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Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare
functional mutations are hard to distinguish from large numbers of passengers. We developed a novel
computational platform applying a multi-modal approach to filter out passengers and more robustly
identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH
functional families (CATH-FunFams) — structurally and functionally coherent sets of evolutionary
related domains. Using structural representatives from CATH-FunFams, we subsequently seek
enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency
to lie close to known functional sites or conserved sites predicted using CATH-FunFams. Our third
filter identifies enrichment of putative driver genes in functionally coherent protein network modules
confirmed by literature analysis to be cancer associated.

Our approach is complementary to other domain enrichment approaches exploiting Pfam
families, but benefits from more functionally coherent groupings of domains. Using a set of mutations
from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources
and include recently validated cancer genes EPHA7, DCC netrin-1 receptor and zinc-finger protein

ZNF479.
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Introduction

Advances in technology have made exome and whole-genome sequencing commonplace and
have been catalysts for large-scale concerted cancer genome sequencing efforts such as TCGA' and
ICGC?. In tandem with details of tumour types, histology, treatments and patient outcomes, these
sequences provide unique opportunities for identifying which mutations and genes drive tumour
expansion and how these vary between cancer types.

Mutations observed in tumours may be drivers, positively influencing tumour progression, or
passengers, which are incidental and have no net effect’. Methods such as MutSigCV* analyse
somatic mutations from tumour samples to identify sequence positions mutated above a significance
threshold using a sophisticated model of background mutation rates. However, finding driver genes
using individual point mutations lacks the statistical power to uncover many driver genes as the
heterogeneous mutation landscape of cancer genomes leads to many genes having few mutations, thus
identifying significant point mutations requires many tumour samples’. A complementary approach is
to analyse mutations by mapping to 3D protein structures: Structural studies can help identify
mutations clustering in specific regions of a protein and highlight cases where rare mutations - that
may lie far apart in sequence - are close together when mapped to residues in the protein's structure.
Multiple recent methods aid driver gene identification using structure-based algorithms: by
calculating frequencies of distances between mutated residue pairs’; calculating a clustering
coefficient using weighted sums of mutated pairs®’; using permutation testing of mutation distance
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distributions®; finding mutational hotspots within spherical regions’'> and testing protein

complexes''*.

Other developments to enhance driver gene detection, that focus on regions in the protein,
include clustering of mutations on sequence regions'’ or using Pfam'® protein domains'®'""**°. As
evolutionarily-related, discrete & independently folding units of sequence, domains are often found in
multiple genes and in different contexts (i.e. multiple domain architectures), therefore domain

enrichment may enhance both the statistical power for driver detection and allow clearer prediction of

the functional impacts of mutations® >. Sequence hotspots can be detected more easily in enriched
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domains and can be analysed using co-location with functional sites*® such as catalytic
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sites®®, phosphosites”” and protein-protein interface (PPI) residues
mutations to functional sites can be compared with polymorphisms obtained from UniProt”. For
example, Skolnic et al’® found an enrichment of disease-causing mutations at functional sites or at
ligand-biding sites adjacent to PPIs. Other studies assess how mutation proximity to functional sites
varies between known oncogenes and TSGs®’.

Network approaches can also be used to interpret cancer gene sets in terms of cellular
processes . In particular, multiple genes containing mutations in a tumour sample may belong to
different components of the same biological pathway, and databases such as PathwayCommons® can
help predict functional consequences of such mutated gene sets. Previously derived functional
interaction networks*’, built from both known and predicted protein-protein interactions, can be used
to analyse driver gene lists for functional consequences, for example, by using GO term enrichment of
network modules identified. Additionally, protein-protein interaction networks such as STRING®
permit topological predictions, such as whether a particular gene is a hub or how dispersed a set of
genes are on the network™.

We present a novel study that detects enrichment of cancer mutations in our CATH
Functional Families (CATH-FunFams)¥. CATH v4.0 contains over 25 million domain sequences of
known or predicted structure classified into 2,735 homologous superfamilies. Within each CATH
superfamily, CATH-FunFams comprise evolutionary related domains* grouped into functionally
coherent sets; as such they can help identify functions that appear to be targeted in different diseases.

Our work builds on earlier studies that used Pfam domains*>*®

to detect enrichment, and a recent
study that tests enrichment in CATH superfamily domains®. Whilst Pfam families provide high-
quality annotation of evolutionary relationships, they may also group related proteins whose domains
have diverged in function. Recent studies**’ have shown that CATH-FunFams exhibit higher levels
of functional purity than either Pfam domains or by using CATH superfamilies. By identifying
CATH-FunFams enriched with mutations (‘MutFams’) we filter out mutations that don't affect protein

function (and thus are probably passengers) and as a result identify genes that are more likely to be

drivers. In addition, this approach reveals functional rather than domain enrichment.
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We show that heatmap clustering of cancers by their MutFams provides sensible groupings
and that the top mutated genes from the MutFams appear to map to a specific set of biological
processes as they are significantly less dispersed on a protein-protein interaction network compared
with sets of randomly chosen genes. Using both GO biological process and functional network
enrichment of the top mutated genes from all MutFams we find convergence on cancer-related
processes and pathways. In addition, pathway analysis of a comparable set of genes from a related
Pfam-based approach'® shows that some of the enriched pathway modules are commonly identified by
both approaches.

Finally, we performed 3D clustering of all available mutations mapped to representative
domain structures of the MutFams, followed by detailed proximity analysis of clusters to various
functional sites, on the premise that mutations from different cancers that cluster near the same sites
are likely to be having similar functional impacts. We find that, in general, our 3D clustered mutations
are closer to functional sites than unfiltered cancer mutations.

Our research thus suggests that finding mutation enriched CATH-FunFam domains is a novel
and helpful way to filter out passenger mutations, and that by selection of the most highly mutated
genes in each CATH-FunFam we can obtain a broad list of those implicated in cancer. We provide a
broad list of 472 genes identified from our MutFams along with a confidence score that can be used to
filter for a higher confidence subset of genes. The score reflects other evidence supporting a gene's
involvement in cancer: the predicted functional effects; the identification of cancer-enriched modules
on a functional interaction network; significant clustering of mutations on protein structures near
functional sites and/or agreement with the Cancer Genome Census (CGC) or Pfam based gene sets.
We find 151 genes (in 98 MutFams) are supported by at least one of these confidence tests, with 79
novel genes (in 41 MutFams) not identified, as yet, by the CGC or in the Pfam gene set. The value of
our approach is that by filtering mutations to enrich for those with functional effects it could help with

identification and prioritisation of driver genes from large-scale cancer genomics studies.
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Results

We analysed somatic, missense mutations from exome/genome-wide studies from 22 cancer
types to identify mutationally enriched CATH-FunFam domain families, which we term MutFams.
CATH-FunFams are functionally coherent groups of relatives and domains within them share the
same patterns of conserved residues unique to the family (i.e. functional determinants such as ligand
binding and specificity determining residues)”. This step identifies mutationally enriched domain
families associated with a more specific function than by testing for enrichment at the domain
superfamily level (either with CATH or Pfam). Each CATH-FunFam has at least one experimentally
characterised relative with GO functional annotation.

