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ABSTRACT

Incidences of infection and occurrence of Kocuria rhizophila in human gut are prominent but
certainly no reports on the species ability to withstand human gastrointestinal dynamics. Kocuria
rhizophila strain D2 isolated from healthy human gut was comprehensively characterized. The
functional analysis revealed the ability to produce various gastric enzymes and sensitive to major
clinical antibiotics. It also exhibited tolerance to acidic pH and bile salts. Strain D2 displayed
bile-salt hydrolytic (BSH) activity, strong cell surface traits such as hydrophobicity, auto-
aggregation capacity and adherence to human HT-29 cell line. Prominently, it showed no
hemolytic activity and was susceptible to the human serum. Exploration of the genome led to the
discovery of the genes for the above said properties and has ability to produce various essential
amino acids and vitamins. Further, comparative genomics have identified core, accessory and
unique genetic features. The core genome has given insights into the phylogeny while the
accessory and unique genes has led to the identification of niche specific genes. Bacteriophage,
virulence factors and biofilm formation genes were absent with this species. Housing CRISPR
and antibiotic resistance gene was strain specific. The integrated approach of functional, genomic
and comparative analysis denotes the niche specific adaption to gut dynamics of strain D2.
Moreover the study has comprehensively characterized genome sequence of each strain to know
the genetic difference and intern recognize the effects of on phenotype and functionality
complexity. The evolutionary relationship among strains along and adaptation strategies has been

included in this study.

Keywords: commensal, Indian, Gluten, comparative genome analysis, In-silico analysis

Significance: Reports of Kocuria rhizophila isolation from various sources have been reported

but the few disease outbreaks in humans and fishes have been prominent, but no supportive
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evidence about the survival ability of Kocuria spp. within human GIT. Here, we report the gut
adaption potential of K. rhizophila strain D2 by functional and genomic analysis. Further;
comparative genomics reveals this adaption to be strain specific (Gluten degradation). Genetic

difference, evolutionary relationship and adaptation strategies have been including in this study.

INTRODUCTION

The genus Kocuria (formerly Micrococcus) was named after a Slovakian microbiologist:
Miroslav Kocur, and belongs to the class Actinobacteria (1). It is Gram-positive cocci, catalase
positive, non-hemolytic, non-endospore-forming, non-motile and can grow at different oxygen
levels (aerobic, facultative and anaerobic) (1, 2). Presence of galactosamine and glucosamine
(amino sugars) as the main component of the cell wall, differ them from other members of the
class Actinobacteria (2). This genus is normally inhabitants of dust, soil, water and food and in

humans colonizes skin, mucosa, oropharynx and gastrointestinal tract (GIT) (3-5).

K. rhizophila was isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia).
in 1999 (6). The strain ATCC 9341 was reclassified as K. rhizophila from Micrococcus luteus
(7). 1t has been isolated from viz. cheese (8), chicken meat (9) and also healthy human GIT (1)
across the globe, thus suggesting its wide adaption potential. Moreover, it has been important in
industrial applications for antimicrobial susceptibility testing as standard quality control strain

(1-3).

Currently, K. rhizophila is gaining importance as emerging pathogen in immune-compromised
and metabolically disordered individuals (10-14). In particular, their affinity to plastic materials
and devices such as a catheter, causing chronic recurrent bacteremia and thus causing mortality

(10-14). Therefore, one should not underestimate the significance of such microorganisms when
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isolated from clinical samples and particularly from Gastrointestinal tract (GIT), blood and
medical implant surfaces. Currently, there are two complete genomes (K. rhizophila DC2201 and
FDAARGOS _302) and five draft genome (P7-4, TPW45, 14ASP, RF and G2) sequences of K.
rhizophila available publicly at NCBI (National Center for Biotechnology Information). Based
on genome sequence it displays a wide range of activity viz. tolerance to various organic

compounds and sturdy amino-acid and carbohydrate metabolism.

Recent techniques of 16S rRNA amplicon and metagenomics sequencing have vividly expanded
the known diversity of the human gut microbiome (15-18) but the first approach used to study
the gut microbiota employed microbial culture (1). Recent studies with culturomics approach
have provided actual insights into the type of species present in the human gut (18-20). Using
above-said method (culturomics), we could isolate more than 120 different strains from 18

different genera were isolated; using 35 culture media and different growth conditions.

Here, we present the work carried out on K. rhizophila strain D2 isolated from the healthy human
gut as there is no supportive evidence about the survival ability of Kocuria spp. within human
GIT. Thus we found the importance to study strain D2 for its adaption, pathogenicity,
commensal or beneficial nature. The work described here utilizes in-vitro, genomes and

comparative genomics approach to identify the potential of K. rhizophila strain D2.

