisyGPS calculates two scores for acceptor and donor classification (see methods part). Depending on these scores, the highest-ranked candidates are selected as suitable acceptor and donor candidates. Daisy then uses these candidates to identify HGT region candidates.

the organisms present in the sample in terms of coverage profiles and continuity, instead of directly assigning reference organisms to characterize the sample. If the organism in the sample is present in the database and covered homogeneously then the distance approximates to zero. If not, MicrobeGPS identifies the closest relatives by positioning the organism among references with the lowest genomic distance. Hence, the tool considers scores and metrics that reflect a donor-like, in-homogeneous coverage but filters out false positive candidates with inhomogeneous coverage for the purpose of species assignment. From the perspective of HGT detection, these may be highly relevant and should not be excluded.

Here we present DaisyGPS, a pipeline building on concepts of MicrobeGPS and tailored to the identification of acceptor and donor candidates from sequencing reads of an HGT organism. DaisyGPS uses genome distance

metrics to define a score that allows the classification into acceptor and donor among the reported organisms. Owing to the properties of these scores, we still find the closest relatives of acceptor and donor in case these references are not present in the database. DaisyGPS further offers optional blacklists and a species filter to refine the search space for acceptor and donor candidates. DaisyGPS and Daisy are integrated into one pipeline called DaisySuite to offer a comprehensive HGT detection, and publically available at https://gitlab.com/rki_bioinformatics/DaisySuite. We validate DaisySuite on a large scale simulation where we show sensitivity and specificity of our approach and the robustness when applied to non-HGT samples. On a real data set from an MRSA outbreak, we demonstrate the ability of the DaisySuite to distinguish between the outbreak associated and unassociated samples in terms of sequenced content potentially acquired through HGT events.

2 Methods

The problem of mapping-based HGT detection from NGS data is twofold: First, the acceptor (organism that receives genetic information) and donor (organism that the information is transferred from) references have to be identified. Based on that, the precise HGT region and its insertion site within the acceptor can be characterised. We presented a method to solve the second task in Trappe et al. (2016). Here, we propose the tool DaisyGPS (see also Figure 2) with the objective to identify possible acceptor and donor candidates given reads of a potential HGT organism. We provide Daisy and DaisyGPS in an integrated pipeline that we call DaisySuite.

The genome of the HGT organism consists mainly of the acceptor genome (see Figure 1). When the reads of the HGT organism are mapped against the acceptor reference, most reads should map properly. Therefore a high and continuous mapping coverage pattern of the acceptor genome can be expected. In contrast to that, only a small part of the donor genome is present within the genome of the HGT organism, hence only a small fraction of the reads should map against the donor reference and then only within a zoned part (i.e. the part that has been transferred). This results in a discontinuous mapping coverage pattern where only a small part of the reference shows a high mapping coverage (see Figure 1).

In a first step, we need to define metrics that represent the expectations we have, i.e. how much of the genome is covered by reads (mapping coverage) and how uniformly these reads are distributed across the genome (discontinuous vs. continuous patterns). Given only the reads of the HGT organism, the acceptor and donor candidate identification problem is similar to aspects of metagenomic profiling. A standard problem in metagenomics is the identification of organisms in a sample using a read dataset of this sample. At first glance, it may appear that the methods designed to solve this problem can also

DaisyGPS

be applied to our identification objective, i.e. we have the read dataset of the HGT organism and we are looking for two organisms (acceptor and donor) that are in the sample. However, because the HGT organism consists mainly of the acceptor genome, such an approach works only well for the identification of the acceptor. For the donor, additional information is needed to guarantee a reliable identification because references with only local or discontinuous coverage are usually dismissed by the profiler. We use the metagenomic profiling tool MicrobeGPS to obtain a coverage profile of our given HGT organism from mapping coverage metrics. MicrobeGPS fits our requirements as it can be configured to not filter any organisms and reports additional metrics that we use to represent acceptor and donor attributes. Next, we evaluate the gathered metrics and establish a score that reflects our defined acceptor or donor coverage properties. Then, the candidates are ranked by this score and a list of acceptor and donor candidates is generated. These acceptor and donor candidates can then be further analysed with tools such as Daisy.

DaisyGPS scores. For the purpose of HGT detection, we aim to define a scoring that reflects the mapping coverage properties of the acceptor and donor references: The acceptor has a continuous, homogeneous coverage over the complete length of the genome. The donor has a local, but still homogeneous coverage in the area where the transferred genes are originated but should have nearly no coverage at all otherwise. The score should further allow a clear distinction between acceptor and donor candidates and provide a meaningful ranking according to the likelihood of being the most suitable candidate.

As a basis for our scoring, we use the *Genome Dataset Validity* defined in Lindner et al. (2013) and *homogeneity* metric defined in Lindner and Renard (2015). The Genome Dataset Validity, or short validity, describes the fraction of the reference genome for which there is read evidence. In contrast, the homogeneity reflects how evenly the reads are distributed. Both have a range $\in [0, 1]$. The validity is defined such that a genome that is covered - either low or high - over the full length has a high validity (≈ 1). We define a *heterogeneity* metric based on the Kolmogorov-Smirnov test statistic defined in Lindner and Renard (2015) such that an evenly covered genome has a low heterogeneity (≈ 0) and a genome with local, high coverage a high heterogeneity (≈ 1).

An acceptor is a genome with a continuous, high coverage that then has a high validity (≈ 1) and a low heterogeneity (≈ 0) score whereas a distantly related donor genome with only local, discontinuous coverage has a low validity (≈ 0) and a high heterogeneity (≈ 1) score.

As can be seen above, both validity and heterogeneity are complementary for acceptors and donors, and hence the relation of both metrics infers the property of a candidate between being an acceptor or a donor candidate. We define:

$score = validity - heterogeneity$ with $score \in [-1, 1]$
Therefore, the value for a completely covered acceptor with uniform read distribution would approach $+1$. Likewise, the value for a donor that is only covered in a small region would approach -1 . In addition to the coverage profile, there is a high evidence by sheer read numbers for acceptors:

$$\text{acceptor-score} = w * score, w = \frac{\# \text{mapped reads}}{\# \text{total reads}}$$

where w is the fraction of all mapped reads that mapped to the specific acceptor candidate. For the donor, however, the size of the transferred region is not known in advance. Hence, we do not expect a specific read number evidence and therefore omit the weighting and define $\text{donor-score} = score$

Both *acceptor-score* and *donor-score* are determined for every candidate and they have a codomain of $[-1, 1]$. Acceptor candidates have a homogeneous coverage and hence high validity and low heterogeneity, i.e. $validity > heterogeneity$. Hence, we classify the candidates with $acceptor-score \geq 0$ as acceptor and rank them from highest to lowest score. Donor candidates have a high heterogeneity and low validity, i.e. $validity < heterogeneity$. Therefore, we classify candidates with $donor-score < 0$ as donor candidates and rank them from lowest to highest score.

There is a special case if acceptor and donor are very similar. Here, the donor might not express the attributes we are looking for. In particular, the donor might have a significant read number evidence arising from acceptor reads also mapping to the donor. These shared reads lead to more regions of the donor genome being covered (higher validity) and to a less local, more homogeneous coverage pattern across the donor genome (lower heterogeneity), hence $validity \approx heterogeneity$ and $donor-score \approx 0$. We classify candidates with a $donor-score > 0$ as acceptor-like donors and rank them from lowest to highest.

Candidate selection with blacklist filter (optional). There are scenarios where it is necessary to exclude certain results from being reported. For example, in a reanalysis case, the assembled sequence from the sample reads might already been added to the reference set of your choice. For HGT detection from such reads, however, there is no information gain if DaisyGPS reports this entry as a suitable acceptor. Other examples include cases, where one can exclude certain species or taxa due to preanalysis information that nevertheless could be reported by DaisyGPS due to their high sequence similarity to the sampled organism or the presumed acceptor or donor candidates. To make the search for acceptor and donor candidates adaptable for such cases, DaisyGPS features the blacklisting of certain taxa. It is possible to exclude single taxa, a complete species taxon or a complete subtree below a specified taxon. For a default run, the filter is turned off.

Candidate selection with species filter (optional). DaisyGPS generally considers candidates on different taxonomic levels, e.g. species and strain level, and reports the candidate level with the best scores. Often the strain references contain additional sequences compared to the species level reference representative, and hence, the species reference will mostly have a homogeneous coverage that will then lead to a high acceptor score. Usually identification on species level is sufficient. There are however species such as, e.g., *E. coli*, where a high number of strains have been sequenced already and differ in their properties such as pathogenicity among the strains (e.g. *E. coli* K12 versus EHEC strain O157:H7). In these cases, a mere detection of the acceptor or donor on a species level might not be precise enough. For these situations, we implemented a species filter. If this filter is activated, only candidates below species level are reported. In case no candidate would be reported with an active species filter, the filter is disabled and the user informed that for further analysis also candidates on species level are used. For a default run, this filter is also turned off.

Daisy inference and integration with Snakemake. Snakemake is a common workflow management system (Köster and Rahmann, 2012) which we used to implement the different steps of DaisyGPS. We generated the alignment file required for MicrobeGPS by mapping the reads of the HGT organism against the NCBI RefSeq (complete RefSeq, no plasmids, downloaded March 15th 2017) (O’Leary et al., 2016) using Yara (Siragusa et al., 2013, Dadi et al., 2018). To ensure compatibility, we reimplemented the Daisy workflow in Snakemake as well, and integrated both into a combined suite (called DaisySuite, see also Figure 2). DaisyGPS yields a configurable number of acceptors, donors and acceptor-like donors (default: 2, 3, 2). For each possible pair of acceptor and donor, a Daisy call is inferred. Both pipelines can still be run independently. To unburden installation, we provide a setup script and provide DaisySuite components as Conda (Con) packages. The simulations are also integrated into the DaisySuite pipeline (see DaisySuite documentation for details).

Experimental setup

Data sets

We tested the complete DaisySuite on three types of data sets to validate both DaisyGPS and the integration with Daisy. The first type comprises the *H. pylori* data set, the KO11FL data set and the EHEC data set. All three were used in the Daisy publication (see Trappe et al. (2016) for detailed data set description) and are chosen as suitable ground truth and for the purpose of showing reproducibility. The second type comprises a large-scale simulation analogous to the *H. pylori* simulation. Both positive (simulated HGT) and negative (no HGT) simulations are used to estimate sensitivity and specificity of the DaisySuite. In a third part, we use real data from

an outbreak data set with 14 MRSA samples to elucidate further applicability of both DaisySuite. The details of the data sets and *in silico* experiments are explained below.

***H. pylori*.** The data set *Helicobacter pylori* presents a simulated data set for a proof of principle already used for validation in the Daisy paper (see Trappe et al. (2016) for details of genomic simulation). The acceptor is *Escherichia coli* K12 substr. DH10B (NC_010473.1), the donor is *H. pylori* strain M1 (NZ_AP014710.1). The *in silico* transferred phage region of the *H. pylori* comprises genomic positions 1 322 000 - 1 350 000.

EHEC. The HGT organism in the EHEC data set is *E. coli* O157:H7 Sakai (Zhang et al., 2007) that derived from *E. coli* O55:H7 and is assumed to have acquired the Shiga-Toxins (Stx) via transduction from *Shigella dysenteriae*. According to literature, the bacteriophage carrying Stx is supposedly positioned at 2 643 556 - 2 694 691 in *E. coli* O55:H7. In Trappe et al. (2016) we proposed an alternative phage insertion site at 1 741 535 - 1 744 926.

KO11FL. The KO11FL data set comprises the transgenic *E. coli* KO11FL (Turner et al., 2012). The acceptor is *E. coli* W, and the two donors are *Zymomonas mobilis* and the cloning vector pBEN77.

Large-scale simulation. We designed a large-scale simulation analogous to the *H. pylori* data set with positive and negative simulations. For each positive simulation, first an acceptor and a donor organism are randomly chosen among the available RefSeq sequences (date of retrieval: March 21, 2017, plasmids are ignored for sake of size consistency). A random 28 Kbp region is selected from the donor and inserted at a random position in the acceptor. SNPs and indels are introduced into acceptor and donor region (SNP rate: 0.01, indel rate: 0.001). For each negative simulation, only an acceptor is randomly chosen, and SNPs and indels are introduced with the same rates as above. 150 bp reads are simulated from 500 bp fragments with 50 bp standard deviation with the Mason simulator (Holtgrewe, 2014). The positive and negative simulations are repeated automatically 100 times.

MRSA outbreak. The MRSA data set consists of 14 samples of methicillin resistant *Staphylococcus aureus* strains obtained during a MRSA outbreak at a neonatal intensive care unit (ENA accession number ERP001256, Köser et al. (2012)). Seven samples are associated with the outbreak, labeled O1-O7 in this manuscript, the other seven samples N1-N7 are not associated with the outbreak. Sample description and run accession numbers are stated in Table 4. Phylogenetic analysis by Köser et al. (2012) separated the 14 samples into distinct groups according to their outbreak association. The reference

DaisyGPS

isolate used in that study is the EMRSA-15 representative HO 5096 0412, and we use this as ground truth for acceptor candidates reported by DaisyGPS. The seven outbreak related MRSA samples have a distinct antimicrobial resistance pattern, and it is believed that the related resistance genes have been introduced via HGT. With DaisySuite we want to investigate if the outbreak strains share the same HGT regions and if they can be distinguished from the non-outbreak strains.

Structure of validation

The setup of the validation is according to the types of data sets. In a first phase, we want to show a proof of concept given data with sufficient ground truth. The aim is to predict the correct acceptor and donor candidates with DaisyGPS and at the same time to reproduce the results obtained from Daisy. We therefore use the data sets already shown in the Daisy paper for sake of consistency. We set DaisyGPS to report a total of two acceptor candidates, four donor candidates, and two acceptor-like donor candidates for every data set and we evaluate if the correct acceptor and donor candidates are among them. For incorrect candidates of acceptor and donor, Daisy should not report HGT candidates unless the transferred region is present in multiple strains or there are multiple possible acceptors present with high sequence similarities as, e.g., among *E. coli* strains. For the EHEC data set, we activate the species filter since we are interested in strain candidates, and further blacklist taxa from the HGT organism to be analysed (*E. coli* O157:H7, taxon 83334) and the complete O157 lineage (parent taxon 1045010). For the KOFL11 data set, the HGT organism is blacklisted as well (*E. coli* KOFL11, taxon 595495). In a second part, we want to estimate the rate of sensitivity and specificity of the DaisySuite. We designed a large-scale simulation analogous to the *H. pylori* data set with positive and negative simulations (100 simulations each). From the positive simulations, we calculate the sensitivity for both DaisyGPS and Daisy (see below for definitions on metrics). DaisyGPS is designed with high sensitivity in mind and always reports the closest fitting candidates given sequencing data, even for non-HGT organisms. Hence, also for the negative simulations, DaisyGPS will report candidates and we expect a low specificity here. Daisy, however, should then report only few - if any - HGT candidates from the acceptor-donor pairs. In the last evaluation part, we test the DaisySuite on real data with unknown or uncertain ground truth. The MRSA outbreak data set consists of 14 samples, seven outbreak related and seven unrelated. Here we want to test if DaisySuite is able to distinguish between the outbreak and non-outbreak samples according to their reported acceptor, donor and HGT region candidates.

