

1 **Signatures of negative frequency dependent selection in colonisation factors**
2 **and the evolution of a multi-drug resistant lineage of *Escherichia coli***

3

4 Alan McNally^{1*+}, Teemu Kallonen^{2,3*}, Christopher Connor^{1*}, Khalil Abudahab², David
5 M. Aanensen², Carolyne Horner⁴, Sharon J. Peacock^{2,5,6}, Julian Parkhill², Nicholas J.
6 Croucher^{7&}, Jukka Corander^{2,3,8 &+}

7

8 ¹Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK

9 ²Infection Genomics, Wellcome Sanger Institute, Cambridge, UK

10 ³Department of Biostatistics, University of Oslo, Oslo, Norway

11 ⁴British Society of Antimicrobial Chemotherapy, Birmingham, UK

12 ⁵Department of Medicine, University of Cambridge, Cambridge, UK

13 ⁶London School of Hygiene and Tropical Medicine, London, UK

14 ⁷Faculty of Medicine, School of Public Health, Imperial College, London, UK

15 ⁸Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

16

17 *Equal contributions

18 [&]Equal contributions

19 +Corresponding authors

20 **Abstract**

21 *Escherichia coli* is a major cause of bloodstream and urinary tract infections globally.
22 The wide dissemination of multi-drug resistant (MDR) strains of extra-intestinal
23 pathogenic *E. coli* (ExPEC) poses a rapidly increasing public health burden due to
24 narrowed treatment options and increased risk of failure to clear an infection. Here,
25 we present a detailed population genomic analysis of the ExPEC ST131 clone, in
26 which we seek explanations for its success as an emerging pathogenic strain
27 beyond the acquisition of antimicrobial resistance (AMR) genes. We show evidence
28 for evolution towards separate ecological niches for the main clades of ST131 and
29 differential evolution of anaerobic metabolism, key colonisation and virulence factors.
30 We further demonstrate that negative frequency-dependent selection acting across
31 accessory loci is a major mechanism that has shaped the population evolution of this
32 pathogen.

33 **Introduction**

34 *Escherichia coli* is now the most common cause of blood stream infections in the
35 developed world, outnumbering cases of *Staphylococcus aureus* bacteraemia by 2:1
36 ¹. *E. coli* is also the most common cause of urinary tract infections (UTI), which in
37 turn are among the most common bacterial infections in the world ². Bacteraemia
38 and UTI are caused by a subset of *E. coli* termed extra-intestinal pathogenic *E. coli*
39 (ExPEC). ExPEC are not a phylogenetically distinct group of *E. coli* but rather
40 represent strains which have acquired virulence-associated genes that confer the
41 ability to invade and cause disease in extra-intestinal sites ³. Genes associated with
42 virulence that confer the ability to adhere to extra-intestinal tissues, to sequester
43 extracellular iron, to evade the non-specific immune response, and toxins resulting in
44 localised tissue destruction have all been described as essential in the process of
45 ExPEC pathogenesis ⁴.

46 The problem presented by the scale of ExPEC infections is exacerbated by the
47 number of cases involving multi-drug resistant (MDR) strains ^{1,5,6}. Epidemiological
48 surveys report as many as 60% of UTI ExPEC isolates as being resistant to three or
49 more classes of antibiotics, and as many as 50% of bacteraemia isolates ^{5,6}. The
50 increase in MDR ExPEC prevalence has been rapid and primarily attributable to a
51 small number of ExPEC lineages ⁵. The most common of these is the *E. coli* ST131
52 lineage, which has rapidly become a dominant cause of ExPEC UTI and
53 bacteraemia globally ⁵⁻⁷. *E. coli* ST131 is particularly associated with carriage of the
54 CTX-M class of extended-spectrum β -lactamase (ESBL) which confers resistance to
55 3rd-generation cephalosporins ⁷, and there have been a small number of reports of *E.*
56 *coli* ST131 isolates carrying metallo- β -lactamases conferring resistance to

57 carbapenems⁸. The carriage of these resistance genes is driven by acquisition and
58 stable maintenance of large MDR plasmids⁹.

59 The phylogenetic structure of *E. coli* ST131 is well characterised¹⁰⁻¹⁴ and shows the
60 emergence of a globally disseminated, MDR-associated clade C from primarily drug
61 susceptible clades A and B. The lack of phylogeographic signal and phylogenetic
62 structure based on host source suggests rapid global dispersal and frequent host
63 transitions within clade C¹⁴. Research has suggested that the acquisition of
64 fluoroquinolone resistance via point mutations in DNA gyrase and DNA
65 topoisomerase genes was the primary driver in the rapid emergence of clade C,
66 alongside the predicted acquisition of well-defined ExPEC virulence factors^{11,12}.

67 Later work also suggested that clade C *E. coli* ST131 may dominate as a successful
68 MDR clade due to the ability to offset the fitness cost of MDR plasmid acquisition
69 and maintenance via compensatory mutations in gene regulatory regions¹⁴.
70 Genome-wide association studies (GWAS) have been used to identify loci and
71 lineage specific alleles significantly associated with clade C *E. coli* ST131, which
72 suggested a secondary flagella locus encoding lateral flagella (Flag-2¹⁵), and a
73 number of hypothetical proteins and promoter regions as being clade C *E. coli*
74 ST131 associated loci¹⁴.

75 Recent work on *E. coli* causing bacteraemia provided compelling evidence that
76 resistance to antimicrobials has not been the major driver of the success of ST131
77¹⁶. Analysis of a large 11-year population survey across the UK showed that ST131
78 rapidly stabilised at a level of approximately 20% after its emergence around 2002 in
79 the UK. This was far in excess of already-resident MDR clones, such as ST88 or
80 ST405. Nevertheless, the overall prevalence of resistance phenotypes remained
81 approximately constant in the population. Furthermore, most currently known major

82 ExPEC clones (primarily ST12, ST73, ST95, and ST69, the last of which also rapidly
83 emerged in 2002) show a similar stable population frequency across the 10 years
84 following the introduction of ST131, despite exhibiting far less extensive resistance
85 profiles. These observations suggested the distribution of ExPEC strains was
86 shaped by negative frequency-dependent selection (NFDS)¹⁶. NFDS describes the
87 situation in which a given phenotype is most beneficial to a population when it is
88 rare. This is because as the phenotype becomes common it becomes costly,
89 because of pressures such as host response to the population.

90 Recently a multilocus NFDS model of post-vaccination *Streptococcus pneumoniae*
91 population dynamics has been described¹⁷. Frequencies of accessory genes were
92 found to be highly conserved across multiple populations on different continents,
93 despite these populations themselves being composed of different strains, as
94 defined by core genome sequences. Detailed modelling and functional analysis
95 indicated changes in strain prevalence could be explained by NFDS driving
96 accessory loci towards equilibrium frequencies, through mechanisms involving
97 interactions with other bacteria, hosts, or mobile elements¹⁷. The level of the
98 selective force was estimated to be similar across the populations and manifested
99 itself in the maintenance of stable population frequencies of accessory loci, despite a
100 substantial perturbation of the population by the introduction of the pneumococcal
101 vaccine¹⁷.

102 Here, we present the analysis of 862 genomes collated from previous large scale *E.*
103 *coli* ST131 phylogenomic studies^{11–14,16,18} and newly sequenced isolates from the
104 BSAC bacteraemia resistance project from the UK and Ireland. This allowed us to
105 perform sufficiently powered population genetic analyses and identify the key steps
106 in the evolution from the largely drug susceptible clades A and B to the globally

107 dominant MDR clade C. Pan-genome analyses identified the formation of clade C
108 was underpinned by an accumulation of allelic diversity, particularly enriched for
109 genes involved in anaerobic metabolism and other loci important for colonisation of
110 the human host by ExPEC. Our data suggest the evolution of the MDR phenotype is
111 part of a wider, ongoing adaptation towards prolonged human colonisation that is
112 currently accompanied by a radiation through diversification of metabolic and
113 antigenic loci.

114 **Methods**

115 **Genome data**

116 We analysed a collection of 862 *E. coli* ST131 genomes (Table S1), of which 684
117 were previously sequenced as part of phylogenomic investigations of the ST131
118 lineage^{10,11,13,14,16,19}. We added 184 previously unpublished ST131 isolates from the
119 British society for antimicrobial chemotherapy (BSAC) bacteraemia resistance
120 surveillance project which were selected from *E. coli* in the BSAC resistance
121 surveillance bacteraemia collection from the UK and Ireland between 2001–2011.
122 Together this collection represents bacteria isolated from invasive disease (blood
123 stream infections), human asymptomatic carriage and disease resulting from
124 intestinal carriage (UTI), and bacteria isolated from a range of veterinary livestock,
125 pets, wild birds, and the wider environment, minimising population or sampling bias
126 to as large an extent as possible.

127 In an attempt to avoid any issues arising from different assembly or annotation
128 metrics employed in the previous projects, we downloaded only raw sequence data
129 in fastq format using the previously published accession data. We then performed de
130 novo assembly on all the genomes using Velvet²⁰ and annotation using Prokka²¹ as

131 previously described ¹⁶. A pan-genome of the entire data set was constructed using
132 Roary with 95% identity cut-off ²². A concatenated core CDS alignment was made
133 from the Roary output and a maximum likelihood phylogenetic tree was constructed
134 from the alignment using RaxML version 8.2.8 ²³ and the GTR model with Gamma
135 rate heterogeneity.

136 For comparative lineage analysis we utilised the 264 ST73 genomes, and 162 ST95
137 genomes that were sequenced and fully characterised as part of the UK BSAC
138 genome study ¹⁶.

139 **Accessory genome analysis**

140 The pan-genome matrix from Roary was utilised to investigate the presence of clade
141 specific loci. The PANINI tool was used with the default setting to visualize the
142 accessory gene sharing patterns in the population
143 <https://microreact.org/project/BJKoeBt2b> ²⁴. PANINI has been demonstrated to
144 provide efficient complementary visual means to phylogenetic trees to accurately
145 extract both distinct lineages present in a population-wide genomic dataset, and to
146 highlight clusters within lineages, that are explained by rapidly occurring, homoplasic
147 alterations, such as phage infection. Roary was run on the entire data set using the
148 default 95% sequence identity threshold to cluster genes, allowing us to separate
149 genes based on allelic as well functional differences. Based on a frequency
150 distribution histogram (Figure S1), we assigned a locus as being clade specific if it
151 occurred at a frequency > 95% in one clade and at < 5% in the other two clades.
152 Loci identified as clade specific were functionally annotated by performing a tBlastn
153 analysis of the nucleotide sequence of the loci against the NCBI non-redundant
154 database.

155 **Functional categorisation of pangenomes**

156 To assess the functional composition of the accessory pangenome we assigned
157 Gene Ontology (GO) terms to gene sequences from the pangenome. Briefly,
158 representative sequences from the pan genome of ST131 were mapped to
159 orthologous groups in the bactNOG database using the eggNOG emapper utility ²⁵
160 Mapping was performed using the diamond search algorithm. Output from eggNOG
161 was filtered to remove Orthologous Groups with no GO terms, a score was assigned
162 to each Orthologous Group based on gene mapping frequency.