RESULTS

Identification

The 16S rRNA gene of strain D2 showed 99.92% similarity to Kocuria rhizophila type strain
DSM 11926. The phylogenetic tree was constructed using the Neighbour-Joining method with

closely related taxa (Fig 1).
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86  Characterization of K. rhizophila D2

87  Exoenzymes, Carbohydrate utilization, Antibiogram and Plasmid determination

88  The strain D2 showed various gastric enzymes viz. lipase, urease, phosphatase, protease, catalase

89 and amylase. The activity was also found for nitrate reductase activities (Table 1). The strain was

90 also able to utilize most of the sugars viz. inulin, lactose, sucrose, fructose, maltose, galactose,

91  dextrose, raffinose, trehalose and melibiose (Table 2). The strain had intermediate resistance to

92 levofloxacin, ciprofloxacin and gentamicin while sensitive to other 21 of the 24 tested antibiotics

93  (Table 3). The plasmid was not associated with the strain.

94  Bile, Acid and hydrogen peroxide tolerance

95  Strain D2 was able to grow in the various bile concentration from 0.1- 1 % (w/v), of these it

96 showed 60% survivability at 0.4% bile salt after 24hrs. For the acid tolerance assay strain D2

97  showed 58.8% survivability at pH 2.5 for 3h. The time depicts the time taken by the food in the

98  stomach. Further, strain D2 was able to tolerate hydrogen peroxide for 4.5 hours.

99  Adhesion, Exopolysaccharide production and Bile salt hydrolytic (BSH) activity
100  Auto-aggregation capacity of strain D2 was 29%, while the cell surface hydrophobicity to
101 hydrocarbons viz. toluene, xylene and hexane was 31%, 28% and 22% respectively. The percent
102 cell adhesion assay for human HT-29 cell line was found to be 30%. An additional microscopic
103  observation revealed low adhesion across the quadrants (Fig 2). The strain D2 was able to
104  hydrolyze bile, a zone of clearance (9 mm) was seen when grown on medium with bile salts and
105  this ability was further confirmed by the Ninhydrin method [4 £0.2 mg/ cell pellet (mg)]. The
106  strain D2 could not produce exopolysaccharide.

107  Resistance to Simulated GI Conditions and Gluten Degradation


https://doi.org/10.1101/400242
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/400242; this version posted August 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

108  The survival rate of strain D2 after 3 h exposure to simulated gastric juice was 78x10° cells,
109  which has reduced from 90x10°, the zero hour reading. Further, these cells were washed in PBS
110  and added to the simulated intestinal juice. Only 59x10° was alive after three hours. It could also
111  utilize gluten as a sole source of nitrogen, and thus form a clear zone (11+0.1mm) around the
112 colony grown.

113 Pathogenicity testing

114  Pathogenicity testing was included in the investigation. Hemolytic activity, serum resistance and
115  biofilm formation have generally been used. The strain D2 was susceptible to human serum with

116 0.04% survival, not a biofilm producer and exhibited alpha hemolytic activity.

117  Genome Features of K. rhizophila D2

118  More than 4.9 million good quality paired-end reads were obtained, with an approximate 110x
119  sequencing coverage. The nearly complete genome of Kocuria rhizophila D2 consisted of
120 2,313,294 bp (2.3 Mb) with an average G+C content of 71.0 %. Genome consisted of 2,253
121 genes and 2,218 ORFs were identified. Within the genome, 46 structural tRNAs, and 3 rRNAs

122 could be predicted.

123 Genome-based metabolic capabilities of K. rhizophila D2

124  We screened the genome sequence of the strain D2 for various metabolic capabilities occurring
125  within, helping to understand the cellular processes.

126 Amino Acid Synthesis and Proteolytic System

127 Analysis of genome reports the ability to synthesize amino acids such as serine, cysteine, and
128  aspartate. From these amino acids, seven other could be generated. Complete pathways for
129  essential amino acids such as valine and leucine could be constructed from the genome sequence.

130  Only D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) and three general peptidase genes

6
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131 could be identified in strain D2. Membrane proteins belonging to (Zinc) metalloendopeptidases
132 was detected. Two copies of Clp protease (serine peptidases) were identified. The presence of
133 aminopeptidases (E.C. 3.4.11.1 and E.C 3.4.11.2) and cytosol aminopeptidase PepA were
134  implied in gluten metabolism, found during the gluten utilization experiment.

135  Carbohydrate Metabolism

136  The genome of strain D2 encodes a large diversity of genes related to carbohydrate metabolism.
137  Annotation from PATRIC and PGAP has shown the genes present in pyruvate metabolism | &
138  Il, glycolysis and gluconeogenesis, TCA cycle, pentose phosphate pathway and serine-
139  glyoxylate cycle. The genes present in strain D2 helps to utilize various sugars viz. lactose,
140  maltose, inositol, sorbitol, mannitol, fructose, adonitol, dextrose, arabitol, galactose, raffinose,
141 rhamnose, trehalose, cellobiose, melibiose, sucrose, L-arabinose, esculin, d-arabinose, citrate,
142 malonate and sorbose. The genomic analysis further countersigns the presence of these genes and
143 their transporters within the genome.