Definition of evaluation metrics

The interpretation of various statistics depends on the hypothesis to be tested. In our analysis in the large-scale

simulations, we differentiate between two scenarios: in the first one we expect to detect an HGT event (positive test), while in the other one we assume the absence of an HGT event (negative test). For each simulation or run, a DaisyGPS call will lead to multiple pairs to be evaluated by Daisy. We therefore distinguish between statistics on runs and statistics on pairs that we will explain in the following.

For DaisyGPS, we consider during a positive test a single run as a true positive (TP) if the correct acceptor/donor pair is reported. Accordingly, a false negative (FN) occurs when the correct pair is not reported. Since the number of reported pairs is set by our settings, we will almost always have a fixed number of downstream verifications (except if there are not enough candidates to report) and thus we report the number of runs instead of pairs. Consequently, we can define the sensitivity as $TP / \#Runs$. In a negative test setting, we deem those runs as true negatives (TNs) where either no pairs are reported or acceptor and donor of the pair are the very same organism. All other pairs are regarded as FP that will each trigger an unnecessary verification in the downstream tools. Since we are interested in how many runs did not cause verifications, we can characterize the specificity by $TN / \#Runs$. While it is obvious in both settings to rely on an exact match of the reported results and the ground truth, a reported organism still may be very close to the ground truth organism in terms of sequence similarity (negative and positive settings) and even include the very regions involved in the HGT event (positive setting). To account for this, we also use BLAST in the case that no TP was reported and compare the FP to the ground truth. If the Blast identity of the FP to the ground truth is above 80% we change the classification from FP to BLAST-supported TP (Blast TP) since Daisy might still be able to infer the correct HGT region from these Blast TPs given the sufficient sequence similarity.

In Daisy, we evaluate acceptor/donor pairs and therefore the statics are defined based on the condition of a pair reported by DaisyGPS. In a positive simulation, Daisy TP pairs are those that represent the correct pair and are detected by Daisy. It directly follows that each correct pair that is not supported by Daisy can be seen as a false negative (FN). Given that the pair is incorrect, i.e. a FP from DaisyGPS where the acceptor or donor is wrong, we count a rightly not supported pair as true negative (TN) and an erroneously detected pair as FP. To measure how many pairs are correctly identified, we define the sensitivity as $(TP + TN) / \#Pairs$. Considering a negative test setting, we are mainly interested in the pairs that are wrongly reported as being involved in an HGT event. We declare those pairs as FP and describe the specificity as $(\#Pairs - FP) / \#Pairs$. It also follows that all the pairs that are not detected are TN.

Lastly, in the context of the complete DaisySuite pipeline, we evaluate the combined results of DaisyGPS and Daisy. Each pair reported by DaisyGPS for a single simulation induces an evaluation by Daisy. Since the

overall result of the pipeline should indicate whether a simulation contains an HGT event or not, the classification of a DaisySuite run depends exclusively on the consolidated results of each Daisy evaluation for a single simulation. In a positive test setting, we want to find exactly the one pair that represents the HGT event. From that follows that a complete DaisySuite run can be classified as TP if Daisy supports solely the correct pair, i.e. Daisy reports the TP and no FP. This also implies that DaisyGPS needs to detect the TP. Similarly, in a negative test setting, a TN occurs if Daisy reports no HGT candidates at all.

Settings and pre-/post-processing

DaisySuite is run with default parameters as of version 0.0.1 unless stated otherwise. The parameter to combine potentially overlapping HGT candidates within Daisy is set to 20 bp, hence, overlapping regions with start and end positions differing by more than 20 bp are reported as separate candidates. For the comparison of the number and content of HGT sequences, we clustered overlapping HGT candidates with the tool usearch9 (v9.1.13.i86linux32) with identity 1.0 (Edgar, 2010).

For validation, we determine the true presence of a HGT region in the samples by mapping the sample reads to all suggested, clustered regions with Bowtie2 (version 2.2.4). For comparison, we take the mean coverage of every region and apply a sigmoidal function to map all mean coverages to the [0.5,1] space for displaying a meaningful heatmap. The application of a sigmoidal function and the heatmap is computed in R (Rscript version 3.3.3). The heatmap function in R uses a hierarchical clustering with complete linkage as default, and we turned off the dendrogram for the columns. In addition, we perform a whole-genome alignment using the Mauve plugin (version 2.3.1) as part of the Geneious software (version 10.0.5) to establish shared HGT regions among the samples. To do this, we concatenate all HGT regions of a sample and separate the regions with segments of 1000*N to avoid fragmented regions or overlapping LCBs.

3 Results

Acceptor and donor identification with DaisyGPS. In the first part of the validation, we test DaisyGPS on three data sets from simulated and real data with sufficient ground truth and already previously evaluated with Daisy. Since DaisySuite combines both tools, DaisyGPS and Daisy, the aim is to support our previous results even when now the donor and acceptor are not prespecified.

The *H.pylori* data set was simulated from *E.coli* K12 substr. DH10B as acceptor and *H.pylori* strain M1 as donor. DaisyGPS successfully reports both as such (see Supplement Tables S3 and S4), and the subsequent Daisy run also reports the true HGT site. In addition to the

only true HGT candidate previously already reported in the Daisy paper, DaisySuite reports another, FP HGT site for a region from *Haemophilus ducreyi*. The HGT region reported for *H. ducreyi* strain GHA9 has no continuous similarity with the HGT region from *H.pylori* (no blast hits longer than 15 bp, data not shown). However, the region on *H. ducreyi* shares the first 1200 bp and the last 1300 bp with the acceptor *E.coli* K12 substr. DH10B on multiple sites, and since beginning and end of the region are covered, almost six times as many split-reads are found as for the true acceptor site. The total coverage of the region is relatively low with 30x compared to 95x of the *H.pylori* but obviously high enough to pass the coverage filter.

The EHEC *E.coli* O157:H7 Sakai is supposedly derived by an HGT event where a defective prophage has been transferred from *Shigella dysenteriae* to *E.coli* O55:H7. Both are reported by DaisyGPS as candidates (see Supplement Table S5). In line with its strong sequence similarity to the *E.coli* species, *S.dysenteriae* is labeled as an acceptor-like donor candidate. The proposed alternative HGT insertion site from our previous Daisy paper is still reported (see Supplement Table S6).

The KO11FL data set comprises a transgenic *E.coli* W variant with transferred genes from *Zymomonas mobilis* and a plasmid that was not analysed here. DaisyGPS successfully reports *E.coli* W and *Zymomonas mobilis* as acceptor and donor candidates (see Supplement Table S7). Daisy does not report any FP HGT candidates.

Estimating sensitivity, specificity and robustness of DaisySuite through large-scale simulations. After validating DaisyGPS on data previously evaluated with Daisy as a proof of principle, we analyse DaisySuite in terms of robustness and sensitivity by performing a large-scale simulation. We perform the simulation for the *H.pylori* data set in a randomised and automated fashion generating 100 simulations with a transferred HGT region. To evaluate robustness, we also perform 100 negative simulations where an acceptor genome is simulated but no HGT region is inserted. With the positive simulations, we can estimate the sensitivity of the complete DaisySuite. For DaisyGPS, we evaluate how many from the 100 simulations have the correct acceptor and donor genome identified. Since DaisyGPS reports more than one potential acceptor-donor pair, we count a TP hit if the true pair is among them, and only count a FN if the true pair was not reported at all. In addition, we consider pairs with Blast sequence identity > 80% also as a potential HGT candidate pair, and also count them as a TP. To evaluate Daisy, we consider all pairs proposed by DaisyGPS.

For a true pair reported by DaisyGPS, Daisy can either report a TP HGT region or a FN if the region could not be identified. For an acceptor-donor pair wrongly proposed by DaisyGPS, Daisy can either report no HGT candidate region (TN) or a FP hit. When we summarise the DaisySuite results over all pairs of one simulation,

DaisyGPS

DaisyGPS					DaisySuite						
TP	Blast TP	FP	sensitivity		TP	Blast TP	TN	FP	Blast FP	FN	sensitivity
79	22	21	0.79		55	13	14	27	27	4	0.69

Table 1: Positive HGT simulation. DaisyGPS calls correct acceptor and donor candidates with a sensitivity of 79%. The total sensitivity for DaisySuite from 100 HGT simulations regarding correct acceptor and donor candidates with a follow up correct HGT site call is 69%.

DaisyGPS pairs	TP	Blast TP	TN	FP	Blast FP	FN	Blast FN	sensitivity
818	74	22	656	32	32	56	51	0.89

Table 2: Positive HGT simulation. Daisy evaluates 818 pairs reported by DaisyGPS and calls the correct HGT region or correctly no HGT region with a sensitivity of 89%.

DaisyGPS		DaisySuite		Daisy	
TN	specificity	FP	specificity	DaisyGPS pairs	FP
6	0.06	3	0.97	743	6

Table 3: Negative HGT simulation. For the 100 negative simulations, DaisyGPS correctly reports no acceptor and donor candidates for six simulations. From the 94 simulations causing a downstream evaluation with Daisy, only three lead to a FP call considering all outcomes from DaisySuite (summarised over the 100 simulations). Daisy evaluates 743 pairs and only has six FP HGT region calls in total over all those pairs.

we only count a TP for that simulation if Daisy did not report any FPs (despite any TPs or TNs).

Table 1 states the resulting counts for DaisyGPS and for the complete DaisySuite summarised over the 100 simulations. DaisyGPS yields a sensitivity of 79%. From the 79 TPs, 22 are based on either a wrong acceptor, or donor, or both but have still sufficient Blast similarity to the original acceptor or donor to be counted as TP according to our scoring. 69% of the TPs and FPs resulted in a TP or TN call from Daisy. It is noticeable that all DaisySuite FPs are Blast FPs.

Table 2 states the number of reported pairs proposed by DaisyGPS and a detailed count based on each pair for Daisy. From the resulting 818 pairs, Daisy then reports the correct HGT region, or correctly no HGT region from a DaisyGPS FPs, with a sensitivity of 89%.

In addition to the positive simulations, we performed another 100 negative simulations where we randomly selected and variated an acceptor genome but did not insert any foreign region from a donor. DaisyGPS can now either produce a TN hit, i.e. report no candidates at all, or FP candidates. Since DaisyGPS is very sensitive by design, we expect it to report candidates most of the time and, hence, we want to estimate if these negative HGTs trigger reports by a Daisy follow-up call. As expected, the specificity for DaisyGPS is very low with 6% (see Table 3). However, Daisy reports only six FPs on all pairs in total, i.e. three simulations produced a FP HGT report.

From these results we can infer that DaisySuite is able to distinguish HGT from non-HGT organisms and is very robust if no HGT is present.

Exploration of HGT detection with DaisySuite from MRSA outbreak data. MRSA strains are generally assumed to undergo HGT events frequently (Lindsay, 2010, 2014). The MRSA data set considered here

consists of 14 samples with seven of them related to an MRSA outbreak (O1-O7) and seven MRSA samples not associated with the outbreak (N1-N7) but that occurred in the same time frame (Köser et al., 2012). Köser et al. (2012) analysed all 14 samples and compared them to the EMRSA-15 representative HO 5096 0412 as the supposedly closest relative of the outbreak strains. We first evaluate acceptor and donor candidates reported by DaisyGPS in relation to the proposed HO 5096 0412 reference and then investigate HGT region candidates reported by Daisy regarding a possible distinction of outbreak vs. non-outbreak samples. We activate the species filter as we are again interested in strain level candidates.

For all outbreak samples O1-O7, *S. aureus* HO 5096 0412 was reported as acceptor candidate by DaisyGPS (see Table 4 and supplementary tables S8 - S35). The same acceptor was also reported for non-outbreak samples N2, N6 and N7. Acceptor candidates for sample N1 are *S. aureus* ECT-R-2 and N315, for N3 and N4 *S. aureus* MSSA476 and MW2, and for N5 *S. aureus* MRSA252. Although not associated with the outbreak, samples N3 and N4 are from patients that shared the same room in the hospital where the outbreak occurred and hence are possibly related (Köser et al., 2012).

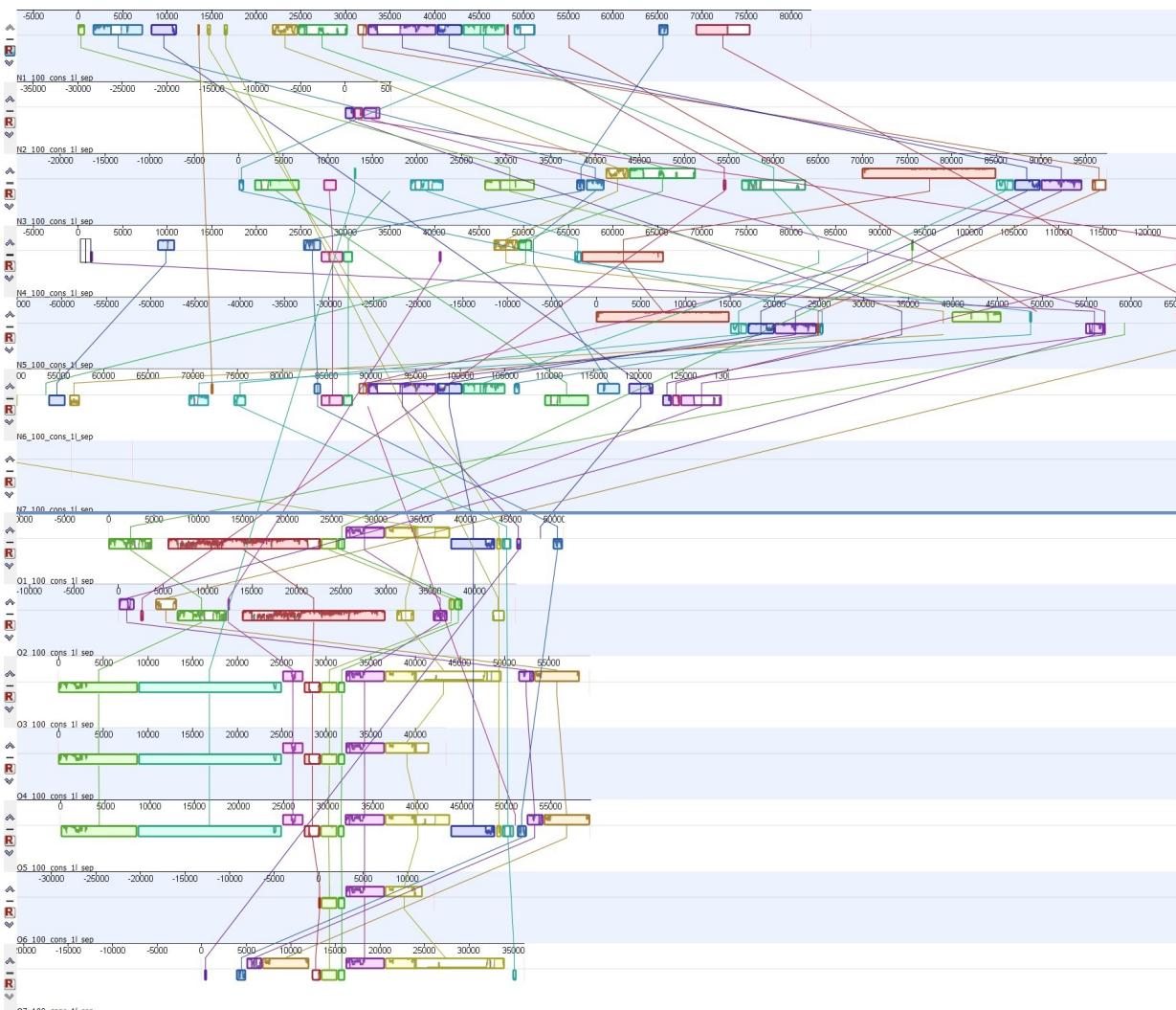

The reported donors are largely the same for both outbreak and non-outbreak samples (see Table 5). No donor was reported exclusively for the outbreak samples but three donors only for non-outbreak strains N1, N4 and N6. These are *S. epidermidis* strains ATCC 12228 and PM221 as well as *Enterococcus faecium* Aus0004. Although *S. aureus* HO 5096 0412 was reported for all outbreak samples, there is no clear distinction in acceptor and donor candidates reported by DaisyGPS apart from the non-outbreak only donors.

