

1 **Therapeutic effects of favipiravir against severe fever with thrombocytopenia**
2 **syndrome virus infection in a lethal mouse model: dose-efficacy studies upon oral**
3 **administration**

4

5 Hideki Tani,^{1, 2*} Takashi Komeno,³ Aiko Fukuma,¹ Shuetsu Fukushi,¹ Satoshi

6 Taniguchi,¹ Masayuki Shimojima,¹ Akihiko Uda,⁴ Shigeru Morikawa,⁴ Nozomi

7 Nakajima,³ Yousuke Furuta,³ and Masayuki Saijo¹

8

9 ¹Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan

10 ²Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences,

11 University of Toyama, Toyama, Japan

12 ³Research Laboratories, Toyama Chemical Co., Ltd., Toyama, Japan

13 ⁴Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo,

14 Japan

15

16 Running Head: Treatment of SFTSV infection with favipiravir

17 *Corresponding author

18 E-mail: htani@med.u-toyama.ac.jp (HT)

20 **Abstract**

21 **Background**

22 Severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV),
23 is a viral hemorrhagic fever with a high case fatality rate. Favipiravir was reported to be
24 effective in the treatment of SFTSV infection *in vivo* in type I interferon receptor
25 knockout (IFNAR^{-/-}) mice at treatment dosages of both 60 mg/kg/day and 300
26 mg/kg/day for a duration of 5 days.

27 **Methods**

28 In this study, the efficacy of favipiravir at dosages of 120 mg/kg/day and 200 mg/kg/day
29 against SFTSV infection in an IFNAR^{-/-} mouse infection model was investigated.
30 IFNAR^{-/-} mice were subcutaneously infected with SFTSV at a 1.0×10^6 50% tissue
31 culture infectious dose followed by twice daily administration of favipiravir, comprising
32 a total dose of either 120 mg/kg/day or 200 mg/kg/day. The treatment was initiated
33 either immediately post infection or at predesignated time points post infection.

34 **Results**

35 All mice treated with favipiravir at dosages of 120 mg/kg/day or 200 mg/kg/day
36 survived when the treatment was initiated at no later than 4 days post infection. A
37 decrease in body weight of mice was observed when the treatment was initiated at 3–4
38 days post infection. Furthermore, all control mice died. The body weight of mice did not
39 decrease when treatment with favipiravir was initiated immediately post infection at
40 dosages of 120 mg/kg/day and 200 mg/kg/day.

41 **Conclusions**

42 Similar to the literature-reported peritoneal administration of favipiravir at 300
43 mg/kg/day, the oral administration of favipiravir at dosages of 120 mg/kg/day and 200
44 mg/kg/day to IFNAR^{−/−} mice infected with SFTSV was effective.

45

46

47 **Author summary**

48 Severe fever with thrombocytopenia syndrome (SFTS), which is caused by SFTS virus
49 (SFTSV), is a generalized infectious disease with a high case fatality rate. Currently, no
50 effective therapeutics for SFTS is available; therefore, the development of effective

51 antiviral drugs is needed. Favipiravir exhibits antiviral activity against various RNA
52 viruses, including SFTSV. The present study demonstrated the efficacy of favipiravir in
53 the treatment of SFTSV infection in a lethal mouse model, when the dose was set
54 similar to that approved for anti-influenza drug in humans by the Ministry of Health,
55 Labour and Welfare, Japan. The present study suggests that favipiravir is a promising
56 drug for the treatment of SFTSV infection.

57

58

59

60 **Introduction**

61 Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus
62 (SFTSV), belonging to the family *Phenuiviridae* (genus *Phlebovirus*). SFTS is a viral
63 hemorrhagic fever with a high case fatality rate; it was first reported as a novel
64 infectious disease in China [1, 2], followed by discovery in South Korea and Japan [3,
65 4]. It is characterized by marked reduction in platelet, white blood cell, and total blood
66 cell counts in patients. Hemorrhagic symptoms, such as gingival oozing, bloody
67 diarrhea, and hematuria, are commonly observed in patients with severe and fatal SFTS
68 [3, 5, 6]. Because of the associated high mortality rate, it is critical to develop specific
69 and effective therapy for SFTS. Unfortunately, no such treatment has been developed
70 yet. The inhibitory effect of ribavirin on the replication of SFTSV has been elucidated
71 *in vitro* as well as *in vivo* [7, 8]. Although ribavirin inhibited the replication of SFTSV
72 *in vitro* in a dose-dependent manner, therapeutic effect *in vivo* was limited in
73 comparison with that of favipiravir. Thus, an anti-SFTSV effect of ribavirin is limited
74 or absent in the clinical setting [9, 10]. Favipiravir is an RNA-dependent RNA
75 polymerase inhibitor and a potent broad-spectrum antiviral drug. It inhibits the

76 replication of multiple families of RNA viruses *in vitro* and *in vivo* [11, 12]. Favipiravir
77 is a therapeutic antiviral drug against influenza virus approved in Japan. However,
78 during the 2014–2015 Ebola outbreak in West Africa, it was also considered as a
79 candidate agent against Ebola virus infection [13, 14]. In addition, favipiravir was
80 demonstrated to have antiviral effects against the newly discovered emerging viruses
81 SFTSV and Heartland virus (HRTV) [15]. HRTV is an emerging tick-borne virus,
82 which, similar to SFTSV, belongs to the genus *Phlebovirus* in the family *Phenuiviridae*.
83 Patients infected with HRTV show similar symptoms as SFTS patients. The efficacy of
84 favipiravir against HRTV infections was demonstrated in animal infection models using
85 STAT2 knockout hamsters [15].
86 Reportedly, favipiravir is effective when administered even after symptoms appeared.
87 The antiviral effects of favipiravir against SFTSV were confirmed in a mouse model as
88 well as STAT2 knockout hamster model [16]. We have previously demonstrated the
89 antiviral effects of favipiravir against SFTSV in a lethal mouse model using IFNAR^{−/−}
90 mice. In the study, the highest dose of favipiravir used in mice experiments, at which
91 side effects did not appear, was 300 mg/kg/day via intraperitoneal (i.p.) route. All mice