163 **Comparisons of lineage and clade specific loci**

164 In order to compare lineage pan-genomes whilst accounting for differences in the
165 number of genomes a sampling approach was utilised. Specifically, a subset with
166 size equal either to the number of ST73 or ST95 genomes was selected at random
167 from the ST131 Clade C. The functional enrichment of genes in the subset was
168 quantified and statistically compared to the ST73 or ST95 pangenome using a Chi
169 Squared test. This process was repeated 100 times to produce 100 p-values, from
170 which the median p-value was calculated. Utilising the same subsampling approach,
171 the pangenome composition of Clade C ST131 genomes was compared to both the
172 Clade A and Clade B pangenomes.

173 Chi squared statistical tests were performed to assess the significance of the
174 observed differences in functional enrichment. Briefly, with each iteration of the
175 sampling procedure a Chi squared test was performed using the functional
176 proportion of the subsampled pangenome as the observed values and the
177 proportions for ST73 or ST95 as the expected value. This generated 100 p-values
178 from which one can use the average, maximum, or median to assess significance of

179 the observed differences. In addition, proportional Z statistic tests were also
180 performed to assess the significance of the observed difference. The measurements
181 from the 100 replicates of the subsampling procedure were used to generate an
182 average for the proportions as well as to estimate the variance. The tests were
183 conducted using the proportional measurements from ST73 and ST95 as the 'true'
184 means and quantifying how distinct the ST131 subsamples were from these
185 reference values.

186 The sequences of 64 anaerobic metabolic genes in which allelic diversity was
187 observed were extracted from individual genomes. The nucleotide sequences were
188 then clustered at 80% identity and 80% length using CD-HIT which was run using
189 the accurate flag and 'word size' of 5²⁶. An additional CD-HIT script was used to
190 extract gene sequences for clusters with more than 3 genes, the minimum required
191 by MEGA-CC for analysis. The sequences were then aligned using Muscle with
192 default settings²⁷. Resulting alignment files were analysed in MEGA-CC to produce
193 measurements of Tajima's D²⁸.

194 **ST131 clade specific SNPs**

195 To visualise the ST131 clades A, B, C, C1 and C2 within the ML tree and the PANINI
196 clustering we identified clade specific SNPs (Table S1) as previously described¹⁶.

197 **NFDS modelling**

198 NFDS modelling used genomic data from the previous publication analysing the
199 population dynamic of blood stream infection *E. coli* isolates in the UK¹⁶. Isolates
200 were assigned to genotypes based on a hierBAPS analysis of the core genome²⁹.
201 The previously-defined sequence types were used to divide any diverse clusters to

202 similar levels of resolution. Therefore the clusters used corresponded to the largest
203 hierBAPS cluster that corresponded to a clonal complex, if links were constructed
204 between single- and double-locus variants; if neither condition could be satisfied, the
205 third level of clustering was used. This identified 62 sequence clusters across the
206 population. The sets of orthologous sequences were those defined by a previous
207 Roary analysis ¹⁶ those present at between 5% and 95% frequency in the first
208 sample, from 2001, were modelled as evolving under NFDS, and tending towards an
209 equilibrium frequency, e_i , corresponding to that in the 2001 sample.

210 Seven resistance phenotypes, present within this frequency range in 2001, were also
211 modelled as evolving under NFDS: amoxicillin, clavulanic acid, ciprofloxacin,
212 cefuroxime, gentamicin, piperacillin-tazobactam, and trimethoprim. The first six of
213 these were directly inferred from the previously published analysis. Trimethoprim
214 was instead inferred from the *sul* and *dfrA* alleles identified by Roary; data from the
215 Cambridge University Hospitals collection ¹⁶ was used to train a model constructed
216 with the randomForest R library ([https://cran.r-
217 project.org/web/packages/randomForest/](https://cran.r-project.org/web/packages/randomForest/)) which had 93% accuracy when applied
218 back to the training dataset. This was used to infer resistance phenotypes for the
219 BSAC collection.

220 Analysis used the heterogeneous multilocus NFDS model described previously ¹⁷,
221 modified to treat a vaccine cost, v , as a fitness advantage, r . All individuals, i , of the
222 sequence clusters corresponding to ST131 and ST69 were assigned the same
223 fitness advantage, $r_i = r$, $r_i = 0$ for all other i . Hence the function defining the number
224 of progeny, $X_{i,b}$ produced by i at time t was:

$$X_{i,t} \sim Pois \left(\left(\frac{\kappa}{N_t} \right) (1 + r_i)(1 - m) ((1 + \sigma_f)^{\pi_{i,t}} + (1 + \sigma_w)^{\omega_{i,t}}) \right)$$

225 In this formula, density-dependent competition is parameterised by the carrying
226 capacity κ , set at 50,000 to represent a large population that is still computationally
227 feasible, and the total number of cells in the simulated population at t , N_t . The
228 strength of NFDS was determined by the parameters p_f , σ_f and σ_w . As previously, the
229 accessory loci and resistance phenotypes were ordered according to the statistic Δ_i :

$$\Delta_l = \frac{(f_{l,t>0} - e_l)^2}{(1 - e_l)(1 - e_l))}$$

230 Where $f_{l,t>0}$ is the mean post-2001 locus frequency. If the L loci and phenotypes
231 considered to be under NFDS were ordered by ascending values of Δ_l , then l_f was
232 the highest ranking locus meeting the criterion $\frac{l_f}{L} \leq p_f$. This determined the strength
233 of NFDS acting on each locus, and therefore the reproductive fitness of individual i ,
234 based on which loci were encoded in its genome, as represented by the binary
235 variable $g_{i,l}$, and the deviation of their simulated locus frequency at time t , $f_{l,t}$, from
236 their corresponding equilibrium frequencies:

237

$$\pi_{i,t} = \sum_{l=1}^{l_f} g_{i,l} (e_l - f_{l,t})$$

238 And:

239

$$\omega_{i,t} = \sum_{l=l_f+1}^L g_{i,l} (e_l - f_{l,t})$$

240 These summed deviations served as the exponents for the NFDS terms of the
241 reproductive fitness, with $\pi_{i,t}$ and σ_f corresponding to those loci under stronger
242 NFDS, and $\omega_{i,t}$ and σ_w corresponding to those loci under weaker NFDS.

243 The simulations were initialised with a random selection of κ genotypes from the
244 genomic data, which were biased such that those isolates observed in 2001 were
245 represented at one thousand fold greater frequency than genotypes collected in later
246 years. This was necessary to 'seed' the initial population with ST131 and ST69, to
247 facilitate their expansion in a realistic manner in subsequent years. The parameter m
248 represented the rate at which all isolates entered the population through migration;
249 this was biased to import all sequence clusters at the same rate, to avoid any fits in
250 which high rates of migration would artefactually replicate the population observed in
251 the later years of the collection ¹⁷.

252 **Model fitting to genomic data**

253 As in Corander et al. ¹⁷ the simulation model was fitted through Approximate
254 Bayesian Computation (ABC) using the BOLFI algorithm, which has been shown to
255 accelerate ABC inference 1000-10000 times without loss of accuracy ³⁰. The prior
256 constraints placed on the parameter values were as follows: the lower bound on all
257 parameters was set to 0.0009 and the upper bounds were $r_i - 0.99$, $m - 0.2$, $p_f -$
258 0.99 , $\sigma_f - 0.03$, $\sigma_w - 0.005$. We used 500 iterations of the BOLFI algorithm to
259 minimise the Jensen-Shannon divergence of the sequence cluster frequencies in the
260 genomic data and in the simulations, as ascertained through randomly sampling
261 discrete sets of isolates in accordance with the size and timings of the genomes
262 selected for sequencing from the original collection. Convergence of BOLFI was
263 monitored each 100 iterations and the approximate likelihood estimate was

264 assessed to have been stabilized by the end of the 500 iterations ³⁰. The 95%
265 posterior credible intervals for the parameters were obtained using three generations
266 of sequential Monte Carlo sampling with the same default settings as used in
267 Corander et al ¹⁷. The neutral model was fitted by fixing p_f , σ_f , and σ_w at zero and
268 estimating r and m through 500 iterations of the BOLFI algorithm, followed by
269 sequential Monte Carlo sampling, as with the full model.

270 **Results**

271 **NFDS on accessory loci can explain ExPEC population dynamics**

272 Previous work on this population suggested it was subject to balancing selection
273 based on the persistent diversity of strains, and stable prevalence of resistance
274 phenotypes, despite the invasion of genotypes ST69 and ST131, the latter of which
275 has an MDR phenotype ¹⁶. It is possible this could represent strains being adapted to
276 distinct niches through unique gene content. However, using the previous analysis of
277 gene content with Roary, the 18 strains with at least ten representatives in the
278 population had a mean of only 16.7 private genes (range: 1-49), defined as those
279 loci present at >95% in one strain, and <5% in all others. This is consistent with
280 strains being defined by a characteristic combination of common accessory loci,
281 rather than distinctive sequence ^{14,31}.

282 Such distribution of gene content is similar to that observed in *S. pneumoniae*, in
283 which NFDS acting on variable phenotypes encoded by genomic islands was
284 suggested to shape the population ¹⁷. The Roary analysis identified 6,824
285 intermediate-frequency genes, present in between 5% and 95% of the overall
286 population. Comparisons between the pre-ST131 2001 samples, and subsequent
287 data from up to 2011, found strong, linear correlations between the prevalence of

288 their intermediate-frequency genes (Fig 1A, Fig S2). This is consistent with these loci
289 existing at 'equilibrium' frequencies, determined by their costs and frequency-
290 dependent benefits. Furthermore, these correlations with the first sample, in 2001,
291 did not successively weaken year-on-year, as might be expected with neutral drift
292 (Fig 1B). Instead, deviation from the first sample increased until 2008, as the
293 sequence clusters (SCs) primarily associated with ST131 and ST69 became more
294 prevalent (Fig 1C). The rise of ST131 was primarily driven by a dramatic rise in the
295 prevalence of MDR clade C isolates, with clade B persisting at a lower, but stable,
296 level. This was followed by a reversion back towards the equilibrium gene
297 frequencies up to 2010, which does not correspond to major changes in the
298 frequency of either ST131 or ST69, suggesting a reconfiguration of other lineages in
299 the population.

300 In order to obtain a population-wide view of these dynamics, the previously-
301 described multilocus NFDS model was applied to this dataset to test whether these
302 strain dynamics were consistent with selection at the accessory locus level. The
303 model was initialised with the 2001 population, which was seeded with genotypes
304 observed in later years at a low level, representing the possibility they were present
305 in the population but unsampled. Subsequent simulation with a Wright-Fisher
306 framework included these post-2001 genotypes migrating into the population at a
307 rate m , while the hierBAPS clusters corresponding to ST131 and ST69 expanded at
308 a rate determined by their increased reproductive fitness relative to the rest of the
309 population, r . The equilibrium frequencies of 7,211 intermediate frequency loci,
310 corresponding to genes identified by Roary that were between 5% and 95% in the
311 2001 sample plus ten antibiotic resistance phenotypes, were assumed to be those
312 observed in 2001 sample of genomes. These were then simulated as evolving under

313 NFDS; a fraction p_f evolved under strong NFDS, determined by the parameter σ_f ,
314 while the rest evolved under weak NFDS, according to parameter σ_w (see Methods).
315 Fitting this model using BOLFI estimated the parameters listed in Table S2, which
316 identified significant evidence for NFDS (σ_f and p_f greater than zero), providing a
317 gene-level mechanistic basis for NFDS underlying the previous strain-level
318 observations of Kallonen *et al*¹⁶.