Table 4 states the total number of clustered HGT regions and the number of the clustered regions where HO 5096 0412 is the acceptor that are found by DaisySuite. Most HGT regions hence have the EMRSA-15 representative as acceptor.

Figure 4 shows the presence of the 41 HGT regions determined by mapping coverage called by Daisy among all samples. The purpose of the coverage analysis is to evaluate again if the HGT regions differ between the outbreak and non-outbreak strains but also to estimate if there are regions shared by all outbreak strains that are FN can-

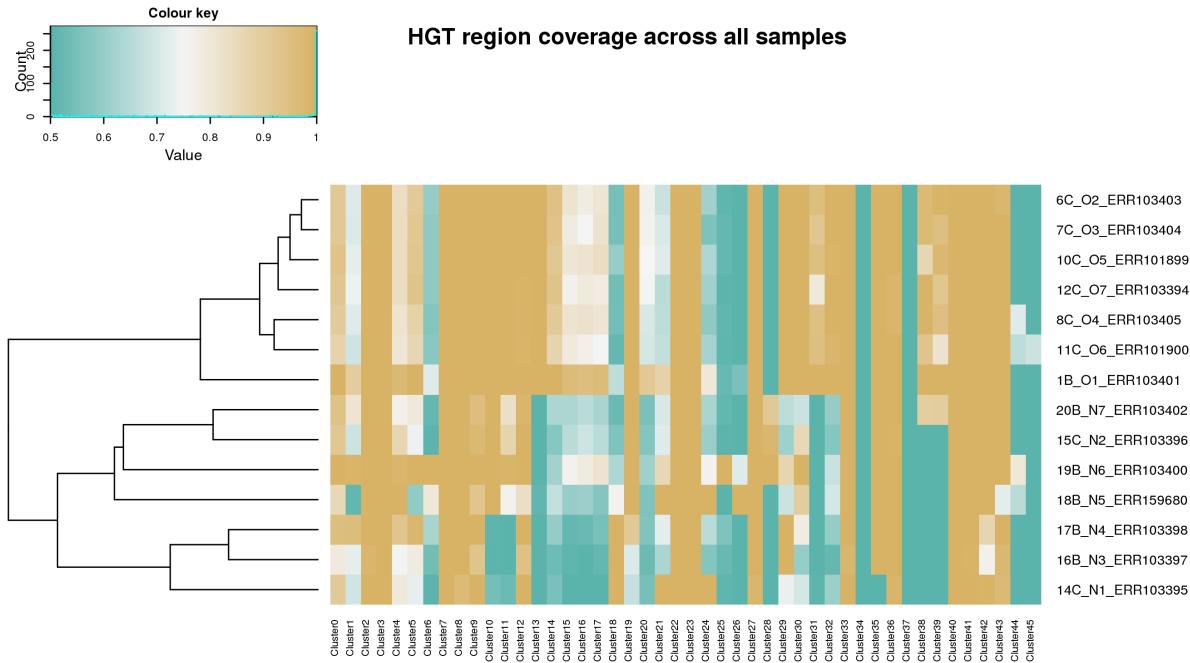

Label	Isolate	Accession	EMRSA-15 as acceptor	HGT regions	EMRSA-15 as acceptor for HGT regions
O1	1B	ERR103401	x	4	4
O2	6C	ERR103403	x	4	3
O3	7C	ERR103404	x	5	3
O4	8C	ERR103405	x	3	3
O5	10C	ERR101899	x	4	4
O6	11C	ERR101900	x	1	1
O7	12C	ERR103394	x	5	3
N1	14C	ERR103395	-	5	-
N2	15C	ERR103396	x	2	2
N3	16B	ERR103397	-	4	-
N4	17B	ERR103398	-	4	-
N5	18B	ERR159680	-	5	-
N6	19B	ERR103400	x	7	5
N7	20B	ERR103402	x	2	2

Table 4: Acceptor and number of HGT region candidates. For 10 of the 14 samples, EMRSA-15 (HO 5096 0412) was reported as acceptor candidate. This includes all outbreak samples. Column *HGT regions* states the number of reported HGT regions, and column *EMRSA-15 as acceptor for HGT regions* the respective number that were reported with HO 5096 0412 as acceptor.

Figure 3: Mauve alignment of concatenated HGT regions. The HGT regions of all samples are aligned with Mauve to establish shared regions between them. The outbreak associated samples (O1-O7) in the lower part share most of their regions whereas the unassociated samples (N1-N7) in the upper part do not.

DaisyGPS

Figure 4: Heatmap of HGT region coverages. The mean coverages of HGT regions from all samples are calculated across every sample, and compared after application of a sigmoidal function. Solid green spots indicate no coverage, solid ochre high coverage. Regions 34 and 37 are not covered in any sample and hence FP calls. Sample O6 shows presence of multiple HGT regions called by DaisySuite for other samples but missed here. There is a distinct presence of HGT regions between the outbreak samples in the upper part and the unassociated samples in the lower part.

Reported donors	
Outbreak and non-outbreak	<i>S.pseudointermedius</i> ED99 and HKU10-03 <i>S.warneri</i> SG1 <i>S.epidermidis</i> RP62A <i>S.haemolyticus</i> JCSC1435 <i>S.aureus</i> COL <i>S.lugdunensis</i> HKU09-01
Non-outbreak only	<i>S.epidermidis</i> ATCC 12228 (N1,N6 only) and PM221 (N4 only) <i>E.faecium</i> Aus0004 (N1 only)

Table 5: Reported donors summarised for all samples. Both outbreak associated and unassociated samples mostly report the same donor candidates with only few variations (see supplementary tables S8-S35 for details). The only unique donors are reported for the unassociated samples N1, N4 and N6.

didates of Daisy, or regions not covered at all that are likely FP candidates.

The clustering of samples according to the dendrogram shown in figure 4 was done automatically (see settings part), and hence reflects the relation of the samples according to the mapping coverage of the proposed HGT regions.

All outbreak strains are clustered together and share most of their HGT regions. All non-outbreak strains for which DaisyGPS did not report EMRSA-15 as an acceptor candidate are clustered away furthest from the outbreak strains (N1, N3 - N5). The likely related samples N3 and N4 are clustered together. Regarding a distinction of outbreak and non-outbreak strains, DaisySuite is able to determine the outbreak-related HGT regions which differ from the HGT candidates for the non-outbreak strains. Hence, a distinction is possible. Al-

though DaisySuite only called one HGT region for O6, we can deduce from the coverage profile that more HGT regions called for the other outbreak samples are present as well but were missed by DaisySuite. As can be seen in the heatmap, clusters 34 and 37 are not covered by any sample and hence likely FPs. We detected the AMR gene *mecA* on Cluster 0, however, resistance is shared among all 14 samples according to Köser et al. (2012). No further AMR genes tested by Köser et al. (2012) are detected on the other clusters. However, most of these AMR genes are on plasmids that were not analysed here.

4 Discussion

We presented DaisyGPS, a pipeline that facilitates metagenomic profiling strategies to identify acceptor and donor candidates from NGS reads of a potential HGT organism. DaisyGPS, together with Daisy, is part of the comprehensive HGT detection suite DaisySuite. We successfully validated DaisyGPS on simulated and real data previously analysed in Trappe et al. (2016). We further demonstrated robustness of the DaisySuite on a large-scale simulation with 100 negative HGT tests, showing that DaisySuite correctly reports no HGT events with a specificity of 97%. On a large-scale simulation with 100 positive HGT simulations, DaisySuite reports the correct HGT event with a total sensitivity of 69%. From the 818 pairs reported by DaisyGPS among the 100 simulations, Daisy called the TP and TN regions with a sensitivity of 89%. Lastly, we evaluated DaisySuite on an MRSA outbreak data set with seven outbreak associated samples

and seven not associated with the outbreak but that occurred during the same time frame. Here we could show that DaisySuite successfully distinguishes between associated and not associated samples regarding their suggested HGT regions, i.e. the outbreak samples show a distinct number and content of reported HGT regions.

One has to acknowledge that all outbreak strains have a high sequence similarity to the EMRSA-15 strain, which is not necessarily the case for the non-outbreak strains. This is also reflected in the results from DaisyGPS where *S. aureus* HO 5096 0412 is the best acceptor candidate for all outbreak strains but not reported at all for some non-outbreak strains. It directly follows that a sequence comparison based analysis as done with DaisySuite will likely find different patterns for the outbreak and non-outbreak strains, and a difference in HGT region candidates might seem obvious. However, starting from having established such a difference, there is value in then analysing the shared HGT region candidates among the outbreak-related strains. For this proof of concept, we performed a relatively simple evaluation by performing a coverage analysis of all HGT regions across all samples and investigating the presence of AMR genes within the HGT regions. But a future thorough follow-up analysis of the origin and functionality provided by the potential HGT sites could benefit our understanding of the risk and pathogenicity of these outbreak strains.

The observed FP and FN candidates, however, also reveal weaknesses of the sequence comparison approach. DaisyGPS is designed with a focus on sensitivity and hence inevitably leads to FP acceptor and donor candidate pairs to be examined by Daisy. Since these FPs are still due to a sufficient degree of mapping coverage, spurious split-reads and spanning reads can cause downstream FP calls as observed for the simulated data set from *E. coli* K12 DH10 and *H. pylori*. The reported HGT site from *H. ducreyi* has only similarities in the start and end part of the proposed region compared to the transferred *H. pylori* region though. Insertion sites can also lie within repeat regions which enhances the negative impact of ambiguous mappings. This emphasises that a critical evaluation of HGT predictions is always crucial.

From the missing HGT region calls for sample O6 that could be inferred from the coverage analysis, we can deduce that DaisySuite does not detect all HGT regions due to insufficient evidence. A potential cause could be that DaisyGPS did not report the correct donor reference. Even if DaisyGPS could find an appropriate donor genome, it is still likely that the genome content differs between the region present in the donor and the region actually present in the HGT organism. An alternative, complementary approach to cope with this problem of a lack of a suitable donor candidate could be to facilitate local, insertion sequence assembly. By offering identified insertion sequences, we can still provide the content of a potential HGT sequence and thereby enable downstream analysis. This approach would also support the detection of novel HGT sequences not present in cur-

rent reference databases, and therefore also the detection of, e.g., novel antimicrobial resistance genes. Popins (Kehr et al., 2015) is a tool for population-based insertion calling developed for human sequencing data (see, e.g., Kehr et al. (2017)). Popins only locally assembles unmapped reads (same input as for Daisy) with Velvet guided by a reference, thereby minimising the risk of potential misassemblies. On top of the assembly, Popins first uses spanning pairs (see red read pairs in Figure 1) to place an insertion in the (acceptor) reference, and then performs a local split-read alignment around the potential breakpoint. If multiple samples are provided, Popins merges contigs across samples into supercontigs, assuming that the same insertion is present in multiple samples. Although different bacterial samples do not represent a population as given for human populations, outbreak related samples still resemble a population such that one could use Popins for this purpose and gain valuable information. However, local insertion assembly only gives evidence for an insertion compared to the chosen acceptor reference, that does not necessarily mean that the insertion resulted from an HGT event. Hence, means to sophisticatedly include insertion assembly results into the HGT context need to be defined first. Despite the evidence for an HGT event that DaisySuite can provide, the results should always be tested for alternative causations such as gene loss.

5 Conclusion

With DaisyGPS, we present a tool for acceptor and donor identification from NGS reads of an HGT organism. To do that, DaisyGPS refines metrics already defined and used for metagenomic profiling purposes to account for the acceptor and donor specific coverage profiles. We integrated DaisyGPS with Daisy into a comprehensive HGT detection suite, called DaisySuite, that provides an automatic workflow to first determine acceptor and donor candidates and then identify and characterise HGT regions from the suggested acceptor-donor pairs. We successfully evaluated DaisyGPS on data previously analysed with Daisy, and demonstrated sensitivity and robustness of the DaisySuite in a large-scale simulation with 100 simulated positive and negative HGT events. We could further show the benefits of an HGT analysis with DaisySuite on an MRSA outbreak data set where DaisySuite reported HGT candidates that help to distinguish between outbreak associated and unassociated samples and therefore also provide information for outbreak strain characterisation.

Acknowledgement

We thank Tobias Marschall and Jan Rouven Forster for inspiring discussions.

Funding: We gratefully acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG), grant number RE3474/2-1 and RE3474/2-2 to BYR. ES also

DaisyGPS

gratefully acknowledges financial support by IMPRS for Scientific Computing and Computational Biology.

Author's Contributions

KT, ES and BYR conceived the study and analysed data. KT and ES wrote the manuscript. ES developed and KT participated in developing the pipeline. BYR participated in manuscript editing. All authors read and approved the final manuscript.

Conflict of interest: none declared.

References

Conda website. URL <https://conda.io/docs/index.html>.

