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Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare 

functional mutations are hard to distinguish from large numbers of passengers. We developed a novel 

computational platform applying a multi-modal approach to filter out passengers and more robustly 

identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH 

functional families (CATH-FunFams) – structurally and functionally coherent sets of evolutionary 

related domains.  Using structural representatives from CATH-FunFams, we subsequently seek 

enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency 

to lie close to known functional sites or conserved sites predicted using CATH-FunFams.  Our third 

filter identifies enrichment of putative driver genes in functionally coherent protein network modules 

confirmed by literature analysis to be cancer associated.  

Our approach is complementary to other domain enrichment approaches exploiting Pfam 

families, but benefits from more functionally coherent groupings of domains. Using a set of mutations 

from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources 

and include recently validated cancer genes EPHA7, DCC netrin-1 receptor and zinc-finger protein 

ZNF479. 
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Introduction 

Advances in technology have made exome and whole-genome sequencing commonplace and 

have been catalysts for large-scale concerted cancer genome sequencing efforts such as TCGA1 and 

ICGC2. In tandem with details of tumour types, histology, treatments and patient outcomes, these 

sequences provide unique opportunities for identifying which mutations and genes drive tumour 

expansion and how these vary between cancer types. 

Mutations observed in tumours may be drivers, positively influencing tumour progression, or 

passengers, which are incidental and have no net effect3. Methods such as MutSigCV4 analyse 

somatic mutations from tumour samples to identify sequence positions mutated above a significance 

threshold using a sophisticated model of background mutation rates. However, finding driver genes 

using individual point mutations lacks the statistical power to uncover many driver genes as the 

heterogeneous mutation landscape of cancer genomes leads to many genes having few mutations, thus 

identifying significant point mutations requires many tumour samples3. A complementary approach is 

to analyse mutations by mapping to 3D protein structures: Structural studies can help identify 

mutations clustering in specific regions of a protein and highlight cases where rare mutations - that 

may lie far apart in sequence - are close together when mapped to residues in the protein's structure. 

Multiple recent methods aid driver gene identification using structure-based algorithms: by 

calculating frequencies of distances between mutated residue pairs5; calculating a clustering 

coefficient using weighted sums of mutated pairs6,7; using permutation testing of mutation distance 

distributions8; finding mutational hotspots within spherical regions9-12 and testing protein 

complexes13,14. 

Other developments to enhance driver gene detection, that focus on regions in the protein, 

include clustering of mutations on sequence regions15 or using Pfam16 protein domains10,17-19,20.  As 

evolutionarily-related, discrete & independently folding units of sequence, domains are often found in 

multiple genes and in different contexts (i.e. multiple domain architectures), therefore domain 

enrichment may enhance both the statistical power for driver detection and allow clearer prediction of 

the functional impacts of mutations21-23. Sequence hotspots can be detected more easily in enriched 
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domains10,17,18,24,25 and can be analysed using co-location with functional sites24 such as catalytic 

sites26, phosphosites27 and protein-protein interface (PPI) residues28,29,30-34. The distribution of cancer 

mutations to functional sites can be compared with polymorphisms obtained from UniProt35. For 

example, Skolnic et al36 found an enrichment of disease-causing mutations at functional sites or at 

ligand-biding sites adjacent to PPIs. Other studies assess how mutation proximity to functional sites 

varies between known oncogenes and TSGs6,37. 

Network approaches can also be used to interpret cancer gene sets in terms of cellular 

processes38. In particular, multiple genes containing mutations in a tumour sample may belong to 

different components of the same biological pathway, and databases such as PathwayCommons39 can 

help predict functional consequences of such mutated gene sets. Previously derived functional 

interaction networks40, built from both known and predicted protein-protein interactions, can be used 

to analyse driver gene lists for functional consequences, for example, by using GO term enrichment of 

network modules identified. Additionally, protein-protein interaction networks such as STRING41  

permit topological predictions, such as whether a particular gene is a hub or how dispersed a set of 

genes are on the network42.  

We present a novel study that detects enrichment of cancer mutations in our CATH 

Functional Families (CATH-FunFams)43. CATH v4.0 contains over 25 million domain sequences of 

known or predicted structure classified into 2,735 homologous superfamilies. Within each CATH 

superfamily, CATH-FunFams comprise evolutionary related domains44 grouped into functionally 

coherent sets; as such they can help identify functions that appear to be targeted in different diseases. 

Our work builds on earlier studies that used Pfam domains45-48 to detect enrichment, and a recent 

study that tests enrichment in CATH superfamily domains49. Whilst Pfam families provide high-

quality annotation of evolutionary relationships, they may also group related proteins whose domains 

have diverged in function. Recent studies43,50 have shown that CATH-FunFams exhibit higher levels 

of functional purity than either Pfam domains or by using CATH superfamilies. By identifying 

CATH-FunFams enriched with mutations (‘MutFams’) we filter out mutations that don't affect protein 

function (and thus are probably passengers) and as a result identify genes that are more likely to be 

drivers. In addition, this approach reveals functional rather than domain enrichment.  
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We show that heatmap clustering of cancers by their MutFams provides sensible groupings 

and that the top mutated genes from the MutFams appear to map to a specific set of biological 

processes as they are significantly less dispersed on a protein-protein interaction network compared 

with sets of randomly chosen genes. Using both GO biological process and functional network 

enrichment of the top mutated genes from all MutFams we find convergence on cancer-related 

processes and pathways. In addition, pathway analysis of a comparable set of genes from a related 

Pfam-based approach10 shows that some of the enriched pathway modules are commonly identified by 

both approaches. 

Finally, we performed 3D clustering of all available mutations mapped to representative 

domain structures of the MutFams, followed by detailed proximity analysis of clusters to various 

functional sites, on the premise that mutations from different cancers that cluster near the same sites 

are likely to be having similar functional impacts. We find that, in general, our 3D clustered mutations 

are closer to functional sites than unfiltered cancer mutations. 

Our research thus suggests that finding mutation enriched CATH-FunFam domains is a novel 

and helpful way to filter out passenger mutations, and that by selection of the most highly mutated 

genes in each CATH-FunFam we can obtain a broad list of those implicated in cancer. We provide a 

broad list of 472 genes identified from our MutFams along with a confidence score that can be used to 

filter for a higher confidence subset of genes.  The score reflects other evidence supporting a gene's 

involvement in cancer: the predicted functional effects; the identification of cancer-enriched modules 

on a functional interaction network; significant clustering of mutations on protein structures near 

functional sites and/or agreement with the Cancer Genome Census (CGC) or Pfam based gene sets. 