We compared mutated genes obtained from MutFams with a subset of cancer genes from the
Wellcome-Sanger Cancer Gene Census (CGC)’' containing somatic missense mutations known to be
associated with cancer. We also compared with another comprehensive set of genes identified using a
related Pfam-based approach by Miller er al'® (see Methods for description of Miller set). We
compared the MutFam and Miller gene sets both by comparing individual genes and by mapping the
genes to protein networks to identify common processes. This allowed us to identify those genes more
likely to be implicated in cancer, as they mapped to common processes highlighted by two
independent methods.

Finally, we use representative domain structures from the MutFams to identify 3D clusters of
mutations for these families and show that this provides a strict method for filtering out passenger
mutations leading to higher confidence driver gene set. These clusters are closer to both known
functional sites and those predicted from highly conserved sites than non-clustered (i.e. unfiltered)

mutations. A summary of the overall workflow is given in Figure 1.

Identification of mutationally enriched domain functional families (MutFams)

To assess the value of MutFams for directly comparing diseases, and their functional
signatures, we specifically analysed a set of 22 cancers identified in COSMIC. We grouped somatic

missense mutations from 9,950 whole exome (or genome) samples in COSMIC v71 into 22 cancer
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types (based on tumour site, histology and respective subtypes) from which we identified a total of
259 MutFams (p < 0.05, permutation test with Benjami-Hochberg correction). For a summary of
MutFams and number of samples by cancer type see Supplementary Table 1. The median number of
MutFams per cancer is 13, ranging from 87 in Skin Cutaneous Melanoma to 2 in Uterine
Carcinsarcoma. The number of MutFams per cancer does not correlate with sample size, i.e. the
number of tumours sequenced (Pearson's r = 0.232, p = 0.298; Supplementary Figure 1). We used
neutral mutations (polymorphisms) from UniProt as a non-cancer control, resulting in 8 MutFams,
with half of these belonging to Class II Major Histo-compatibility Antigens, for which a pool of
variant alleles is likely to be advantageous™. Supplementary Tables 2 & 3 summarise MutFams for
22 cancers and polymorphisms respectively, giving the UniProt functional keywords associated with
each.

We used hierarchical clustering of MutFams by cancer, based on shared MutFams, as shown

10,24,53,54 . .
=% mutations in the tumour

in Figure 3. In agreement with other domain based methods
suppressor p53 are commonly observed. We found 21 out of 22 cancer types have the MutFam
'Cellular tumor antigen p53'. p53 mutations are found in many cancers’° but are not generally
cancer-specific’’. The second most common MutFam (11 out of 22 cancer types) is the tumour
suppressor 'phosphatase and tensin homolog' (PTEN), a well-studied regulator of growth factor
phospho-inositide signalling. Inhibition of PTEN has been shown to suppress regulation of the PIP3
secondary messenger, leading to increased growth factor signalling™.

It can be seen in Figure 3 that cancers from the same site in the body (as defined by
COSMIC) are found to cluster: those of brain tissues, low grade gliomas (LGG), glioblastoma
multiforme (GBM) & gliomas (GLI); the two main histological subtypes of non-small cell lung
cancer, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and the colorectal
subtypes of colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). The large number of
skin cutanecous melanoma (SKCM) MutFams (87) may be due to skin exposure to external
carcinogens and is consistent with the highest mutation burden being observed in melanomas in
general™. Additionally, thyroid carcinoma (THCA) is seen to cluster with the polymorphic dataset,

being the only cancer not to have the p53 enriched MutFam. p53 is known to be affected in THCA via
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other mutation types (i.e. not missense) such as truncations, or by mutations occurring in regulatory
transcription factors®. Additionally, while there are some MutFams common to all cancers, as
discussed above, many are distinct (i.e. tissue-specific) and found uniquely within particular cancers,
such as Skin Cutaneous Melanoma (SKCM), Acute Myeloid Leukemia (LAML), Bladder Cancer
(BLCA), Liver hepatocellular carcinoma (LIHC) and Kidney renal clear cell carcinoma (KIRC) (as

indicated in Figure 3; for specific MutFams see Supplementary Table 2).

MutFam genes are significantly enriched in CGC genes

By considering just Cancer Gene Census (CGC) genes that are observed to have missense
mutations, we find that our list of MutFam genes is significantly enriched in CGC-curated cancer
driver genes; the 49 drivers in common represent 21% of the MutFam genes identified (p < 10715,
Fisher's). We compared this enrichment with that observed for the gene list identified by the related
Pfam based approach by Miller et al'® (see Methods). The Miller set is also significantly enriched in
CGC drivers with 30 genes in common representing 13% of the Miller dataset (p < 107>, Fisher's).
Prior to any further filtering of these gene sets, each method identifies a majority of genes uniquely
(Figure 4). We find 41 genes in common between the MutFam and Miller sets. Whilst this is a
relatively low overlap between the genes identified by the MutFam and Miller sets, a recent study by
Karchin ef al®', which investigated overlap between driver genes predicted by 8 different methods,
also showed that overlap of genes from individual methods with CGC was low. They did however
find that the union of drivers from all methods showed significant enrichment of CGC genes. To
investigate whether the unique genes in our dataset could be validated by other approaches, we

examined their proximity in protein networks and also looked for association in biological pathways.

MutFam genes are less dispersed than random on a protein-protein interaction network

Prior to any further filtering and enrichment of the top mutated genes from the MutFams, we
analysed their overall dispersion on a comprehensive protein-protein interaction network using DS-
Score, a measure adapted from Menche et al** (see Methods). MutFam genes were significantly closer

(less dispersed) on the network compared to randomly selected sets of genes (DS-Score 1.212,
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p < 1.2x10713, Mann-Whitney test). Similarly, the set of genes from Miller also showed lower
dispersion compared to random (DS-Score 1.463, p = 1.0x1078 Mann-Whitney test)
(Supplementary Table 4). These lower dispersion scores indicate that the tested genes are on average
more closely connected in the network and thus more likely to be involved in the same biological

Processes.