92 treated with favipiravir at 300 mg/kg/day survived without showing any symptoms
93 upon SFTSV infection. In the mouse model, all mice also survived when treated i.p.
94 with favipiravir at 60 mg/kg/day. However, their body weight decreased by
95 approximately 10% [8]. In the present study, the efficacy of favipiravir in the mouse
96 lethal model was evaluated at dosages of 120 mg/kg/day via oral administration (p.o.)
97 and 200 mg/kg/day p.o. The two doses of favipiravir were selected in clinical trials to
98 evaluate the efficacy of favipiravir against influenza virus infections in humans.
99 Favipiravir dosages of 120 mg/kg/day p.o. and 200 mg/kg/day p.o. have been applied
100 for approval in Japan, and the phase III study conducted in the USA. The aim of this
101 study was to assess the efficacy of favipiravir at dosages of 120 mg/kg/day p.o. and 200
102 mg/kg/day p.o. in the treatment of SFTSV infection in the lethal mouse model using
103 IFNAR^{-/-} mice.
104

105 Materials and methods

106 **Ethics statement.** All animal experiments were performed in biological safety level 3
107 (BSL-3) containment laboratories at the National Institute of Infectious Diseases (NIID)

108 in Japan and adhered to NIID regulations and guidelines on animal experimentation.

109 Protocols were approved by the Institutional Animal Care and Use Committee of the

110 NIID (No. 215024).

111

112 **Cells, viruses, and antiviral compounds.** Vero cells obtained from American Type

113 Culture Collection (Summit Pharmaceuticals International, Japan) were maintained in

114 Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat-inactivated

115 fetal bovine serum and antibiotics (DMEM-10FBS). The SFTSV Japanese strain SPL010

116 was used in this study [8]. Pseudotyped vesicular stomatitis viruses (VSV) possessing

117 SFTSV-GP or VSV-G, designated SFTSVpv or VSVpv, respectively, were used [17].

118 SPL010 virus stocks were stored at -80°C until use. All work with SFTSV was performed

119 in BSL-3 containment laboratories in the NIID in accordance with the institutional

120 biosafety operating procedures. Favipiravir (Toyama Chemical Co., Ltd., Toyama, Japan)

121 was suspended in 0.5% (w/v) methylcellulose solution.

122

123 **Animal experiments.** IFNAR^{-/-} C57BL/6 mice were produced as described previously

124 [8]. IFNAR^{-/-} C57BL/6 mice were bred and maintained in an environmentally

125 controlled specific pathogen-free animal facility of the NIID. Eight- to 10-week-old

126 male mice were used. Favipiravir was administered in mice using a stomach probe after

127 subcutaneous inoculation (s.c.) with 1.0×10^6 50% tissue culture infectious dose

128 (TCID₅₀) of SFTSV in 100 μ l DMEM. Treatments were commenced at 1 h post

129 infection or at 1, 2, 3, 4, or 5 days post infection and continued for 5 days.

130 To determine the efficacy of favipiravir in the treatment of SFTSV infection, the mice

131 were treated with favipiravir at dosages of either 120 mg/kg/day p.o. or 200 mg/kg/day

132 p.o. [60 or 100 mg/kg/bis in die (BID), p.o.] for 5 days starting at various time points as

133 described above (Fig.1). Blood samples (20 μ l/animal) were obtained via tail vein

134 puncture at intervals of 2–4 days over a period of 14 days (<4 blood drawings in total)

135 for the measurement of viral RNA levels. Body weight was recorded daily for 2 weeks,

136 and each mouse was monitored daily for the development of clinical symptoms such as

137 hunched posture, ruffled fur, activity, response to stimuli, and neurological signs. When

138 mice showed serious clinical symptoms or weight loss of more than 30 %, they were

139 considered to be reached the humane endpoint so that they were anesthetized.

140

141 **Viral RNA quantification.** The concentration of SFTSV genomic RNA in blood was

142 determined as previously described [18]. Total RNA was prepared from 20 µl of blood

143 samples using High Pure Viral RNA Kit (Roche Diagnostics K.K., Tokyo, Japan). Gene

144 expression was estimated using QuantiTect Probe RT-PCR kit (Qiagen, Hilden,

145 Germany) according to the manufacturer's protocol. Fluorescent signals were estimated

146 using LightCycler 96 (Roche Diagnostics K.K., Tokyo, Japan). Statistical analyses were

147 performed using GraphPad Prism6 Software. One-way analysis of variance (ANOVA)

148 with Bonferroni's multiple comparison test was used.

149

150 **Neutralization assay.** The day of SFTSV infection was considered as Day 0 and days

151 post infection were subsequently counted. Sera from the mice at a convalescent phase

152 were obtained at Day 14. To examine the neutralization antibody responses against

153 SFTSV of the mice at a convalescent-phase, pseudotyped VSV system was employed.

154 SFTSVpv and VSVpv were pre-incubated with serially diluted sera of the mice at a
155 convalescent-phase for 1 h at 37°C. Then, Vero cells were inoculated with each of the
156 virus–serum mixtures. After 2 h of adsorption at 37°C, cells were washed with DMEM-
157 10FBS and infectivity was determined by measuring luciferase activity after 24 h of
158 incubation.