We find 151 genes (in 98 MutFams) are supported by at least one of these confidence tests, with 79 

novel genes (in 41 MutFams) not identified, as yet, by the CGC or in the Pfam gene set. The value of 

our approach is that by filtering mutations to enrich for those with functional effects it could help with 

identification and prioritisation of driver genes from large-scale cancer genomics studies. 
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Results 

We analysed somatic, missense mutations from exome/genome-wide studies from 22 cancer 

types to identify mutationally enriched CATH-FunFam domain families, which we term MutFams. 

CATH-FunFams are functionally coherent groups of relatives and domains within them share the 

same patterns of conserved residues unique to the family (i.e. functional determinants such as ligand 

binding and specificity determining residues)43. This step identifies mutationally enriched domain 

families associated with a more specific function than by testing for enrichment at the domain 

superfamily level (either with CATH or Pfam). Each CATH-FunFam has at least one experimentally 

characterised relative with GO functional annotation. 

We compared mutated genes obtained from MutFams with a subset of cancer genes from the 

Wellcome-Sanger Cancer Gene Census (CGC)51 containing somatic missense mutations known to be 

associated with cancer. We also compared with another comprehensive set of genes identified using a 

related Pfam-based approach by Miller et al10 (see Methods for description of Miller set). We 

compared the MutFam and Miller gene sets both by comparing individual genes and by mapping the 

genes to protein networks to identify common processes. This allowed us to identify those genes more 

likely to be implicated in cancer, as they mapped to common processes highlighted by two 

independent methods.  

Finally, we use representative domain structures from the MutFams to identify 3D clusters of 

mutations for these families and show that this provides a strict method for filtering out passenger 

mutations leading to higher confidence driver gene set. These clusters are closer to both known 

functional sites and those predicted from highly conserved sites than non-clustered (i.e. unfiltered) 

mutations. A summary of the overall workflow is given in Figure 1. 

Identification of mutationally enriched domain functional families (MutFams) 

To assess the value of MutFams for directly comparing diseases, and their functional 

signatures, we specifically analysed a set of 22 cancers identified in COSMIC. We grouped somatic 

missense mutations from 9,950 whole exome (or genome) samples in COSMIC v71 into 22 cancer 
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types (based on tumour site, histology and respective subtypes) from which we identified a total of 

259 MutFams (p < 0.05, permutation test with Benjami-Hochberg correction). For a summary of 

MutFams and number of samples by cancer type see Supplementary Table 1. The median number of 

MutFams per cancer is 13, ranging from 87 in Skin Cutaneous Melanoma to 2 in Uterine 

Carcinsarcoma. The number of MutFams per cancer does not correlate with sample size, i.e. the 

number of tumours sequenced (Pearson's r = 0.232, p = 0.298; Supplementary Figure 1). We used 

neutral mutations (polymorphisms) from UniProt as a non-cancer control, resulting in 8 MutFams, 

with half of these belonging to Class II Major Histo-compatibility Antigens, for which a pool of 

variant alleles is likely to be advantageous52. Supplementary Tables 2 & 3 summarise MutFams for 

22 cancers and polymorphisms respectively, giving the UniProt functional keywords associated with 

each.  

We used hierarchical clustering of MutFams by cancer, based on shared MutFams, as shown 

in Figure 3. In agreement with other domain based methods10,24,53,54 mutations in the tumour 

suppressor p53 are commonly observed. We found 21 out of 22 cancer types have the MutFam 

'Cellular tumor antigen p53'. p53 mutations are found in many cancers55,56 but are not generally 

cancer-specific57. The second most common MutFam (11 out of 22 cancer types) is the tumour 

suppressor 'phosphatase and tensin homolog' (PTEN), a well-studied regulator of growth factor 

phospho-inositide signalling. Inhibition of PTEN has been shown to suppress regulation of the PIP3 

secondary messenger, leading to increased growth factor signalling58.   

It can be seen in Figure 3 that cancers from the same site in the body (as defined by 

COSMIC) are found to cluster: those of brain tissues, low grade gliomas (LGG), glioblastoma 

multiforme (GBM) & gliomas (GLI); the two main histological subtypes of non-small cell lung 

cancer, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and the colorectal 

subtypes of colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). The large number of 

skin cutaneous melanoma (SKCM) MutFams (87) may be due to skin exposure to external 

carcinogens and is consistent with the highest mutation burden being observed in melanomas in 

general59. Additionally, thyroid carcinoma (THCA) is seen to cluster with the polymorphic dataset, 

being the only cancer not to have the p53 enriched MutFam. p53 is known to be affected in THCA via 
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other mutation types (i.e. not missense) such as truncations, or by mutations occurring in regulatory 

transcription factors60. Additionally, while there are some MutFams common to all cancers, as 

discussed above, many are distinct (i.e. tissue-specific) and found uniquely within particular cancers, 

such as Skin Cutaneous Melanoma (SKCM), Acute Myeloid Leukemia (LAML), Bladder Cancer 

(BLCA), Liver hepatocellular carcinoma (LIHC) and Kidney renal clear cell carcinoma (KIRC) (as 

indicated in Figure 3; for specific MutFams see Supplementary Table 2). 

MutFam genes are significantly enriched in CGC genes  

By considering just Cancer Gene Census (CGC) genes that are observed to have missense 

mutations, we find that our list of MutFam genes is significantly enriched in CGC-curated cancer 

driver genes; the 49 drivers in common represent 21% of the MutFam genes identified (𝑝   <   10!!", 

Fisher's). We compared this enrichment with that observed for the gene list identified by the related 

Pfam based approach by Miller et al10 (see Methods). The Miller set is also significantly enriched in 

CGC drivers with 30 genes in common representing 13% of the Miller dataset (𝑝   <   10!!", Fisher's). 

Prior to any further filtering of these gene sets, each method identifies a majority of genes uniquely 

(Figure 4). We find 41 genes in common between the MutFam and Miller sets. Whilst this is a 

relatively low overlap between the genes identified by the MutFam and Miller sets, a recent study by 

Karchin et al61, which investigated overlap between driver genes predicted by 8 different methods, 

also showed that overlap of genes from individual methods with CGC was low. They did however 

find that the union of drivers from all methods showed significant enrichment of CGC genes. To 

investigate whether the unique genes in our dataset could be validated by other approaches, we 

examined their proximity in protein networks and also looked for association in biological pathways.  

MutFam genes are less dispersed than random on a protein-protein interaction network 

Prior to any further filtering and enrichment of the top mutated genes from the MutFams, we 

analysed their overall dispersion on a comprehensive protein-protein interaction network using DS-

Score, a measure adapted from Menche et al42 (see Methods). MutFam genes were significantly closer 

(less dispersed) on the network compared to randomly selected sets of genes (DS-Score 1.212, 
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𝑝   <   1.2×10!!", Mann-Whitney test). Similarly, the set of genes from Miller also showed lower 

dispersion compared to random (DS-Score 1.463, 𝑝   =   1.0×10!!, Mann-Whitney test) 

(Supplementary Table 4). These lower dispersion scores indicate that the tested genes are on average 

more closely connected in the network and thus more likely to be involved in the same biological 

processes. 