M. Barlow. What antimicrobial resistance has taught us about horizontal gene transfer. *Methods in molecular biology (Clifton, N.J.)*, 532:397–411, 2009.

L. Boto. Horizontal gene transfer in evolution: facts and challenges. *Proceedings of the Royal Society B: Biological Sciences*, 277(1683):819–827, 2009.

F. P. Breitwieser, J. Lu, and S. L. Salzberg. A review of methods and databases for metagenomic classification and assembly. *Briefings in bioinformatics*, 2017.

A. L. Byrd, J. F. Perez-Rogers, S. Manimaran, E. Castro-Nallar, I. Toma, T. McCaffrey, M. Siegel, G. Benson, K. A. Crandall, and W. E. Johnson. Clinical PathoScope: rapid alignment and filtration for accurate pathogen identification in clinical samples using unassembled sequencing data. *BMC Bioinformatics*, 15(1):262, 2014.

P. T. L. C. Clausen, E. Zankari, F. M. Aarestrup, and O. Lund. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. *The Journal of Antimicrobial Chemotherapy*, 71:2484–2488, 2016.

T. H. Dadi, E. Siragusa, V. Piro, A. Andrusch, E. Seiler, B. Renard, and K. Reinert. Dream-yara: An exact read mapper for very large databases with short update time. *Bioinformatics*, 2018.

V. Daubin and G. J. Szöllősi. Horizontal gene transfer and the history of life. *Cold Spring Harbor Perspectives in Biology*, 8(4):a018036, jan 2016.

R. C. Edgar. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*, 26(19):2460–2461, 2010.

C. Gyles and P. Boerlin. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. *Veterinary Pathology*, 51(2):328–340, 2013.

M. Holtgrewe. Mason: a tool suite for simulating nucleotide sequences. unpublished, 2014.

B. Hu, G. Xie, C.-C. Lo, S. R. Starkenburg, and P. S. G. Chain. Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. *Briefings in Functional Genomics*, 10(6):322–333, 2011.

D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. MEGAN analysis of metagenomic data. *Genome Research*, 17:377–386, 2007.

K. S. Jaron, J. C. Moravec, and N. Martíková. SigHunt: horizontal gene transfer finder optimized for eukaryotic genomes. *Bioinformatics*, 30(8):1081–1086, 2013.

M. Juhas. Horizontal gene transfer in human pathogens. *Critical Reviews in Microbiology*, 41(1):101–108, jul 2013.

B. Kehr, P. Melsted, and B. V. Halldórsson. PopIns: population-scale detection of novel sequence insertions. *Bioinformatics*, 32(7):961–967, 2015.

B. Kehr, A. Helgadottir, P. Melsted, H. Jonsson, H. Helgason, A. Jonasdottir, A. Jonasdottir, A. Sigurdsson, A. Gylfason, G. H. Halldorsson, S. Kristmundsdottir, G. Thorgeirsson, I. Olafsson, H. Holm, U. Thorsteinsdottir, P. Sulem, A. Helgason, D. F. Gudbjartsson, B. V. Halldorsson, and K. Stefansson. Diversity in non-repetitive human sequences not found in the reference genome. *Nature Genetics*, 49(4):588–593, 2017.

C. U. Köser, M. T. Holden, M. J. Ellington, E. J. Cartwright, N. M. Brown, A. L. Ogilvy-Stuart, L. Y. Hsu, C. Chewapreecha, N. J. Croucher, S. R. Harris, M. Sanders, M. C. Enright, G. Dougan, S. D. Bentley, J. Parkhill, L. J. Fraser, J. R. Bentley, O. B. Schulz-Trieglaff, G. P. Smith, and S. J. Peacock. Rapid whole-genome sequencing for investigation of a neonatal mrsa outbreak. *New England Journal of Medicine*, 366(24):2267–2275, 2012.

J. Köster and S. Rahmann. Snakemake - scalable bioinformatics workflow engine. *Bioinformatics*, 28(19):2520–2522, 2012.

S. Lindgreen, K. L. Adair, and P. P. Gardner. An evaluation of the accuracy and speed of metagenome analysis tools. *Scientific Reports*, 6:19233, 2016.

M. S. Lindner and B. Y. Renard. Metagenomic Profiling of Known and Unknown Microbes with MicrobeGPS. *PLoS ONE*, 10(2):e0117711, 2015.

M. S. Lindner, M. Kollock, F. Zickmann, and B. Y. Renard. Analyzing genome coverage profiles with applications to quality control in metagenomics. *Bioinformatics*, 29(10):1260–1267, 2013.

J. A. Lindsay. Genomic variation and evolution of staphylococcus aureus. *International Journal of Medical Microbiology*, 300(2):98 – 103, 2010.

J. A. Lindsay. Staphylococcus aureus genomics and the impact of horizontal gene transfer. *International Journal of Medical Microbiology*, 304(2):103 – 109, 2014.

K. McElroy, T. Thomas, and F. Luciani. Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions. *Microbial Informatics and Experimentation*, 4(1):1, 2014.

E. Seiler, K. Trappe, B. Y. Renard

S. Metzler and O. V. Kalinina. Detection of atypical genes in virus families using a one-class SVM. *BMC Genomics*, 15: 913, 2014.

H. Ochman, E. Lerat, and V. Daubin. Examining bacterial species under the specter of gene transfer and exchange. *Proceedings of the National Academy of Sciences*, 102(Supplement 1):6595–6599, may 2005.

N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Had dad, R. McVeigh, B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn, A. Badretdin, Y. Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi, E. Cox, O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, D. Haft, E. Hatcher, W. Hlavina, V. S. Joardar, V. K. Kodali, W. Li, D. Maglott, P. Masterson, K. M. McGarvey, M. R. Murphy, K. O’Neill, S. Pujar, S. H. Rangwala, D. Rausch, L. D. Riddick, C. Schoch, A. Shkeda, S. S. Storz, H. Sun, F. Thibaud-Nissen, I. Tolstoy, R. E. Tully, A. R. Vatsan, C. Wallin, D. Webb, W. Wu, M. J. Landrum, A. Kimchi, T. Tatusova, M. DiCuccio, P. Kitts, T. D. Murphy, and K. D. Pruitt. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.*, 44(D1): D733–745, Jan 2016.

J. A. Perry, E. L. Westman, and G. D. Wright. The antibiotic resistome: what’s new? *Current Opinion in Microbiology*, 21:45–50, oct 2014.

V. C. Piro, M. S. Lindner, and B. Y. Renard. DUDes: a top-down taxonomic profiler for metagenomics. *Bioinformatics*, 32:2272–2280, 2016.

M. Ravenhall, N. Škunca, F. Lassalle, and C. Dessimoz. Inferring Horizontal Gene Transfer. *PLoS Computational Biology*, 11(5):e1004095, 2015.

K. Sedlar, K. Kupkova, and I. Provaznik. Bioinformatics strategies for taxonomy independent binning and visualization of sequences in shotgun metagenomics. *Computational and Structural Biotechnology Journal*, 15:48–55, 2017.

E. Siragusa, D. Weese, and K. Reinert. Fast and accurate read mapping with approximate seeds and multiple backtracking. *Nucleic Acids Research*, 41(7):e78, 2013.

K. Trappe, T. Marschall, and B. Y. Renard. Detecting horizontal gene transfer by mapping sequencing reads across species boundaries. *Bioinformatics*, 32(17):i595–i604, 2016.

P. C. Turner, L. P. Yomano, L. R. Jarboe, S. W. York, C. L. Baggett, B. E. Moritz, E. B. Zentz, K. T. Shanmugam, and L. O. Ingram. Optical mapping and sequencing of the *Escherichia coli* KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the *Zymomonas mobilis* pdc and adhB genes. *Journal of Industrial Microbiology and Biotechnology*, 39(4):629–639, 2012.

S. L. Warnes, C. J. Highmore, and C. W. Keevil. Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public health. *MBio*, 3 (6):e00489–12, 2012.

J. Wiedenbeck and F. M. Cohan. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. *FEMS Microbiology Reviews*, 35(5):957–976, 2011.

D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biology*, 15(3):R46, 2014.

Y. Zhang, C. Laing, M. Steele, K. Ziebell, R. Johnson, A. K. Benson, E. Taboada, and V. P. Gannon. Genome evolution in major *Escherichia coli* O157:H7 lineages. *BMC Genomics*, 8(1):121, 2007.

DaisyGPS

Predicted condition (DaisyGPS)	True condition (ground truth)	
	Simulation contains HGT (positive setting)	Simulation does not contain HGT (negative setting)
Run reports HGT	TP	FP
Run does not report any HGT	FP	TN

Table S1: Confusion matrix for DaisyGPS classifications. If the simulation contains an HGT and DaisyGPS reports at least one candidate pair that corresponds to the correct acceptor/donor pair, the run is considered a TP. If DaisyGPS fails to report the correct acceptor or donor, the run is deemed a FP since all pairs will undergo follow up analysis by Daisy. In a negative test setting, a FP occurs if DaisyGPS reports any pair where the acceptor does not equal the donor and a TN means that either no pair was reported or acceptor and donor of the pair are the same organism.

Predicted condition (Daisy)	True condition (ground truth)	
	Pair represents HGT (DaisyGPS TP)	Pair does not represent HGT (DaisyGPS FP)
Pair reports HGT	TP	FP
Pair does not report any HGT	FP	TN

Table S2: Confusion matrix for DaisyGPS classifications. If the simulation contains an HGT and DaisyGPS reports at least one candidate pair that corresponds to the correct acceptor/donor pair, the run is considered a TP. If DaisyGPS fails to report the correct acceptor or donor, the run is deemed a FP since all pairs will undergo follow up analysis by Daisy. In a negative test setting, a FP occurs if DaisyGPS reports any pair where the acceptor does not equal the donor and a TN means that either no pair was reported or acceptor and donor of the pair are the same organism.

Table S3: Acceptor and donor candidates for sim1HP run with yara, no species filter and no samflag filter. Sampling sensitivity = 90. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004. ¹Salmonella enterica subsp. enterica serovar Anatum str. USDA-ARS-USMARC-1676

Type	Candidate			Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads	Validity		Heterogeneity	Property	Property Score		
Acceptor	Escherichia coli str. K-12 substr. DH10B	NC_010473.1	197800	0.254	0.082	0.173	0.003		
Acceptor	Escherichia coli K-12	NZ_CP010445.1	187050	0.237	0.075	0.162	0.003		
Donor	[Haemophilus] ducreyi	NZ_CP015434.1	322	0.001	0.926	-0.924	-0.000*		
Donor	Salmonella enterica [...] USDA-ARS-USMARC-1676 ¹	NZ_CP014620.1	126	0.001	0.919	-0.918	-0.000*		
Donor	Klebsiella oxytoca KONIH1	NZ_CP008788.1	1791	0.001	0.795	-0.794	-0.000*		
Donor	Helicobacter pylori	NZ_AP014710.1	9154	0.018	0.79	-0.782	-0.001		
Acceptor-like Donor	Escherichia coli	NZ_CP016182.1	74580	0.094	0.088	0.006	0.000*		

Table S4: Results for sim1HP run with yara, gustaf, no species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism	Acceptor	Donor	Acceptor			Donor			Read Evidence			Evidence Filter		
			Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning
NZ_CP010445.1	NZ_AP014710.1	1880235	1880237	44.0	1322002	1350000	94.62	152	182	8712	7	100	100	100
NZ_CP010445.1	NZ_CP015434.1	3904873	3904886	40.54	114928	126957	30.41	871	156	884	3	100	100	100
NC_010473.1	NZ_AP014710.1	1120261	1120263	43.0	1322002	1350000	94.62	154	182	8712	3	100	100	100

Table S5: Acceptor and donor candidates for real1B run with yara, species filter and no samflag filter. Taxon blacklist: [83334, 1045010]. Parent blacklist: [83334]. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate			Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads	Validity		Heterogeneity	Property	Property Score		
Acceptor	Escherichia coli Xuzhou21	NC_017906.1	1040394	0.846	0.054	0.792	0.018		
Acceptor	Escherichia coli O55:H7 str. RM12579	NC_017656.1	816492	0.723	0.040	0.683	0.012		
Donor	Cronobacter sakazakii CMCC 45402	NC_023032.1	201	0.006	0.861	-0.855	-0.000*		
Donor	Enterobacter hormaechei subsp. hormaechei	NZ_CP010377.1	206	0.002	0.78	-0.778	-0.000*		
Donor	Citrobacter freundii CFNIH1	NZ_CP007557.1	1443	0.001	0.743	-0.742	-0.000*		
Donor	Citrobacter koseri ATCC BAA-895	NC_009792.1	93	0.004	0.560	-0.557	-0.000*		
Acceptor-like Donor	Corynebacterium humireducens NBRC 106098 = DSM 45392	NZ_CP005286.1	117	0.444	0.078	0.366	0.000*		
Acceptor-like Donor	Shigella dysenteriae Sd197	NC_007606.1	148868	0.193	0.041	0.152	0.001		