159

160

161 **Results**

162 **Therapeutic efficacy of favipiravir against SFTSV infection in IFNAR^{-/-} mice.**
163 Consistent with the results of a previous study, the optimal lethal infectious dose of
164 SFTSV strain SPL010 in mice was determined to be 1.0×10^6 TCID₅₀ [8]. All mice
165 treated with favipiravir at dosages of 120 mg/kg/day or 200 mg/kg/day survived from a
166 lethal SFTSV infection when treatment was initiated within 3 days and 4 days post
167 infection, respectively (Fig. 2B and 2C). All control mice, infected with SFTSV died
168 within 8 days post infection [8] (Fig. 2A). When treatment was initiated on Day 4, the
169 mice treated with favipiravir at dosages of 120 mg/kg/day and 200 mg/kg/day exhibited

170 67% and 100% survival, respectively. However, under these conditions, the health of
171 mice was highly deteriorated, with more than 15% weight loss. A few mice treated with
172 favipiravir at a dosage of 200 mg/kg/day dose initiated on Day 5 survived even with
173 30% weight loss (Fig. 2C).

174 The RNA levels in the blood of mice gradually decreased upon administration of
175 favipiravir at dosages of 120 mg/kg/day and 200 mg/kg/day, respectively (Fig. 2B and
176 2C). There was no significant difference in the RNA levels between the two treatment
177 groups. The viral RNA in blood was undetectable by Day 14 in most mice treated with
178 favipiravir at dosages of 120 mg/kg/day and 200 mg/kg/day (Fig. 2B and 2C).

179

180 **Neutralizing antibody responses against SFTSV in the mouse sera at a**
181 **convalescent-phase.** To examine whether neutralizing antibodies were induced in the
182 mice at a convalescent-phase, serum samples collected on Day 14 were tested for
183 neutralizing activity with an assay using a pseudotyped VSV system. Sera of
184 convalescent-phase mice neutralized SFTSVpv infection at a dilution of 1 in 800 (Fig.
185 3) and in a dilution-dependent manner (data not shown), whereas no significant

186 neutralization of VSVpv infection was observed (Fig. 3). The induction of neutralizing

187 antibody responses in mice wherein treatment was initiated on Days 0 or 5 seemed

188 lower than the induction of neutralizing antibody responses in mice wherein treatment

189 was initiated on Day 1 at a dosage of 200 mg/kg/day (Fig. 3B).

190

191

192 **Discussion**

193 We have previously demonstrated the protective efficacy of favipiravir in the treatment

194 of SFTSV infection at dosages of 300 mg/kg/day i.p. in the lethal mouse model [8].

195 Since favipiravir is approved for anti-influenza drug as a formula of p.o. drug in Japan,

196 we have tested the efficacy of favipiravir at dosages of 120 mg/kg/day and 200

197 mg/kg/day p.o. against SFTSV in the lethal mouse model. The results demonstrated

198 favipiravir at both dosages were effective via oral administration. The dosages were the

199 standard dose applicable in humans. For utilizing favipiravir as an anti-influenza drug in

200 humans, a dosage of 120 mg/kg/day p.o. has been set for clinical use in Japan and a

201 dosage of 200 mg/kg/day p.o. has been set for phase III studies in the USA,

202 respectively. With regard to the Ebola virus disease (EVD) outbreak that occurred in
203 West Africa in 2013–2015, favipiravir was required to be administered at a higher dose
204 for the treatment of EVD than that required for the treatment of influenza. This was
205 based on the higher IC₅₀ values of favipiravir for Ebola virus *in vitro* and *in vivo* [14,
206 19, 20].

207 The effective concentration of favipiravir in blood is considered to be similar when
208 administered p.o. and when administered i.p. [21]. Here the therapeutic effect of
209 favipiravir in the treatment of SFTSV infection was observed both when administered
210 p.o. as well as when administered i.p. In contrast to the previous reports, where
211 favipiravir was administered once a day, favipiravir was administered twice a day (BID)
212 in the present study. The antiviral effects of favipiravir when administered orally at the
213 tested doses might be higher than those when administered via the intraperitoneal route
214 *quaque die* [8]. This difference may be attributed to the maintenance of effective
215 favipiravir concentration in blood. Furthermore, the observed therapeutic effect was
216 obtained not only due to a direct inhibition of viral replication by favipiravir but also
217 due to the production of neutralizing antibodies against SFTSV in the later phase of the

218 disease (Fig. 3). The neutralizing antibody responses were higher in mice wherein
219 treatment was initiated on Days 1 and 2 than in those wherein treatment was initiated on
220 Day 0. This may be attributed to the amount of replicated virus as an antigen.
221 Conversely, the production of neutralizing antibodies was weak in mice wherein
222 treatment was initiated on Day 5, suggesting that neutralizing antibody producing cells
223 were more heavily damaged in mice wherein the treatment was initiated in the later
224 stages of the disease.
225 The therapeutic effect of favipiravir is remarkably higher against SFTS in animal
226 models than other reported viral infectious diseases [19, 22, 23]. Administration of
227 favipiravir after the onset of the disease did not show any efficacy in the treatment of
228 EVD or Crimean-Congo hemorrhagic fever viral infection in animal models [19, 22,
229 23]. Conversely, the administration of favipiravir in the mice infected with SFTSV
230 within 4 days post infection showed efficacy even at a dosage of 120 mg/kg/day, which
231 is the dosage approved to be prescribed to humans (Fig. 2). Therefore, favipiravir was
232 effective not only for prophylactic use but also for treating SFTS in the mouse model.
233 However, it was too late to initiate the administration of favipiravir at Day 5 in the mice

234 model (Fig. 2). The results obtained in the present study indicate that favipiravir should
235 be administered as early as possible post infection. This also indicates that favipiravir
236 should be administered as early as possible from disease onset for the treatment of
237 patients with SFTS.