Enrichment of MutFam and Miller genes in common pathway modules and processes 

associated with cancer 

We tested enrichment of the uniquely identified MutFam genes to identify whether they 

affected specific biological processes or were convergent on the same (or closely related) processes 

mediated by unique genes from the Miller set. We identified GO term enrichment using two 

approaches: (1) GO-Slim term enrichment on each of the gene sets and (2) GO Biological Process 

(GO-BP) term enrichment of network modules identified by mapping the gene sets to a pathway-

based functional interaction network containing high quality curated annotations.  

GO-Slim term enrichment 

The 420 unique top mutated genes from the MutFams show enrichment in 16 GO-Slim terms, 

which we manually categorised into 5 cellular event categories: "embryonic development", "cell 

migration", "differentiation", "stress response" and "cell signalling and transport" (Figure 5). The 224 

Miller genes were enriched in 27 GO-Slim terms in 6 cellular event categories (Supplementary 

Figure 2). Despite differences between the specific GO-Slim terms found in each gene set, 3 of the 

cellular event categories were common to both MutFam and Miller ("embryonic development", "cell 

migration" & "cell signalling and transport") and each of these categories also contained at least one 

specific GO-Slim term common to both gene sets. The 12 common genes (between MutFam, Miller 

and CGC) were enriched in three GO-Slim terms involved in cell signalling and transport, including 

the immune related signalling term “I-KappaB Kinase/NF-KappaB cascade” and "receptor-mediated 

endocytosis" (Supplementary Figure 2). From this broad overview of the functional attributes of 

MutFam genes, we characterised specific processes in greater detail. 
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Analysis of the gene sets by functional network analysis to identify those more likely to be 

associated with cancer  

Functionally related groups of genes were identified, for both the 12 common genes 

("common") and the genes unique to each of the datasets ("MutFam unique" etc.), by mapping each 

set to a pathway-based functional interaction network (Reactome FI, derived by Wu et al62), clustering 

these networks into modules and then calculating GO BP term enrichment for every module. Unlike 

the dispersion network measure outlined previously, which uses a protein-protein interaction network, 

Reactome FI uses the more specific pathway annotations of Reactome63 and allows better 

identification of functional relationships between proteins. We mapped 193 out of 420 (46%) unique 

MutFam genes, 119 out of 224 (53%) Miller genes, and 9 out of 12 (75%) common genes to the 

functional network. Not all genes map to functional modules because they lack any functional 

associations with other proteins in the network. Overall, 2 (out of 2) of the network modules for 

common genes, 12 (out of 21) modules for MutFams and 5 (out of 7) modules for Miller, showed 

enrichment for at least 1 GO BP term (FDR < 0.001). 

The genes commonly identified by MutFam, Miller and CGC were enriched in receptor 

signalling processes and downstream kinase signalling pathways (see Supplementary Section 1.1). 

We found that genes uniquely identified by each method show different degrees of convergence at the 

functional module level.  Such convergence may be very specific; a functional module identified from 

MutFam genes was associated with NOTCH signalling via NOTCH genes, whereas a module in 

Miller identified upstream and downstream regulators of the same pathway. Unique MutFam and 

Miller genes also converged on broader but clearly related biological processes of transcriptional 

regulation via proteins containing zinc finger domains.  Finally, functional convergence was identified 

via broad and less specific pathways relating to cellular development (for further details on 

convergence between the unique MutFam and Miller genes see Supplementary Section 1.1).  

Overall, our analysis of the genes identified by MutFam and Miller show that whilst there are 

only a modest number of genes commonly identified by both methods, at the level of biological 

processes and pathways there is much better agreement. Of the 193 MutFam genes mapped to the 
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functional network, 168 were in enriched modules (~85%). For at least 40% of these genes (68 genes) 

there was some other information supporting a cancer association i.e. literature, presence in a 

biological processes common with Miller genes or linked to cancer hallmarks (See Supplementary 

Sections 1.1 - 1.3). Thus by identifying different genes involved in common cancer-related pathways 

and by highlighting additional cancer-associated processes, the MutFam and Miller approaches can be 

considered broadly complementary.  

Our pathway analysis further validates our MutFam selection, by revealing significant 

enrichment of MutFam genes in cancer-associated modules, and helps identify a more confident set of 

putative driver genes i.e. that are found both in mutationally enriched MutFams and enriched 

functional modules.  

Detailed analysis of MutFam driver genes in brain cancers 

In addition to the comprehensive analyses of MutFam mutated genes above, two specific 

cancers were subjected to more detailed analyses using Reactome Pathways and Gene Ontology (GO) 

enrichment: low-grade glioma (LGG) and glioblastoma multiforme (GBM). We found that processes 

enriched in GBM are consistent with it being a later stage (and more aggressive) glioma and include 

chaperone functions in proteostasis and immune functions. For a full summary see Supplementary 

Section 1.4. 

Identifying mutationally enriched 3D clusters in representative domain structures of 

MutFams 

We have used functionally pure CATH-FunFams to detect domain families (MutFams) 

enriched in cancer disease mutations. To detect whether mutations within these MutFams were 

enriched in particular 3D locations we subsequently mapped the mutations onto a representative 3D 

structure for each family. Previous studies have shown considerable structural coherence within 

CATH-FunFams43,50. We used an in-house method (see Methods), to identify residues that have 

significantly more neighbouring mutations (i.e. within 5Å) than would be expected by chance. 

Therefore, by seeking for evidence of 3D clustering of mutations from MutFam genes we are able to 
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identify a subset of putative driver genes and driver mutations with higher confidence to be associated 

with one or more cancers. We identified 175 clusters in 42 genes, comprising a total of 970 single 

point mutations. Since our hypothesis was that mutations clustering in 3D are more likely to be 

affecting functional sites in the protein, we assessed the value of these clusters for identifying putative 

drivers by their proximity to known and predicted functional sites in proteins. An example of a 

MutFam cluster occurring near functional sites in CHEK2 is shown in Figure 7. 

Proximity of MutFam cluster mutations to functional sites 

We calculated proximity distributions of mutations to catalytic residues, protein-protein 

interface sites (PPI), ligand-binding and FunSites (highly conserved residue sites in CATH-FunFams, 

see Methods). Distance distributions of mutations to each of these site types were calculated for the 

MutFam cluster mutations and for an unfiltered set of mutations from COSMIC (see Methods). 

Mutations in oncogenes and TSGs were examined separately to see if oncogene mutations were more 

likely to be near functional sites. As mentioned above, since the protocol used to find the enriched 

clusters is designed to filter out noise by excluding passenger mutations, we expected mutations in 

these clusters to be closer, in general, to functional sites than mutations in unfiltered datasets. All were 

compared to the control distribution derived from UniProt neutral mutations, which were further 

filtered by excluding heavily mutated proteins (>50 mutations) to avoid bias. Distances of mutations 

to functional sites are shown as empirical cumulative density functions for each functional site type.  