319 These simulations successfully reproduced several aspects of the observed data
320 (Fig 2, Fig S3). Both ST131 and ST69 rapidly spread through the population, before
321 stabilising at an equilibrium frequency. This does not occur at the expense of the
322 established, common clones, such as ST73 and ST95. Instead, in accordance with
323 the genomic data, the displaced sequence clusters include ST10, ST14, ST144 and
324 ST405. These patterns are qualitatively distinct from an equivalent neutral model fit
325 (Fig 2C). Without NFDS, both ST131 and ST69 are predicted to exponentially
326 increase in frequency, with all other strains decreasing at accelerating rates,
327 proportionate to their original prevalence. The greater invasion rate of ST131,
328 relative to ST69, is an artefact of its higher prevalence in the overall dataset meaning
329 it is seeded at a higher level, rather than a true ecological difference. Although NFDS
330 constrains the invasion of new strains in these simulations, the multidrug-resistant
331 clade C of ST131 is still able to reach high prevalence, even when such selection is
332 active. This may be at least partially attributable to some members of this recently-
333 emerged clade C having considerably diversified in their genome content, as
334 indicated by pairwise comparisons of gene content, which show clade C isolates
335 were similar to those between random representatives selected from the same
336 sequence cluster (Fig S4). This might enable the clade to avoid the limitations of any
337 loci that NFDS would suppress to low frequencies. Hence the underlying genotype of

338 ST131 appears to represent a highly-fit genotype that has subsequently diversified
339 into both antibiotic-sensitive (clade B) and resistant (clade C) forms, expressing one
340 of multiple capsules³⁵. Therefore a comprehensive genomic dataset encompassing
341 all known ST131 genome sequences was created to understand the unique
342 characteristics of the ST131 lineage, with particular focus on the successful clades B
343 and C.

344 **Core and accessory genomic structure of the ST131 population.**

345 A maximum likelihood phylogeny generated from an alignment of concatenated core
346 CDS from all 862 genomes confirmed the earlier consensus three clade structure of
347 the lineage (Fig 3a), and in agreement with previous studies, there was no strong
348 phylogeographic signal or host source clustering evident in the phylogeny
349 (<https://microreact.org/project/BJKoeBt2b>). To confirm that the collation of the 862
350 genomes was consistent with previous descriptions of the accessory genome
351 distribution in ST131, isolate relatedness based on shared accessory gene content
352 was visualized as a two-dimensional projection using PANINI (Fig 3b)²⁴. Clades A
353 and B largely resided in dense clusters at the periphery of the projection. In contrast,
354 clade C isolates were more diffuse, overlapping with some clade B isolates, forming
355 a cloud with discernible sub-structuring into distinct groups. This concurs with the
356 previous analysis of the gene content of clade C, and the previous finding of multiple
357 accessory genome sub-clusters in clade C¹⁴.

358 **Low frequency accessory genes suggest differential ecology of clade A and
359 clade B/C *E. coli* ST131**

360 Given that the vast majority of accessory genes occur at very low frequency, we
361 sought to determine if these represented mobile genetic elements circulating

362 transiently in the population. We functionally categorised genes occurring in less
363 than 20% of the overall ST131 sample (based on the distribution of the gene
364 frequencies in Fig S1) that were confined to a single clade. In both clade A and clade
365 B/C (Dataset S1-S3) the overwhelming majority of low frequency accessory genes
366 encode hypothetical proteins (64.4% clade A, 58% clade B/C). Excluding the
367 hypothetical proteins from the analysis showed unexpected bias in functional gene
368 categories differentially observed in the lineages (Fig 4). The most common gene
369 types were functional phage, plasmid and other mobile genetic element (MGE)
370 genes, with more private phage genes present in clade B/C than in clade A.
371 Conversely, there were more private plasmid genes in clade A than clade B/C,
372 despite the presence of a diverse number of MDR plasmids within clade C.¹⁴
373 Together this suggests that clade A strains of *E. coli* ST131 and clade B/C strains of
374 *E. coli* ST131 are exposed to different plasmid and phage pools, an observation
375 which is most parsimoniously explained by them having different ecological habitats.

376 **Clade-specific and intermediate frequency genes in the population.**

377 To identify which aspects of the accessory genome differed between the clades of
378 ST131, the distributions of the 32,631 sets of orthologous genes identified by Roary
379 were analysed (Dataset S3). Characterising the full set of loci present at intermediate
380 frequencies was not feasible, as even focussing on the 3,354 present at between 5%
381 and 95% frequency found the majority of these were present at a frequency below
382 20% (Fig S1). Therefore, the search was refined to clade specific genes, occurring at
383 a frequency > 95% in one clade but at <5% in the other two clades (Dataset S1).
384 Clade A contained the highest number of loci exclusive to a lineage (54) despite
385 constituting the least sampled clade. Clade B had only 2 exclusive loci and clade C

386 had 18. When clades B and C were combined against clade A, there were 60 loci
387 exclusively present in the B/C combination. The majority of clade A private genes
388 encode hypothetical proteins whilst those private to clade C encode DNA
389 modification proteins and metabolic functions. The genes private to clade B/C
390 combined also encode hypothetical proteins and metabolic functions, notably five
391 dehydrogenase enzymes involved in anaerobic metabolism labelled *yihV*, *garR_3*,
392 *fadJ*, *fdhD*, and *gnd* in our dataset (Dataset S2). Blast analysis against the NCBI
393 non-redundant database suggested that the dehydrogenase enzyme gene annotated
394 as *pdxA* in our Roary dataset was confined to clade C ST131 strains. These
395 dehydrogenase enzyme genes were found to be present across phylogroup B2 *E.*
396 *coli* strains (of which ST131 is a member) through BLASTN searches of the NCBI
397 non-redundant database. Therefore these loci are not unique to clade C ST131, and
398 were either acquired by an ancestral clade B/C strain, or have been lost by clade A.

399 **High diversity in core anaerobic metabolism genes unique to clade B/C**

400 Analysis of accessory loci private to clade B/C (present in >95% of that population)
401 identified two separate loci encoding 3-hydroxyisobutyrate dehydrogenase enzymes,
402 and loci encoding 3-hydroxyacyl-CoA dehydrogenase, 6-phosphogluconate
403 dehydrogenase, and formate dehydrogenase. Analysis of clade B/C loci circulating
404 at low frequency of <20% also identified a significant over-representation of genes
405 encoding dehydrogenase enzymes involved in anaerobic metabolism (a total of 64
406 loci), including seven variants of formate dehydrogenase. There were also seven
407 variants of the *eutA* gene found in the ethanolamine utilisation pathway (the *eut*
408 operon) and a distinct version the *cobW* gene which encodes the sensor kinase for
409 activation of the cobalamin biosynthesis operon. Closer investigation of the
410 sequences of these loci suggested that these were not genes private to clade B/C

411 per se, but rather represented multiple unique alleles of genes that are core to the
412 ST131 population which differ at nucleotide sequence level by more than 5%. This
413 implies a unique selection pressure is acting on these core genes in clade B/C
414 compared to clade A.

415 Further scrutiny of low frequency loci in clade B/C also identified alternative alleles of
416 a large number of well characterised extra-intestinal pathogenic *E. coli* virulence-
417 associated genes, including: antigen 43 (7 alternative alleles); heavy metal
418 resistance such as arsenic (5 loci), copper (4 loci), and mercury (5 loci); capsule
419 biosynthesis (20 loci); cell division and septation (14 loci); antibiotic resistance to
420 chloramphenicol (3 loci), macrolides (2 loci), rifampicin (1 locus), and MDR efflux
421 pumps (21 loci); iron acquisition (39 loci); curli and type I fimbriae and P pili (42 loci);
422 lateral and classical flagella (26 loci); and LPS synthesis (9 loci). These loci
423 represent alternative alleles of genes found widely across the *E. coli* phylogeny
424 indicating there are multiple allelic variants of important genes that are confined to
425 clade B/C of the *E. coli* ST131 lineage.

426 We sought to determine the distribution of this allelic diversity across the *E. coli*
427 ST131 phylogeny by annotating the tips of the phylogenetic tree with the
428 presence/absence of each of the anaerobic metabolism (Figure 5), and capsule, cell
429 division, MDR efflux, iron acquisition, pili, and flagella divergent loci (Figure 6). Our
430 analysis shows that each alternative allele occurs at very low frequency but that
431 alleles are randomly distributed throughout the phylogeny of the C clade, and are
432 exclusive to clade C. Given that these alleles differ from the normal conserved
433 versions of genes by >5% at nucleotide level, it is implausible that these alleles
434 would be arising repeatedly and independently via mutation. Instead, the most
435 parsimonious explanation is that the minor frequency alternative alleles are being

436 distributed through the population via recombination. This conclusion is supported by
437 the fact that every one of the allele variants identified in our analysis has 100%
438 nucleotide identity matches with genes present in other *E. coli* in the NCBI non-
439 redundant database.

440 Given that our data set is biased towards clade C genomes, we performed
441 comparative analyses of the frequency with which allelic diversity occurs in
442 anaerobic metabolism genes. We randomly subsampled clade C 100 times and
443 compared an equal number of clade A, B, and C genomes for allelic diversity. Our
444 data shows that even when randomly subsampling clade C, the levels of diversity
445 observed in anaerobic metabolism genes is significantly higher than in clade A,
446 providing evidence that the accumulation of sequence diversity is specific to the
447 MDR clade C (Figure 5).

448 Finally, we sought to exclude the possibility that the presence of these allelic variants
449 was skewed by some form of geographically localised expansion of variants. To do
450 this we compared the relative frequency of all accessory genes, highlighting the
451 allele variants in anaerobic metabolism, capsule, cell division, MDR efflux, iron
452 acquisition, fimbriae, and flagella present in UK versus non-UK isolate genomes
453 (Figure S5). Our data showed a strong linear relationship between the frequency of
454 genes in the two populations, indicating that the data was not biased by expansion of
455 alleles in a given geographical location, and that this accumulated diversity was
456 equally as likely to happen in any given strain independent of its geographical origin.

457 **Allelic diversity of anaerobic metabolism genes in Clade C ST131 is not
458 observed in other dominant ExPEC lineages**

459 The possibility exists that the above observations made for clade C of *E. coli* ST131
460 simply reflect the general evolutionary path of a successful extra-intestinal pathogen.
461 To test this we performed an identical analysis on the pangenome of 261 ST73
462 isolates and of 160 ST95 isolates from the UK BSAC population survey ¹⁶. *E. coli*
463 ST73 and ST95 represent two of the most dominant lineages associated with clinical
464 extra-intestinal disease alongside ST131 ^{5,16}, but are predominantly non-MDR
465 lineages and rarely associated with MDR plasmids ¹⁶. As with our inter-clade
466 comparisons, we randomly subsampled clade C ST131 100 times to allow equal
467 numbers of genomes per lineage to be compared. Our analysis showed a similar
468 ratio of plasmid, phage and hypothetical proteins in the accessory genome as in
469 ST131 (Fig 7). ST73 and ST95 displayed similar ratios of alternative alleles in P and
470 Type 1 fimbriae, cell division and septation genes, and multiple iron acquisition
471 genes as observed in ST131. However, enrichment in allelic variation in anaerobic
472 metabolism genes was significantly higher in any given subsampled set of clade C
473 ST131 genomes compared to both lineages. This supports the hypothesis that the
474 observation of increased diversity accumulating in anaerobic metabolism genes is
475 not a more general extra-intestinal pathogenic *E. coli* trait but is particularly enriched
476 in the ST131 lineage.