238 Currently, there is no antiviral therapy available for the treatment of SFTSV infection.

239 Here, we studied the efficacy of favipiravir at dosages of 120 mg/kg/day p.o. and 200
240 mg/kg/day p.o. in the treatment of mice infected with SFTSV. These dosages can also
241 be applied to humans. Currently, clinical trials are underway for evaluating the efficacy
242 of favipiravir in the treatment of patients with SFTS in Japan [24]. We hope that
243 favipiravir will not only be used as a prophylactic drug against SFTS in the near future
244 but also as a therapeutic drug in clinical practice.

245

246

247 **Acknowledgments**

248 We gratefully acknowledge Ms. Momoko Ogata, Ms. Junko Hirai, and Ms. Kaoru
249 Hounoki for their technical and secretarial assistances.

250 **References**

251 1. Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with
252 thrombocytopenia syndrome, an emerging tick-borne zoonosis. *Lancet Infect Dis.*
253 2014;14(8):763-72. doi: 10.1016/S1473-3099(14)70718-2. PubMed PMID: 24837566.

254 2. Lei XY, Liu MM, Yu XJ. Severe fever with thrombocytopenia syndrome and
255 its pathogen SFTSV. *Microbes Infect.* 2015;17(2):149-54. doi:
256 10.1016/j.micinf.2014.12.002. PubMed PMID: 25498868.

257 3. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al.
258 The first identification and retrospective study of Severe Fever with Thrombocytopenia
259 Syndrome in Japan. *J Infect Dis.* 2014;209(6):816-27. doi: 10.1093/infdis/jit603.

260 PubMed PMID: 24231186.

261 4. Kim KH, Yi J, Kim G, Choi SJ, Jun KI, Kim NH, et al. Severe fever with
262 thrombocytopenia syndrome, South Korea, 2012. *Emerg Infect Dis.* 2013;19(11):1892-
263 4. doi: 10.3201/eid1911.130792. PubMed PMID: 24206586; PubMed Central PMCID:
264 PMC3837670.

265 5. Deng B, Zhou B, Zhang S, Zhu Y, Han L, Geng Y, et al. Clinical features and
266 factors associated with severity and fatality among patients with severe fever with
267 thrombocytopenia syndrome Bunyavirus infection in Northeast China. PLoS One.
268 2013;8(11):e80802. doi: 10.1371/journal.pone.0080802. PubMed PMID: 24236203;
269 PubMed Central PMCID: PMCPMC3827460.

270 6. Gai ZT, Zhang Y, Liang MF, Jin C, Zhang S, Zhu CB, et al. Clinical progress
271 and risk factors for death in severe fever with thrombocytopenia syndrome patients. J
272 Infect Dis. 2012;206(7):1095-102. doi: 10.1093/infdis/jis472. PubMed PMID:
273 22850122.

274 7. Shimojima M, Fukushi S, Tani H, Yoshikawa T, Fukuma A, Taniguchi S, et
275 al. Effects of ribavirin on severe fever with thrombocytopenia syndrome virus in vitro.
276 Jpn J Infect Dis. 2014;67(6):423-7. PubMed PMID: 25410555.

277 8. Tani H, Fukuma A, Fukushi S, Taniguchi S, Yoshikawa T, Iwata-Yoshikawa
278 N, et al. Efficacy of T-705 (Favipiravir) in the Treatment of Infections with Lethal
279 Severe Fever with Thrombocytopenia Syndrome Virus. mSphere. 2016;1(1). Epub

280 2016/06/16. doi: 10.1128/mSphere.00061-15. PubMed PMID: 27303697; PubMed

281 Central PMCID: PMCPMC4863605.

282 9. Park I, Kim HI, Kwon KT. Two Treatment Cases of Severe Fever and

283 Thrombocytopenia Syndrome with Oral Ribavirin and Plasma Exchange. Infect

284 Chemother. 2017;49(1):72-7. doi: 10.3947/ic.2017.49.1.72. PubMed PMID: 28271646;

285 PubMed Central PMCID: PMCPMC5382054.

286 10. Liu W, Lu QB, Cui N, Li H, Wang LY, Liu K, et al. Case-fatality ratio and

287 effectiveness of ribavirin therapy among hospitalized patients in china who had severe

288 fever with thrombocytopenia syndrome. Clin Infect Dis. 2013;57(9):1292-9. doi:

289 10.1093/cid/cit530. PubMed PMID: 23965284.

290 11. Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure

291 against neglected and emerging RNA viruses. Antiviral Res. 2018;153:85-94. Epub

292 2018/03/11. doi: 10.1016/j.antiviral.2018.03.003. PubMed PMID: 29524445.

293 12. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum

294 inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci.

295 2017;93(7):449-63. doi: 10.2183/pjab.93.027. PubMed PMID: 28769016; PubMed
296 Central PMCID: PMCPMC5713175.

297 13. De Clercq E. Ebola virus (EBOV) infection: Therapeutic strategies. Biochem
298 Pharmacol. 2015;93(1):1-10. doi: 10.1016/j.bcp.2014.11.008. PubMed PMID:
299 25481298.