Table S6: Results for real1B run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 95. Split read threshold = 3. Taxon blacklist: [83334, 1045010]. Parent blacklist: [83334]. No species blacklist. Results (139 HGT candidates) for NC_017656.1 (acceptor) and NZ_CP007557.1 (donor) are omitted here for sake of simplicity. For all other pairs no HGT candidates were reported.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_017656.1	NC_007606.1	314439	334641	27.39	2213697	2214454	63.18	39	3	102	0	100	100	100
NC_017656.1	NC_007606.1	1570633	1580081	138.85	1282007	1320884	7.51	9	1	714	100	97	96	98
NC_017656.1	NC_007606.1	1570633	1584983	141.99	1282007	1329491	11.14	11	12	973	99	97	98	97
NC_017656.1	NC_007606.1	1580080	1584983	148.04	1320883	1329491	27.6	8	12	261	99	99	99	99
NC_017656.1	NC_007606.1	1589216	1618452	247.73	4032919	4035786	110.69	107	10	576	100	100	100	100
NC_017656.1	NC_007606.1	1738741	1739271	30.87	1321240	1322115	88.45	42	73	60	4	100	100	98
NC_017656.1	NC_007606.1	1738741	1739785	157.15	1321240	1322656	58.2	17	5	72	95	100	100	99
NC_017656.1	NC_007606.1	1738741	1740010	134.9	1321240	1322870	51.13	50	3	72	96	100	100	98
NC_017656.1	NC_007606.1	1738741	1740078	129.54	1321240	1322973	49.81	17	6	81	100	98	100	98
NC_017656.1	NC_007606.1	1738741	1745278	119.31	1321240	1331304	23.91	9	52	202	96	98	100	98
NC_017656.1	NC_007606.1	1739270	1739785	287.13	1322114	1322656	9.33	56	5	13	99	96	100	99
NC_017656.1	NC_007606.1	1739270	1740477	130.81	1322114	1323341	21.27	28	3	42	96	98	99	98
NC_017656.1	NC_007606.1	1739270	1745278	127.11	1322114	1331304	17.77	24	52	143	97	99	99	96
NC_017656.1	NC_007606.1	1739784	1741539	10.67	1283675	1322655	11.22	19	294	897	4	97	100	97
NC_017656.1	NC_007606.1	1739784	1745278	112.11	1322655	1331304	18.29	16	51	130	95	100	100	100
NC_017656.1	NC_007606.1	1740009	1740477	6.25	1322869	1323341	42.62	20	3	28	5	97	100	96
NC_017656.1	NC_007606.1	1740009	1745278	115.53	1322869	1331304	18.65	17	52	129	98	99	100	96
NC_017656.1	NC_007606.1	1740477	174077	2.25	1322972	1323341	46.64	16	3	25	4	100	100	100
NC_017656.1	NC_007606.1	1741538	1744925	164.13	1283674	1288080	59.4	18	9	692	99	100	100	100
NC_017656.1	NC_007606.1	1741538	1745278	159.71	1283674	1331304	12.51	9	166	1031	100	97	99	95
NC_017656.1	NC_007606.1	1957909	1958879	132.94	4032919	4035786	110.69	41	7	576	99	99	98	99
NC_017656.1	NC_007606.1	1957909	1982375	118.01	4032919	4035782	110.56	17	12	576	97	100	100	100
NC_017656.1	NC_007606.1	1958870	1982375	117.37	4034933	4035782	356.29	22	35	576	98	100	100	100
NC_017656.1	NC_007606.1	1986050	1986053	726.33	1288361	1331322	7.47	10	335	319	100	97	100	95
NC_017656.1	NC_007606.1	1986050	1992463	155.63	1321775	1331322	25.25	126	72	197	99	98	100	97
NC_017656.1	NC_007606.1	1986234	1992463	146.03	1321775	1329808	28.06	261	80	190	100	98	100	96
NC_017656.1	NC_007606.1	1986234	1992955	155.68	1320887	1329808	32.55	35	126	308	99	100	100	99
NC_017656.1	NC_007606.1	1992462	1992955	277.57	1320887	1321774	73.17	131	91	106	100	99	100	99
NC_017656.1	NC_007606.1	2431977	2443616	15.53	1282008	1282282	10.76	17	60	897	0	96	100	96
NC_017656.1	NC_007606.1	2435781	2443492	8.8	1282069	1320883	7.51	193	62	714	3	98	98	98
NC_017656.1	NC_007606.1	2469232	2481815	49.5	4032919	4035785	110.66	81	24	576	2	99	100	99
NC_017656.1	NC_007606.1	2486033	2488461	149.98	4298967	4301718	16.95	23	5	67	95	97	100	96
NC_017656.1	NC_007606.1	2486033	2488662	150.6	4298967	4301905	16.19	65	10	68	99	98	100	98
NC_017656.1	NC_007606.1	2486203	2488662	153.24	4299043	4301905	16.62	47	10	68	99	97	100	95
NC_017656.1	NC_007606.1	2486203	2488723	152.86	4299043	4301977	17.39	29	10	69	98	96	100	95
NC_017656.1	NC_007606.1	2487505	2489413	150.49	953376	956244	23.61	10	3	119	98	98	99	99
NC_017656.1	NC_007606.1	2488461	2489413	130.37	953376	954653	52.39	12	4	119	95	99	100	97
NC_017656.1	NC_007606.1	2488601	2488723	136.13	4301842	4301977	32.39	8	11	2	98	97	100	96
NC_017656.1	NC_007606.1	2678766	2679015	44.61	1323123	1323370	29.6	18	4	5	5	97	100	96
NC_017656.1	NC_007606.1	3607310	3629241	31.35	4189699	4189800	491.86	42	24	12	0	100	100	98
NC_017656.1	NC_007606.1	3615738	3630353	153.33	4195901	4198011	700.99	149	6	4245	97	100	98	100
NC_017656.1	NC_007606.1	3615738	3632904	131.04	4195901	4206697	139.78	21	4	4245	96	100	98	100
NC_017656.1	NC_007606.1	3615738	3632993	130.65	4195901	4206818	138.38	19	4	4250	98	100	98	100
NC_017656.1	NC_007606.1	3629240	3630353	1409.38	4189698	4198011	184.22	222	38	4278	100	100	100	100
NC_017656.1	NC_007606.1	3629240	3632994	430.46	4189698	4206697	91.85	30	36	4278	100	100	100	100
NC_017656.1	NC_007606.1	3629240	3632993	421.57	4189698	4206818	91.3	27	36	4283	100	100	100	100

Table S7: Acceptor and donor candidates for real4 run with yara, no species filter and no samflag filter. Taxon blacklist: [595495]. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads		Validity	Heterogeneity	Property	Property Score	
Acceptor	Escherichia coli W	NC_017635.1	221389	0.852	0.024	0.829	0.026	
Acceptor	Escherichia coli W	NC_017664.1	221570	0.853	0.025	0.828	0.026	
Donor	Salmonella enterica subsp. enterica serovar Infantis	NZ_CP016410.1	83	0.005	0.943	-0.938	-0.000*	
Donor	[Haemophilus] ducreyi	NZ_CP015434.1	119	0.001	0.920	-0.919	-0.000*	
Donor	Zymomonas mobilis subsp. mobilis NRRL B-12526	NZ_CP003709.1	3067	0.002	0.876	-0.874	-0.000*	
Acceptor-like Donor	Shigella boydii CDC 3083-94	NC_010658.1	23506	0.150	0.047	0.104	0.000*	
Acceptor-like Donor	Shigella sonnei 53G	NC_016822.1	29127	0.168	0.073	0.095	0.000*	

Table S8: Acceptor and donor candidates for ERR103401 run with yara, species filter and no samflag filter. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads		Validity	Heterogeneity	Property	Property Score	
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	440076	0.832	0.04	0.792	0.041	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	439586	0.824	0.041	0.783	0.040	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	1089	0.002	0.691	-0.689	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	523	0.003	0.631	-0.628	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	5512	0.006	0.540	-0.534	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	3614	0.005	0.291	-0.285	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	49889	0.106	0.233	-0.127	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus	NZ_CP012011.1	54992	0.11	0.109	0.001	0.000*	

DaisyGPS

Table S9: Results for ERR103401 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NZ_CP007659.1	NC_020164.1	37045	37048	413.0	121379	123703	36.08	5	36	123	100	100	100	100
NZ_CP007659.1	NC_020164.1	37045	37176	220.86	111790	121379	2.26	20	7	47	100	99	100	100
NZ_CP007659.1	NC_020164.1	37047	37125	272.67	121461	123702	24.58	7	36	103	100	100	100	100
NZ_CP007659.1	NC_020164.1	37047	37176	217.84	111790	123702	8.84	19	38	160	100	100	100	100
NZ_CP007659.1	NC_020164.1	37124	37176	134.96	111790	121460	5.17	22	7	72	100	100	98	100
NC_017763.1	NZ_CP012011.1	1525462	1554768	130.8	1228987	1251487	14.6	4	26	826	100	97	100	97
NC_017763.1	NZ_CP012011.1	1525488	1554768	130.8	1228987	1251477	14.59	10	26	826	100	100	100	100
NC_017763.1	NC_020164.1	37044	37047	412.0	121379	123703	36.18	5	36	124	100	100	100	100
NC_017763.1	NC_020164.1	37044	37175	220.35	111790	121379	2.26	20	7	47	100	100	100	100
NC_017763.1	NC_020164.1	37046	37124	271.83	121461	123702	24.69	7	36	104	100	100	100	100
NC_017763.1	NC_020164.1	37046	37175	217.34	111790	123702	8.86	19	38	161	100	100	100	100
NC_017763.1	NC_020164.1	37123	37175	134.96	111790	121460	5.17	22	7	72	100	100	100	100
NZ_CP007659.1	NC_002951.2	1568261	1575973	129.75	359692	369382	5.66	9	3	42	98	98	99	95
NZ_CP007659.1	NC_002951.2	1568261	1576904	131.71	358442	369382	6.99	41	5	87	97	97	100	98
NZ_CP007659.1	NC_002951.2	1568261	1579141	126.48	356047	369382	11.01	5	3	264	99	99	100	99
NZ_CP007659.1	NC_002951.2	1568286	1575973	129.72	359692	369358	5.64	7	3	42	100	99	100	97
NZ_CP007659.1	NC_002951.2	1568286	1576904	131.69	358442	369358	6.97	39	5	87	100	98	100	98
NZ_CP007659.1	NC_002951.2	1568286	1579141	126.45	356047	369358	11.0	3	3	264	97	98	100	98
NZ_CP007659.1	NC_002951.2	1568948	1575973	132.04	359692	369170	5.6	6	1	40	100	99	99	96
NZ_CP007659.1	NC_002951.2	1568948	1576904	133.9	358442	369170	6.95	22	3	85	100	95	100	97
NZ_CP007659.1	NC_002951.2	1568948	1579141	127.84	356047	369170	11.04	4	1	262	100	99	98	97
NZ_CP007659.1	NC_002951.2	1575972	1576904	147.92	358442	359691	17.26	58	2	45	100	98	100	99
NZ_CP007659.1	NC_002951.2	1576903	1579141	106.26	356047	358441	29.37	13	29	177	94	99	100	100
NC_017763.1	NC_002976.3	37130	37175	108.33	2256184	2258869	26.44	25	206	76	92	99	100	99
NZ_CP007659.1	NZ_CP012011.1	1539648	1568954	130.85	1228987	1251487	14.6	4	26	826	100	94	99	93
NZ_CP007659.1	NZ_CP012011.1	1539674	1568954	130.85	1228987	1251477	14.59	10	26	826	100	97	100	97
NC_017763.1	NC_002951.2	1554075	1561787	129.75	359692	369382	5.66	9	3	42	99	98	100	94
NC_017763.1	NC_002951.2	1554075	1562718	131.71	358442	369382	6.99	41	5	87	100	96	100	97
NC_017763.1	NC_002951.2	1554075	1564955	126.48	356047	369382	11.01	5	3	264	97	97	100	97
NC_017763.1	NC_002951.2	1554100	1561787	129.72	359692	369358	5.64	7	3	42	98	99	99	94
NC_017763.1	NC_002951.2	1554100	1562718	131.69	358442	369358	6.97	39	5	87	99	96	100	98
NC_017763.1	NC_002951.2	1554100	1564955	126.45	356047	369358	11.0	3	3	264	99	99	99	99
NC_017763.1	NC_002951.2	1554762	1561787	132.04	359692	369170	5.6	6	1	40	99	100	100	96
NC_017763.1	NC_002951.2	1554762	1562718	133.9	358442	369170	6.95	22	3	85	99	98	99	97
NC_017763.1	NC_002951.2	1554762	1564955	127.84	356047	369170	11.04	4	1	262	98	97	99	97
NC_017763.1	NC_002951.2	1561786	1562718	147.92	358442	359691	17.26	58	2	45	100	97	100	98
NC_017763.1	NC_002951.2	1562717	1564955	106.26	356047	358441	29.37	13	29	177	95	98	100	99
NZ_CP007659.1	NC_002976.3	37131	37176	108.33	2256184	2258869	26.44	25	206	76	93	100	100	100

Table S10: Acceptor and donor candidates for ERR103403 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate			Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads	Validity		Heterogeneity	Property	Property Score		
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	206493	0.813	0.063	0.750	0.039		
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	206231	0.806	0.066	0.74	0.038		
Donor	Staphylococcus warneri SG1	NC_020164.1	196	0.003	0.639	-0.636	-0.000*		
Donor	Staphylococcus pseudintermedius HKU10-03	NC_014925.1	705	0.001	0.582	-0.581	-0.000*		
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	2171	0.005	0.537	-0.532	-0.000*		
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1398	0.005	0.287	-0.283	-0.000*		
Donor	Staphylococcus aureus subsp. aureus TW20	NC_017331.1	27837	0.096	0.364	-0.268	-0.002		
Acceptor-like Donor	Staphylococcus aureus CA-347	NC_021554.1	31231	0.148	0.146	0.003	0.000*		

Table S11: Results for ERR103403 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NZ_CP007659.1	NC_021554.1	1568897	1578954	57.77	1567257	1577035	1.38	3	4	35	98	97	100	97
NC_017763.1	NC_017331.1	1525080	1525467	58.54	413136	417103	24.3	11	6	302	96	98	100	99
NC_017763.1	NC_017331.1	1525080	1525489	59.9	413114	417103	24.24	17	8	302	99	100	100	100
NC_017763.1	NC_017331.1	1525080	1559823	62.98	382945	417103	15.53	6	7	1608	99	99	98	100
NC_017763.1	NC_017331.1	1525466	1559823	63.03	382945	413135	14.37	5	18	1306	100	100	99	100
NC_017763.1	NC_017331.1	1525466	1561786	62.78	381925	413135	13.92	25	11	1306	98	97	100	100
NC_017763.1	NC_017331.1	1525488	1559823	63.02	382945	413113	14.37	13	18	1306	99	100	100	100
NC_017763.1	NC_017331.1	1525488	1561786	62.77	381925	413113	13.92	23	11	1306	97	99	99	100
NC_017763.1	NC_014925.1	36951	37132	244.55	906205	906387	96.3	26	10	11	100	100	100	100
NC_017763.1	NC_014925.1	36951	37151	233.42	906205	906409	93.52	20	10	11	96	100	100	100
NC_017763.1	NC_014925.1	37044	37151	163.06	906300	906409	116.82	4	9	11	100	100	100	100
NZ_CP007659.1	NC_014925.1	36952	37133	244.55	906205	906387	96.3	26	10	11	100	100	100	100
NZ_CP007659.1	NC_014925.1	36952	37152	233.42	906205	906409	93.52	20	10	11	100	100	100	100
NZ_CP007659.1	NC_014925.1	37045	37152	163.06	906300	906409	116.82	4	9	11	100	100	100	100
NZ_CP007659.1	NC_017331.1	1539266	1539653	58.54	413136	417103	24.3	11	6	302	98	98	100	99
NZ_CP007659.1	NC_017331.1	1539266	1539675	59.9	413114									

Table S12: Acceptor and donor candidates for ERR103404 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate	Name	Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
				Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	193345	0.812	0.043	0.769	0.041	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	193065	0.805	0.044	0.761	0.041	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	459	0.001	0.702	-0.700	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	244	0.003	0.631	-0.627	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	2256	0.005	0.536	-0.531	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1441	0.005	0.299	-0.295	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	20891	0.101	0.233	-0.133	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus DSM 20231	NZ_CP011526.1	16400	0.102	0.084	0.018	0.000*	