Enrichment of MutFam and Miller genes in common pathway modules and processes

associated with cancer

We tested enrichment of the uniquely identified MutFam genes to identify whether they
affected specific biological processes or were convergent on the same (or closely related) processes
mediated by unique genes from the Miller set. We identified GO term enrichment using two
approaches: (1) GO-Slim term enrichment on each of the gene sets and (2) GO Biological Process
(GO-BP) term enrichment of network modules identified by mapping the gene sets to a pathway-

based functional interaction network containing high quality curated annotations.

GO-Slim term enrichment

The 420 unique top mutated genes from the MutFams show enrichment in 16 GO-Slim terms,
which we manually categorised into 5 cellular event categories: "embryonic development", "cell
migration", "differentiation", "stress response” and "cell signalling and transport" (Figure 5). The 224
Miller genes were enriched in 27 GO-Slim terms in 6 cellular event categories (Supplementary
Figure 2). Despite differences between the specific GO-Slim terms found in each gene set, 3 of the
cellular event categories were common to both MutFam and Miller ("embryonic development", "cell
migration" & "cell signalling and transport") and each of these categories also contained at least one
specific GO-Slim term common to both gene sets. The 12 common genes (between MutFam, Miller
and CGC) were enriched in three GO-Slim terms involved in cell signalling and transport, including
the immune related signalling term “I-KappaB Kinase/NF-KappaB cascade” and "receptor-mediated

endocytosis" (Supplementary Figure 2). From this broad overview of the functional attributes of

MutFam genes, we characterised specific processes in greater detail.
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Analysis of the gene sets by functional network analysis to identify those more likely to be

associated with cancer

Functionally related groups of genes were identified, for both the 12 common genes
("common") and the genes unique to each of the datasets ("MutFam unique" etc.), by mapping each
set to a pathway-based functional interaction network (Reactome FI, derived by Wu et al®®), clustering
these networks into modules and then calculating GO BP term enrichment for every module. Unlike
the dispersion network measure outlined previously, which uses a protein-protein interaction network,
Reactome FI uses the more specific pathway annotations of Reactome®™ and allows better
identification of functional relationships between proteins. We mapped 193 out of 420 (46%) unique
MutFam genes, 119 out of 224 (53%) Miller genes, and 9 out of 12 (75%) common genes to the
functional network. Not all genes map to functional modules because they lack any functional
associations with other proteins in the network. Overall, 2 (out of 2) of the network modules for
common genes, 12 (out of 21) modules for MutFams and 5 (out of 7) modules for Miller, showed
enrichment for at least 1 GO BP term (FDR < 0.001).

The genes commonly identified by MutFam, Miller and CGC were enriched in receptor
signalling processes and downstream kinase signalling pathways (see Supplementary Section 1.1).
We found that genes uniquely identified by each method show different degrees of convergence at the
functional module level. Such convergence may be very specific; a functional module identified from
MutFam genes was associated with NOTCH signalling via NOTCH genes, whereas a module in
Miller identified upstream and downstream regulators of the same pathway. Unique MutFam and
Miller genes also converged on broader but clearly related biological processes of transcriptional
regulation via proteins containing zinc finger domains. Finally, functional convergence was identified
via broad and less specific pathways relating to cellular development (for further details on
convergence between the unique MutFam and Miller genes see Supplementary Section 1.1).

Overall, our analysis of the genes identified by MutFam and Miller show that whilst there are
only a modest number of genes commonly identified by both methods, at the level of biological

processes and pathways there is much better agreement. Of the 193 MutFam genes mapped to the
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functional network, 168 were in enriched modules (~85%). For at least 40% of these genes (68 genes)
there was some other information supporting a cancer association i.e. literature, presence in a
biological processes common with Miller genes or linked to cancer hallmarks (See Supplementary
Sections 1.1 - 1.3). Thus by identifying different genes involved in common cancer-related pathways
and by highlighting additional cancer-associated processes, the MutFam and Miller approaches can be
considered broadly complementary.

Our pathway analysis further validates our MutFam selection, by revealing significant
enrichment of MutFam genes in cancer-associated modules, and helps identify a more confident set of
putative driver genes i.e. that are found both in mutationally enriched MutFams and enriched

functional modules.

Detailed analysis of MutFam driver genes in brain cancers

In addition to the comprehensive analyses of MutFam mutated genes above, two specific
cancers were subjected to more detailed analyses using Reactome Pathways and Gene Ontology (GO)
enrichment: low-grade glioma (LGG) and glioblastoma multiforme (GBM). We found that processes
enriched in GBM are consistent with it being a later stage (and more aggressive) glioma and include
chaperone functions in proteostasis and immune functions. For a full summary see Supplementary

Section 1.4.

Identifying mutationally enriched 3D clusters in representative domain structures of

MutFams

We have used functionally pure CATH-FunFams to detect domain families (MutFams)
enriched in cancer disease mutations. To detect whether mutations within these MutFams were
enriched in particular 3D locations we subsequently mapped the mutations onto a representative 3D
structure for each family. Previous studies have shown considerable structural coherence within
CATH-FunFams®™. We used an in-house method (see Methods), to identify residues that have
significantly more neighbouring mutations (i.e. within 5A) than would be expected by chance.

Therefore, by seeking for evidence of 3D clustering of mutations from MutFam genes we are able to
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identify a subset of putative driver genes and driver mutations with higher confidence to be associated
with one or more cancers. We identified 175 clusters in 42 genes, comprising a total of 970 single
point mutations. Since our hypothesis was that mutations clustering in 3D are more likely to be
affecting functional sites in the protein, we assessed the value of these clusters for identifying putative
drivers by their proximity to known and predicted functional sites in proteins. An example of a

MutFam cluster occurring near functional sites in CHEK?2 is shown in Figure 7.

Proximity of MutFam cluster mutations to functional sites

We calculated proximity distributions of mutations to catalytic residues, protein-protein
interface sites (PPI), ligand-binding and FunSites (highly conserved residue sites in CATH-FunFams,
see Methods). Distance distributions of mutations to each of these site types were calculated for the
MutFam cluster mutations and for an unfiltered set of mutations from COSMIC (see Methods).
Mutations in oncogenes and TSGs were examined separately to see if oncogene mutations were more
likely to be near functional sites. As mentioned above, since the protocol used to find the enriched
clusters is designed to filter out noise by excluding passenger mutations, we expected mutations in
these clusters to be closer, in general, to functional sites than mutations in unfiltered datasets. All were
compared to the control distribution derived from UniProt neutral mutations, which were further
filtered by excluding heavily mutated proteins (>50 mutations) to avoid bias. Distances of mutations

to functional sites are shown as empirical cumulative density functions for each functional site type.