300 14. Sissoko D, Laouenan C, Folkesson E, M'Lebing AB, Beavogui AH, Baize S,
301 et al. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial):
302 A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med.
303 2016;13(3):e1001967. doi: 10.1371/journal.pmed.1001967. PubMed PMID: 26930627;
304 PubMed Central PMCID: PMCPMC4773183 following competing interests: SB, XdL,
305 HR, and SG received a grant from St Luke International University (Tokyo, Japan) to
306 perform research on favipiravir in non-human primates. YY declared board membership
307 for AbbVie, BMS, Gilead, MSD, Roche, Johnson&Johnson, ViiV Healthcare, Pfizer,
308 and consultancy for AbbVie, BMS, Gilead, MSD, Roche, Johnson&Johnson, ViiV
309 Healthcare, and Pfizer. OP worked for Fab'entech biotechnology from 1st April to 13th
310 November 2015. Between January 2014 and now, SC received a grant from the CHU de

311 Quebec research center, which had no relationship with the trial described in the paper.

312 All other authors declared no conflict of interest.

313 15. Westover JB, Rigas JD, Van Wettere AJ, Li R, Hickerson BT, Jung KH, et al.

314 Heartland virus infection in hamsters deficient in type I interferon signaling: Protracted

315 disease course ameliorated by favipiravir. *Virology*. 2017;511:175-83. doi:

316 10.1016/j.virol.2017.08.004. PubMed PMID: 28865344; PubMed Central PMCID:

317 PMCPMC5623653.

318 16. Gowen BB, Westover JB, Miao J, Van Wettere AJ, Rigas JD, Hickerson BT,

319 et al. Modeling Severe Fever with Thrombocytopenia Syndrome Virus Infection in

320 Golden Syrian Hamsters: Importance of STAT2 in Preventing Disease and Effective

321 Treatment with Favipiravir. *J Virol*. 2017;91(3). doi: 10.1128/JVI.01942-16. PubMed

322 PMID: 27881648; PubMed Central PMCID: PMCPMC5244333.

323 17. Tani H, Shimojima M, Fukushi S, Yoshikawa T, Fukuma A, Taniguchi S, et

324 al. Characterization of Glycoprotein-Mediated Entry of Severe Fever with

325 Thrombocytopenia Syndrome Virus. *J Virol*. 2016;90(11):5292-301. doi:

326 10.1128/JVI.00110-16. PubMed PMID: 26984731; PubMed Central PMCID:
327 PMCPMC4934762.

328 18. Yoshikawa T, Fukushi S, Tani H, Fukuma A, Taniguchi S, Toda S, et al.
329 Sensitive and specific PCR systems for detection of both Chinese and Japanese severe
330 fever with thrombocytopenia syndrome virus strains and prediction of patient survival
331 based on viral load. *J Clin Microbiol.* 2014;52(9):3325-33. doi: 10.1128/JCM.00742-14.
332 PubMed PMID: 24989600; PubMed Central PMCID: PMCPMC4313158.

333 19. Oestereich L, Ludtke A, Wurr S, Rieger T, Munoz-Fontela C, Gunther S.
334 Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a
335 small animal model. *Antiviral Res.* 2014;105:17-21. doi:
336 10.1016/j.antiviral.2014.02.014. PubMed PMID: 24583123.

337 20. Bai CQ, Mu JS, Kargbo D, Song YB, Niu WK, Nie WM, et al. Clinical and
338 Virological Characteristics of Ebola Virus Disease Patients Treated With Favipiravir
339 (T-705)-Sierra Leone, 2014. *Clin Infect Dis.* 2016;63(10):1288-94. Epub 2016/10/30.
340 doi: 10.1093/cid/ciw571. PubMed PMID: 27553371.

341 21. Gowen BB, Juelich TL, Sefing EJ, Brasel T, Smith JK, Zhang L, et al.

342 Favipiravir (T-705) inhibits Junin virus infection and reduces mortality in a guinea pig

343 model of Argentine hemorrhagic fever. PLoS Negl Trop Dis. 2013;7(12):e2614. doi:

344 10.1371/journal.pntd.0002614. PubMed PMID: 24386500; PubMed Central PMCID:

345 PMCPMC3873268.

346 22. Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS. Post-

347 exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection

348 in a mouse model. Antiviral Res. 2014;104:153-5. doi: 10.1016/j.antiviral.2014.01.012.

349 PubMed PMID: 24462697.

350 23. Oestereich L, Rieger T, Neumann M, Bernreuther C, Lehmann M, Krasemann

351 S, et al. Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a

352 mouse model for Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis.

353 2014;8(5):e2804. doi: 10.1371/journal.pntd.0002804. PubMed PMID: 24786461;

354 PubMed Central PMCID: PMCPMC4006714.

355 24. Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, et al.

356 Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res.