477 The accumulation of nucleotide diversity in a given set of loci can often be
478 interpreted as a signature of some form of selection occurring on those genes.
479 However the low levels of frequency of any given allele across clade C strains
480 contradicts a hypothesis for positive selection, where one would expect successful or
481 beneficial alleles to sweep to a high frequency or fixation. Indeed comparison of the
482 sequences of each of the 64 anaerobic metabolism loci in which diversity was

483 observed identified just three loci which showed signatures of positive selection as
484 indicated by a Tajima's D score above two.

485 However, these results can be reconciled with a lineage evolving under NFDS.
486 Different resource use strategies can facilitate co-existence between competing
487 strains, such those co-colonising a host, resulting in frequency-dependent selection
488 ^{32,33}. This would explain the sustained intermediate frequencies of genes encoding
489 dehydrogenases over multiple years (Fig S6). Hence this diversification of metabolic
490 loci could represent the adaptive radiation of particular traits within a successful
491 genetic background, able to efficiently compete with the resident *E. coli* population
492 through a diverse panel of metabolic capacities suited to exploiting resources under
493 anaerobic conditions.

494 **Discussion**

495 The evolutionary events that led to the emergence of *E. coli* ST131 have been an
496 intense focus of research, with consensus opinion suggesting that, following
497 acquisition of key ExPEC virulence factors, acquisition of fluoroquinolone resistance
498 in the 1980's by the clade C sub-lineage of ST131 was a key event in that
499 emergence ^{11,12}. However, a recent nationwide UK population survey rejected this
500 hypothesis and suggested that success of the major ExPEC clones is not dictated by
501 resistance traits ¹⁶. Here, we identify the conserved frequencies of accessory genes
502 in the *E. coli* population which strongly suggest this species' population structure and
503 dynamics are shaped by NFDS acting on genomic islands. Such multilocus NFDS is
504 able to account for how an otherwise stable population was disrupted by the invasion
505 of ST131 and ST69, displacing some lineages while leaving other, largely antibiotic-
506 susceptible, genotypes at almost untouched prevalence.

507 Previous work has suggested that clade C strains of *E. coli* ST131 undergo reduced
508 levels of detectable core genome recombination compared to other phylogroup B2 *E.*
509 *coli*³⁶ or ST131 clade A strains¹⁴. We have previously postulated that this may be a
510 result of ecological separation between clade C strains and other common ExPEC
511^{14,36}. Our analysis of nearly 900 genomes has allowed us to interrogate accessory
512 gene movement to a far greater resolution than previously possible. From the
513 analysis of the accessory genome we identified thousands of plasmid, phage and
514 other mobile genetic element genes which are private to clade A and the combined
515 clade B/C, respectively. Such an observation is a classic signature of ecological
516 separation of the two populations^{37,38}, particularly given that the genetic distance
517 between clade A and clade B/C is much smaller than it is to other lineages and
518 species from which the circulating genes are also found in the NCBI non-redundant
519 database.

520 Our analysis also identified a significantly increased level of sequence diversity in
521 genes involved in key host colonisation processes in clade C. This diversity was
522 uncovered through our pan-genome analysis as allelic variants of core genes.
523 Primary amongst these is a large number of genes involved in anaerobic
524 metabolism, including seven allelic variants of the formate dehydrogenase gene, as
525 well as allelic variants of genes involved in ethanolamine utilisation and cobalamin
526 biosynthesis. The pivotal role of ethanolamine production and cobalamin
527 biosynthesis in the ability of Gram negative pathogens to outcompete bacteria in the
528 human intestine is well documented^{39,40}, and this phenomenon only occurs when
529 supported by an increased ability to perform anaerobic respiration in the presence of
530 inflammation³⁹. It has been shown that MDR *E. coli* ST131 is able to colonise the
531 gastro-intestinal tract of humans for months or years in the absence of antibiotic

532 selection ^{41,42}, and that this colonisation results in a displacement of the *E. coli*
533 colonising the host prior to exposure to the MDR strain ⁴¹.

534 Whilst this diversity in anaerobic metabolism genes was unique to clade C ST131,
535 the allelic variation observed in other human colonisation and virulence factors such
536 as iron acquisition, fimbriae, and cell division was also observed in two of the other
537 most commonly isolated lineages of *E. coli* from extra-intestinal infections, ST73 and
538 ST95. This diversity likely reflects selection occurring on genes important for ExPEC
539 pathogenesis. Iron acquisition is well characterised as a key virulence determinant in
540 ExPEC, with the ability to initiate a successful UTI completely abrogated in the
541 absence of functional iron acquisition systems ⁴³. Recent experimental vaccine work
542 exploiting siderophore production by ExPEC has shown to be highly effective in
543 rodent models on ExPEC UTI ⁴⁴. The importance of iron acquisition can also explain
544 many of the MDR efflux allele variants seen in this data set, with half occurring in the
545 *acrD* gene which has been experimentally shown to play a role in iron acquisition in
546 *E. coli* ⁴⁵. We identified multiple alleles of genes in the type 1 fimbriae operon and in
547 genes in the P pilus operon which are classical virulence determinants in UTI ⁴⁶, and
548 multiple genes involved in capsule biosynthesis, which we have previously reported
549 as being a hotspot for recombination in *E. coli* ST131 ^{13,35}. We also identified
550 multiple alleles of genes involved in controlling incomplete septation and filamentous
551 growth, which is a crucial process in the formation of the filamentous intracellular
552 bacterial communities (IBCs) which are thought to be fundamental in the ability of
553 ExPEC to survive inside bladder epithelial cells and cause UTI ⁴⁷. There are a small
554 number of allelic variants in anaerobic metabolism genes also present in ST73 and
555 ST95, possibly reflecting recent experimental studies suggesting a crucial role for the
556 cytochrome-bd oxidase system in the ability to cause urinary tract infection ⁴⁸. Also

557 previous studies using saturated mutagenesis techniques and studying global
558 transcriptional patterns during urinary tract infection of ExPEC strains have
559 suggested a key role for dehydrogenase enzymes involved in anaerobic metabolism
560 in the ability to cause pathology in the mammalian urinary tract⁴⁹⁻⁵¹.

561 Recent modelling data on why drug resistant and drug susceptible populations of
562 bacteria co-exist highlighted that any factors which increase the duration of
563 colonisation in a human host will also increase the selective pressure for it to evolve
564 antibiotic resistance⁵². Hence both the success of ST131 in invading the population,
565 and the association of many isolates in this lineage with an MDR phenotype, would
566 be consistent with its distinctive anaerobic metabolism loci facilitating enhanced
567 persistence within its host, perhaps through an improved ability to outcompete
568 resident commensal *E. coli* strains. The fact that this selection is only seen in clade
569 C of ST131 suggests that this occurred around the time of the emergence of the
570 lineage as a human clinical threat¹³ alongside the development of fluoroquinolone
571 resistance. Subsequent acquisition of MDR plasmids, and the consequent selection
572 for an ability to offset the fitness costs of long term MDR plasmid maintenance¹⁴, is
573 likely to have occurred as a result of prolonged exposure to selective antibiotic
574 environments during colonisation of humans. Nevertheless, neither anaerobic
575 metabolism genes nor antibiotic resistance loci have swept to fixation in ST131,
576 reflecting their fluctuating but stable prevalence in the broader *E. coli* population (Fig
577 S6).

578 This diversification can instead be explained by NFDS, under which these genes are
579 beneficial when rare, because they provide an advantage over co-colonising strains
580 which will typically lack the same metabolic capacities. However, as these traits
581 become more common as ST131 expands, representatives of this lineage will more

582 commonly encounter one another, therefore necessitating further diversification for
583 different clade C representatives to sustain their advantage over competitors.
584 Similarly, the capsule locus diversification previously observed within clade C,
585 resulting in the capsule synthesis locus corresponding to a 'hotspot' of recombination
586³⁵, could result from NFDS of variable antigens⁵⁴, with the host immune system
587 selecting for a diversity of capsule structures as the dominant type becomes more
588 common following ST131's emergence¹⁶.

589 This study presents evidence for both ecological niche separation, resulting in the
590 formation of distinct subclades within ST131, and NFDS, resulting in the adaptive
591 radiation of specific phenotypes within clade C as it increases in prevalence. Further
592 studies are required to fully determine the extent to which niche separation and
593 NFDS are either separate or linked processes. Determining whether loci subject to
594 NFDS are also those that determine niche adaptation will be integral to this process.
595 Understanding the processes that govern the epidemiological dynamics of dominant
596 *E. coli* lineages, and those of similar pathogens causing bloodstream infections, is
597 critical for addressing the public health threat of antibiotic resistance.

598 **Data accession**

599 Accession numbers for the reads used in this study are listed in Table S1 with
600 information of year and place of isolation and the results of the *in silico* PCR for
601 clade specific SNPs.

602 **Acknowledgements**

603 This publication presents independent research supported by the Health Innovation
604 Challenge Fund (HICF-T5-342 and WT098600), a parallel funding partnership

605 between the UK Department of Health and Wellcome. The views expressed in this
606 publication are those of the authors and not necessarily those of the Department of
607 Health, Public Health England or Wellcome. T.K. was funded by the Norwegian
608 Research Council JPIAMR grant no. 144501. J.C. was funded by the ERC grant no.
609 742158. NJC is funded by a Sir Henry Dale Fellowship, jointly funded by the
610 Wellcome Trust and Royal Society (Grant Number 104169/Z/14/Z). CC is funded by
611 the Wellcome MIDAS doctoral training program at UoB.

612 **References**

613 1. de Kraker, M. E. A. *et al.* The changing epidemiology of bacteraemias in
614 Europe: trends from the European Antimicrobial Resistance Surveillance
615 System. *Clin. Microbiol. Infect.* **19**, 860–868 (2013).

616 2. Foxman, B. The epidemiology of urinary tract infection. *Nat. Rev. Urol.* **7**, 653–
617 660 (2010).

618 3. Kohler, C.-D. & Dobrindt, U. What defines extraintestinal pathogenic
619 *Escherichia coli*? *Int. J. Med. Microbiol.* **301**, 642–647 (2011).

620 4. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. J. Genomic islands in
621 pathogenic and environmental microorganisms. *Nat. Rev.* **2**, 414–424 (2004).

622 5. Alhashash, F., Weston, V., Diggle, M. & McNally, A. Multidrug-Resistant
623 *Escherichia coli* Bacteremia. *Emerg. Infect. Dis.* **19**, 1699–1701 (2013).

624 6. Croxall, G. *et al.* Molecular epidemiology of extraintestinal pathogenic
625 *Escherichia coli* isolates from a regional cohort of elderly patients highlights the
626 prevalence of ST131 strains with increased antimicrobial resistance in both
627 community and hospital care settings. *J. Antimicrob. Chemother.* **66**, (2011).

628 7. Banerjee, R. & Johnson, J. R. A new clone sweeps clean: the enigmatic
629 emergence of *Escherichia coli* sequence type 131. *Antimicrob. Agents
630 Chemother.* **58**, 4997–5004 (2014).