Catalytic sites 

The mutations in oncogenes from the unfiltered pan-cancer set tend to be closer to catalytic 

residues than neutral mutations, though not significantly (𝑂𝑅   =   1.72, 𝑝 < 0.054, Fisher's exact test), 

while TSGs show an equivalent but significant tendency (𝑂𝑅   =   1.72, 𝑝 < 0.0044).   However, 

MutFam clustered mutations do show a much more significant tendency to be closer to catalytic 

residues (𝑂𝑅   =   2.98, 𝑝 < 3.4×10!!") (see Figure 6). 
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Protein-protein interaction sites 

Protein interfaces can cover large areas on the surface of the protein, thus substantial 

proportions of both cancer and neutral mutations are close to interfaces (Figure 6). Unfiltered cancer 

mutations in both oncogenes and TSGs show significantly higher propensities to lie close to interfaces 

(as defined by IBIS) than neutral mutations (oncogenes 𝑂𝑅   =   1.71, 𝑝 < 3.6×10!!"; TSGs 

𝑂𝑅   =   1.71, 𝑝 < 4.7×10!!", Fisher's exact test). As with catalytic sites, the tendency is more 

pronounced for the MutFam mutations filtered by 3D clustering (𝑂𝑅   =   2.52, 𝑝 < 2.3×10!!"). 

Ligand-binding sites 

Mutations in oncogenes show a small, significant enrichment near ligand binding sites 

(𝑂𝑅   =   1.46, 𝑝 < 9.4×10!!, Fisher's exact test), but those in TSGs are not significantly different to 

neutral (𝑂𝑅   =   1.1, 𝑝 < 0.23).  However, MutFam clustered mutations are significantly closer to 

ligand-binding sites than neutral (𝑂𝑅   =   1.78, 𝑝 < 2.3×10!!") (Figure 6). 

Predicted functional sites (FunSites) 

Predicted FunSites (highly conserved residues in multiple sequence alignments of FunFam 

relatives) have been shown to be enriched in both catalytic and protein interface residues64. Therefore, 

it is not surprising that we see similar trends to those observed for these types of residues (i.e. CSA 

and IBIS interface) (Figure 6). In addition FunSites are likely to include other sites important for the 

stability, folding and any allosteric mechanisms. Both oncogenes and our clustered MutFam 

mutations show a high propensity to lie close to these sites (oncogenes 𝑂𝑅   =   2.45, 𝑝 < 3.6×10!!!; 

MutFam clusters 𝑂𝑅   =   84.7, 𝑝 < 2.3×10!!", Fisher's Exact test), with, again, the filtered MutFam 

mutations showing a more significant tendency. This is consistent with studies that show that somatic 

cancer disease mutations occur close to conserved sites17,65. This result reinforces the validity of our 

3D clustering strategy to remove noise and identify driver mutations. Furthermore, using our 

functionally pure CATH-FunFams to detect structurally and functionally significant sites through 

conservation analyses helps to reveal the functional significance of these mutations.      
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MutFam genes with the greatest functional impacts suggest putative drivers 

A set of 472 genes was initially identified by selecting the top mutated genes from each of the 

CATH-FunFams enriched in mutations (see Methods). This aggregation of mutations in sets of 

domains having related functions provides some evidence for likely impact on protein function. To 

filter this set further and obtain a set of putative driver genes we used multiple lines of evidence by 

identifying: (1) genes in common with those predicted using the Miller method; (2) genes in common 

with CGC; (3) genes in cancer-related GO functional modules (as discussed above, with further 

details in Supplementary Sections 1.1 - 1.3 and Methods) and (4) genes from MutFams containing a 

3D cluster near a functional site. By using these multiple sources of evidence for the functional impact 

of putative MutFam driver genes in cancer we can identify a set of 151 more confidently predicted 

driver genes that are predicted from MutFams and have at least one of the other four pieces of 

supporting evidence outlined above. For a full list of all 472 MutFam genes and the associated 

confidence scores, see Supplementary Table 11. A summary of the 151 MutFam driver genes is 

provided in Table 1, with each gene categorised by general protein function and the cancer types in 

which the gene was identified.  

Since assessing the number of putative driver genes in MutFams that were listed in CGC 

(downloaded September 2016), additional cancer drivers genes have been added, increasing the 

overlap of MutFam and CGC by 11 genes (CNTNAP2, DCC, EPHA7, FKBP9, ISX, PIK3CB, 

PREX2, PTPRT, TNC, ZNF429, ZNF479) (CGC 5th Feb 2018 download), representing 25.9% of our 

MutFam genes overlapping with CGC genes with missense mutations.  One of these was also 

identified in the Miller set (PIK3CB). Of the 11 genes, 3 (PIK3CB, PREX2 and PTPRT) are in the 

new "Tier 1" category (there are 2 tiers), defined by the CGC as those with the strongest evidence for 

a role in cancer. We had identified EPHA7 in our set of putative drivers filtered to include genes 

having both pathway enrichment and 3D clustering (see Supplementary Table 11). Although having 

only 2 mutations within the FunFam boundaries of the gene EPHA7 itself, the MutFam (Ephrin type-

B receptor 2) was found to be enriched based on 12 mutations found in Ovarian cancer across 8 genes 

within the FunFam. Five of these genes only contributed a single mutation each to the MutFam. 
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Calling EPHA7 a predicted driver gene on the basis of these numbers would be dubious, but by 

combining other types of evidence for functional effects the case is stronger. By using the total set of 

pan-cancer mutations, a total of 46 mutations in this FunFam gave a significant cluster in 3D that was 

near a predicted functional site. Additionally, GO process enrichment identified EPHA7 as part of 

enriched processes in cellular development.  Other putative drivers highlighted in Table 1 but not in 

CGC or Miller are in the MutFam "Hepatocyte growth factor receptor". The genes PLXNA1, 

PLXNA2 and PLXNA4 are enriched in cellular development - axon guidance processes and 68 pan-

cancer mutations show a significant clustering of mutations, near a predicted functional site (i.e. based 

on the most highly conserved positions within the FunFam) and an IBIS PPI site. A recent study 

indicates role for PLXNA166 in pancreatic cancer cell lines in enhancing tumour proliferation and 

invasion. 

A full list of 472 genes in all identified MutFams is provided, along with the supporting evidence and 

overall score in Supplementary Table 11. 
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Discussion  

We have exploited a set of domain functional families (CATH-FunFams) classified within 

CATH domain structure superfamilies. Relatives in these families are clustered on the basis of 

structural and functional similarity. Structural coherence has been validated by structural 

superposition of relatives with known structures in the PDB, whilst functional purity is reflected in the 

performance of the families for providing functional annotations for uncharacterised relatives67,43 and 

in the fact that highly conserved residue sites within the family are enriched in known functional sites 

residues including catalytic and ligand binding residues43.  