357 2018;150:137-47. Epub 2017/12/05. doi: 10.1016/j.antiviral.2017.11.019. PubMed

358 PMID: 29199036.

359

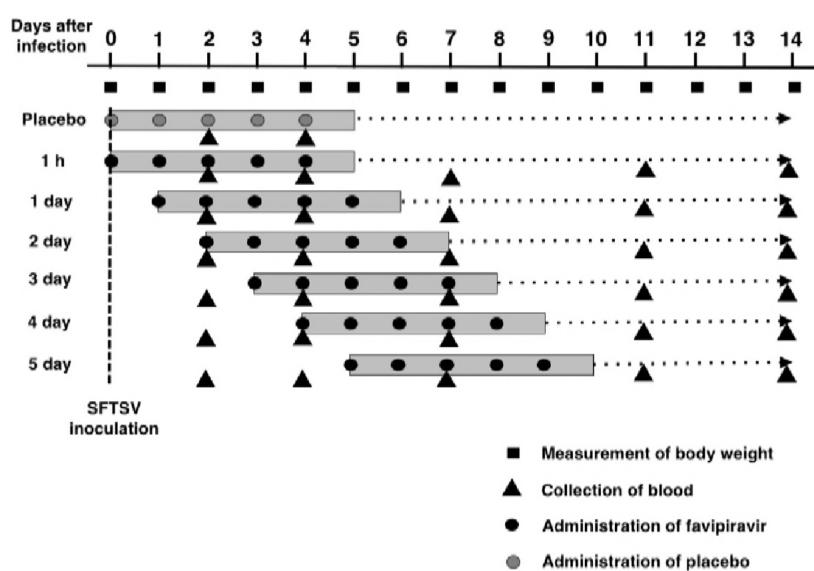
360 **Figure Legends**

361 **Fig 1.** Schematic experimental design. Six mice in each group were administered
362 favipiravir at either 120 mg/kg/day or 200 mg/kg/day starting at 1 h or 1, 2, 3, 4, or 5
363 days post infection and continued for 5 consecutive days. Placebo control mice were
364 treated with an equal volume of 0.5% (w/v) methylcellulose solution administered at 1 h
365 post infection and continued for 5 consecutive days.

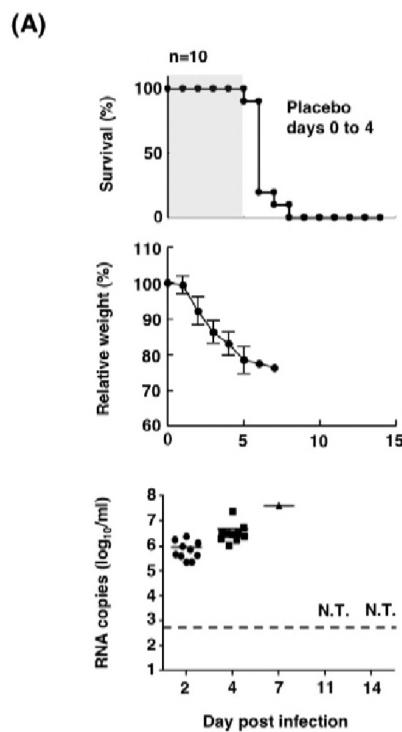
366

367 **Fig 2.** Effects of treatment with favipiravir against SFTSV infection in IFNAR^{-/-} mice.
368 (A) Ten mice in the placebo control group were inoculated s.c. with 1.0×10^6 TCID₅₀ of
369 SFTSV strain SPL010. Control mice received 0.5% (w/v) methylcellulose solution via
370 the p.o. route. (B, C) Six mice in each group were inoculated s.c. with 1.0×10^6 TCID₅₀
371 of SFTSV strain SPL010. Mice were treated with favipiravir at a dose of 120 mg/kg/day
372 (B, 60 mg/kg/BID, p.o.) or 200 mg/kg/day (C, 100 mg/kg/BID, p.o.). Treatment was
373 commenced at 1 h or 1, 2, 3, 4, or 5 days post infection. Favipiravir was administered
374 twice daily p.o. using a stomach probe until death or for 5 days as indicated in the upper
375 columns (shaded in gray with survival curves). Survival was determined using Kaplan–

376 Meier analysis and GraphPad Prism6 (GraphPad Software) and shown in the upper
377 columns. Relative weights are shown as means with standard deviations (middle
378 columns). SFTSV RNA levels in blood samples collected at 2, 4, 7, 11, or 14 days post
379 infection were determined by quantitative RT-PCR assays (lower columns). One way
380 ANOVA with Bonferroni's multiple comparison test was used to determine statistical
381 significance. Dashed lines indicate the detection limits of the assay in blood samples.
382 Significance was determined in comparison to the results of the placebo group (for
383 survivals) or Day 2 blood samples (for RNA copies): ****, $P < 0.0001$; ***, $P < 0.001$;
384 **, $P < 0.01$; * $P < 0.05$; N.T., not tested.