631 8. Peirano, G., Schreckenberger, P. C. & Pitout, J. D. D. Characteristics of NDM-
632 1-producing *Escherichia coli* isolates that belong to the successful and virulent
633 clone ST131. *Antimicrob. Agents Chemother.* **55**, 2986–2988 (2011).

634 9. Mathers, A. J., Peirano, G. & Pitout, J. D. D. The role of epidemic resistance
635 plasmids and international high-risk clones in the spread of multidrug-resistant
636 Enterobacteriaceae. *Clin. Microbiol. Rev.* **28**, 565–591 (2015).

637 10. Price, L. B. *et al.* The epidemic of extended-spectrum-β-lactamase-producing
638 *Escherichia coli* ST131 is driven by a single highly pathogenic subclone, H30-
639 Rx. *MBio* **4**, e00377-13 (2013).

640 11. Stoesser, N. *et al.* Evolutionary History of the Global Emergence of the
641 *Escherichia coli* Epidemic Clone ST131. *MBio* **7**, e02162 (2016).

642 12. Ben Zakour, N. L. *et al.* Sequential acquisition of virulence and fluoroquinolone
643 resistance has shaped the evolution of *Escherichia coli* ST131. *MBio* **7**,
644 e00347-16- (2016).

645 13. Petty, N. K. *et al.* Global dissemination of a multidrug resistant *Escherichia coli*
646 clone. *Proc Natl Acad Sci.* **111**, 5964-9 (2014).

647 14. McNally, A. *et al.* Combined Analysis of Variation in Core, Accessory and
648 Regulatory Genome Regions Provides a Super-Resolution View into the
649 Evolution of Bacterial Populations. *PLoS Genet.* **12**, e1006280 (2016).

650 15. Ren, C.-P., Beatson, S. A., Parkhill, J. & Pallen, M. J. The Flag-2 Locus, an
651 Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar
652 System from *Escherichia coli*. *J. Bacteriol.* **187**, 1430–1440 (2005).

653 16. Kallonen, T. *et al.* Systematic longitudinal survey of invasive *Escherichia coli* in
654 England demonstrates a stable population structure only transiently disturbed
655 by the emergence of ST131. *Genome Res.* **27**, 1437-49 (2017).

656 17. Corander, J. *et al.* Frequency-dependent selection in vaccine-associated
657 pneumococcal population dynamics. *Nat. Ecol. Evol.* **1**, 195-60 (2017).

658 18. Clark, G. *et al.* Genomic analysis uncovers a phenotypically diverse but
659 genetically homogeneous *Escherichia coli* ST131 clone circulating in unrelated
660 urinary tract infections. *J. Antimicrob. Chemother.* **67**, 868-77 (2012).

661 19. Salipante, S. J. *et al.* Large-scale genomic sequencing of extraintestinal
662 pathogenic *Escherichia coli* strains. *Genome Res.* **25**, 119–128 (2015).

663 20. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly
664 using de Bruijn graphs. *Genome Res.* **18**, 821–829 (2008).

665 21. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**,
666 2068–9 (2014).

667 22. Page, A. J. *et al.* Roary: rapid large-scale prokaryote pan genome analysis.
668 *Bioinformatics* **31**, 3691–3693 (2015).

669 23. Stamatakis, A., Ludwig, T., Maier, H. RAxML-III: a fast program for maximum
670 likelihood-based inference of large phylogenetic trees. *Bioinformatics* **21**, 456
671 (2005).

672 24. Abudahab, K. *et al.* PANINI: Pangenome Neighbor Identification for Bacterial
673 Populations. *bioRxiv* DOI: 10.1101/174409 (2017).

674 25. Huerta-Cepas, J. *et al.* Fast Genome-Wide Functional Annotation through
675 Orthology Assignment by eggNOG-Mapper. *Mol. Biol. Evol.* **34**, 2115–2122
676 (2017).

677 26. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large
678 sets of protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

679 27. Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high
680 throughput. *Nucleic Acids Res* **32**, 1792–7 (2004).

681 28. Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: computing core
682 of molecular evolutionary genetics analysis program for automated and
683 iterative data analysis. *Bioinformatics* **28**, 2685–2686 (2012).

684 29. Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling
685 in BAPS software for learning genetic structures of populations. *BMC
686 Bioinformatics* **16**, 539 (2008).

687 30. Gutmann, M. U. & Corander, J. Bayesian Optimization for Likelihood-Free
688 Inference of Simulator-Based Statistical Models. *J. Mach. Learn. Res.* **17**, 1–
689 47 (2016).

690 31. Croucher, N. J. *et al.* Diversification of bacterial genome content through
691 distinct mechanisms over different timescales. *Nat. Commun.* **5**, 5471 (2014).

692 32. Stewart, F. M. & Levin, B. R. Partitioning of Resources and the Outcome of
693 Interspecific Competition: A Model and Some General Considerations. *Am.*

694 694 33. Friesen, M., Sixer., Travisano, M., & Doebeli, M. Experimental evidence for
695 695 sympatric ecological diversification due to frequency-dependent competition
696 696 in *E. coli*. *Evolution* **58**, 245–260 (2004).

697 697 34. Alqasim, A. *et al.* Phenotypic microarrays suggest *Escherichia coli* ST131 is
698 698 not a metabolically distinct lineage of extra-intestinal pathogenic *E. coli*. *PLoS*
699 699 *One* **9**, e88374 (2014).

700 700 35. Alqasim, A., Scheutz, F., Zong, Z. & McNally, A. Comparative genome
701 701 analysis identifies few traits unique to the *Escherichia coli* ST131 H30Rx clade
702 702 and extensive mosaicism at the capsule locus. *BMC Genomics* **15**, 830 (2014).

703 703 36. McNally, A. *et al.* The evolutionary path to extra intestinal pathogenic, drug
704 704 resistant *Escherichia coli* is marked by drastic reduction in detectable
705 705 recombination within the core genome. *Genome Biol. Evol.* **5**, 699–710 (2013).

706 706 37. Shapiro, B. J. *et al.* Population genomics of early events in the ecological
707 707 differentiation of bacteria. *Science* **336**, 48–51 (2012).

708 708 38. Reuter, S., *et al.* Directional gene flow and ecological separation in *Yersinia*
709 709 *enterocolitica*. *Microb. Genomics* **1**, e000030 (2015).

710 710 39. Winter, S. E. *et al.* Gut inflammation provides a respiratory electron acceptor
711 711 for *Salmonella*. *Nature* **467**, 426–429 (2010).

712 712 40. McNally, A., Thomson, N. R., Reuter, S. & Wren, B. W. ‘Add, stir and reduce’:
713 713 *Yersinia* spp. as model bacteria for pathogen evolution. *Nat. Rev. Microbiol.*
714 714 **14**, (2016).

716 41. Arcilla, M. S. *et al.* Import and spread of extended-spectrum beta-lactamase-
717 producing Enterobacteriaceae by international travellers (COMBAT study): a
718 prospective, multicentre cohort study. *Lancet. Infect. Dis.* **17**, 78–85 (2017).

719 42. Overdevest, I. *et al.* Prolonged colonisation with *Escherichia coli* O25:ST131
720 versus other extended-spectrum beta-lactamase-producing *E. coli* in a long-
721 term care facility with high endemic level of rectal colonisation, the
722 Netherlands, 2013 to 2014. *Euro Surveill.* **21**, 1560 (2016).

723 43. Reigstad, C. S., Hultgren, S. J. & Gordon, J. I. Functional genomic studies of
724 uropathogenic *Escherichia coli* and host urothelial cells when intracellular
725 bacterial communities are assembled. *J. Biol. Chem.* **282**, 21259–21267
726 (2007).

727 44. Mike, L. A., Smith, S. N., Sumner, C. A., Eaton, K. A. & Mobley, H. L. T.
728 Siderophore vaccine conjugates protect against uropathogenic *Escherichia coli*
729 urinary tract infection. *Proc. Natl. Acad. Sci.* **113**, 13468-73 (2016).

730 45. Horiyama, T. & Nishino, K. AcrB, AcrD, and MdtABC multidrug efflux systems
731 are involved in enterobactin export in *Escherichia coli*. *PLoS One* **9**, e108642
732 (2014).

733 46. Wright, K. J., Seed, P. C. & Hultgren, S. J. Development of intracellular
734 bacterial communities of uropathogenic *Escherichia coli* depends on type 1 pili.
735 *Cell. Microbiol.* **9**, 2230–2241 (2007).

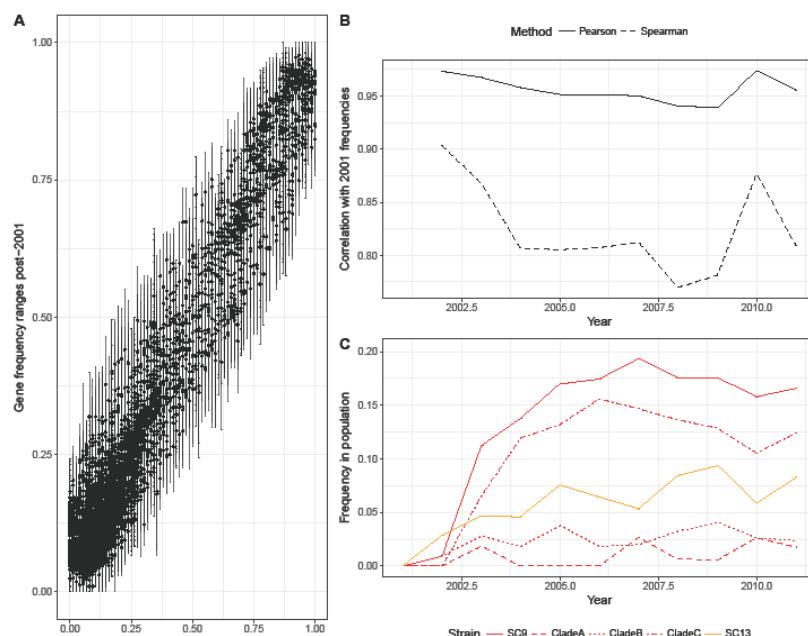
736 47. Anderson, G. G. *et al.* Intracellular bacterial biofilm-like pods in urinary tract
737 infections. *Science (80)*. **301**, 105–107 (2003).

738 48. Shepherd, M. *et al.* The cytochrome bd-I respiratory oxidase augments

739 survival of multidrug-resistant *Escherichia coli* during infection. *Sci. Rep.* **6**,
740 35285 (2016).