Table S13: Results for ERR103404 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_017763.1	NZ_CP011526.1	1554767	1561786	52.96	846400	854250	11.47	24	1	254	100	100	100	100
NZ_CP007659.1	NZ_CP011526.1	1568953	1575972	52.96	846400	854250	11.47	24	1	254	100	100	100	100
NZ_CP007659.1	NC_002951.2	1568275	1575973	50.88	359692	369368	2.48	7	1	24	98	98	100	95
NZ_CP007659.1	NC_002951.2	1568275	1576904	52.23	358442	369368	2.96	23	2	43	98	98	100	98
NZ_CP007659.1	NC_002951.2	1575972	1576904	63.34	358442	359691	6.72	34	1	19	100	100	100	100
NC_017763.1	NC_002951.2	1554089	1561787	50.88	359692	369368	2.48	7	1	24	98	98	100	94
NC_017763.1	NC_002951.2	1554089	1562718	52.23	358442	369368	2.96	23	2	43	100	98	100	99
NC_017763.1	NC_002951.2	1561786	1562718	63.34	358442	359691	6.72	34	1	19	100	98	100	100
NC_017763.1	NC_002951.2	2045963	2074149	30.15	369125	397269	12.8	12	10	330	6	100	97	100

Table S14: Acceptor and donor candidates for ERR103405 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate	Name	Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
				Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	192851	0.811	0.03	0.781	0.041	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	192626	0.804	0.031	0.773	0.040	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	459	0.001	0.698	-0.696	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	236	0.003	0.658	-0.655	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	2006	0.005	0.543	-0.538	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1278	0.005	0.293	-0.289	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	21599	0.097	0.227	-0.13	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus	NZ_CP018205.1	20618	0.100	0.091	0.009	0.000*	

Table S15: Results for ERR103405 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_017763.1	NZ_CP018205.1	1559883	1562718	58.73	1959491	1961823	7.95	12	1	38	100	100	100	100
NC_017763.1	NZ_CP018205.1	1561784	1562718	66.49	1960572	1961823	9.45	66	1	31	100	100	100	100
NZ_CP007659.1	NZ_CP018205.1	1574069	1576904	58.73	1959491	1961823	7.95	12	1	38	99	99	100	98
NZ_CP007659.1	NZ_CP018205.1	1575970	1576904	66.49	1960572	1961823	9.45	66	1	31	100	100	100	100
NZ_CP007659.1	NC_002951.2	1568261	1576904	56.11	358442	369382	3.13	10	1	50	100	98	100	100
NZ_CP007659.1	NC_002951.2	1575976	1576904	66.66	358442	359692	9.25	19	1	29	100	99	100	99
NZ_CP007659.1	NC_002951.2	2059982	2087935	30.68	369359	397269	12.87	5	12	341	10	100	100	100
NZ_CP007659.1	NC_002951.2	2059982	2088169	30.68	369125	397269	12.79	21	12	341	6	100	98	100
NC_017763.1	NC_002951.2	1554075	1562718	56.11	358442	369382	3.13	10	1	50	100	99	100	100
NC_017763.1	NC_002951.2	1561790	1562718	66.66	358442	359692	9.25	19	1	29	100	100	100	100
NC_017763.1	NC_002951.2	2045963	2073915	30.7	369359	397269	13.02	5	12	355	6	100	99	100
NC_017763.1	NC_002951.2	2045963	2074149	30.7	369125	397269	12.94	21	12	355	8	100	97	100

Table S16: Acceptor and donor candidates for ERR101899 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate	Name	Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
				Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	206272	0.814	0.047	0.767	0.040	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	206076	0.807	0.049	0.759	0.04	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	536	0.001	0.707	-0.705	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	263	0.003	0.658	-0.655	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	2226	0.005	0.537	-0.532	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1378	0.004	0.296	-0.291	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	22973	0.098	0.236	-0.139	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus DSM 20231	NZ_CP011526.1	18223	0.099	0.085	0.014	0.000*	

DaisyGPS

Table S17: Results for ERR101899 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor		Donor		Read Evidence			Evidence Filter					
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NZ_CP007659.1	NC_002951.2	1568261	1575972	53.51	359694	369382	2.62	3	2	15	99	100	100	97
NZ_CP007659.1	NC_002951.2	1568261	1576904	55.07	358442	369382	3.05	8	2	34	99	99	99	99
NZ_CP007659.1	NC_002951.2	1568287	1575972	53.49	359694	369357	2.61	3	2	15	98	100	99	99
NZ_CP007659.1	NC_002951.2	1568287	1576904	55.06	358442	369357	3.04	8	2	34	100	100	99	99
NZ_CP007659.1	NC_002951.2	2059982	2087936	31.07	369358	397269	13.23	9	15	395	10	100	100	100
NZ_CP007659.1	NC_002951.2	2059982	2088169	31.08	369125	397269	13.15	31	15	396	7	100	94	100
NZ_CP007659.1	NC_020164.1	37045	37177	87.31	111789	121379	0.85	4	2	20	100	97	100	100
NZ_CP007659.1	NZ_CP011526.1	1568903	1575972	56.42	846397	854374	12.62	9	1	267	100	100	100	100
NC_017763.1	NZ_CP011526.1	1554717	1561786	56.42	846397	854374	12.62	9	1	267	98	100	100	100
NC_017763.1	NC_002951.2	1554075	1561786	53.51	359694	369382	2.62	3	2	15	97	98	100	94
NC_017763.1	NC_002951.2	1554075	1562718	55.07	358442	369382	3.05	8	2	34	99	99	100	100
NC_017763.1	NC_002951.2	1554101	1561786	53.49	359694	369357	2.61	3	2	15	98	99	99	93
NC_017763.1	NC_002951.2	1554101	1562718	55.06	358442	369357	3.04	8	2	34	99	98	100	97
NC_017763.1	NC_002951.2	2045963	2073916	31.1	369358	397269	13.45	9	15	415	8	100	91	100
NC_017763.1	NC_002951.2	37044	37176	87.31	111789	121379	0.85	4	2	20	100	100	99	100

Table S18: Acceptor and donor candidates for ERR101900 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads		Validity	Heterogeneity	Property	Property Score	
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	162488	0.801	0.049	0.752	0.04	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	162328	0.794	0.050	0.744	0.039	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	1521	0.002	0.706	-0.704	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	215	0.004	0.654	-0.650	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	3028	0.005	0.560	-0.555	-0.001	
Donor	Staphylococcus lugdunensis HKU09-01	NC_013893.1	53	0.002	0.358	-0.356	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1116	0.005	0.254	-0.25	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	17868	0.103	0.242	-0.139	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus NCTC 8325	NC_007795.1	16873	0.107	0.089	0.018	0.000*	

Table S19: Results for ERR101900 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Type	Organism		Acceptor	Donor		Read Evidence			Evidence Filter							
	Acceptor	Donor		Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_017763.1	NC_002951.2	1554089	1562718	45.31	358442	369368	2.81	15	1	31	100	100	99	98		
NC_017763.1	NC_002951.2	1554762	1562718	46.77	358442	369170	2.78	8	1	29	100	100	98	98		
NC_017763.1	NC_002951.2	1561790	1562718	53.62	358442	359696	5.56	8	1	15	98	99	100	100		
NZ_CP007659.1	NC_007795.1	1575971	1576904	53.59	1961777	1963027	6.06	57	1	16	99	99	100	99		
NC_017763.1	NC_007795.1	1561785	1562718	53.59	1961777	1963027	6.06	57	1	16	99	97	99	97		
NZ_CP007659.1	NC_002951.2	1568275	1576904	45.31	358442	369368	2.81	15	1	31	99	99	100	99		
NZ_CP007659.1	NC_002951.2	1568948	1576904	46.77	358442	369170	2.78	8	1	29	99	99	100	99		
NZ_CP007659.1	NC_002951.2	1575976	1576904	53.62	358442	359696	5.56	8	1	15	100	99	100	98		

Table S20: Acceptor and donor candidates for ERR103394 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads		Validity	Heterogeneity	Property	Property Score	
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	183503	0.807	0.048	0.759	0.040	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	183292	0.801	0.05	0.751	0.04	
Donor	Staphylococcus warneri SG1	NC_020164.1	250	0.004	0.656	-0.653	-0.000*	
Donor	Staphylococcus pseudintermedius HKU10-03	NC_014925.1	747	0.001	0.584	-0.582	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	2358	0.005	0.546	-0.541	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1541	0.005	0.301	-0.296	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	20650	0.100	0.246	-0.146	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus DSM 20231	NZ_CP011526.1	16141	0.102	0.091	0.011	0.000*	

Table S21: Results for ERR103394 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NZ_CP007659.1	NC_014925.1	36953	37046	319.63	906200	906301	89.36	6	17	18	100	100	100	100
NZ_CP007659.1	NC_014925.1	36953	37133	263.84	906200	906387	137.22	13	20	20	100	100	100	100
NZ_CP007659.1	NC_014925.1	36953	37152	254.4	906200	906409	135.31	9	19	20	100	100	100	100
NZ_CP007659.1	NC_014925.1	36999	37133	225.07	906256	906387	169.08	11	18	20	100	100	100	100
NZ_CP007659.1	NC_014925.1	36999	37152	217.61	906256	906409	161.88	7	18	20	100	100	100	100
NZ_CP007659.1	NC_014925.1	37045	37152	197.65	906300	906409	178.28	5	12	19	100	100	100	100
NC_017763.1	NC_002951.2	1554089	1562718	54.38	358442	369368	2.46	16	3	25	99	98	100	95
NC_017763.1	NC_002951.2	1554762	1562718	55.43	358442	369170	2.46	29	3	25	99	99	100	97
NC_017763.1	NC_014925.1	36952	37045	299.67	906200	906301	76.57	7	15	19	100	100	100	100
NC_017763.1	NC_014925.1	36952	37132	228.17	906200	906387	109.47	21	17	21	100	100	100	100
NC_017763.1	NC_014925.1	36952	37151	217.36	906200	906409	105.63	15	16	21	100	100	100	100
NC_017763.1	NC_014925.1	36998	37132	183.81	906256	906387	134.34	11	16	21	99	100	100	100
NC_017763.1	NC_014925.1	36998	37151	175.26	906256	906409	125.52	8	16	21	100	100	100	100
NC_017763.1	NC_014925.1	37044	37151	145.74	906300	906409	132.93	6	10	20	100	100	100	100
NZ_CP007659.1	NZ_CP011526.1	1568903	1575973	55.17	846399	854374	10.79	13	3	234	97	99	100	99
NZ_CP007659.1	NZ_CP011526.1	1568903	1579178	54.74	842251	854374	19.62	5	3	747	98	100	99	100
NZ_CP007659.1	NZ_CP011526.1	1568953	1575973	55.21	846399	854250	10.95	26	3	234	99	98	100	98
NZ_CP007659.1	NZ_CP011526.1	1568953	1579178	54.76	842251	854250	19.82	10	3	747	100	100	100	100
NC_017763.1	NZ_CP011526.1	1554717	1561787	55.17	846399	854374	10.79	13	3	234	99	100	100	100
NC_017763.1	NZ_CP011526.1	1554717	1564992	54.74	842251	854374	19.62	5	3	747	99	100	100	100
NC_017763.1	NZ_CP011526.1	1554767	1561787	55.21	846399	854250	10.95	26	3	234	99	100	100	100
NC_017763.1	NZ_CP011526.1	1554767	1564992	54.76	842251	854250	19.82	10	3	747	97	100	100	100
NZ_CP007659.1	NC_002951.2	1568275	1576904	54.38	358442	369368	2.46	16	3	25	99	98	100	96
NZ_CP007659.1	NC_002951.2	1568948	1576904	55.43	358442	369170	2.46	29	3	25	99	99	100	97

Table S22: Acceptor and donor candidates for ERR103395 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name			Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus ECT-R 2	NC_017343.1	120322	0.591	0.070	0.521	0.013	
Acceptor	Staphylococcus aureus subsp. aureus N315	NC_002745.2	121110	0.576	0.069	0.507	0.013	
Donor	Enterococcus faecium Aus0004	NC_017022.1	471	0.001	0.974	-0.973	-0.000*	
Donor	Staphylococcus epidermidis ATCC 12228	NC_004461.1	391	0.001	0.971	-0.97	-0.000*	
Donor	Staphylococcus pseudintermedius HKU10-03	NC_014925.1	470	0.001	0.806	-0.805	-0.000*	
Donor	Staphylococcus lugdunensis HKU09-01	NC_013893.1	59	0.003	0.765	-0.762	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	294	0.011	0.693	-0.683	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	362	0.002	0.556	-0.554	-0.000*	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus	NZ_CP009554.1	14824	0.093	0.091	0.002	0.000*	