Catalytic sites

The mutations in oncogenes from the unfiltered pan-cancer set tend to be closer to catalytic
residues than neutral mutations, though not significantly (OR = 1.72,p < 0.054, Fisher's exact test),
while TSGs show an equivalent but significant tendency (OR = 1.72,p < 0.0044). However,
MutFam clustered mutations do show a much more significant tendency to be closer to catalytic

residues (OR = 2.98,p < 3.4x1071%) (see Figure 6).
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Protein-protein interaction sites

Protein interfaces can cover large areas on the surface of the protein, thus substantial
proportions of both cancer and neutral mutations are close to interfaces (Figure 6). Unfiltered cancer
mutations in both oncogenes and TSGs show significantly higher propensities to lie close to interfaces
(as defined by IBIS) than neutral mutations (oncogenes OR = 1.71,p < 3.6x10713; TSGs

OR = 1.71,p < 4.7x107'>, Fisher's exact test). As with catalytic sites, the tendency is more

pronounced for the MutFam mutations filtered by 3D clustering (OR = 2.52,p < 2.3x10716).

Ligand-binding sites

Mutations in oncogenes show a small, significant enrichment near ligand binding sites
(OR = 1.46,p < 9.4x1078 Fisher's exact test), but those in TSGs are not significantly different to
neutral (OR = 1.1,p < 0.23). However, MutFam clustered mutations are significantly closer to

ligand-binding sites than neutral (OR = 1.78,p < 2.3x1071®) (Figure 6).

Predicted functional sites (FunSites)

Predicted FunSites (highly conserved residues in multiple sequence alignments of FunFam
relatives) have been shown to be enriched in both catalytic and protein interface residues®. Therefore,
it is not surprising that we see similar trends to those observed for these types of residues (i.e. CSA
and IBIS interface) (Figure 6). In addition FunSites are likely to include other sites important for the
stability, folding and any allosteric mechanisms. Both oncogenes and our clustered MutFam
mutations show a high propensity to lie close to these sites (oncogenes OR = 2.45,p < 3.6x10711;
MutFam clusters OR = 84.7,p < 2.3x10716, Fisher's Exact test), with, again, the filtered MutFam
mutations showing a more significant tendency. This is consistent with studies that show that somatic
cancer disease mutations occur close to conserved sites'”®. This result reinforces the validity of our
3D clustering strategy to remove noise and identify driver mutations. Furthermore, using our
functionally pure CATH-FunFams to detect structurally and functionally significant sites through

conservation analyses helps to reveal the functional significance of these mutations.
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MutFam genes with the greatest functional impacts suggest putative drivers

A set of 472 genes was initially identified by selecting the top mutated genes from each of the
CATH-FunFams enriched in mutations (see Methods). This aggregation of mutations in sets of
domains having related functions provides some evidence for likely impact on protein function. To
filter this set further and obtain a set of putative driver genes we used multiple lines of evidence by
identifying: (1) genes in common with those predicted using the Miller method; (2) genes in common
with CGC; (3) genes in cancer-related GO functional modules (as discussed above, with further
details in Supplementary Sections 1.1 - 1.3 and Methods) and (4) genes from MutFams containing a
3D cluster near a functional site. By using these multiple sources of evidence for the functional impact
of putative MutFam driver genes in cancer we can identify a set of 151 more confidently predicted
driver genes that are predicted from MutFams and have at least one of the other four pieces of
supporting evidence outlined above. For a full list of all 472 MutFam genes and the associated
confidence scores, see Supplementary Table 11. A summary of the 151 MutFam driver genes is
provided in Table 1, with each gene categorised by general protein function and the cancer types in
which the gene was identified.

Since assessing the number of putative driver genes in MutFams that were listed in CGC
(downloaded September 2016), additional cancer drivers genes have been added, increasing the
overlap of MutFam and CGC by 11 genes (CNTNAP2, DCC, EPHA7, FKBPY, ISX, PIK3CB,
PREX2, PTPRT, TNC, ZNF429, ZNF479) (CGC 5th Feb 2018 download), representing 25.9% of our
MutFam genes overlapping with CGC genes with missense mutations. One of these was also
identified in the Miller set (PIK3CB). Of the 11 genes, 3 (PIK3CB, PREX2 and PTPRT) are in the
new "Tier 1" category (there are 2 tiers), defined by the CGC as those with the strongest evidence for
a role in cancer. We had identified EPHA7 in our set of putative drivers filtered to include genes
having both pathway enrichment and 3D clustering (see Supplementary Table 11). Although having
only 2 mutations within the FunFam boundaries of the gene EPHA?7 itself, the MutFam (Ephrin type-
B receptor 2) was found to be enriched based on 12 mutations found in Ovarian cancer across 8 genes

within the FunFam. Five of these genes only contributed a single mutation each to the MutFam.
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Calling EPHA7 a predicted driver gene on the basis of these numbers would be dubious, but by
combining other types of evidence for functional effects the case is stronger. By using the total set of
pan-cancer mutations, a total of 46 mutations in this FunFam gave a significant cluster in 3D that was
near a predicted functional site. Additionally, GO process enrichment identified EPHA7 as part of
enriched processes in cellular development. Other putative drivers highlighted in Table 1 but not in
CGC or Miller are in the MutFam "Hepatocyte growth factor receptor". The genes PLXNAI,
PLXNA2 and PLXNA4 are enriched in cellular development - axon guidance processes and 68 pan-
cancer mutations show a significant clustering of mutations, near a predicted functional site (i.e. based
on the most highly conserved positions within the FunFam) and an IBIS PPI site. A recent study
indicates role for PLXNA1® in pancreatic cancer cell lines in enhancing tumour proliferation and
invasion.

A full list of 472 genes in all identified MutFams is provided, along with the supporting evidence and

overall score in Supplementary Table 11.
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Discussion

We have exploited a set of domain functional families (CATH-FunFams) classified within
CATH domain structure superfamilies. Relatives in these families are clustered on the basis of
structural and functional similarity. Structural coherence has been validated by structural
superposition of relatives with known structures in the PDB, whilst functional purity is reflected in the

7,43
* and

performance of the families for providing functional annotations for uncharacterised relatives®
in the fact that highly conserved residue sites within the family are enriched in known functional sites
residues including catalytic and ligand binding residues®.