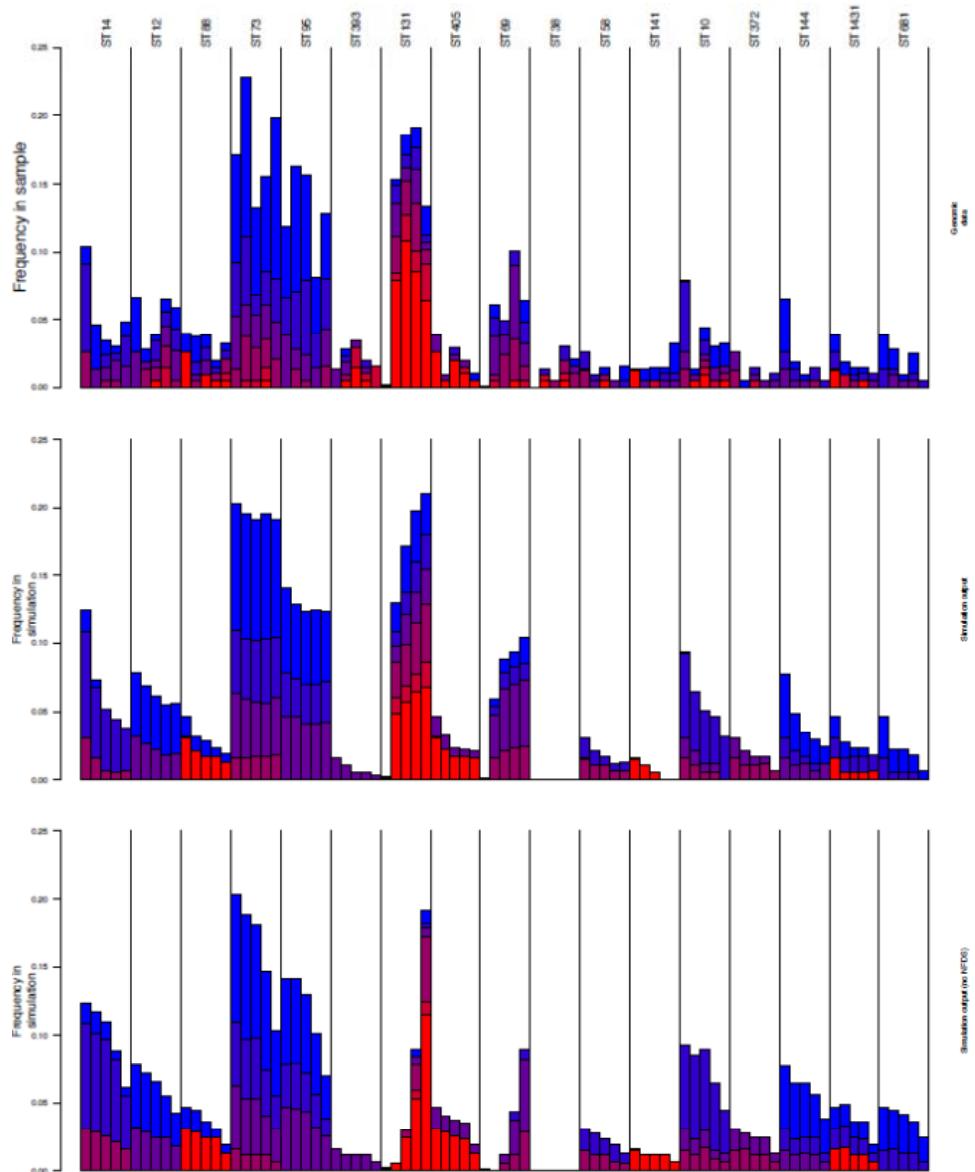
741 49. Wiles, T. J. *et al.* Combining quantitative genetic footprinting and trait
742 enrichment analysis to identify fitness determinants of a bacterial pathogen.
743 *PLoS Genet.* **9**, e1003716 (2013).

744 50. Subashchandrabose, S., Smith, S. N., Spurbeck, R. R., Kole, M. M. & Mobley,
745 H. L. T. Genome-wide detection of fitness genes in uropathogenic *Escherichia*
746 *coli* during systemic infection. *PLoS Pathog.* **9**, e1003788 (2013).

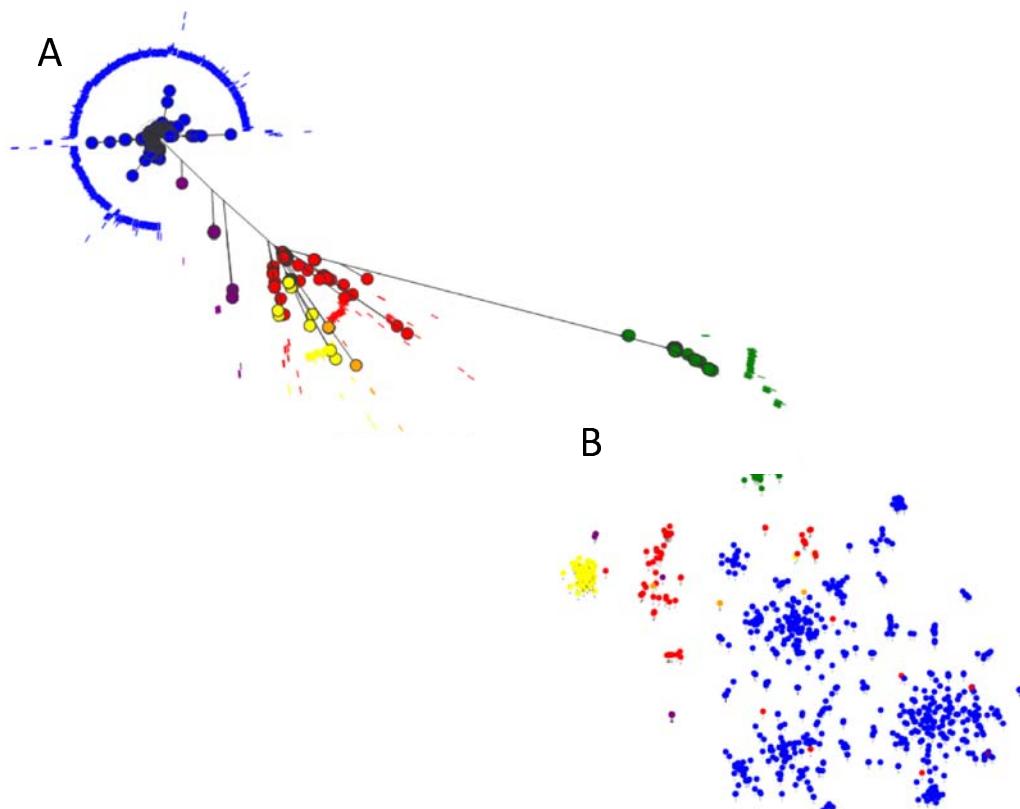

747 51. Subashchandrabose, S. *et al.* Host-specific induction of *Escherichia coli* fitness
748 genes during human urinary tract infection. *Proc. Natl. Acad. Sci.* **111**, 18327–
749 18332 (2014).

750 52. Lehtinen, S. *et al.* Evolution of antibiotic resistance is linked to any genetic
751 mechanism affecting bacterial duration of carriage. *Proc. Natl. Acad. Sci.* **114**,
752 1075–1080 (2017).

753 53. Gupta, S., Ferguson, N. & Anderson, R. Chaos, persistence, and evolution of
754 strain structure in antigenically diverse infectious agents. *Science* **280**, 912–
755 915 (1998).


756

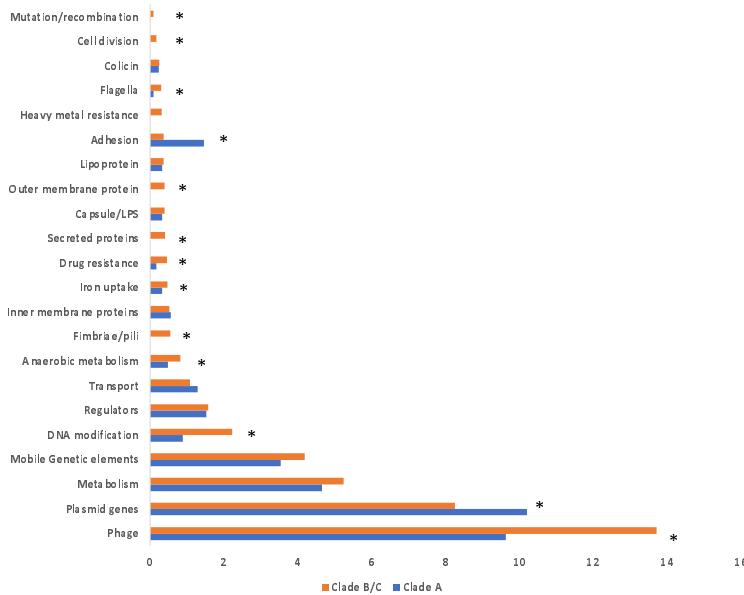
757 Figure 1: Summarising the population dynamics of the British Society for
758 Antimicrobial Chemotherapy extraintestinal pathogenic *E. coli* collection. These
759 isolates were collected from bacteraemia cases around the UK between 2001 and
760 2011. (A) Conservation of gene frequencies. Each point corresponds to one of the
761 6,824 genes identified by ROARY in the BSAC collection with a mean frequency
762 between 0.05 and 0.95 across all years. The horizontal axis position indicates the
763 starting frequency in 2001, and the vertical axis indicates the mean frequency over
764 all years, with the error bars indicating the full range observed across annual
765 samples. (B) Correlation of gene frequencies with those observed in 2001. This
766 shows the changing correlation of gene frequencies, calculated by both the Pearson
767 and Spearman methods, in each year relative to those observed in 2001. Both
768 measures indicate a divergence in gene frequencies as ST69 and ST131 emerge,
769 until 2010, at which point there is a reversion to the frequencies seen in the original
770 population. (C) Emergence of ST69, in orange, and ST131, in red. The frequencies
771 of the subclades of ST131 are shown by the red dashed lines.



772

773 Figure 2: Simulations of changes in the BSAC extra-intestinal pathogenic *E. coli*
774 population evolving under multilocus NFDS. Panel A shows the genomic data, and
775 panel B shows the median frequencies observed from 100 simulations run with the
776 best-matching parameter set identified by fitting the model with BOLFI. This
777 corresponded to $\sigma_f = 0.029$, $r = 0.179$, $m = 0.001$, $p_f = 0.425$ and $\sigma_w = 0.0048$. Each
778 column corresponds to a sequence cluster identified by hierBAPS (see Methods),
779 and is annotated with the predominant sequence type with which it is associated.
780 Each bar indicates the frequency of the sequence cluster in consecutive time
781 periods, from left to right. The bars are coloured according to the number of antibiotic
782 resistance phenotypes associated with the isolates within the sequence cluster at
783 different timepoints. Panel C shows the equivalent best fit in the absence of NFDS.
784 Only sequence clusters reaching a frequency of at least 2.5% at one timepoint in the
785 genomic sample are shown; the full results of the simulation, including measures of
786 between-simulation variation, are shown in Fig S3.