DaisyGPS

Table S23: Results for ERR103395 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_002745.2	NC_013893.1	2060607	2069048	16.44	2073055	2083555	11.08	28	8	339	1	100	100	100
NC_002745.2	NC_013893.1	2060607	2069067	16.47	2073055	2083576	11.07	18	6	339	2	100	99	100
NC_002745.2	NC_013893.1	2060762	2069048	16.74	2073192	2083555	11.11	7	8	339	1	100	100	100
NC_002745.2	NZ.CP009554.1	1142176	1142913	0.26	685582	686374	22.86	8	11	52	3	100	100	100
NC_002745.2	NZ.CP009554.1	1142176	1142913	0.26	685582	717267	0.66	12	14	53	5	94	97	94
NC_002745.2	NZ.CP009554.1	1142912	1142913	1.0	685581	716475	0.66	11	12	53	4	93	98	94
NC_002745.2	NZ.CP009554.1	2056699	2058174	0.02	2150234	2162636	2.65	10	6	43	2	98	99	94
NC_002745.2	NZ.CP009554.1	2056699	2060475	5.31	2150276	2162636	2.66	13	6	43	1	100	99	99
NC_002745.2	NZ.CP009554.1	2056699	2069076	10.31	2158985	2162636	3.14	24	34	8	2	99	100	90
NC_002745.2	NZ.CP009554.1	2058173	2069076	11.7	2150233	2158985	2.44	51	5	34	0	97	100	97
NC_002745.2	NZ.CP009554.1	2058173	2069105	11.7	2150233	2159011	2.48	7	5	34	3	100	100	98
NC_002745.2	NZ.CP009554.1	2058173	2069324	11.5	2150233	2159202	3.5	27	26	43	0	100	100	99
NC_002745.2	NZ.CP009554.1	2058173	2069355	11.57	2150233	2159253	3.62	7	26	43	0	100	100	96
NC_002745.2	NZ.CP009554.1	2060474	2069076	12.5	2150275	2158985	2.45	52	5	34	0	99	100	99
NC_002745.2	NZ.CP009554.1	2060474	2069105	12.5	2150275	2159011	2.49	8	5	34	2	100	100	98
NC_002745.2	NZ.CP009554.1	2060474	2069324	12.23	2150275	2159202	3.51	28	26	43	5	98	100	97
NC_002745.2	NZ.CP009554.1	2060474	2069355	12.31	2150275	2159253	3.63	8	26	43	1	100	100	99
NC_002745.2	NZ.CP009554.1	2060607	2065052	19.41	364874	369569	10.13	14	5	133	2	100	100	100
NC_002745.2	NZ.CP009554.1	2060607	2068738	12.04	361186	369569	7.19	18	1	154	0	100	100	100
NC_002745.2	NZ.CP009554.1	2065051	2068738	3.16	361186	364873	3.44	9	3	21	3	98	99	97
NC_002745.2	NZ.CP009554.1	2069075	2069324	2.76	2158984	2159202	45.94	89	32	8	4	100	100	100
NC_002745.2	NZ.CP009554.1	2069075	2069355	6.49	2158984	2159253	41.82	9	38	8	2	100	100	99
NC_002745.2	NZ.CP009554.1	2069104	2069324	1.65	2159010	2159202	50.14	12	32	8	3	100	100	99
NC_017343.1	NZ.CP009554.1	1100697	1101434	0.42	685582	686374	22.86	8	11	52	1	100	100	100
NC_017343.1	NZ.CP009554.1	1100697	1101434	0.42	685582	717267	0.66	15	14	53	1	99	99	98
NC_017343.1	NZ.CP009554.1	1101433	1101434	1.0	685581	716475	0.66	11	12	53	0	98	96	96
NC_002745.2	NC_004461.1	61651	61779	4.23	37793	55322	7.62	30	73	392	4	100	99	100
NC_002745.2	NC_004461.1	61651	61799	3.8	37814	55322	7.62	14	73	392	4	100	100	100
NC_002745.2	NC_004461.1	61651	61851	2.83	37866	55322	7.61	18	73	392	2	100	99	100
NC_002745.2	NC_004461.1	61755	61779	3.04	37793	55383	7.59	12	73	392	2	100	100	100
NC_002745.2	NC_004461.1	61755	61799	2.14	37814	55383	7.59	8	73	392	5	100	99	100
NC_002745.2	NC_004461.1	61755	61851	1.01	37866	55383	7.58	9	73	392	3	100	100	100
NC_002745.2	NC_004461.1	61778	62058	2.57	37792	57274	6.86	7	73	392	1	100	100	100
NC_002745.2	NC_004461.1	61778	62354	7.14	37792	57575	6.75	7	68	392	2	100	100	100
NC_002745.2	NC_004461.1	61778	62414	7.02	37792	57608	6.74	8	64	392	1	100	99	100
NC_002745.2	NC_004461.1	61798	62058	2.68	37813	57274	6.85	3	73	392	5	100	100	100
NC_002745.2	NC_004461.1	61798	62354	7.35	37813	57575	6.75	3	68	392	1	100	99	100
NC_002745.2	NC_004461.1	61798	62414	7.21	37813	57608	6.74	4	64	392	1	100	100	100
NC_002745.2	NC_004461.1	61850	62058	3.34	37865	57274	6.84	4	73	392	5	100	99	100
NC_002745.2	NC_004461.1	61850	62354	8.11	37865	57575	6.74	4	68	392	4	100	100	100
NC_002745.2	NC_004461.1	61850	62414	7.87	37865	57608	6.73	7	64	392	2	100	100	100

Table S24: Acceptor and donor candidates for ERR103396 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads		Validity	Heterogeneity	Property	Property Score	
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	222016	0.817	0.042	0.775	0.043	
Acceptor	Staphylococcus aureus subsp. aureus	NZ.CP007659.1	223952	0.815	0.049	0.767	0.043	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	536	0.002	0.708	-0.707	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	267	0.003	0.696	-0.693	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	1067	0.003	0.582	-0.579	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	370	0.003	0.492	-0.489	-0.000*	
Donor	Staphylococcus aureus subsp. aureus COL	NC_002951.2	21752	0.098	0.156	-0.058	-0.000*	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus	NZ.CP012012.1	21332	0.097	0.094	0.003	0.000*	

Table S25: Results for ERR103396 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism	Acceptor	Donor	Start	End	Coverage	Number Reads	Read Evidence			Evidence Filter			
							Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_017763.1	NZ.CP012012.1	98589	98635	95.67	125862	126004	35.02	3	20	5	100	100	100
NC_017763.1	NC_017568.1	409730	409775	16.98	2481624	2485653	3.95	14	5	35	1	100	100

Table S26: Acceptor and donor candidates for ERR103397 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name	Number Reads		Validity	Heterogeneity	Property	Property Score	
Acceptor	Staphylococcus aureus subsp. aureus MSSA476	NC_002953.3	84971	0.634	0.094	0.540	0.017	
Acceptor	Staphylococcus aureus subsp. aureus MW2	NC_003923.1	83556	0.621	0.089	0.531	0.017	
Donor	Staphylococcus pseudintermedius HKU10-03	NC_014925.1	3645	0.002	0.744	-0.742	-0.001	
Donor	Staphylococcus warneri SG1	NC_020164.1	168	0.003	0.69	-0.697	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	2650	0.004	0.604	-0.600	-0.001	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	1082	0.002	0.583	-0.581	-0.000*	
Donor	Staphylococcus lugdunensis HKU09-01	NC_013893.1	3709	0.004	0.356	-0.352	-0.001	
Donor	Staphylococcus aureus subsp. aureus	NZ.CP009554.1	19819	0.092	0.314	-0.222	-0.002	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus	NZ.CP009361.1	9253	0.097	0.092	0.005	0.000*	

Table S27: Results for ERR103397 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NC_003923.1	NC_007168.1	44986	45306	40.24	66689	67028	5.47	6	1	2	98	100	100	100
NC_003923.1	NC_002976.3	44776	44988	12.98	2520640	2520803	10.01	4	4	1	6	100	100	100
NC_003923.1	NC_002976.3	44987	45380	36.37	2520639	2561294	0.64	14	58	46	96	95	98	95
NC_003923.1	NC_002976.3	44987	45606	31.5	2520639	2561094	0.63	4	58	44	95	96	100	97
NC_003923.1	NC_002976.3	45026	45380	37.73	2561294	2561636	10.28	14	3	3	100	99	100	99
NC_003923.1	NC_002976.3	45026	45606	32.0	2561094	2561636	7.1	4	3	4	92	98	100	98
NC_003923.1	NC_002976.3	45026	45870	27.86	2560793	2561636	6.17	6	4	4	91	99	100	100
NC_003923.1	NC_002976.3	45070	45307	38.1	2561337	2561580	12.23	4	5	3	94	100	100	100
NC_003923.1	NC_002976.3	45070	45380	38.28	2561294	2561580	12.12	40	5	3	98	100	100	100
NC_002953.3	NC_007168.1	41508	57483	26.01	67036	120082	2.7	20	4	471	94	98	95	98

Table S28: Acceptor and donor candidates for ERR103398 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate		Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
	Name			Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus MSSA476		NC_002953.3	192949	0.671	0.11	0.562	0.017
Acceptor	Staphylococcus aureus subsp. aureus MW2		NC_003923.1	189418	0.658	0.103	0.555	0.016
Donor	Staphylococcus pseudintermedius HKU10-03		NC_014925.1	16866	0.002	0.745	-0.742	-0.002
Donor	Staphylococcus warneri SG1		NC_020164.1	461	0.003	0.69	-0.697	-0.000*
Donor	Staphylococcus epidermidis PM221		NZ_HG813242.1	4779	0.001	0.656	-0.655	-0.001
Donor	Staphylococcus haemolyticus JCSC1435		NC_007168.1	12023	0.004	0.636	-0.632	-0.001
Donor	Staphylococcus lugdunensis HKU09-01		NC_013893.1	16800	0.004	0.356	-0.351	-0.001
Donor	Staphylococcus aureus subsp. aureus		NZ_CP009554.1	70966	0.095	0.398	-0.304	-0.003
Acceptor-like Donor	Staphylococcus aureus CA-347		NC_021554.1	18666	0.098	0.090	0.007	0.000*

Table S29: Results for ERR103398 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism	Acceptor			Donor			Read Evidence			Evidence Filter				
	Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning
NC_002953.3	NC_007168.1	27843	41291	63.48	67243	97433	4.35	18	2	436	95	97	99	99
NC_002953.3	NC_007168.1	27843	41907	63.94	66699	97433	4.54	3	4	446	91	99	99	99
NC_002953.3	NC_007168.1	27843	57484	69.06	94688	97433	47.35	7	2	431	99	100	100	100
NC_002953.3	NC_007168.1	41290	41907	73.94	66699	67242	15.3	9	6	14	96	100	100	100
NC_002953.3	NC_007168.1	41290	57483	73.69	67242	120082	6.24	77	6	1105	99	94	99	97
NC_002953.3	NC_007168.1	41290	57484	73.69	30072	67242	0.28	25	7	16	100	93	100	97
NC_002953.3	NC_007168.1	41508	41605	95.51	66925	67036	6.53	17	6	1	97	100	100	100
NC_002953.3	NC_007168.1	41508	41907	90.78	66699	67036	7.76	5	1	2	98	100	100	100
NC_002953.3	NC_007168.1	41508	57483	74.11	67036	120082	6.32	39	10	1111	98	91	94	95
NC_002953.3	NC_007168.1	41508	57484	74.11	67036	94688	0.25	13	8	11	100	93	97	95
NC_002953.3	NC_007168.1	41604	41907	89.3	66699	66924	8.38	9	2	1	97	99	100	99
NC_002953.3	NC_007168.1	41604	57483	73.98	66924	120082	6.32	77	15	1112	100	92	99	94
NC_002953.3	NC_007168.1	41906	57483	73.68	66698	120082	6.33	21	15	1115	100	91	100	94
NC_002953.3	NC_007168.1	41906	57484	73.68	66698	94688	0.34	8	1	15	100	92	100	96
NC_002953.3	NZ_HG813242.1	34149	41829	68.51	35795	85587	4.98	78	19	287	99	99	97	99
NC_002953.3	NZ_HG813242.1	34149	41907	68.57	35721	85587	4.97	50	19	287	95	97	98	97
NC_002953.3	NZ_HG813242.1	34149	57484	71.98	54292	85587	6.1	34	3	280	97	97	97	97
NC_002953.3	NZ_HG813242.1	34149	57484	71.98	57395	85587	5.91	42	2	207	100	97	100	97
NC_002953.3	NZ_HG813242.1	34180	41829	68.6	35795	85647	4.97	240	19	287	93	96	97	96
NC_002953.3	NZ_HG813242.1	34180	41907	68.66	35721	85647	4.96	142	19	287	97	95	96	95
NC_002953.3	NZ_HG813242.1	34180	57484	72.02	54292	85647	6.09	86	3	280	100	96	100	96
NC_002953.3	NZ_HG813242.1	34180	57484	72.02	57395	85647	5.9	114	2	207	100	97	100	97
NC_002953.3	NZ_HG813242.1	41828	56986	72.4	35794	85689	4.98	81	19	287	99	94	97	94
NC_002953.3	NZ_HG813242.1	41828	57484	73.68	35794	57395	3.75	43	2	70	99	94	100	93
NC_002953.3	NZ_HG813242.1	41828	57484	73.68	35794	62757	9.18	15	3	286	100	97	97	97
NC_002953.3	NZ_HG813242.1	41906	56986	72.39	35720	85689	4.97	143	19	287	100	93	98	93
NC_002953.3	NZ_HG813242.1	41906	57484	73.68	35720	57395	3.74	67	2	70	100	98	98	98
NC_002953.3	NZ_HG813242.1	41906	57484	73.68	35720	62757	9.16	11	3	286	100	99	98	99
NC_002953.3	NZ_HG813242.1	56985	57484	112.78	54292	85688	6.1	64	3	280	100	97	98	97
NC_002953.3	NZ_HG813242.1	56985	57484	112.78	57395	85688	5.91	80	2	207	100	98	99	98
NC_003923.1	NC_007168.1	44606	45306	69.87	66689	67411	10.45	29	2	16	95	100	100	100
NC_003923.1	NC_007168.1	45026	45143	97.32	66870	66987	2.7	9	4	2	100	99	100	99
NC_003923.1	NC_007168.1	45026	45306	93.51	66689	66987	17.21	25	6	13	98	100	100	100
NC_003923.1	NC_007168.1	45062	45306	93.32	66689	66930	20.85	19	3	11	99	99	100	100
NC_003923.1	NC_007168.1	45082	45306	92.39	66689	66929	20.93	10	4	11	98	100	100	100
NC_003923.1	NC_007168.1	45142	45306	90.77	66689	66869	26.71	10	5	11	97	99	100	99
NC_002953.3	NC_021554.1	41508	41593	91.24	60998	61108	10.47	19	2	5	96	99	100	99
NC_002953.3	NC_021554.1	41508	41884	81.12	60998	61399	20.48	7	1	11	95	99	100	99
NC_002953.3	NC_021554.1	41548	41884	80.93	61045	61399	21.66	4	2	9	96	100	100	100
NC_002953.3	NC_021554.1	41592	41884	78.23	61107	61399	24.23	22	3	8	92	99	100	99
NC_003923.1	NC_021554.1	44986	45384	76.26	61006	61391	27.57	55	2	20	90	100	100	100
NC_003923.1	NC_021554.1	45026	45306	80.71	61045	61347	29.43	7	3	18	95	100	100	100
NC_003923.1	NC_021554.1	45026	45384	76.52	61045	61391	29.23	113	3	18	94	100	100	100
NC_003923.1	NC_021554.1	45062	45306	78.63	61102	61347	35.75	3	1	14	92	100	100	99
NC_003923.1	NC_021554.1	45062	45384	74.48	61102	61391	34.55	109	1	14	92	100	100	100
NC_003923.1	NC_021554.1	45												

DaisyGPS

Table S30: Acceptor and donor candidates for ERR159680 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate	Name	Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
				Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus MRSA252	NC_002952.2	236631	0.892	0.047	0.845	0.043	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP009554.1	227305	0.871	0.046	0.825	0.041	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	780	0.003	0.946	-0.944	-0.000*	
Donor	Streptococcus pasteurianus ATCC 43144	NC_015600.1	397	0.001	0.828	-0.827	-0.000*	
Donor	Staphylococcus epidermidis RP62A	NC_002976.3	6553	0.019	0.804	-0.785	-0.001	
Donor	Streptococcus galolyticus UCN34	NC_013798.1	453	0.001	0.752	-0.751	-0.000*	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	1295	0.005	0.516	-0.511	-0.000*	
Donor	Staphylococcus lugdunensis HKU09-01	NC_013893.1	494	0.003	0.356	-0.353	-0.000*	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus	NZ_AP014652.1	17647	0.096	0.085	0.011	0.000*	