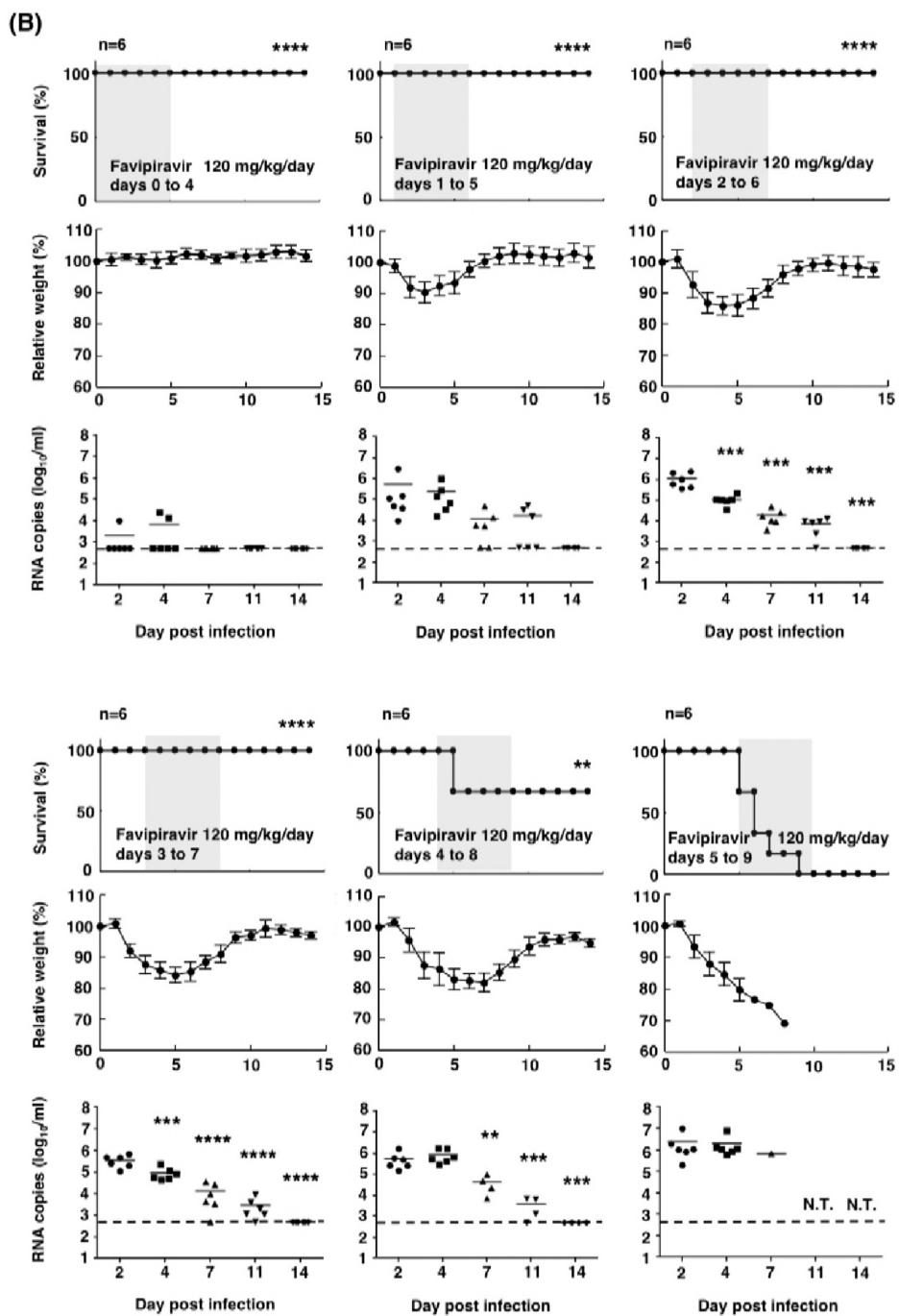

385
386 **Fig 3.** Neutralization of SFTSVpv by convalescent-stage mouse sera. SFTSVpv were
387 preincubated with 800-fold diluted mouse sera collected on Day 14 (120 mg/kg/day
388 treatment group [(A) left columns] and 200 mg/kg/day treatment group [(B) right
389 columns]). Subsequently, Vero cells were infected with SFTSVpv. Infectivity of
390 SFTSVpv was determined by measuring luciferase activities at 24 h post infection.
391 Results from three independent assays are shown, with error bars representing standard

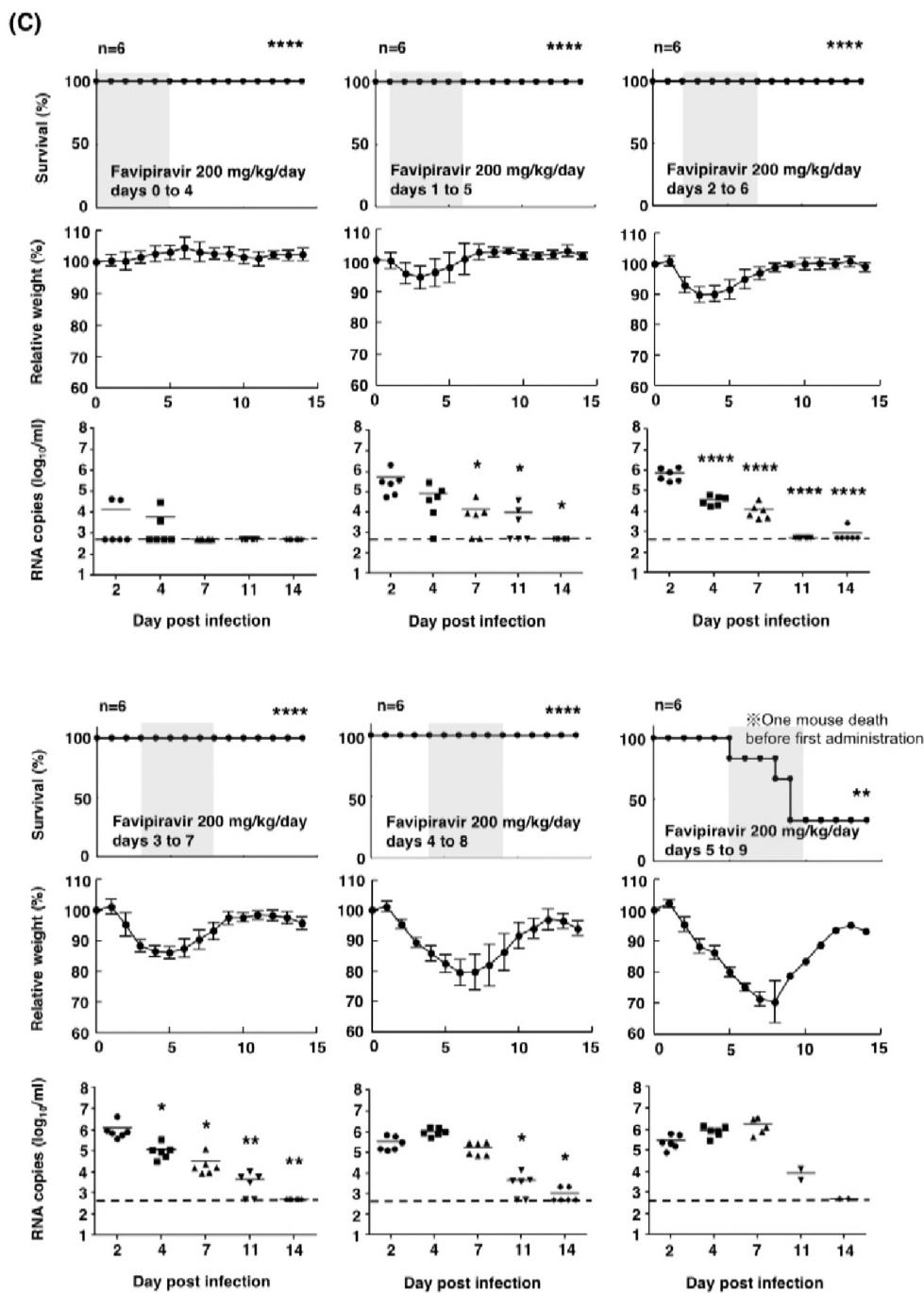
392 deviations. Significance was determined in comparison to the results from non-serum