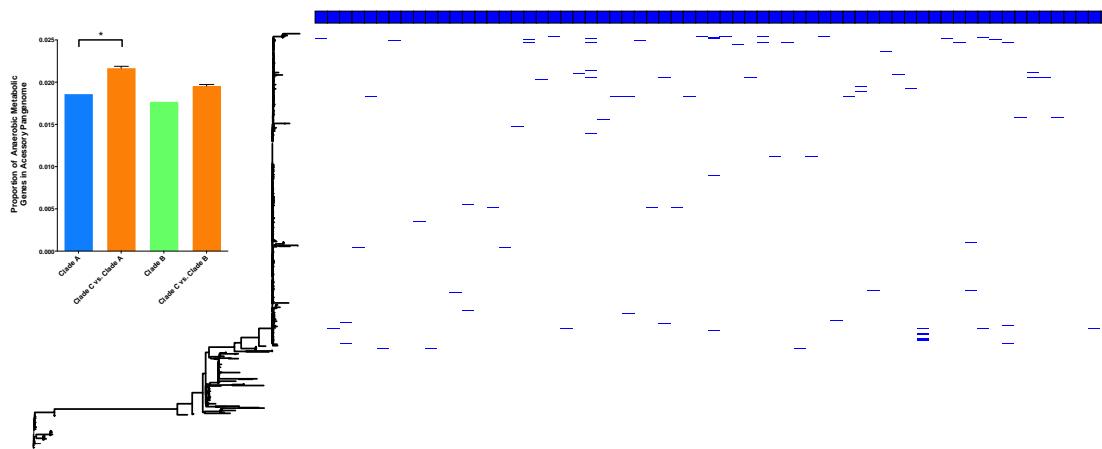
788 Figure 3: (A) Maximum likelihood phylogeny of 862 *E. coli* ST131 strains. The
789 phylogeny was inferred using RAxML with a GTR GAMMA model of substitution, on
790 an alignment of concatenated core CDS as determined by Roary. (B) PANINI plot of
791 the accessory genome content of all 862 strains based on a tSNE plot . The plot is a
792 diagrammatical representation of the relatedness of each strain based on the
793 presence/absence of accessory genes, and is presented as a two dimensional
794 representation. The taxa are colour coded by BAPS grouping (Table S1) and show
795 clade A (Green, BAPS-3), clade B (red, yellow and purple – BAPS 2, 4, and 5) and
796 clade C (blue, BAPS-1).



797

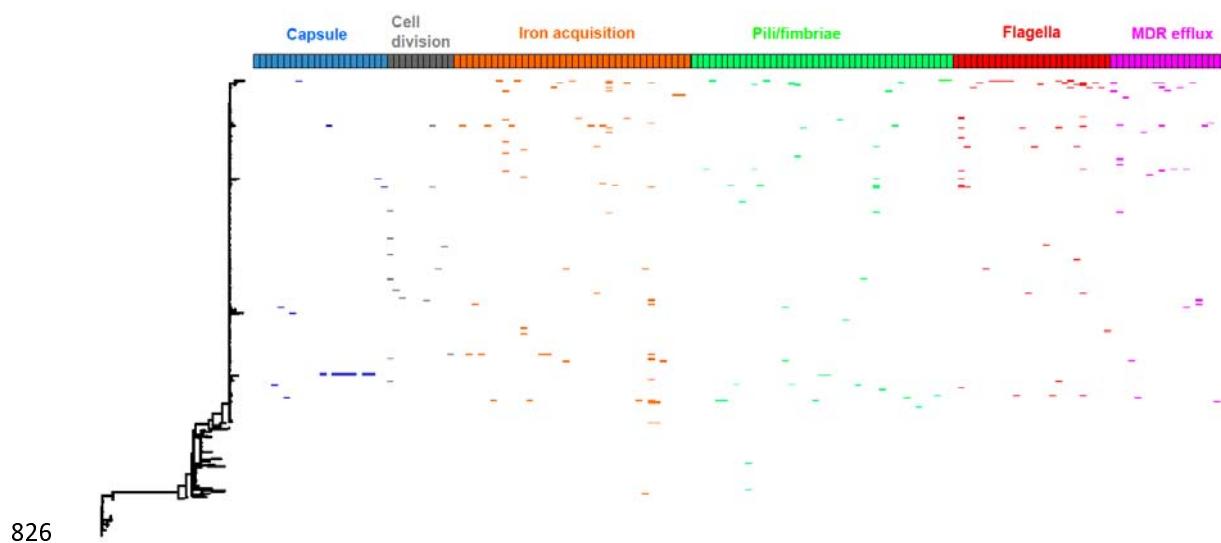
798

799


800 Figure 4: Bar chart depicting functional classes of accessory genes differentially
801 present in clade A (blue bars) and clade B/C (orange bars) *E. coli* ST131. Functional
802 classes are based on GO classes as described in methods. Bars marked with *
803 indicate where a significant difference exists between clade A and clade C as
804 determined by t-test.

805

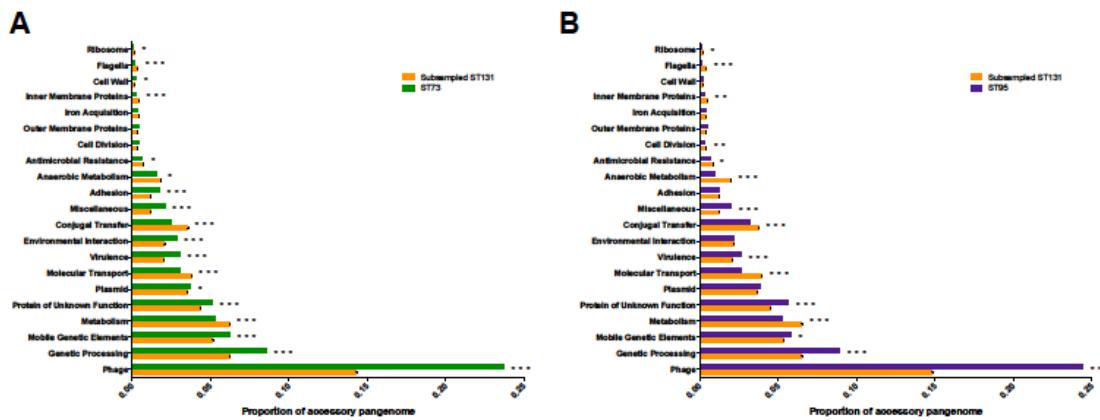
806


807 Figure 5: Annotation of a maximum likelihood phylogeny of *E. coli* ST131, based on
808 concatenated core CDS, with the presence of alternative alleles of 64 loci involved in
809 anaerobic metabolism. Each blue box along the top of the tree annotation represents
810 an individual anaerobic metabolism gene, and its presence in the ST131 population
811 is indicated by a blue line. The inset is a bar chart displaying the proportion of the
812 accessory pangenome that is occupied by genes involved in anaerobic metabolism
813 for ST131 Clade A (light blue), Clade B (light green), subsampled Clade C vs. Clade
814 A (orange) and subsampled Clade C vs. Clade B (orange). $P = 0.042$ for Clade C vs.
815 Clade A and $P = 0.086$ for Clade C vs. Clade B. Error bars represent standard error
816 of the mean. Significance was determined using the median value p-value from Chi
817 squared tests performed on random subsamples of the C clade.

818

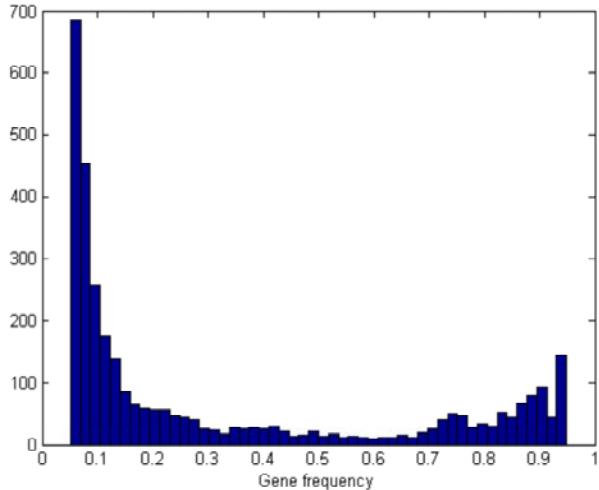
819

820 Figure 6: Annotation of a maximum likelihood phylogeny of *E. coli* ST131, based on
821 concatenated core CDS, with the presence of alternative alleles of loci involved in
822 capsule production (blue boxes), cell division (grey boxes), iron acquisition (orange
823 boxes), pili/fimbriae production (green boxes), flagella (red boxes), and MDR efflux
824 pumps (pink boxes). Each box represents an individual gene, and its presence in the
825 ST131 population is indicated by an appropriately coloured line.