144  Allied Metabolism

145  We could identify the entire components of thioredoxin system along with FMN reductase (EC
146 1.5.1.29) responsible for the sulfur assimilation into the cell. Enzymes exopolyphosphatase (EC
147  3.6.1.11) and polyphosphate kinase 2 (EC 2.7.4.1) catalyzes the hydrolysis of inorganic
148  polyphosphate and formation of polyphosphate from ATP respectively. The genome also had
149  seven genes responsible for ammonia assimilation into its cells, which chiefly includes glutamine
150  synthesis genes. The genome also has pathways for the production of vitamins: menaquinone
151 (vitamin K2), phylloguinone (vitamin K1), thiamine (B1) riboflavin (B2) and folate (B9). Also,
152 complete pathways for carotenoids and primary bile salts could be identified.

153  Stress Response
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154  The genome of Kocuria rhizophila D2 encodes various stress-related proteins, involving various
155  proteases involved in the stress response. Highly conserved class | heat-shock genes (GroES and
156  GroES operons) and F1Fo-ATPase system for maintaining the integrity of cellular proteins under
157  stress conditions were identified. The genome harbours three copies of universal stress proteins,

158  non-specific DNA-binding protein and genes related to oxidative and osmotic stress were found.

159  Comparative genomics

160  General genomic features

161  The average genome sizes of K. rhizophila strains were approximately of 2.74Mb and average
162  GC content is 70.81 %. Comparison between GC content, genome sizes, number of genes and
163  coding DNA sequence (CDS), we could not obtain any significant differences (P < 0.05,
164  Kruskal-Wallis statistical test). The average number of annotated protein-encoding genes is
165  2345. Analysis of RAST suggests the abundance of amino acids and its derivatives. Table 4

166  provided the general genome features for the strains.

167  Comparisons of D2 with other K. rhizophila strains

168  The availability of various K. rhizophila genomes has helped to define a core, accessory, unique
169  genome features. The comparison of strain D2 with other strains revealed 888 (40.11%) core
170  genes, 1243 (56.14 %) accessory and 83(3.74%) unique genes. The core and pan graph for a
171 number of shared gene families to the number of strains is plotted as shown in Fig 3. The size of
172  the core-genome gradually stabilized while the pan-genome size grew continuously, by the

173 addition of other strains indicating an open pan-genome.

174  Pan-Genome Analysis
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175  The analysis of pan, core and accessory genome revealed the presence of 888 core, 10882
176  accessory genes. The number of strain-specific genes for strain 14ASP is 453, strain D2 are 83,
177 DC2201 are 21, FDAARGOS 302 are 35, G2 are 514, P7-4 are 276, RF are 160 and for strain
178  TPW45 are 203 (Fig 4). orthoMCL analysis of core genes leads to the identification of copy
179  number within the genomes. 550 genes were present in a single copy and 338 genes were present
180 in multiple copies within eight strains. Functional analysis of the core genes by Cluster of
181  Orthologous Genes (COG) showed the distributed in a varied range of functional categories.
182  These included genes related to cell growth, DNA replication, transcription, translation, and also
183  general transporters. The analysis also revealed presence of carbohydrate, amino acid
184  metabolism, stress response and secondary metabolism. Categories of representing growth,
185  replication, transcription, translation, transporters comprised of 45.12% of the core genes. The
186  core (888) genes were used to construct a phylogenetic tree for all the strains under study, where
187 K. flava was used as an out-group. Phylogenetic reconstruction by using (ML) Maximum
188  likelihood method separated the study 8 strains in 2 clusters with bootstrap more than 70 (Fig 5)
189  and the same observation was made when repeated with the pan-genome (data not shown).

190  Clustering based on the source of isolation could not be observed.

191  Functional analysis of the accessory genes shows the limited distribution in COG categories as
192  opposed to core gene annotation. We could identify genes present in secondary metabolism,
193  transport and adaption only. The functional annotation has shown the presence of a large
194  percentage (52.19%) of genes was assigned to an uncharacterized group. The analysis also
195 identified a number of unique genes associated with the various strains. The strain 14ASP had
196  the most unique number of genes while the strain DC221 has the least number of unique genes.

197  The annotation of these has helped to identify the role of these genes within them.
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198  We could identify proteins involved in targeting and insertion of nascent membrane proteins into
199  the cytoplasmic membrane, and SRP receptor for FtsY and RecO family involved in involved in
200 DNA repair in strain FDAARGOS _302. In strain TPW45 arginine biosynthesis, bifunctional
201 protein ArgJ, O-succinylbenzoate synthase, N-acetyl-gamma-glutamyl-phosphate reductase was
202  found. In strain D2 we could find Isopentenyl-diphosphate Delta-isomerase and general
203  transmembrane protein while strain P7_4 had formimidoyl glutamase, single-stranded DNA-
204  binding protein and NADH-quinone oxidoreductase subunit K. In strain 14ASP alanine
205 racemase, cysteine--tRNA ligase, Holliday junction ATP-dependent DNA helicase RuvB,
206 crossover junction endo-de-oxyribonuclease RuvC, lipoprotein signal peptidase; peptide
207  methionine sulfoxide reductase MsrA and sec-independent protein translocase protein TatA.
208  While strain G2 had formamidopyrimidine-DNA glycosylase; ATP-dependent dethiobiotin
209  synthetase BioD; ribosome hibernation promoting factor; thiamine-phosphate synthase and strain
210 RF had urease accessory protein UreD while strain RF unique genes were associated with
211 hypothetical proteins. A large portion (97.82%) of these unique genes was assigned to

212 hypothetical proteins while only 2.17% could be assigned to some functions.