Previous studies have demonstrated the value of looking for mutationally enriched regions
within proteins on the premise that mutations in these regions could convey functional effects driving
cancer. Whilst most studies have exploited Pfam families, here, we examine the benefit of using
families that have been explicitly clustered on the basis of functional similarity. We identify 259
mutationally enriched families (MutFams). The lack of any correlation between the sample size
(number of tumours) and the number of MutFams identified indicates that comparisons between
cancer types are not confounded by the different numbers of tumours analysed in each, and we would
expect further samples to increase the enrichment factor of existing MutFams, and (to a lesser extent)
highlight a few new MutFams that pass over the significance threshold.

We observe that diseases can be clustered in a sensible manner on the basis of their MutFams,
with diseases affecting similar tissues (e.g. gliomas) clustering closely on the basis of shared
MutFams. Despite differences in the driver genes identified by other independent methods (e.g. the
Miller dataset) and CGC there is substantial convergence of MutFam driver genes at the level of GO
biological processes affected, as also shown in Baudot e a/®*. Broadly, MutFams are complementary
to Pfam-based methods.

The lower overall dispersion of MutFam genes on a PPI network compared to random
implied that the genes were closer together on the network and therefore likely to be in related
processes. This suggested that a more detailed analysis using a pathway-derived functional network

would help in identifying enriched functional modules. Literature analysis of these enriched modules
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revealed biological processes known or highly likely to be involved in cancer and showed that the
MutFam and Miller gene sets tend to converge on similar biological processes despite relatively low
overlap of the actual gene sets. Furthermore, the cancer sets identified by the MutFam and Miller
methods were found to be biased towards different tissues, and the genes therefore operating in
different cellular contexts, which may partly explain this low overlap.

Finally, we also looked at the proximity of mutation clusters to functional sites, where
available, to provide additional evidence for a gene's functional relevance.

Our results suggest that our FunFam protocol is complementary to a Pfam based approach.
Pfam families are larger and less specific than CATH Functional Families with a broader sampling of
biological sequence space, and analyses have shown greater functional divergence within Pfam
families than FunFams®. This divergence may lead to some drivers being missed as functionally
diverse relatives in the family may have no or few mutations (as illustrated in Figure 2). By contrast
the smaller size of FunFams may mean that enrichment values fall below the threshold, again causing
driver genes to be missed. However, the higher number of genes identified by our MutFam analysis
(i.e. 472 compared to 271 for the Miller set) suggests that the higher functional coherence of our
families is helpful in detecting mutationally enriched families. For example, our MutFam approach
detects EPHA7, which is not picked up in the Miller set, but was confirmed by a later release of the
CGC. It is also reassuring that a high percentage of MutFam genes, mapped to the functional network,
are in enriched modules. Furthermore, functional coherence of FunFams, and their associated
structural coherence™®, facilitates more accurate multiple sequence alignments which in turn facilitates
more accurate prediction of functional sites, based on highly conserved positions within the FunFam.
The functional site data, combined with available representative structures from FunFams, allow
identification of mutations occurring (or clustering) near the known characterised functional sites or
predicted functional sites. Since there are relatively few experimentally characterised functional sites,
CATH-FunFams therefore bring significant benefits from the larger set of predicted functional sites
they provide. Thus the use of representative structures from MutFams provides an effective filter for

identifying mutations near functional sites that are likely to have specific functional effects.
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In support of a combined MutFam and Pfam approach, Pfam includes domain families for
which no structure is available and families for which there is no experimental characterisation of
function (e.g. Domains of Unknown Function - DUFS), which are not currently represented in CATH-
FunFams.

The complete list of 472 genes identified from MutFams is provided (Supplementary Table
11). By focussing on mutations that affect function i.e. by enrichment in CATH-FunFams, in
biological processes linked to cancer, or in clusters near functional sites, we provide a novel protocol
for filtering out passengers and predicting putative driver genes. In total, 151 genes are suggested by
our MutFam method having biological process enrichment, 3D clustering or agreement with other
datasets. A recent large-scale study by Bailey et al* used a consensus scoring approach combining
predictions from 26 software tools to identify 299 cancer driver genes. This set of 299 genes
represents the most up-to-date consensus of drivers we had at the time of submitting this manuscript.
Overall, a comparable 11% of 472 MutFam genes and 14% of 271 Miller genes are found in the
consensus 299-gene set. However, 29% of the 151 MutFam gene set, i.e. those genes having evidence
of functional effects, are in the consensus set, illustrating the value of our approach in filtering
putative driver gene sets this way.

MutFams identified 79 genes uniquely that are not found in CGC or Miller, but have evidence
for a functional role via biological process enrichment or 3D clustering. These could aid prioritisation
of functional studies of putative novel driver genes identified from large-scale cancer genomics

studies.
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Methods

Datasets and sources

CATH Functional families

We used CATH-FunFams from version 4.0 of the CATH database™, which classifies 235,000
structural and over 25 million predicted domain sequences into 2,735 homologous superfamilies,
which are then sub-divided into 110,439 functional families (CATH-FunFams).

CATH-FunFams are sets of evolutionary related domains clustered into families on the basis
of predicted structural and functional similarity. CATH-FunFams are identified using agglomerative
clustering of domain sequences within a CATH-Gene3D superfamily, and entropy based analyses to
distinguish CATH-FunFams having distinct specificity determining residues”. CATH-Gene3D
comprises all sequences from UniProt, which are known or predicted to belong to CATH domain
structure superfamilies. CATH-FunFams have been highly ranked by the Critical Assessment of
Functional Annotation (CAFA®") and shown to be more functionally coherent than Pfam families®.
Typically several CATH-FunFams map to a Pfam family. In other words, although Pfam has been
frequently used to increase the power of driver gene detection by accumulating mutation information
across relatives within a Pfam family, this is also likely to introduce noise as Pfam families are not
specifically classified for functional coherence and can contain relatives with rather diverse functions.
Mutations in these domains may be exerting different effects as the genes may be operating in
different pathway or cellular contexts and comprise different protein interfaces or active site residues.
Previous studies comparing Pfam and CATH functional families for enzymes, showed that
approximately 50% of Pfam families comprised more than one enzyme class (i.e. as reported by the
enzyme classification) whilst less than 15% of CATH-FunFams comprised more than one enzyme

43
class™.
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For example, to illustrate the benefits of the CATH functional sub-classification, the
schematic illustration in Figure 2 shows that analysis of the broad Pfam family shows no significant
enrichment of mutations as some relatives have none or few mutations (for example, because these
are paralogous relatives that operate in a different cellular context and hence lack the protein interface
containing mutated residues found in the other relatives). Separating these relatives into distinct
CATH-FunFams enables detection of mutational enrichment in CATH-FunFams. Conversely, the
finer splitting of CATH superfamilies into FunFams may result in some CATH-FunFams being too
small to detect mutation enrichment. It is therefore reasonable to suppose that mutation analysis by
CATH-FunFams yields complementary driver gene lists to those obtained by related studies using
Pfam families (e.g. by Miller ef al, also analysed below).