Previous studies have demonstrated the value of looking for mutationally enriched regions 

within proteins on the premise that mutations in these regions could convey functional effects driving 

cancer. Whilst most studies have exploited Pfam families, here, we examine the benefit of using 

families that have been explicitly clustered on the basis of functional similarity. We identify 259 

mutationally enriched families (MutFams). The lack of any correlation between the sample size 

(number of tumours) and the number of MutFams identified indicates that comparisons between 

cancer types are not confounded by the different numbers of tumours analysed in each, and we would 

expect further samples to increase the enrichment factor of existing MutFams, and (to a lesser extent) 

highlight a few new MutFams that pass over the significance threshold. 

We observe that diseases can be clustered in a sensible manner on the basis of their MutFams, 

with diseases affecting similar tissues (e.g. gliomas) clustering closely on the basis of shared 

MutFams. Despite differences in the driver genes identified by other independent methods (e.g. the 

Miller dataset) and CGC there is substantial convergence of MutFam driver genes at the level of GO 

biological processes affected, as also shown in Baudot et al68. Broadly, MutFams are complementary 

to Pfam-based methods. 

The lower overall dispersion of MutFam genes on a PPI network compared to random 

implied that the genes were closer together on the network and therefore likely to be in related 

processes. This suggested that a more detailed analysis using a pathway-derived functional network 

would help in identifying enriched functional modules. Literature analysis of these enriched modules 
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revealed biological processes known or highly likely to be involved in cancer and showed that the 

MutFam and Miller gene sets tend to converge on similar biological processes despite relatively low 

overlap of the actual gene sets. Furthermore, the cancer sets identified by the MutFam and Miller 

methods were found to be biased towards different tissues, and the genes therefore operating in 

different cellular contexts, which may partly explain this low overlap. 

Finally, we also looked at the proximity of mutation clusters to functional sites, where 

available, to provide additional evidence for a gene's functional relevance. 

Our results suggest that our FunFam protocol is complementary to a Pfam based approach. 

Pfam families are larger and less specific than CATH Functional Families with a broader sampling of 

biological sequence space, and analyses have shown greater functional divergence within Pfam 

families than FunFams43. This divergence may lead to some drivers being missed as functionally 

diverse relatives in the family may have no or few mutations (as illustrated in Figure 2). By contrast 

the smaller size of FunFams may mean that enrichment values fall below the threshold, again causing 

driver genes to be missed. However, the higher number of genes identified by our MutFam analysis 

(i.e. 472 compared to 271 for the Miller set) suggests that the higher functional coherence of our 

families is helpful in detecting mutationally enriched families. For example, our MutFam approach 

detects EPHA7, which is not picked up in the Miller set, but was confirmed by a later release of the 

CGC. It is also reassuring that a high percentage of MutFam genes, mapped to the functional network, 

are in enriched modules. Furthermore, functional coherence of FunFams, and their associated 

structural coherence43, facilitates more accurate multiple sequence alignments which in turn facilitates 

more accurate prediction of functional sites, based on highly conserved positions within the FunFam. 

The functional site data, combined with available representative structures from FunFams, allow 

identification of mutations occurring (or clustering) near the known characterised functional sites or 

predicted functional sites. Since there are relatively few experimentally characterised functional sites, 

CATH-FunFams therefore bring significant benefits from the larger set of predicted functional sites 

they provide. Thus the use of representative structures from MutFams provides an effective filter for 

identifying mutations near functional sites that are likely to have specific functional effects.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 25, 2018. ; https://doi.org/10.1101/399014doi: bioRxiv preprint 

https://doi.org/10.1101/399014
http://creativecommons.org/licenses/by/4.0/


 17 

In support of a combined MutFam and Pfam approach, Pfam includes domain families for 

which no structure is available and families for which there is no experimental characterisation of 

function (e.g. Domains of Unknown Function - DUFS), which are not currently represented in CATH-

FunFams. 

The complete list of 472 genes identified from MutFams is provided (Supplementary Table 

11). By focussing on mutations that affect function i.e. by enrichment in CATH-FunFams, in 

biological processes linked to cancer, or in clusters near functional sites, we provide a novel protocol 

for filtering out passengers and predicting putative driver genes. In total, 151 genes are suggested by 

our MutFam method having biological process enrichment, 3D clustering or agreement with other 

datasets.  A recent large-scale study by Bailey et al69 used a consensus scoring approach combining 

predictions from 26 software tools to identify 299 cancer driver genes. This set of 299 genes 

represents the most up-to-date consensus of drivers we had at the time of submitting this manuscript. 

Overall, a comparable 11% of 472 MutFam genes and 14% of 271 Miller genes are found in the 

consensus 299-gene set. However, 29% of the 151 MutFam gene set, i.e. those genes having evidence 

of functional effects, are in the consensus set, illustrating the value of our approach in filtering 

putative driver gene sets this way.   

MutFams identified 79 genes uniquely that are not found in CGC or Miller, but have evidence 

for a functional role via biological process enrichment or 3D clustering. These could aid prioritisation 

of functional studies of putative novel driver genes identified from large-scale cancer genomics 

studies. 
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Methods 

Datasets and sources 

CATH Functional families 

 

We used CATH-FunFams from version 4.0 of the CATH database44, which classifies 235,000 

structural and over 25 million predicted domain sequences into 2,735 homologous superfamilies, 

which are then sub-divided into 110,439 functional families (CATH-FunFams).  

CATH-FunFams are sets of evolutionary related domains clustered into families on the basis 

of predicted structural and functional similarity. CATH-FunFams are identified using agglomerative 

clustering of domain sequences within a CATH-Gene3D superfamily, and entropy based analyses to 

distinguish CATH-FunFams having distinct specificity determining residues43. CATH-Gene3D 

comprises all sequences from UniProt, which are known or predicted to belong to CATH domain 

structure superfamilies. CATH-FunFams have been highly ranked by the Critical Assessment of 

Functional Annotation (CAFA67) and shown to be more functionally coherent than Pfam families43. 

Typically several CATH-FunFams map to a Pfam family. In other words, although Pfam has been 

frequently used to increase the power of driver gene detection by accumulating mutation information 

across relatives within a Pfam family, this is also likely to introduce noise as Pfam families are not 

specifically classified for functional coherence and can contain relatives with rather diverse functions. 

Mutations in these domains may be exerting different effects as the genes may be operating in 

different pathway or cellular contexts and comprise different protein interfaces or active site residues. 