213 Mobile genetic elements (MGE)

214 A number of MGEs have been described in K. rhizophila including transposons, plasmids, and
215  bacteriophage. Based on the screening performed the IS element viz. 1S481, IS5, TN3 was only
216  present in all other strains except in 14ASP (Table 5). We could identify 1S21 in TPW45 and
217 1S21 in P7-4 alone. We could identify maximum of 35 copies of intentional sequences in strain
218  14ASP and minimum of 7 in strain D2. Further, no prophage could be identified in all the eight
219 K. rhizophila genomes while Clustered Regularly Interspaced Short Palindromic Repeat

220 (CRISPR) were present in 3 strains: 14ASP, TPW45, RF.

10
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221 Genomic Islands are distinct DNA fragments associated with mobility and we could identify
222 maximum of 22 Gls in G2. These genomic islands comprised of a minimum of 3% to a
223 maximum of 12.8% of genome size in the strain considered under study. These strain (DC220,
224  FDAARGOS 302, P7-4) had an equal number of genomic islands i.e. 11. The strain D2 has the
225  least number of islands and comprises 3.4% of the total genome. We could identify many
226 important genes associated with a cellular function in these regions. Some of these in strain
227  DC220 are ethanolamine permease and glutamine synthetase; dethiobiotin synthetase and fusaric
228 acid resistance protein in strain FDAARGOS 302; acyl-CoA synthesis genes within P7-4;
229  bleomycin resistance family protein in TPW45; glutaminase synthesis gene in 14ASP;
230 thioredoxin in RF; short-chain dehydrogenase in G2; alkylmercury lyase (EC 4.99.1.2) in D2.
231 Further, comparison of the genomic islands, we could not identify any common GI but could
232 find all the IS elements, CRISPR cas genes within these regions. The genome ATLAS plot

233 shows these differences between the strains (Fig 6).

234  Antibiotic resistance, Virulence determinants and Survival in GIT

235 K. rhizophila’s report on resistance to antibiotics is very little known. Thus in this study, we
236 screened genomes of K. rhizophila against Comprehensive Antibiotic Resistance Database
237  (CARD) for antibiotic resistance genes. Only strain RF had a single copy of beta-lactamase gene
238  and no antibiotic resistance from other seven isolates were identified. No virulence factors could
239  be found in any of the genomes. We could also identify genes lytr, rrpl for acid resistance, clp
240  for bile resistance and copA gene for competitiveness have been identified; thus helping it to

241  survive in the gastrointestinal tract within strain P7-4 and D2 only.

242
243

11


https://doi.org/10.1101/400242
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/400242; this version posted August 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

244  DISCUSSION

245  The isolate K. rhizophila D2 was comprehensively characterized for its ability to colonize in the
246 gut and, if present antibiotic resistance and virulence factors. In, the present study we use a
247  combination of in-vitro and in-silico approaches to identify this potential of bacterial strain D2.
248 A successful colonization in GIT by bacteria can happen if they have the ability to tolerate low
249  pH, bile salts, oxidative stress and moreover survive in the obligate anaerobic environment (21,

250  22).

251 Principally, we tested the acid and bile tolerance and found that strain D2 was able to tolerate a
252 low pH of 2.5 and 0.4% (w/v) bile salts with 60% and 58.8% survivability. Along with
253  experimental evidence, the genes were identified involved in acid tolerance (lyt, clp) within the
254  genome (23). We also identified genes encoding for entire primary bile salts production pathway
255  responsible for bile salts hydrolysis activity and in-turn the tolerance. Thus indicating important

256  characters for a bacterium to stay alive and become part of the natural GIT microbial community.

257  Next, we examined the aggregation and adhesion properties of strain that play an important
258  attribute for long-term colonization in the human GIT (24). The strain D2 showed low
259  autoaggregation capacity and adhesion. The isolate was also to adhere to human HT-29 cells
260  which were evident from the cells surface hydrophobicity. Also, the genome of strain D2 has
261  copA gene which helps in competitiveness with other bacteria (23). The resistance to hydrogen
262  peroxide is imparted by iron-binding ferritin-like antioxidant protein and superoxide dismutase
263 (EC 1.15.1.1) (25) found in the genome, this activity was also shown in the experiments. Overall
264  these ability suggest its potential to thrive in the GIT conditions. Further, we could not find genes

265  producing exopolysaccharides (EPS) and in-vitro results for production of EPS by strain D2

12
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266 confirm its inability to produce EPS. Generally these EPS are meant to provide additional benefit

267  as a means of protection from various stress conditions present in the human GIT (26, 27).