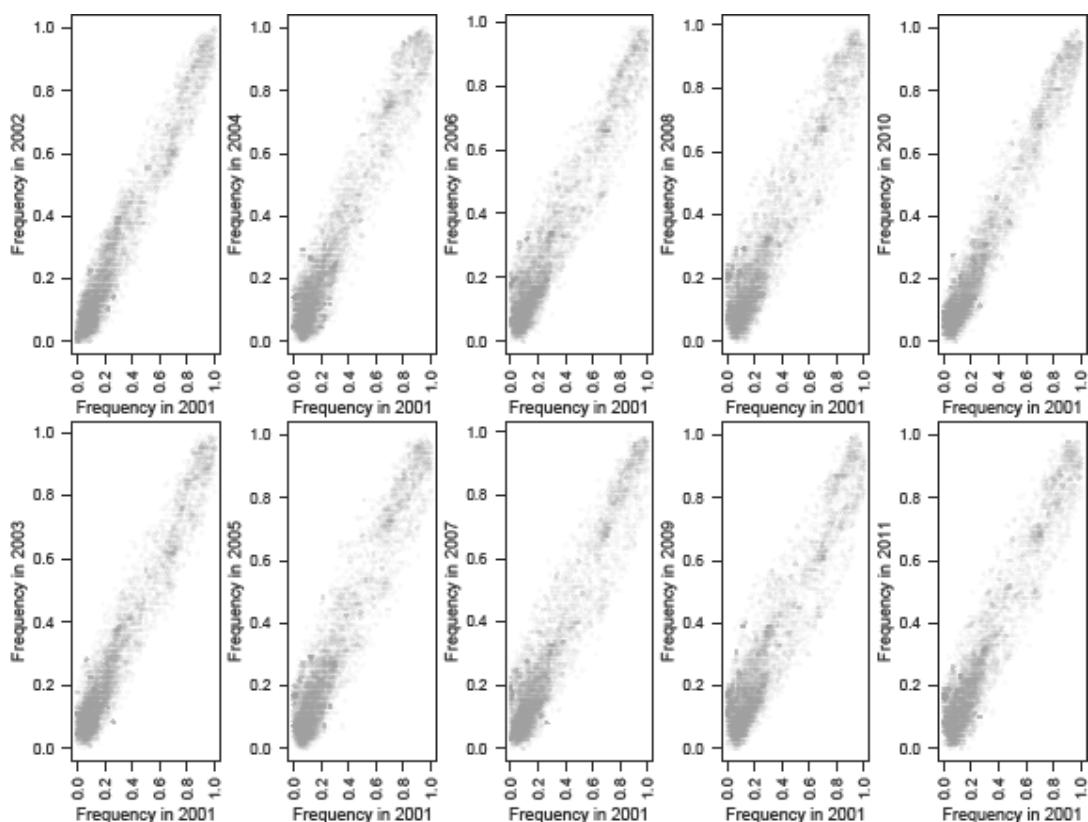
826

827

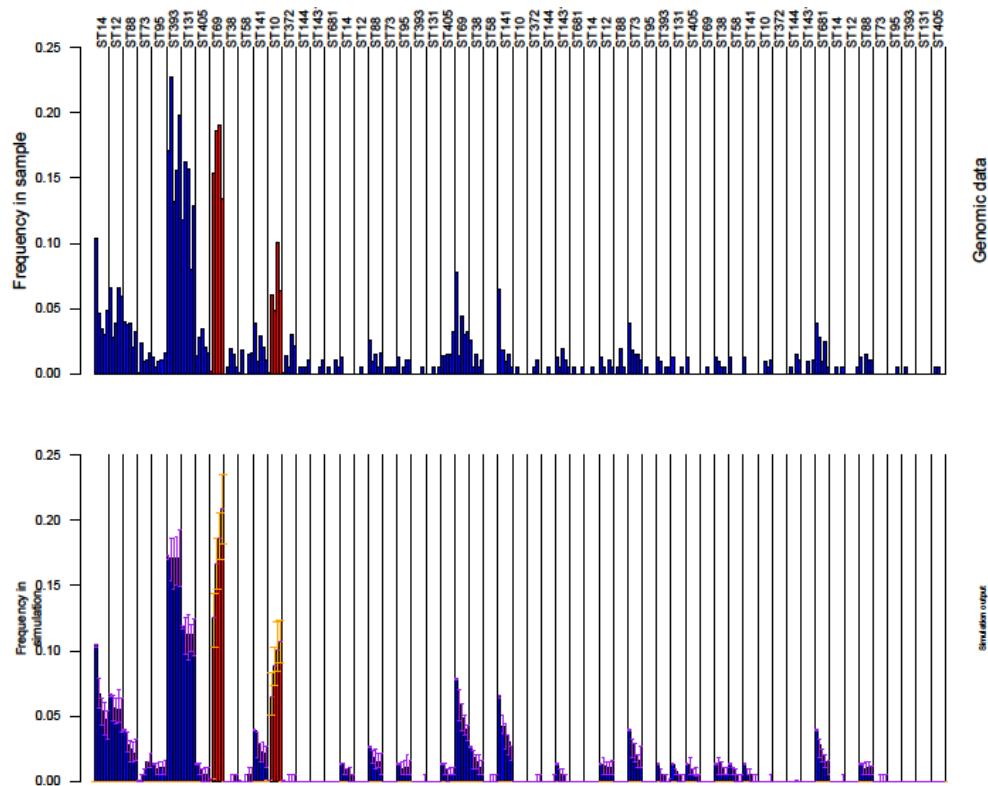

828 Figure 7: Bar charts depicting the composition of the accessory genome of ST73
829 (green) and ST95 (purple) compared to a repetitively sampled Clade C ST131
830 (orange). The proportion of the accessory genome is plotted against manually
831 assigned functional categories. Hypothetical proteins are responsible for the majority
832 of the accessory pan genome and are omitted from the graphs. Error bars are
833 standard error of the mean. Iterative Chi squared tests were performed to assess
834 significance, as described in methods, $p<0.05$ (*), $p<0.01$ (**) and $p<0.001$ (***)�

835

836

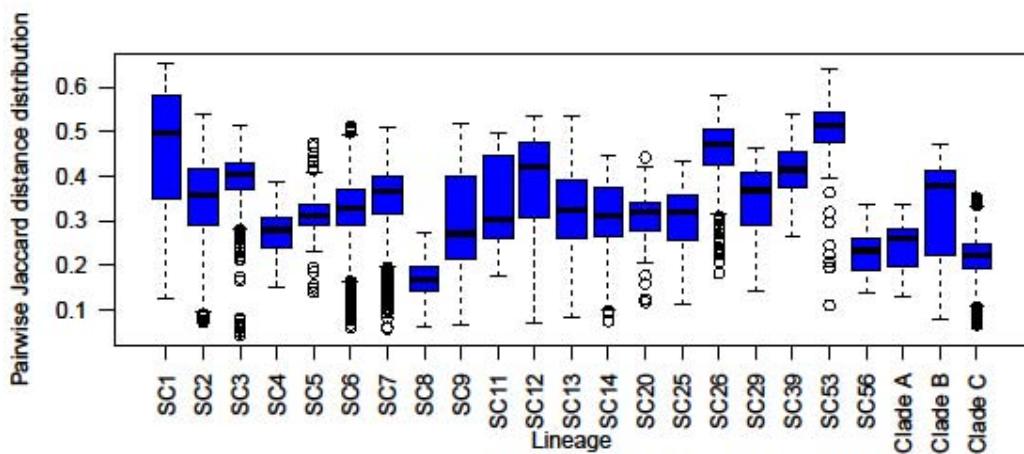

837 Figure S1: Histogram of the relative frequency of genes within the accessory
838 genome of *E. coli* ST131. The x-axis indicates the relative frequency with which a
839 gene appears, whilst the y-axis indicates the number of accessory genes which
840 appear at that given frequency.

841

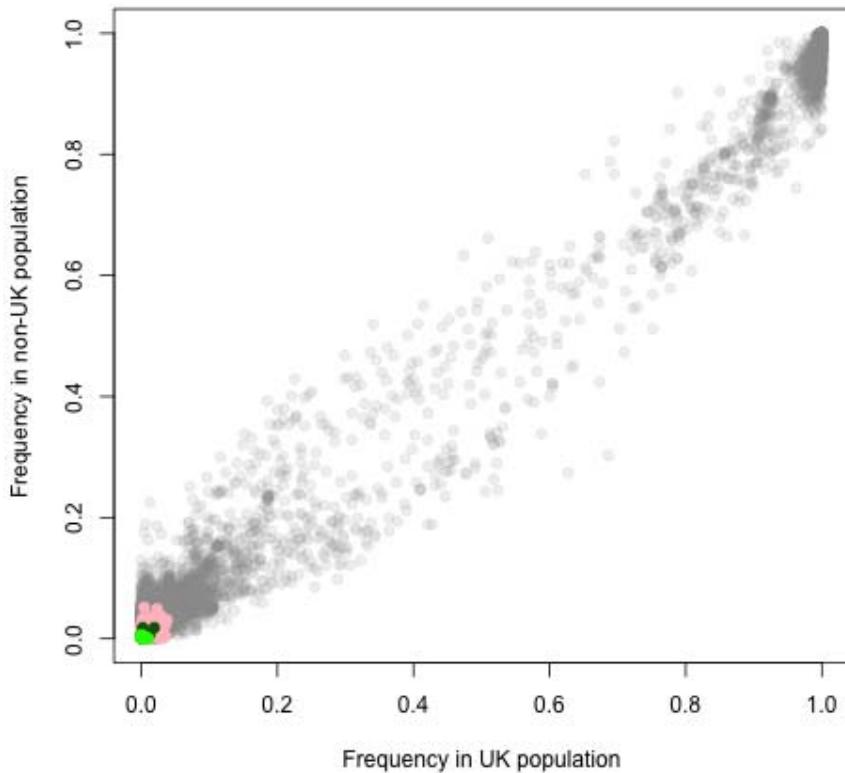

842

843 Figure S2: Correlations of gene frequencies in the BSAC collection over time. Each
844 plot shows the frequencies of those genes, identified by ROARY, that were found to
845 be present at a mean frequency between 0.05 and 0.95 across the entire collection.
846 In each panel, the horizontal axis shows the frequency in 2001, and the vertical axis
847 shows the frequency in a subsequent year. These graphs show how the correlation
848 between the starting frequencies, in 2001, and later years weakened until 2008, at
849 which point the correlation strengthen considerably in 2010 and 2011.

851


852 Figure S3: Full results of the NFDS simulations. These barcharts show the
853 frequencies for all lineages from the one hundred simulations performed using the
854 optimal parameters identified within the BOLFI model fitting, which are summarised
855 in Fig 2. Each column again corresponds to a sequence cluster, and is annotated
856 according to the predominant sequence type. The five bars within each column
857 represent the frequency of the sequence cluster over subsequent time intervals:
858 either that observed in the genomic samples for the top panel, or the median
859 frequency in simulations in the bottom panel. The error bars on the bottom panel
860 indicate the interquartile range for each bar from the 100 simulations. The red bars
861 correspond to the ST69 and ST131 sequence clusters that had a reproductive
862 fitness benefit, r , over the rest of the population.

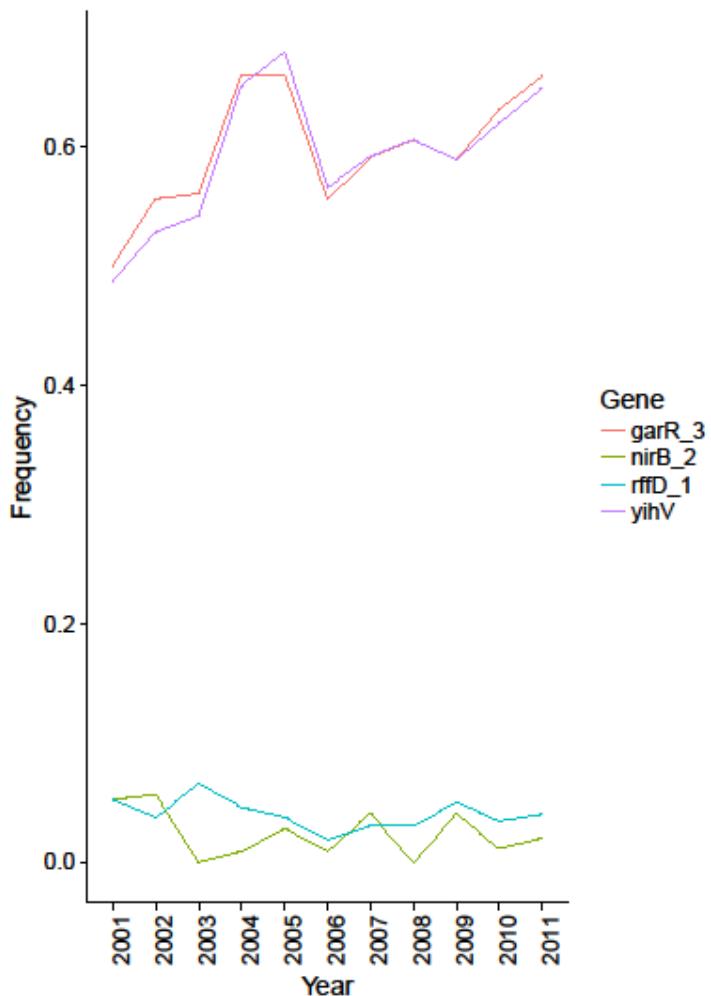
863


864 Figure S4: Diversity of intermediate frequency loci within *E. coli* lineages. The
865 dissimilarity between pairs of isolates was measured as the binary Jaccard distance
866 between them, based on the presence or absence of the intermediate frequency loci
867 simulated in the multilocus NFDS model. The genetic diversity of each sequence
868 cluster represented by at least ten isolates in the BSAC collection, and the three
869 clades of the ST131 *E. coli*, are represented by a boxplot that shows the distribution
870 of all such pairwise comparisons within the sequence cluster. This demonstrates the
871 success of ST131 cannot be attributed to it exhibiting a greater diversity of loci under
872 selection in the model relative to other lineages.

873

874

875 Figure S5: Frequency dependence plot showing the frequency at which all *E. coli*
876 ST131 accessory genes occur in strains isolated from the UK versus strains isolated
877 from outside the UK. The allele variants identified colour coded as in the previous
878 figures: anaerobic metabolism (blue boxes), capsule production (pale blue boxes),
879 cell division (black boxes), iron acquisition (orange boxes), pili/fimbriae production
880 (green boxes), flagella (red boxes), and MDR efflux pumps (pink boxes)


881

882

883 Figure S6: Stable intermediate frequencies of anaerobic metabolism loci. Four genes
884 involved in anaerobic metabolism were found to be present at intermediate
885 frequencies in the BSAC collection. All were absent from the ST131 lineage, except
886 *nirB_2*, which was found in a subset of the lineage. Nevertheless, plotting their
887 annual frequencies reveals distinct, stable frequencies over the period, despite the
888 rise to prominence of ST131.

889

890

891

892