393 treatment or infectivity of VSVpv. ****, $P < 0.0001$; **, $P < 0.01$; * $P < 0.05$.

394

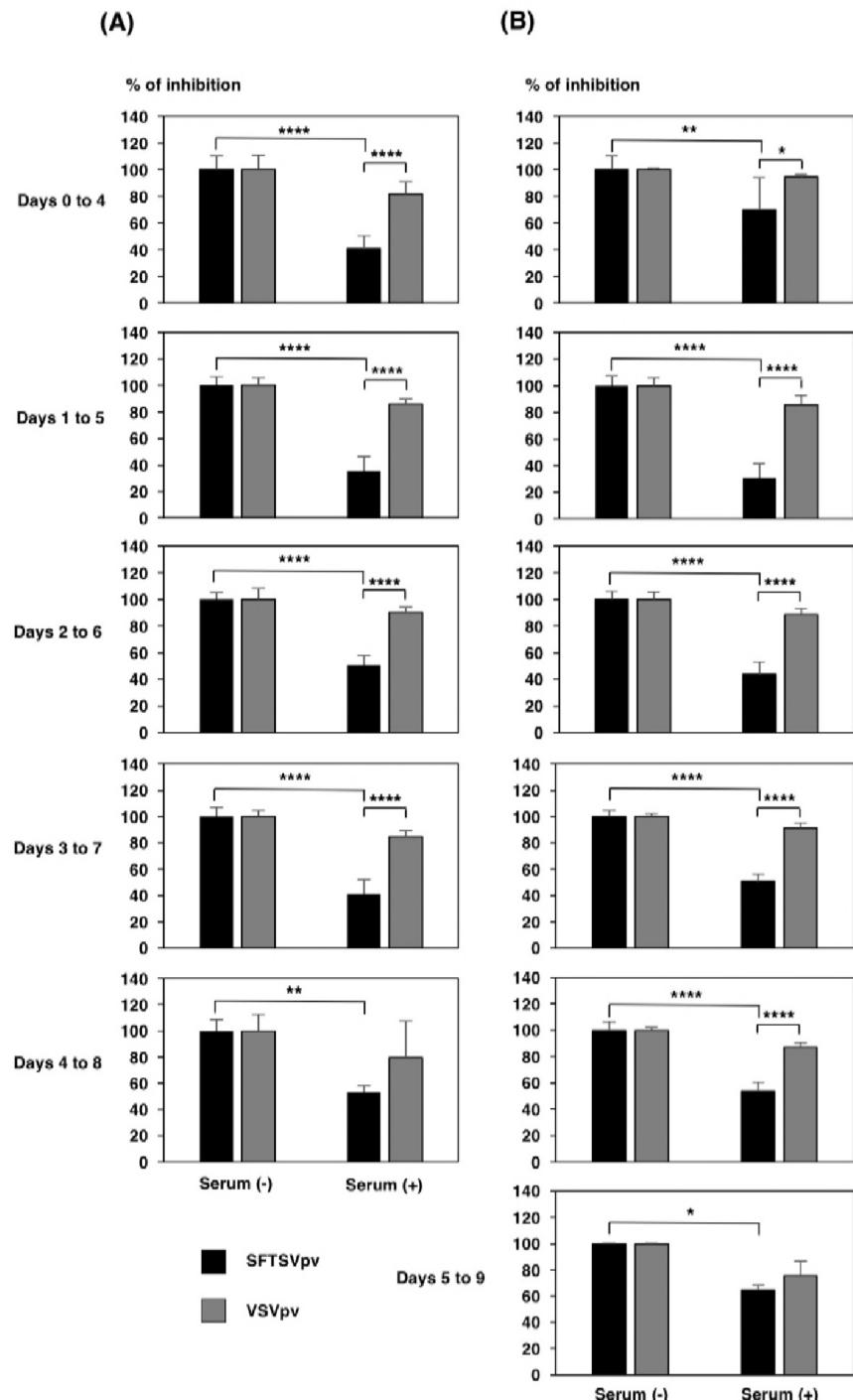
Tani *et al.*, Fig. 1


Tani *et al.*, Fig. 2


397

398

Tani *et al.*, Fig. 2


Tani *et al.*, Fig. 2

401

402

Tani *et al.*, Fig. 3