268  Genes for carbohydrate (CHO) metabolism revealed a diverse range of the gene encoding for
269 utilizing numerous carbon sources that can be used for energy and growth. We found important
270  genes found in CHO metabolism along with their respective transport systems. Further, the API
271  stress assay reflected the functionally of the genome. The integrated approach of genomic and
272 functional features of the strain together provides a comprehensive mechanism of carbohydrate
273  utilization. The in-silico analysis also revealed the presence of ‘Opp proteins’ proteolytic system
274  that help in breaking of high molecular weight proteins into smaller proteins, thus converting to
275  absorbable forms for the human body (28-30). The utilization of gluten as a sole source of
276  nitrogen was seen from the aminopeptidases genes present in the genome, which is a unique

277  property for the strain D2.

278  The capacity to absorb sulphur, phosphate and nitrogen was found to be related with the genome
279 by strain D2, helping them to carry out its own cellular process. The strain D2 has potential to
280  synthesize menaquinone (vitamin K2), phylloquinone (vitamin K1), thiamine (B1) riboflavin
281  (B2), folate (B9). These vitamins are need to be supplied exogenously and cannot be synthesized
282 by the human cells thus essential (31, 32). Moreover, it can produce in eleven amino acids which
283  serve as precursors for the synthesis of short-chain fatty acids (33, 34). The genome has genes
284  for acetyl-, butyryl- and proponyl- CoA dehydrogenase but the last enzymes that convert these
285 into acetate, buterate and propionate were absent. This is evident as this bacterium belongs to
286  actinomycetes and acetyl-, butyryl- and proponyl- CoA dehydrogenase are further taken for

287  another process (35, 36).

13
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288  One concern regarding the strains of K. rhizophila is that this species has been known for its
289  pathogenic infections. Therefore, it is of high importance to test for pathogenicity. Strain D2
290 showed non hemolytic activity and was sensitive to human serum and showed marginally
291  sensitivity to some other antibiotic such as ciprofloxacin, levofloxacin, and gentamicin Thus, the
292  strain D2 is a non-hemolytic, sensitive to major antibiotics tested and as well we could not

293 identify the hemolytic genes in genome analysis.

294  Genome comparison did not reveal any significant differences (P < 0.05) between the strains
295  with reference to their GC content, genome size, an average number of genes and coding DNA
296  sequence (CDS). The pan-genome size grew steadily with the addition of strains and the core
297  genome stabilized, thus indicating an open pan-genome for the strains under study (Fig 4). The
298  pan-genome analysis revealed 888 (6.57%) as core genes, 10882 (80.51%) accessory and 1745
299  (12.91%) as unique genes. The less number of genes in core, unique category and a large number
300 of genes in accessory suggests the genomic fluidity of the genomes (37, 38). Further, the
301  phylogenetic tree based on the core genome SNP based phylogeny separated 8 strains in 2

302  distinct clusters (bootstrap >70) (Fig 5) and no clustering based on the source of isolation.

303  Most of the strains under study did not harbour any antibiotic resistance gene except strain RF
304  possessing beta-lactamase, indicating its multi-drug resistance to antibiotics such as penicillins,
305  cephalosporins, cephamycins, and carbapenems (39, 40). No virulence genes could be identified
306 inany strains and genes responsible for survival in GIT can be only found in strains P7-4 and D2

307  as these are the only gut isolates.

308 Insertion sequences (ISs) and bacteriophages contribute actively to bacterial evolution by

309 integrating and exciting from the genome. In certain conditions, they provide new genetic
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310  properties such as virulence factors and antibiotic resistance (41-45) . In K. rhizophila no such
311  observations for IS elements with respect to virulence and antibiotic determinates could be done,
312 also the bacteriophage did not harbour important genes related to the bacterial cellular functions.
313  Genomic Islands are DNA fragments which usually are associated with mobility and differ
314  between closely related strains (46, 47). These genomic islands compromised a minimum 3.2%
315 to a maximum of 12% of the genomes in Kocuria rhizophila and most of these genes were
316  assigned to hypothetical proteins. Clustered Regularly Interspaced Short Palindromic Repeat
317 (CRISPR) was present in three environment strains: TPW45, 14ASP and RF. This has been

318  attributed to the higher frequency of phage attacks present in the environments (48, 49).

319  In conclusion, the trio approach of in-vitro characterization, genome mining and comparative
320 genomics of strain D2 have helped in the perceptive knowledge of genes responsible for
321  surviving in the gut. Moreover, the pan-genome analysis has shown the niche-specific genes
322 responsible for adaption and the pan-genome is open constructed on the bases of eight genomes.
323  The unique genes present the strains D2 ability to stay within the gut and might have the
324  potential to act as potential probiotic, as the strain produces various essential amino acids and
325  vitamins benefiting humans. The important factor of these sequenced genomes implies the
326  absence of virulence factors and biofilm formation ability and antibiotic resistance genes (except

327  strain RF).