Because of their functional purity, conserved residues within CATH-FunFams have been
found to be enriched in known functional sites e.g. catalytic residues in CSA*®. They have also been
shown to be structurally coherent®’”. Highly conserved sites within CATH-FunFams (also described
as FunSites) are found by analysing sequence conservation in a multiple sequence alignment of the
FunFam, using the scorecons algorithm’'. Scorecons conserved sites can only be reliably identified
for CATH-FunFams having high information content (i.e. sequence diverse relatives) as measured by
the DOPS score returned by scorecons. FunSite data was only generated for CATH-FunFams having a

DOPS score > 70 (range 0 to 100).

Cancer, polymorphism and disease datasets

Cancer datasets: 22 cancer-specific datasets were generated comprising somatic, non-
synonymous missense exonic mutations from COSMIC” v71, using variants from whole
exome/genome studies, then filtering for each cancer type using tumour site and histology data with
TCGA-style classes to define cancer types (summarised in Supplementary Table 1). Cancer datasets
are used to define MutFams (see section "Calculation of MutFams - CATH-FunFams enriched in

cancer mutations" below).
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UniProt neutral / polymorphism dataset: 8,838 neutral mutations were obtained from 1,926
proteins using UniProt Humsavar™ (March 2014) by selecting entries annotated as “polymorphism”.
This UniProt neutral dataset is used as a neutral control for the cancer datasets.

Pan-cancer dataset: 800,704 somatic, non-synonymous missense exonic variants from whole
genome/exome studies from COSMIC v71 with no filtering by tumour site or histology. Note that the
pan-cancer dataset is larger than all of the 22 cancer datasets combined as it includes many cancer
sub-types from COSMIC that have few patient samples. This set is used to give as large and
comprehensive cancer mutation dataset to use for 3D clustering as possible, based on the hypothesis
that mutations from different cancers that cluster near the same functional site are likely to act via
similar functional impacts. Subsets of the pan-cancer dataset were defined as "COSMIC oncogenes"
and "COSMIC tumour suppressors" using gene roles identified by Wellcome-Sanger Cancer Gene
Census (CGC)”'. These sets allow for independent testing of the proximity of mutations to functional
sites to account for any differences in the distribution of mutations found between oncogenes and

TSGs.

PDB structures

Mutations were mapped to PDB structures using data in CATH v4.0 imported via SIFTS.
Where multiple structures existed for a given UniProt protein, a single PDB was selected by selecting
for maximum mapped sequence length followed by highest resolution, as per Stehr ef al . Overall
we were able to map 1,893 COSMIC oncogene, 3,184 COSMIC TSG and 8,838 UniProt neutral

mutations to structures.

Functional sites

Functional sites were classified using catalytic residues from Catalytic Site Atlas 2.0 (CSA)*°
and both protein-protein interaction (PPI) and ligand binding sites from NCBI-IBIS™. We
additionally included ligand sites from ccPDB”’ by filtering using their scoring metric (using AUC >
0.8 and MCC > 0.3) to include ligands ADP, ATP, FAD, FMN, GDP, HEM, NAD and PLP. We also

analysed proximity to highly conserved sites (FunSites) within CATH-FunFams®. As previously
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described, FunSites are found using the scorecons algorithm’' for CATH-FunFams having high
information content (i.e. sequence diverse relatives) as measured using the DOPS score returned by

scorecons. FunSite data was only generated for CATH-FunFams having DOPS score > 70 (range 0 to

100).

Calculation of MutFams - CATH-FunFams enriched in cancer mutations

For each of the cancer datasets (pan-cancer plus 22 cancer-specific) and UniProt neutral, we
identified ‘MutFams’ as CATH FunFam domains significantly enriched in mutations. This protocol
is based on Miller et al ' and outlined below.

The enrichment of each FunFam domain is calculated as:

m
ef = m_);,me = ngfm 11,

where e, is the enrichment score of mutations (for a given database such as COSMIC) occurring in
FunFam f; myis the observed number of mutations occurring in FunFam f; m, is the expected number
of mutations in FunFam f, calculated as total number of mutations observed in all genes containing the
FunFam, n,, and the fraction of amino acids, f,,, within CATH-FunFams compared to the total number
in genes. Enrichment score significance was assessed using a permutation test as follows:
For each FunFam f:
Get the set of human genes containing the FunFam domain
For each permutation i (1 to 10000):
For each gene, g, count the number of mutations n,; randomly distribute the n,
mutations across gene g, allowing multiple mutations per amino acid.
Calculate m; the total mutations for iteration i that are within the FunFam
boundaries of the genes.
Enrichment p-value is defined as proportion of iterations where m; > my, where m; is the observed
mutation count for FunFam f.
For each disease type, MutFams were filtered to avoid noisy results from singleton mutations

or very low counts by excluding those where total mutation count < 10 (within FunFam boundaries,
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across all human genes and for multiple-spanning discontinuous sequence ranges, if applicable).
Additionally, MutFams with enrichment factor ef < I were removed, as these are - by definition - not
enriched. For example, out of the 3,124 CATH-FunFams in GBM (glioblastoma multiforme) with at
least one mutation, 45 remain following the process and filtering outlined above. For each cancer type
we applied Benjami-Hochberg (BH) correction to the permutation-derived p-values to correct for
multiple testing of the mutation data set across multiple CATH-FunFams (applying FDR 5%). For
GBM, 18 out of the 45 mutationally enriched CATH-FunFams remain following BH correction,

leading to the set of 18 MutFams for GBM.

MutFam, Miller and CGC genes

MutFam: For each of the 22 cancers, we identified the top 25% of mutated genes for each
MutFam. Our total MutFam gene set (n = 472) is the union of gene sets from all 22 cancers analysed.
We then obtained sets of genes from other methods for comparison.

CGC: We used a subset of the full cancer driver gene list from Wellcome-Sanger Cancer
Gene Census’' comprising those annotated as having missense mutations, resulting in 232 known
driver genes; other mutation types may also have been annotated in these genes, e.g. frameshifts or
deletions.