Previous studies comparing Pfam and CATH functional families for enzymes, showed that 

approximately 50% of Pfam families comprised more than one enzyme class (i.e. as reported by the 

enzyme classification) whilst less than 15% of CATH-FunFams comprised more than one enzyme 

class43. 
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For example, to illustrate the benefits of the CATH functional sub-classification, the 

schematic illustration in Figure 2 shows that analysis of the broad Pfam family shows no significant 

enrichment of mutations as some relatives have none or few mutations (for example, because these 

are paralogous relatives that operate in a different cellular context and hence lack the protein interface 

containing mutated residues found in the other relatives). Separating these relatives into distinct 

CATH-FunFams enables detection of mutational enrichment in CATH-FunFams. Conversely, the 

finer splitting of CATH superfamilies into FunFams may result in some CATH-FunFams being too 

small to detect mutation enrichment. It is therefore reasonable to suppose that mutation analysis by 

CATH-FunFams yields complementary driver gene lists to those obtained by related studies using 

Pfam families (e.g. by Miller et al, also analysed below). 

Because of their functional purity, conserved residues within CATH-FunFams have been 

found to be enriched in known functional sites e.g. catalytic residues in CSA26. They have also been 

shown to be structurally coherent64,70. Highly conserved sites within CATH-FunFams (also described 

as FunSites) are found by analysing sequence conservation in a multiple sequence alignment of the 

FunFam, using the scorecons algorithm71. Scorecons conserved sites can only be reliably identified 

for CATH-FunFams having high information content (i.e. sequence diverse relatives) as measured by 

the DOPS score returned by scorecons. FunSite data was only generated for CATH-FunFams having a 

DOPS score ≥ 70 (range 0 to 100). 

Cancer, polymorphism and disease datasets 

Cancer datasets: 22 cancer-specific datasets were generated comprising somatic, non-

synonymous missense exonic mutations from COSMIC72 v71, using variants from whole 

exome/genome studies, then filtering for each cancer type using tumour site and histology data with 

TCGA-style classes to define cancer types (summarised in Supplementary Table 1). Cancer datasets 

are used to define MutFams (see section "Calculation of MutFams - CATH-FunFams enriched in 

cancer mutations" below). 
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UniProt neutral / polymorphism dataset: 8,838 neutral mutations were obtained from 1,926 

proteins using UniProt Humsavar35 (March 2014) by selecting entries annotated as “polymorphism”. 

This UniProt neutral dataset is used as a neutral control for the cancer datasets. 

Pan-cancer dataset: 800,704 somatic, non-synonymous missense exonic variants from whole 

genome/exome studies from COSMIC v71 with no filtering by tumour site or histology.  Note that the 

pan-cancer dataset is larger than all of the 22 cancer datasets combined as it includes many cancer 

sub-types from COSMIC that have few patient samples.  This set is used to give as large and 

comprehensive cancer mutation dataset to use for 3D clustering as possible, based on the hypothesis 

that mutations from different cancers that cluster near the same functional site are likely to act via 

similar functional impacts. Subsets of the pan-cancer dataset were defined as "COSMIC oncogenes" 

and "COSMIC tumour suppressors" using gene roles identified by Wellcome-Sanger Cancer Gene 

Census (CGC)51.  These sets allow for independent testing of the proximity of mutations to functional 

sites to account for any differences in the distribution of mutations found between oncogenes and 

TSGs. 

PDB structures 

Mutations were mapped to PDB structures using data in CATH v4.0 imported via SIFTS. 

Where multiple structures existed for a given UniProt protein, a single PDB was selected by selecting 

for maximum mapped sequence length followed by highest resolution, as per Stehr et al 73.  Overall 

we were able to map 1,893 COSMIC oncogene, 3,184 COSMIC TSG and 8,838 UniProt neutral 

mutations to structures. 

Functional sites  

Functional sites were classified using catalytic residues from Catalytic Site Atlas 2.0 (CSA)26 

and both protein-protein interaction (PPI) and ligand binding sites from NCBI-IBIS74.  We 

additionally included ligand sites from ccPDB75 by filtering using their scoring metric (using AUC > 

0.8 and MCC > 0.3) to include ligands ADP, ATP, FAD, FMN, GDP, HEM, NAD and PLP.  We also 

analysed proximity to highly conserved sites (FunSites) within CATH-FunFams43. As previously 
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described, FunSites are found using the scorecons algorithm71 for CATH-FunFams having high 

information content (i.e. sequence diverse relatives) as measured using the DOPS score returned by 

scorecons. FunSite data was only generated for CATH-FunFams having DOPS score ≥ 70 (range 0 to 

100). 

Calculation of MutFams - CATH-FunFams enriched in cancer mutations 

For each of the cancer datasets (pan-cancer plus 22 cancer-specific) and UniProt neutral, we 

identified ‘MutFams’ as CATH FunFam domains significantly enriched in mutations.  This protocol 

is based on Miller et al 10 and outlined below. 

The enrichment of each FunFam domain is calculated as: 

𝑒! =
!!

!!
,𝑚! = 𝑛!𝑓!      [1], 

where ef is the enrichment score of mutations (for a given database such as COSMIC) occurring in 

FunFam f; mf is the observed number of mutations occurring in FunFam f; me is the expected number 

of mutations in FunFam f, calculated as total number of mutations observed in all genes containing the 

FunFam, ng, and the fraction of amino acids, fm, within CATH-FunFams compared to the total number 

in genes. Enrichment score significance was assessed using a permutation test as follows: 

For each FunFam f: 

Get the set of human genes containing the FunFam domain 

 For each permutation i (1 to 10000): 

For each gene, g, count the number of mutations ng; randomly distribute the ng 

mutations across gene g, allowing multiple mutations per amino acid. 

Calculate mi, the total mutations for iteration i that are within the FunFam 

boundaries of the genes. 

Enrichment p-value is defined as proportion of iterations where mi ≥ mf, where mf is the observed 

mutation count for FunFam f. 

For each disease type, MutFams were filtered to avoid noisy results from singleton mutations 

or very low counts by excluding those where total mutation count ≤ 10 (within FunFam boundaries, 
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across all human genes and for multiple-spanning discontinuous sequence ranges, if applicable). 

Additionally, MutFams with enrichment factor ef ≤ 1 were removed, as these are - by definition - not 

enriched. For example, out of the 3,124 CATH-FunFams in GBM (glioblastoma multiforme) with at 

least one mutation, 45 remain following the process and filtering outlined above. For each cancer type 

we applied Benjami-Hochberg (BH) correction to the permutation-derived p-values to correct for 

multiple testing of the mutation data set across multiple CATH-FunFams (applying FDR 5%). For 

GBM, 18 out of the 45 mutationally enriched CATH-FunFams remain following BH correction, 

leading to the set of 18 MutFams for GBM. 