328
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329 MATERIALS AND METHODS

330 Isolation and Preservation

331 The approval from Institutional Ethics Committee (IEC) was obtained. Three self-declared
332 healthy volunteers were selected with consent prior to collection of the samples. We immediately
333 transported the collected faecal samples to the lab at 4°C and processed for isolation of faecal
334  bacteria within 6 h. Faecal samples (1g) were transferred to 9 ml of sterile saline (0.85% sodium
335  chloride, Sigma) and mixed well (50). The serial dilutions were subsequently prepared in sterile
336  saline, and appropriate dilutions of the samples plated on Nutrient Agar (HiMedia, Mumbai,
337 India). Plates were incubated at 37°C for 48 h under aerobic condition. Glycerol [20% (v/V)]
338 stocks were prepared to preserve the isolated pure cultures and froze at -80°C (50).

339  Identification

340 Genomic DNA of the pure culture was extracted and quantified by using Qiagen Blood & Cell
341  Culture (Qiagen, USA) and Nanodrop ND1000 (Thermo Scientific, USA) respectively. We
342  amplified 16S rRNA gene by using universal primers, 27F (5'-AGA GTT TGA TCM TGG CTC
343  AG-3’) and 1492R (5'-ACG GCT ACC TTG TTA CGA CTT-3’) as described in the earlier study
344  (50). The amplified PCR products were purified using polyethylene glycol (PEG)-NaCl
345  precipitation (50) followed by sequencing in ABI 3730xI DNA analyzer, with the help Big Dye
346  terminator kit (Applied Biosystems, Inc., Foster City, CA). The sequence obtained was
347  assembled using DNASTARPro, version 10 and taxonomic identity were checked by using the
348 EZ-Biocloud server (50, 51).

349  Characterization of K. rhizophila D2

350  We used Dodeca Universal | & Il kit (Hi-media, India) disc diffusion method, to check antibiotic

351  susceptibility. We tested the isolate for nine exoenzymes by standard microbiological methods
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352  viz. Phosphatase by Pikovasky’s agar base (52), lipase by tributyrin agar base (53), urease by
353  urease agar base (54), protease by skimmed milk agar (55), gelatinase by gelatin medium (56),
354  cellulase by CMC agar (57), amylase by starch iodine test (58), Nitrate reductase by colour
355  change method (59) and catalase by effervescence of 6% H,0,(60). Carbohydrate utilization was
356  conducted by HiCarbohydrateTM Kit (Sigma, India) consisting of thirty-four carbohydrates with
357  respect to manufactures instructions. We also checked for the presence of any plasmid by Qiagen
358 Plasmid Mini Kit (Qiagen, USA). The bile and acid tolerance assay (61-64)
359  autoaggregation(65), cell surface hydrophobicity (66), adhesion to human HT-29 cell line (67,
360  68),bile-salt hydrolytic (BSH) activity (69), resistance to hydrogen peroxide (70-72)
361  exopolysaccharide production (73), hemolytic activity (74-76), resistance to simulated GIT
362  conditions (77-79), serum resistance (80), resistance to Simulated GI Conditions (77, 81, 82) and

363  gluten degradation (83) was carried out as stated.

364  Statistical analysis
365  All the experiments were done in triplicates and the mean values and standard deviation was

366  obtained and Duncan’s Multiple Range Test (SPSS Ver. 10.0) was used for comparisons.

367  Genome Sequencing and Assembly
368  We extracted genomic DNA as per the manufacturer’s protocol (QIAamp genomic DNA Kkit,
369  Germany). The high-quality DNA was sequenced using Illumina MiSeq platform (2x300 paired-

370  end libraries). PATRIC was used for de-novo assembly of quality-filtered reads (84, 85).

371 Bioinformatics Analyses
372 The draft genome sequence was annotated using RAST and the NCBI Prokaryotic Genome

373  Annotation Pipeline (PGAP) (86). Protein coding genes, tRNA and rRNA genes from the
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374  genomes were predicted using Glimmer version 3.02 (87), tRNA_scan-SE (88) and RNAmmer
375  (89) respectively. We also use COG database to analyze protein-coding genes (90) and Pfam
376  domains were predicted using NCBI Batch CD-Search Tool (91). Presence of CRISPR repeats
377  was predicted using the CRISPRFinder tool (92). We obtained open reading frames (ORFs) by
378  using the ORF finder tool (https://www.ncbi.nlm.nih.gov/orffinder/). Prophage sequences were
379  predicted and annotated using PHASTER (93). Bacterial insertion elements (1Ss) were identified
380 by ISfinder(94). Horizontal gene transfer was detected by genomic island tool: Islandviewer(95).
381  Gene clusters of any bioactive compounds were identified by antiSMASH: antibiotics and
382  Secondary Metabolite Analysis Shell (96). PlasmidFinder was used to search for plasmids within
383  the genome (97). We used PATRIC to predict the metabolic pathways from the genome (98).
384  Comparative genome analysis of ten whole genome sequences of kocuria rhizophila was done
385 by an ultra-fast bacterial pan-genome analysis pipeline (BPGA) (99). A blast atlas was generated

386  with the help of GVIEW Server (https://server.gview.ca/) (100).