Miller: Genes identified from the Miller method'’ obtained via download of the full results
table from the MutationAligner website. We then filtered the list to obtain those genes with
significant domain hotspot residues (P < 0.05) resulting in 271 genes that contain at least one
significant Pfam domain hotspot. We used this strategy because it gave a sensible number of genes
that were deemed significant according to their analysis. The Miller set was chosen for comparison
with MutFam as it is comprehensive and has been derived using a similar domain family based
approach and because it provides the MutationAligner’® web resource for exploration and analysis of

mutation hotspots in Pfam domain families. It has also been used in other comparative studies.
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Functional enrichment scores, network properties and protein structure analyses

Dispersion measure for genes mapped to a Protein-Protein Interaction (PPI) network

We measured the dispersion of genes on a network using DS-Score, adapted from Menche et
al** to give an overall proximity measurement for all of the genes in each dataset. Significance was
assessed by comparison of the MutFam DS-Score with the average DS-Score obtained from 1000 sets
of genes (n = 472, i.e. number of MutFam drivers) randomly selected from the STRING v10 protein-

. . 41
protein interaction network™ .

GO term enrichment

Enrichment in GO-Slim terms was obtained for each gene set using the PANTHER online

tool, testing for statistical over representation in GO-Slim Biological Process with P < 0.017".

Functional Interaction Networks

We analysed our MutFam gene set for pathway enrichment and pathway proximity. These
MutFam gene sets were mapped to a Functional Interaction Network (FIN) using the ReactomeFIViz
tool®, which provides a curated set of both known and predicted functional protein interactions. For
each FIN, proteins were clustered into modules using the inbuilt community detection tool and each
module analysed for enrichment in GO biological processes (FDR < 0.005). To compare the ability of
different methods to identify putative driver genes, we compared the biological processes identified
by using either MutFam or Miller gene sets. For an additional study focusing on gliomas, we obtained
putative driver gene lists specific to the cancer types GLI, LGG and GBM and analysed these

separately.

Calculation of mutations clustered on structures.

We also separately calculated a set of pan-cancer MutFams using 800,704 somatic missense
mutations from any whole exome or genome tumour sample, without any grouping by cancer type, to

give 541 MutFams (p < 0.05, permutation test with Benjami-Hochberg correction). Note that this
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pan-cancer set is larger than the combination of the 22 cancer types, as it includes many rare cancers,
each with very few tumour samples. We use this pan-cancer set to provide the largest possible dataset
for 3D clustering, as mutations from different cancers clustering near a given functional site are likely
to have similar functional impact. This larger dataset allows for increased detection of significantly
enriched clusters. Mutations in the pan-cancer MutFams were mapped to their CATH representative
domain PDB structures, where available. For the 541 MutFams in pan-cancer, 167 contained relatives
with experimentally characterised structures. The representative structures selected from these
FunFams had good resolution and the highest cumulative structural similarity to all other structures in
the FunFam. For each representative structure, we tested for 3D clusters of mapped MutFam
mutations. For each amino acid in the PDB chain with at least one mutation, we counted how many
nearby (< 5A) residues had at least one mutation, then tested whether nearby mutation counts for each
residue were significantly different to the expected values arising from permutation testing. For each
MutFam, we assigned all of the observed mutations to residues in the PDB structure at random and
with equal probability, and then calculated the observed mutation counts near each residue as above.
Following 5000 such permuted structure trials for each MutFam, 3D clusters were defined per
MutFam as the residues having an observed nearby mutation count more than 2c above the mean
value for that residue over all permutations. Clustering was done using strict thresholds and only
where at least one relative in the CATH-FunFam was structurally characterised. In future updates
clustering would be performed using additional 3D models to expand the data set. We previously

published this method ("MutClust")"" and a similar method has also been independently described’™.

Calculation of distance distributions of mutation and clusters to functional sites

We used an in-house method to measure the closest atomic distance between a mutated
residue and a functional site residue; cumulative density function (CDF) distributions are plotted for
these distances for each mutation dataset. Significance was tested with respect to neutral mutations for
each disease type using Fisher’s exact test, with 8A cut-off for mutation to site distance and p < 0.0/

136

considered significant (as used in Gao et al”’). For clusters of mutations, proximity analysis was

performed using the closest atomic distance between each residue defined as a mutation in a cluster
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and the nearest functional site residue. In addition to this filtering, for positions with multiple

. . . . 36
mutations, one mutation was selected at random as described in Gao et al”.

Odds ratio calculation

Odds ratios were calculated for the distance distributions of cancer mutations to functional
sites by comparison with neutral mutations using Fisher's exact test with 8A as the upper bound for

proximity; test based on Gao et al”.

Scoring MutFam genes by predicted functional impact

The total MutFam gene set (472 genes) was annotated to find those most likely to have
functional consequences using: (1) genes in common with those predicted using Miller method; (2)
genes in common with CGC; (3) genes in cancer-related GO functional modules (defined below) and
(4) genes from MutFams containing a 3D cluster near a functional site (defined above in section:
"Calculation of mutations clustered on structures"). Additionally, as some MutFams occur in multiple
cancer types and the MutFam enrichment factor is different in each, we calculated a mean enrichment
factor for all cancers containing the given MutFam and used this to rank genes having the same score
in the list of putative drivers.

GO modules: MutFam genes are classified as being in a GO module if present in any of the
functionally enriched GO modules listed in Supplementary Tables 5, 6, 7, 8, 12 or 13. There are 71

genes classified as in MutFams and in a GO module.
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Figure 1 Flowchart summarises overall data processing and analysis pipeline.
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CATH superfamily or Pfam family

4*—

" 4 |

B ——
| —_—

Figure 2 CATH-FunFams provide a more functionally specific classification than either Pfam family or CATH
superfamilies. In FunFam 1, mutation enrichment is detected as significant but this might be diluted and missed if
enrichment is calculated at the Pfam family level or the CATH superfamily level.
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Figure 3 Heatmap of MutFam enrichments by cancer type. Each horizontal bar represents a MutFam, with higher
enrichment factors shown in darker red (a full list of MutFams in given in Supplementary Table 2). Cancers found in the
same site of the body and clustered by their MutFams are shown with rectangles: gliomas (blue), non-small cell lung cancers
(orange) and colorectal adenocarcinomas (yellow).