MutFam, Miller and CGC genes   

MutFam: For each of the 22 cancers, we identified the top 25% of mutated genes for each 

MutFam. Our total MutFam gene set (n = 472) is the union of gene sets from all 22 cancers analysed. 

We then obtained sets of genes from other methods for comparison.  

CGC: We used a subset of the full cancer driver gene list from Wellcome-Sanger Cancer 

Gene Census51 comprising those annotated as having missense mutations, resulting in 232 known 

driver genes; other mutation types may also have been annotated in these genes, e.g. frameshifts or 

deletions.  

Miller: Genes identified from the Miller method10 obtained via download of the full results 

table from the MutationAligner website20. We then filtered the list to obtain those genes with 

significant domain hotspot residues (P < 0.05) resulting in 271 genes that contain at least one 

significant Pfam domain hotspot. We used this strategy because it gave a sensible number of genes 

that were deemed significant according to their analysis. The Miller set was chosen for comparison 

with MutFam as it is comprehensive and has been derived using a similar domain family based 

approach and because it provides the MutationAligner76 web resource for exploration and analysis of 

mutation hotspots in Pfam domain families. It has also been used in other comparative studies.  
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Functional enrichment scores, network properties and protein structure analyses  

Dispersion measure for genes mapped to a Protein-Protein Interaction (PPI) network 

We measured the dispersion of genes on a network using DS-Score, adapted from Menche et 

al42 to give an overall proximity measurement for all of the genes in each dataset. Significance was 

assessed by comparison of the MutFam DS-Score with the average DS-Score obtained from 1000 sets 

of genes (n = 472, i.e. number of MutFam drivers) randomly selected from the STRING v10 protein-

protein interaction network41.    

GO term enrichment 

Enrichment in GO-Slim terms was obtained for each gene set using the PANTHER online 

tool, testing for statistical over representation in GO-Slim Biological Process with P ≤ 0.0177.  

Functional Interaction Networks  

We analysed our MutFam gene set for pathway enrichment and pathway proximity. These 

MutFam gene sets were mapped to a Functional Interaction Network (FIN) using the ReactomeFIViz 

tool62, which provides a curated set of both known and predicted functional protein interactions. For 

each FIN, proteins were clustered into modules using the inbuilt community detection tool and each 

module analysed for enrichment in GO biological processes (FDR < 0.005). To compare the ability of 

different methods to identify putative driver genes, we compared the biological processes identified 

by using either MutFam or Miller gene sets. For an additional study focusing on gliomas, we obtained 

putative driver gene lists specific to the cancer types GLI, LGG and GBM and analysed these 

separately. 

Calculation of mutations clustered on structures. 

We also separately calculated a set of pan-cancer MutFams using 800,704 somatic missense 

mutations from any whole exome or genome tumour sample, without any grouping by cancer type, to 

give 541 MutFams (p < 0.05, permutation test with Benjami-Hochberg correction). Note that this 
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pan-cancer set is larger than the combination of the 22 cancer types, as it includes many rare cancers, 

each with very few tumour samples. We use this pan-cancer set to provide the largest possible dataset 

for 3D clustering, as mutations from different cancers clustering near a given functional site are likely 

to have similar functional impact. This larger dataset allows for increased detection of significantly 

enriched clusters. Mutations in the pan-cancer MutFams were mapped to their CATH representative 

domain PDB structures, where available. For the 541 MutFams in pan-cancer, 167 contained relatives 

with experimentally characterised structures. The representative structures selected from these 

FunFams had good resolution and the highest cumulative structural similarity to all other structures in 

the FunFam. For each representative structure, we tested for 3D clusters of mapped MutFam 

mutations. For each amino acid in the PDB chain with at least one mutation, we counted how many 

nearby (< 5Å) residues had at least one mutation, then tested whether nearby mutation counts for each 

residue were significantly different to the expected values arising from permutation testing. For each 

MutFam, we assigned all of the observed mutations to residues in the PDB structure at random and 

with equal probability, and then calculated the observed mutation counts near each residue as above. 

Following 5000 such permuted structure trials for each MutFam, 3D clusters were defined per 

MutFam as the residues having an observed nearby mutation count more than 2σ above the mean 

value for that residue over all permutations. Clustering was done using strict thresholds and only 

where at least one relative in the CATH-FunFam was structurally characterised. In future updates 

clustering would be performed using additional 3D models to expand the data set. We previously 

published this method ("MutClust")11 and a similar method has also been independently described78.  

Calculation of distance distributions of mutation and clusters to functional sites 

We used an in-house method to measure the closest atomic distance between a mutated 

residue and a functional site residue; cumulative density function (CDF) distributions are plotted for 

these distances for each mutation dataset. Significance was tested with respect to neutral mutations for 

each disease type using Fisher’s exact test, with 8Å cut-off for mutation to site distance and p < 0.01 

considered significant (as used in Gao et al36). For clusters of mutations, proximity analysis was 

performed using the closest atomic distance between each residue defined as a mutation in a cluster 
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and the nearest functional site residue. In addition to this filtering, for positions with multiple 

mutations, one mutation was selected at random as described in Gao et al36. 

Odds ratio calculation  

Odds ratios were calculated for the distance distributions of cancer mutations to functional 

sites by comparison with neutral mutations using Fisher's exact test with 8Å as the upper bound for 

proximity; test based on Gao et al79. 

Scoring MutFam genes by predicted functional impact 

The total MutFam gene set (472 genes) was annotated to find those most likely to have 

functional consequences using: (1) genes in common with those predicted using Miller method; (2) 

genes in common with CGC; (3) genes in cancer-related GO functional modules (defined below) and 

(4) genes from MutFams containing a 3D cluster near a functional site (defined above in section: 

"Calculation of mutations clustered on structures"). Additionally, as some MutFams occur in multiple 

cancer types and the MutFam enrichment factor is different in each, we calculated a mean enrichment 

factor for all cancers containing the given MutFam and used this to rank genes having the same score 

in the list of putative drivers. 

GO modules: MutFam genes are classified as being in a GO module if present in any of the 

functionally enriched GO modules listed in Supplementary Tables 5, 6, 7, 8, 12 or 13.  There are 71 

genes classified as in MutFams and in a GO module.  
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Figures and tables 

 

Figure 1 Flowchart summarises overall data processing and analysis pipeline. 
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Figure 2 CATH-FunFams provide a more functionally specific classification than either Pfam family or CATH 
superfamilies. In FunFam 1, mutation enrichment is detected as significant but this might be diluted and missed if 
enrichment is calculated at the Pfam family level or the CATH superfamily level. 
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Figure 3 Heatmap of MutFam enrichments by cancer type. Each horizontal bar represents a MutFam, with higher 
enrichment factors shown in darker red (a full list of MutFams in given in Supplementary Table 2). Cancers found in the 
same site of the body and clustered by their MutFams are shown with rectangles: gliomas (blue), non-small cell lung cancers 
(orange) and colorectal adenocarcinomas (yellow).  