387  Accession number(s)

388 We have deposited this whole genome shotgun project at GenBank under the accession
389 PNRKO0000000. The version described in this paper is version PNRK00000000.GenBank
390 accession number for the partial 16S rRNA nucleotide sequence is MH005095.
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713 FIGURES LEGENDS

714  Fig 1 Phylogenetic relationship of strain D2 with closely related taxa based on 16S rRNA gene

715 sequences (16S rRNA gene sequence of Arthrobacter roseus was used as out-group). The
716 phylogenetic trees were constructed using the Neighbour-Joining method. The
717 evolutionary distances were computed using the Kimura 2-parameter method and are in
718 the units of the number of base substitutions per site. The rate variation among sites was
719 modelled with a gamma distribution (shape parameter = 1)

720  Fig 2 Results for cell adhesion assay performed on Human HT-29 Cell line. Images taken under
721 fluorescence microscope 60X oil immersion where panel (a) is negative control without

722 any bacterial cell added; panel (b) is for the strain D2

723 Fig 3 Core and pan genome for K. rhizophila strains. The number of shared genes is plotted as

724 the function of number of strains (n) added sequentially. 888 copy genes are shared by all
725 8 genomes. The orange line represents the least-squares fit to the power law function
726 f(x)=a.x"b where a= 2705.9, b= 0.373747. The red line represents the least-squares fit to
727 the exponential decay function f1(x)=c.e”(d.x) where c= 2196.32, d=-0.179618.
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728  Fig 4 Number of Core, Accessory and Unique gene families of K. rhizophila genomes. The inner

729 octagon represents the core genome consisting of 888 genes. The outer octagon represents
730 the accessory genome and the number within them represents number of genes, while the
731 triangles represent the unique genes associated with all the strains.

732 Fig 5 Core Genome Phylogeny. Phylogenetic tree of 8 K. rhizophila strains using the Maximum

733 Likelihood method based on the GTR + G substitution model. The tree with the highest
734 log likelihood (-17897.1414) is shown. Evolutionary analyses were conducted in MEGAG.
735 A concatenated tree of 7909 genes was considered in the final dataset.

736  Fig 6. Blast Atlas of Kocuria genomes, with strain FDAARGOS_302 as a reference genome

737 followed by DC2201, G2, TPW45, P7_4, RF and the outermost as D2. The difference
738 between these genomes can be seen by the gaps in the rings.

739

740

741

35


https://doi.org/10.1101/400242
http://creativecommons.org/licenses/by-nc-nd/4.0/

N

5

TABLES

Table 1 Exoenzymes produced by Kocuria rhizophila D2

SI | Exoenzyme Result | SI Exoenzyme Result SI | Exoenzyme Result
No. No. No.
1 Phosphatase + 4 Cellulase - 7 Catalase +
2 Urease + 5 Protease + 8 Amylase +
3 Lipase + 6 Gelatinase - 9 Nitrate reductase +
+ sign indicates enzyme produced and - sign indicates that it does not produce enzymes
Table 2 Various carbohydrates utilised by test strain Kocuria rhizophila D2
SI. | Carbohydrates Strain D2 SL Carbohydrates Strain D2
No. No.
1 | Lactose Y 18 Inositol Y
2 | Xylose N 19 Sorbitol Y
3 | Maltose Y 20 Mannitol Y
4 | Fructose Y 21 Adonitol N
5 | Dextrose Y 22 Arabitol Y
6 | Galactose Y 23 Erythritol N
7 | Raffinose Y 24 Rhamnose Y
8 | Trehalose Y 25 Cellobiose Y
9 | Melibiose Y 26 Melezitose N
10 | Sucrose Y 27 alpha-Methyl-D-Mannoside N
11 | L-Arabinose Y 28 Xylitol N
12 | Mannose N 29 ONPG N
13 | Inulin Y 30 Esculin Y
14 | Sodium gluconate N 31 D-Arabinose Y
15 | Glycerol N 32 Citrate Y
16 | Salicin N 33 Malonate Y
17 | Dulcitol N 34 Sorbose Y

Y = Yes indicates its ability to utilise carbohydrate

and N = No indicates could not utilise carbohydrate.
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11
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14

15

TABLE 3 Showing Antibiogram results for the strain under study.

Sl. | Antibiotic Conc. | Strain | SL | Antibiotic Conc. Strai
No | tested tested D2 No | tested tested n D2
1 Cefpodoxime 10ug S 13 Amikacin 30ug S
2 Chloramphenicol 30ug S 14 CoTrimoxazole 25ug S
3 Vancomycin 30ug S 15 Colistin 10ug S
4 Streptomycin 10ug S 16 Augmentin 30ug S
5 Rifampicin Sug S 17 Netillin 30ug S
6 Levofloxacin Sug 1 18 Norfloxacin 10pg S
7 Ceftriaxone 30ug S 19 Ceftriaxone 10pg S
8 Clindamycin 2ug S 20 Ciprofloxacin Sug I
9 Augmentin 30ug S 21 Cefotaxime 30ug S
10 Amikacin 30ug S 22 Gentamicin 10pg I
11 Cefixime Sug S 23 Furazolidone 50ug I
12 | Tetracycline 30ug S 24 Amoxycillin 10pg S

S: Sensitive, I: Intermediate and R: Resistance to tested antibiotics
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18

19

Table 4: General genome features of various Kocuria rhizophila strains.