Table S31: Results for ERR159680 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism	Acceptor	Donor	Acceptor			Donor			Read Evidence			Evidence Filter		
			Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning
NZ_CP009554.1	NC_002976.3	34120	34123	12.67	2536574	2584194	38.98	30	19	5752	6	100	98	100
NZ_CP009554.1	NC_002976.3	859613	866305	63.76	1398260	1404973	0.3	27	4	5	100	98	100	98
NZ_CP009554.1	NC_013893.1	2130925	2133716	7.9	2343346	2345047	5.05	17	1	10	3	100	100	100
NZ_CP009554.1	NC_013893.1	2131388	2133716	4.04	2343670	2345047	6.23	16	1	10	0	100	100	100
NC_002952.2	NC_002976.3	906791	906792	12.0	1398259	1404972	0.3	18	4	5	1	94	100	97
NZ_CP009554.1	NZ_AP014652.1	414814	417301	46.9	438237	438358	11.31	4	2	5	96	99	100	99
NZ_CP009554.1	NZ_AP014652.1	2110903	2123964	16.67	2007772	2020977	17.83	6	4	762	0	98	99	98
NZ_CP009554.1	NZ_AP014652.1	2110903	2131317	11.83	2007772	2029781	21.15	3	4	1493	0	100	97	100
NZ_CP009554.1	NZ_AP014652.1	2110903	2134197	10.62	2007772	2030266	20.77	25	3	1493	0	99	99	99
NZ_CP009554.1	NZ_AP014652.1	2123963	2131021	1.86	2020976	2029466	27.01	5	1	729	0	98	100	98
NZ_CP009554.1	NZ_AP014652.1	2123963	2131317	3.23	2020976	2029781	26.14	7	2	731	1	98	100	98
NZ_CP009554.1	NZ_AP014652.1	2123963	2134197	2.91	2020976	2030266	24.94	51	1	731	0	100	99	100
NZ_CP009554.1	NZ_AP014652.1	2125253	2131317	1.84	2022297	2029781	30.59	3	3	731	0	98	100	98
NZ_CP009554.1	NZ_AP014652.1	2125253	2134197	1.92	2022297	2030266	28.92	25	2	731	0	99	100	99
NZ_CP009554.1	NZ_AP014652.1	2131020	2134197	5.24	2029465	2030266	2.97	25	1	2	2	97	100	97
NZ_CP009554.1	NZ_AP014652.1	2131316	2134197	2.09	2029780	2030266	3.19	49	6	2	1	97	100	96
NC_002952.2	NC_013893.1	413772	417366	53.37	2079996	2083590	0.78	5	4	2	100	99	100	100

Table S32: Acceptor and donor candidates for ERR103400 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate	Name	Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
				Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	484936	0.835	0.037	0.798	0.041	
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	489699	0.832	0.048	0.784	0.041	
Donor	Staphylococcus haemolyticus JCSC1435	NC_007168.1	3222	0.006	0.799	-0.792	-0.000*	
Donor	Staphylococcus pseudintermedius ED99	NC_017568.1	1398	0.002	0.701	-0.699	-0.000*	
Donor	Staphylococcus warneri SG1	NC_020164.1	583	0.003	0.695	-0.692	-0.000*	
Donor	Staphylococcus epidermidis ATCC 12228	NC_004461.1	3245	0.005	0.483	-0.479	-0.000*	
Donor	Staphylococcus lugdunensis HKU09-01	NC_013893.1	69	0.005	0.342	-0.337	-0.000*	
Donor	Staphylococcus aureus subsp. aureus	NZ_CP009554.1	132861	0.21	0.254	-0.044	-0.001	
Acceptor-like Donor	Staphylococcus aureus subsp. aureus T0131	NC_017347.1	50347	0.104	0.103	0.001	0.000*	

Table S33: Results for ERR103400 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NZ_CP007659.1	NC_017347.1	36952	63749	105.32	2780055	2782476	52.24	24	43	358	92	99	100	99
NC_017763.1	NC_007168.1	44772	58518	112.86	67396	74115	52.21	29	1	1039	96	98	100	98
NC_017763.1	NC_007168.1	44772	58518	112.86	67396	74141	52.36	9	1	1045	94	99	100	99
NC_017763.1	NC_007168.1	44772	58661	113.09	67396	73961	51.35	79	1	1007	94	99	100	100
NC_017763.1	NC_007168.1	44772	58729	113.16	67396	73859	51.65	49	1	991	94	99	100	100
NC_017763.1	NC_007168.1	44772	58751	113.17	67396	73849	51.68	9	1	991	97	100	100	100
NC_017763.1	NC_007168.1	44772	63969	109.85	67396	68656	13.93	9	1	31	96	99	100	99
NC_017763.1	NC_007168.1	45010	58518	113.61	67122	74115	50.25	41	1	1040	96	99	100	99
NC_017763.1	NC_007168.1	45010	58518	113.61	67122	74141	50.39	13	1	1046	97	100	100	100
NC_017763.1	NC_007168.1	45010	58661	113.84	67122	73961	49.37	111	1	1008	96	99	100	100
NC_017763.1	NC_007168.1	45010	58729	113.91	67122	73859	49.63	69	1	992	95	99	100	100
NC_017763.1	NC_007168.1	45010	58751	113.91	67122	73849	49.66	13	1	992	97	100	100	100
NC_017763.1	NC_007168.1	45010	63969	110.35	67122	68656	11.81	13	1	32	92	99	100	99
NC_017763.1	NC_007168.1	45149	45440	132.36	66689	67061	16.42	94	4	5	95	100	100	100
NC_017763.1	NC_007168.1	45149	58518	114.17	67061	74115	49.88	22	1	1040	97	99	100	99
NC_017763.1	NC_007168.1	45149	58518	114.17	67061	74141	50.02	10	1	1046	98	100	100	100
NC_017763.1	NC_007168.1	45149	58661	114.4	67061	73961	49.0	52	1	1008	97	99	100	99
NC_017763.1	NC_007168.1	45149	58729	114.46	67061	73859	49.25	34	1	992	93	98	99	99
NC_017763.1	NC_007168.1	45149	58751	114.47	67061	73849	49.29	10	1	992	98	100	100	100
NC_017763.1	NC_007168.1	45149	63969	110.72	67061	68656	11.64	10	1	32	91	99	100	99
NC_017763.1	NC_007168.1	45439	58518	113.77	66688	74115	48.2	27	8	1045	94	99	99	100
NC_017763.1	NC_007168.1	45439	58518	113.77	66688	74141	48.35	7	8	1051	95	100	100	100
NC_017763.1	NC_007168.1	45439	58661	114.0	66688	73961	47.34	77	8	1013	97	100	99	100
NC_017763.1	NC_007168.1	45439	58729	114.07	66688	73859	47.55	47	8	997	97	99	100	99
NC_017763.1	NC_007168.1	45439	58751	114.07	66688	73849	47.58	7	8	997	97	96	100	96
NC_017763.1	NC_007168.1	45439	63969	110.38	66688	68656	12.57	7	8	37	94	100	100	100
NZ_CP007659.1	NC_004461.1	34160	34165	33.4	95612	110079	29.54	150	87	1321	0	100	97	100
NZ_CP007659.1	NC_004461.1	34160	36402	120.83	70358	110079	10.93	27	76	1321	95	100	99	100
NZ_CP007659.1	NC_004461.1	34164	36402	120.99	70358	95611	0.28	24	42	3	94	98	100	97
NZ_CP007659.1	NC_004461.1	44952	44985	50.7	37902	55503	0.48	4	2	6	5	94	99	94
NC_017763.1	NZ_CP009554.1	80759	82440	679.04	690422	696666	404.85	5	179	7590	100	100	100	100
NC_017763.1	NZ_CP009554.1	82439	82964	358.88	690421	696666	405.02	3	22	7591	99	100	99	100
NC_017763.1	NC_004461.1	34159	34164	33.4	95612	110079	29.54	150	87	1321	3	100	100	100
NC_017763.1	NC_004461.1	34159	36401	120.83	70358	110079	10.93	27	76	1321	95	100	98	100
NC_017763.1	NC_004461.1	34163	36401	120.99	70358	95611	0.28	24	42	3	95	99	99	95
NC_017763.1	NC_004461.1	44951	44984	50.7	37902	55503	0.48	4	2	6	5	96	100	92
NZ_CP007659.1	NC_007168.1	44773	58519	112.86	67396	74115	52.21	29	1	1039	96	99	98	100
NZ_CP007659.1	NC_007168.1	44773	58519	112.86	67396	74141	52.36	9	1	1045	97	99	100	99
NZ_CP007659.1	NC_007168.1	44773	58662	113.09	67396	73961	51.35	79	1	1007	97	100	100	100
NZ_CP007659.1	NC_007168.1	44773	58730	113.16	67396	73859	51.65	49	1	991	97	100	100	100
NZ_CP007659.1	NC_007168.1	44773	58752	113.17	67396	73849	51.68	9	1	991	98	100	100	100
NZ_CP007659.1	NC_007168.1	44773	63970	109.85	67396	68656	13.93	9	1	31	92	100	100	100
NZ_CP007659.1	NC_007168.1	45011	58519	113.61	67122	74115	50.25	41	1	1040	95	99	99	100
NZ_CP007659.1	NC_007168.1	45011	58519	113.61	67122	74141	50.39	13	1	1046	96	99	99	100
NZ_CP007659.1	NC_007168.1	45011	58662	113.84	67122	73961	49.37	111	1	1008	96	100	100	100
NZ_CP007659.1	NC_007168.1	45011	58730	113.91	67122	73859	49.63	69	1	992	90	99	100	99
NZ_CP007659.1	NC_007168.1	45011	58752	113.91	67122	73849	49.66	13	1	992	98	100	100	100
NZ_CP007659.1	NC_007168.1	45011	63970	110.35	67122	68656	11.81	13	1	32	98	97	100	99
NZ_CP007659.1	NC_007168.1	45150	45441	132.36	66689	67061	16.42	94	4	5	93	100	100	100
NZ_CP007659.1	NC_007168.1	45150	58519	114.17	67061	74115	49.88	22	1	1040	96	100	100	100
NZ_CP007659.1	NC_007168.1	45150	58519	114.17	67061	74141	50.02	10	1	1046	96	100	100	100
NZ_CP007659.1	NC_007168.1	45150	58662	114.4	67061	73961	49.0	52	1	1008	95	100	99	100
NZ_CP007659.1	NC_007168.1	45150	58730	114.46	67061	73859	49.25	34	1	992	99	99	100	99
NZ_CP007659.1	NC_007168.1	45150	58752	114.47	67061	73849	49.29	10	1	992	96	98	100	99
NZ_CP007659.1	NC_007168.1	45150	63970	110.72	67061	68656	11.64	10	1	32	91	100	100	100
NZ_CP007659.1	NC_007168.1	45440	58519	113.77	66688	74115	48.2	27	8	1045	98	100	100	100
NZ_CP007659.1	NC_007168.1	45440	58519	113.77	66688	74141	48.35	7	8	1051	96	100	100	99
NZ_CP007659.1	NC_007168.1	45440	58662	114.0	66688	73961	47.34	77	8	1013	99	100	100	100
NZ_CP007659.1	NC_007168.1	45440	58730	114.07	66688	73859	47.55	47	8	997	96	100	100	100
NZ_CP007659.1	NC_007168.1	45440	58752	114.07	66688	73849	47.58	7	8	997	94	100	100	100
NZ_CP007659.1	NC_007168.1	45440	63970	110.38	66688	68656	12.57	7	8	37	98	100	100	100
NC_017763.1	NC_017568.1	409726	409769	39.98	2481629	2485653	7.69	41	4	51	1	100	100	100
NC_017763.1	NC_017568.1	409747	409769	42.36	2481607	2485653	7.78	30	4	51	2	100	100	99
NZ_CP007659.1	NZ_CP009554.1	80760	82441	678.48	690422	696668	404.87	5	179	7590	100	100	100	100

Table S34: Acceptor and donor candidates for ERR103402 run with yara, species filter and no samflag filter. Sampling sensitivity = 85. No taxon blacklist. No parent blacklist. No species blacklist. (-)0.000* represents absolute values < 0.0004.

Type	Candidate	Name	Accession.Version	MicrobeGPS metrics			DaisyGPS metrics	
				Number Reads	Validity	Heterogeneity	Property	Property Score
Acceptor	Staphylococcus aureus subsp. aureus	NZ_CP007659.1	169032	0.804	0.05	0.754	0.04	
Acceptor	Staphylococcus aureus subsp. aureus HO 5096 0412	NC_017763.1	167480	0.806	0.052	0.754	0.039	
Donor	Staphylococcus warneri SG1	NC_0						

DaisyGPS

Table S35: Results for ERR103402 run with yara, gustaf, species filter and no samflag filter. Sampling sensitivity = 90. Split read threshold = 3. No taxon blacklist. No parent blacklist. No species blacklist.

Organism		Acceptor			Donor			Read Evidence			Evidence Filter			
Acceptor	Donor	Start	End	Coverage	Start	End	Coverage	Split	Spanning	Within	A-Cov	D-Cov	Spanning	Within
NZ_CP007659.1	NC_020164.1	2038921	2038922	83.0	121511	123832	2.22	48	24	12	100	100	100	100
NC_017763.1	NC_020164.1	2024903	2024904	83.0	121511	123832	2.22	52	24	12	99	100	99	100
NZ_CP007659.1	NC_017341.1	2036785	2038062	62.16	2760130	2761402	144.91	6	48	540	99	100	100	100
NZ_CP007659.1	NC_013893.1	2036709	2038062	66.05	1722127	1723472	67.35	10	10	2	100	100	100	100
NZ_CP007659.1	NC_013893.1	2036785	2038063	62.02	949399	950670	74.87	9	1	3	99	100	100	100
NZ_CP007659.1	NC_013893.1	2036785	2038062	62.03	1722127	1723395	70.11	18	51	2	100	100	100	100
NC_017763.1	NC_013893.1	2022691	2024044	66.05	1722127	1723472	67.46	10	10	2	100	100	100	100
NC_017763.1	NC_013893.1	2022767	2024045	62.02	949399	950670	74.75	9	1	3	99	100	100	100
NC_017763.1	NC_013893.1	2022767	2024044	62.03	1722127	1723395	70.23	18	51	2	100	100	100	100
NC_017763.1	NC_017341.1	2022767	2024044	62.16	2760130	2761402	144.91	6	48	540	99	100	100	100
NC_017763.1	NC_007168.1	2022767	2024044	62.16	1828214	1829486	144.91	10	48	540	99	100	100	100
NZ_CP007659.1	NC_007168.1	2036785	2038062	62.16	1828214	1829486	144.91	10	48	540	100	100	100	100