BLCA Bladder cancer; BRCA Breast invasive carcinoma; COAD Colon adenocarcinoma; DLBC Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma; ESCA Esophageal carcinoma; GBM Glioblastoma multiforme; GLI Gliomas; KIRC Kidney renal clear cell carcinoma; LAML
Acute Myeloid Leukemia; LGG Low grade gliomas; LIHC Liver hepatocellular carcinoma; LUAD Lung adenocarcinoma; LUSC Lung
squamous cell carcinoma; OV Ovarian serous cystadenocarcinoma; PAAD Pancreatic adenocarcinoma; PRAD Prostate adenocarcinoma;
READ Rectum adenocarcinoma; SKCM Skin Cutaneous Melanoma; STAD Stomach adenocarcinoma; THCA Thyroid carcinoma; UCEC
Uterine Corpus Endometrial Carcinoma; UCS Uterine Carcinosarcoma; POLY Polymorhisms (neutral mutations).
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MutFam Miller

CGC

Dataset Number of genes | Number of genes
in CGC (%)
MutFam 472 49 (21.1%)
Miller 271 30 (12.9%)
CGC 232 -

Figure 4 MutFam drivers are significantly enriched in CGC genes. The Pfam-based method (Miller) is also enriched
in CGC genes and both methods predict distinct drivers.
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Enriched GO-Slim terms from
unique MutFam genes Main cellular processes

endoderm development

developmental process*

nervous system development Embryonic development
system development*

ectoderm development

Cell migration

Differentiation

response to stress

Cell signalling and transport

Figure 5 Genes uniquely identified from MutFams are enriched in 16 GO-Slim terms representing five main cellular
processes. GO-Slim terms in common with Miller are shown in bold.
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Figure 6 Proximity distributions show that 3D clustered cancer mutations are closer to functional sites than
unfiltered mutations. For known functional sites (CSA, Ligand or PPI) 3D clustered mutations are closer than unfiltered
mutations from either oncogenes or TSGs. For highly conserved residues in FunFam multiple sequence alignments highly
enriched in known functional sites (FunSites), clustered mutations are significantly closer than unfiltered oncogene cancer
mutations (there were too few distances measured to plot distributions for FunSites/TSGs). All distributions use UniProt
neutral as a control.
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Figure 7 Mutations in CHEK2 cluster near specific functional sites. The phosphotransferase domain shown is
representative of a MutFam identified in gliomas and glioblastoma "Calcium/calmodulin-dependent protein kinase type II".
Mutation clusters A and B (red) are within 5A of both known and predicted functional sites (FunSites). Cluster A (centred on
residue 355) is close to the ATP binding pocket, for which Catalytic Site Atlas (CSA) residues are highlighted green. Cluster
B (centred around residues 392, 394 and 396) is in the activation loop near the APE motif, involved in kinase activation and
function during which the loop moves towards the active site of the kinase; further CSA residues near cluster B are
highlighted green.
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General function | Genes Cancers

Apoptosis BCL6 DLBC

Chromatin SWI/SNF

complex ATRX, SMARCA4 GLI, PAAD

Chromatin other CTCF UCEC
BLCA, BRCA, COAD, DLBC, ESCA, GBM, GLlI,
KIRC, LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD,

Genome integrity TP53, CHEK2 PRAD, READ, SKCM, STAD, UCEC, UCS

MAPK signalling

BRAF, DUSP1, DUSP10, DUSP5, DUSP6, DUSP7,
DUSP19

COAD, GLI, LGG, LUAD, READ, SKCM, THCA

Metabolism IDH1, IDH2, MYH4, PGMS5, POLE GLI, LAML, LGG, SKCM, STAD, UCEC
NFKB signalling MYD88 DLBC
NOTCH signalling NOTCH1, NOTCH2, NOTCH4 GLI, LGG, LUAD

BLCA, BRCA, COAD, ESCA, GBM, GLI, KIRC, LGG,

PI3K signalling AKT1, PIK3CA, PIK3CB, PIK3R1, PTEN LIHC, LUAD, LUSC, READ, SKCM, UCEC
BMPRI1A, EGFR, ERBB2, FGFR2, FLT3, KDR, KIT, BLCA, BRCA, COAD, GBM, GLI, LAML, LUAD,
RTK signalling MET, RET, BMPR2, EPHA7, EPHB1, EPHB3 0OV, SKCM

TGFB signalling

CBL, SMAD4, TGFBR2, ARHGEF18

COAD, ESCA, PAAD, READ, SKCM, STAD

TOR signalling

STK11

LUAD

Signalling including
RAS

CDH1, FAT4, HRAS, KRAS, NRAS, PTPN11, RAC1,
RAP2C, TSHR, CDH5, DCC, GRIK1, GRIK2, GRIK4,
HLA-DQB1, ITSN1, KALRN, NET1, NGEF, OBSCN,
PLEC, PLXNA1, PLXNA2, PLXNA4, RALA, RIT2,
ROBO1, UNC5C, UNC5D, VAV2

BLCA, BRCA, COAD, KIRC, LAML, LIHC, LUAD,
PAAD, READ, SKCM, STAD, THCA, UCEC

Cadherins

PCDHA7, PCDHA10, PCDHA11, PCDHB11,
PCDHB15, PCDHB4, PCDHB5, PCDHB6, PCDHB7,
PCDHGA12, PCDHA1, PCDHA13, PCDHA?2,
PCDHA3, PCDHA4, PCDHAS, PCDHB10, PCDHB12,
PCDHB14, PCDHB16, PCDHB2, PCDHB3,
PCDHGA1, PCDHGA2, PCDHGA3, PCDHGAS,
PCDHA®6, PCDHAS, PCDHAY, PCDHB13, PCDHB8

BLCA, BRCA, COAD, ESCA, GLI, LAML, LIHC,
LUAD, LUSC, OV, PRAD, READ, SKCM, STAD,
THCA

Protein homeostasis /
ubiquitination

BAP1, FBXW?7, SPOP, VHL

BLCA, COAD, KIRC, LUSC, PRAD, READ, SKCM,
STAD, UCEC, UCS

Splicing

SF3B1

BRCA, PAAD

Transcription factors

CIC, EZH2, FOXA1, FOXJ1, FOXK1, FOXK2, FOXL2,
HIF1A, LZTR1, WT1, ZNF107, ZNF189, ZNF333,
ZNF560, CELSR2, DUSP22, ZNF100, ZNF138,
ZNF267, ZNF429, ZNF43, ZNFA430, ZNF431,
ZNF479, ZNF492, ZNF506, ZNF585A, ZNF585B,
ZNF676, ZNF708, ZNF714, ZNF83, ZNF98

BLCA, BRCA, COAD, DLBC, GBM, GLlI, LGG, LIHC,
LUSC, READ, SKCM, THCA, UCEC

Other

CSMD1, SEC24C, DSP, EPPK1, SSH1, SSH3, TTN

BLCA, COAD, LIHC, LUAD, READ, SKCM, THCA

Table 1 Summary of protein functions and cancers for the top mutated MutFam genes having some other supporting
evidence. Genes in bold were also identified in either CGC or Miller.
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