Kocuria FDAARGOS
rhizophila DC2201 302 P7-4 TPW45 14ASP RF G2 D2
Size(Mb) 2.7 2.7 2.82 2.7 2.7 2.78 2.88 2.64
GC% 71.2 71.2 70.5 70.6 70.8 70.6 70.8 70.8
Genes (total) 2,364 2,358 2,483 2,347 2,474 2,477 2,557 2,305
CDS (total) 2,264 2,300 2,359 2,254 2,416 2,414 2,502 2,253
Pseudo Genes 58 58 70 40 58 47 114 35
rRNA 3,3,3 3,33 2,1,2 2,1,1 3,3,2 4,54 41,1 1,1,1
tRNA 46 46 46 46 46 47 46 46
Siganus Fresh Oxalis Slaughter Human
Source Soil Food doliatus water corniculata Soil house Gut
Pacific
Country - U.S Ocean Malaysia - - Danish India
Publication
Year 2008 2017 2011 2015 2015 2015 2016 2018
NC NZ NZ NZ NZ NZ NZ PN
Accession No. 010617.1 CP022039.1 AFID01000001.1  JWTC01000009.1 LFIY01000001.1 JPWX02000010.1 CZIJW01000034.1 RK01000001.1
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Table S: Distribution of IS elements within the genomes, where number indicates the copy number.

IS DC2201 FDAARGOS 302 P7-4 TPW45 14ASP RF G2 D2
Elements

IS1595 1 1 1 1 0 1 1 0
1S481 1 1 1 1 0 1 1 1
IS5 1 1 1 1 0 1 1 1
Tn3 1 1 1 1 0 1 1 1
IS30 1 1 1 1 0 1 1 0
ISL3 1 1 1 1 0 1 1 0
ISNCY 1 1 1 1 0 1 1 0
IS110 0 0 1 1 0 1 1 0
IS3 0 0 1 1 0 1 1 0
1IS1380 1 1 0 1 0 0 0 0
IS91 0 0 0 1 0 1 0 1
IS256 0 0 0 0 0 0 1 1
IS1121 0 0 0 0 1 0 0 0
1S1649 0 0 0 0 1 0 0 0
1S1652 0 0 0 0 1 0 0 0
IS21 0 0 0 1 0 0 0 0
IS5564 0 0 0 0 1 0 0 0
IS66 0 0 1 0 0 0 0 0
ISAar35 0 0 0 0 1 0 0 0
ISAcbal 0 0 0 0 1 0 0 0
ISArspl 0 0 0 0 1 0 0 0
ISArsp6 0 0 0 0 1 0 0 0
ISAzspl 0 0 0 0 1 0 0 0
ISBIi29 0 0 0 0 1 0 0 0
ISCgl1 0 0 0 0 1 0 0 0
ISCmi2 0 0 0 0 1 0 0 0
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FIGURES

Fig 1 Phylogenetic relationship of strain D2 with closely related taxa based on 16S rRNA gene
sequences (16S rRNA gene sequence of Arthrobacter roseus was used as out-group). The
phylogenetic trees were constructed using the Neighbour-Joining method. The
evolutionary distances were computed using the Kimura 2-parameter method and are in
the units of the number of base substitutions per site. The rate variation among sites was

modelled with a gamma distribution (shape parameter = 1)
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Fig 2 Results for cell adhesion assay performed on Human HT-29 Cell line. Images taken under
fluorescence microscope 60X oil immersion where panel (a) is negative control without

any bacterial cell added; panel (b) is for the strain D2
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Fig 3 Core and pan genome for K. rhizophila strains. The number of shared genes is plotted as
the function of number of strains (n) added sequentially. 888 copy genes are shared by all
8 genomes. The orange line represents the least-squares fit to the power law function
f(x)=a.x"b where a= 2705.9, b= 0.373747. The red line represents the least-squares fit to

the exponential decay function f1(x)=c.e”"(d.x) where c=2196.32, d=-0.179618.
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Fig 4 Number of Core, Accessory and Unique gene families of K. rhizophila genomes. The inner
octagon represents the core genome consisting of 888 genes. The outer octagon represents
the accessory genome and the number within them represents number of genes, while the

triangles represent the unique genes associated with all the strains.
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Fig 5. Core Genome Phylogeny. Phylogenetic tree of 8 K. rhizophila strains using the Maximum
Likelihood method based on the GTR + G substitution model. The tree with the highest
log likelihood (-17897.1414) is shown. Evolutionary analyses were conducted in MEGAG®6.

A concatenated tree of 7909 genes was considered in the final dataset.
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Fig 6. Blast Atlas of Kocuria genomes, with strain FDAARGOS_302 as a reference genome
followed by DC2201, G2, TPW45, P7_4, RF and the outermost as D2. The difference between

these genomes can be seen by the gaps in the rings.
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