BLCA Bladder cancer; BRCA Breast invasive carcinoma; COAD Colon adenocarcinoma; DLBC Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma; ESCA Esophageal carcinoma; GBM Glioblastoma multiforme; GLI Gliomas; KIRC Kidney renal clear cell carcinoma; LAML 
Acute Myeloid Leukemia; LGG Low grade gliomas; LIHC Liver hepatocellular carcinoma; LUAD Lung adenocarcinoma; LUSC Lung 
squamous cell carcinoma; OV Ovarian serous cystadenocarcinoma; PAAD Pancreatic adenocarcinoma; PRAD Prostate adenocarcinoma; 
READ Rectum adenocarcinoma; SKCM Skin Cutaneous Melanoma; STAD Stomach adenocarcinoma; THCA Thyroid carcinoma; UCEC 
Uterine Corpus Endometrial Carcinoma; UCS Uterine Carcinosarcoma; POLY Polymorhisms (neutral mutations). 
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Figure 4 MutFam drivers are significantly enriched in CGC genes. The Pfam-based method (Miller) is also enriched 
in CGC genes and both methods predict distinct drivers. 
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Figure 5 Genes uniquely identified from MutFams are enriched in 16 GO-Slim terms representing five main cellular 
processes. GO-Slim terms in common with Miller are shown in bold. 
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Figure 6 Proximity distributions show that 3D clustered cancer mutations are closer to functional sites than 
unfiltered mutations. For known functional sites (CSA, Ligand or PPI) 3D clustered mutations are closer than unfiltered 
mutations from either oncogenes or TSGs. For highly conserved residues in FunFam multiple sequence alignments highly 
enriched in known functional sites (FunSites), clustered mutations are significantly closer than unfiltered oncogene cancer 
mutations (there were too few distances measured to plot distributions for FunSites/TSGs). All distributions use UniProt 
neutral as a control. 
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Figure 7 Mutations in CHEK2 cluster near specific functional sites. The phosphotransferase domain shown is 
representative of a MutFam identified in gliomas and glioblastoma "Calcium/calmodulin-dependent protein kinase type II". 
Mutation clusters A and B (red) are within 5Å of both known and predicted functional sites (FunSites). Cluster A (centred on 
residue 355) is close to the ATP binding pocket, for which Catalytic Site Atlas (CSA) residues are highlighted green. Cluster 
B (centred around residues 392, 394 and 396) is in the activation loop near the APE motif, involved in kinase activation and 
function during which the loop moves towards the active site of the kinase; further CSA residues near cluster B are 
highlighted green.  
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General	
  function	
   Genes	
   Cancers	
  

Apoptosis	
   BCL6	
   DLBC	
  

Chromatin	
  SWI/SNF	
  
complex	
   ATRX,	
  SMARCA4	
   GLI,	
  PAAD	
  

Chromatin	
  other	
   CTCF	
   UCEC	
  

Genome	
  integrity	
   TP53,	
  CHEK2	
  

BLCA,	
  BRCA,	
  COAD,	
  DLBC,	
  ESCA,	
  GBM,	
  GLI,	
  
KIRC,	
  LAML,	
  LGG,	
  LIHC,	
  LUAD,	
  LUSC,	
  OV,	
  PAAD,	
  
PRAD,	
  READ,	
  SKCM,	
  STAD,	
  UCEC,	
  UCS	
  

MAPK	
  signalling	
  
BRAF,	
  DUSP1,	
  DUSP10,	
  DUSP5,	
  DUSP6,	
  DUSP7,	
  
DUSP19	
   COAD,	
  GLI,	
  LGG,	
  LUAD,	
  READ,	
  SKCM,	
  THCA	
  

Metabolism	
   IDH1,	
  IDH2,	
  MYH4,	
  PGM5,	
  POLE	
   GLI,	
  LAML,	
  LGG,	
  SKCM,	
  STAD,	
  UCEC	
  

NFKB	
  signalling	
   MYD88	
   DLBC	
  

NOTCH	
  signalling	
   NOTCH1,	
  NOTCH2,	
  NOTCH4	
   GLI,	
  LGG,	
  LUAD	
  

PI3K	
  signalling	
   AKT1,	
  PIK3CA,	
  PIK3CB,	
  PIK3R1,	
  PTEN	
  
BLCA,	
  BRCA,	
  COAD,	
  ESCA,	
  GBM,	
  GLI,	
  KIRC,	
  LGG,	
  
LIHC,	
  LUAD,	
  LUSC,	
  READ,	
  SKCM,	
  UCEC	
  

RTK	
  signalling	
  
BMPR1A,	
  EGFR,	
  ERBB2,	
  FGFR2,	
  FLT3,	
  KDR,	
  KIT,	
  
MET,	
  RET,	
  BMPR2,	
  EPHA7,	
  EPHB1,	
  EPHB3	
  

BLCA,	
  BRCA,	
  COAD,	
  GBM,	
  GLI,	
  LAML,	
  LUAD,	
  
OV,	
  SKCM	
  

TGFB	
  signalling	
   CBL,	
  SMAD4,	
  TGFBR2,	
  ARHGEF18	
   COAD,	
  ESCA,	
  PAAD,	
  READ,	
  SKCM,	
  STAD	
  

TOR	
  signalling	
   STK11	
   LUAD	
  

Signalling	
  including	
  
RAS	
  

CDH1,	
  FAT4,	
  HRAS,	
  KRAS,	
  NRAS,	
  PTPN11,	
  RAC1,	
  
RAP2C,	
  TSHR,	
  CDH5,	
  DCC,	
  GRIK1,	
  GRIK2,	
  GRIK4,	
  
HLA-­‐DQB1,	
  ITSN1,	
  KALRN,	
  NET1,	
  NGEF,	
  OBSCN,	
  
PLEC,	
  PLXNA1,	
  PLXNA2,	
  PLXNA4,	
  RALA,	
  RIT2,	
  
ROBO1,	
  UNC5C,	
  UNC5D,	
  VAV2	
  

BLCA,	
  BRCA,	
  COAD,	
  KIRC,	
  LAML,	
  LIHC,	
  LUAD,	
  
PAAD,	
  READ,	
  SKCM,	
  STAD,	
  THCA,	
  UCEC	
  

Cadherins	
  

PCDHA7,	
  PCDHA10,	
  PCDHA11,	
  PCDHB11,	
  
PCDHB15,	
  PCDHB4,	
  PCDHB5,	
  PCDHB6,	
  PCDHB7,	
  
PCDHGA12,	
  PCDHA1,	
  PCDHA13,	
  PCDHA2,	
  
PCDHA3,	
  PCDHA4,	
  PCDHA5,	
  PCDHB10,	
  PCDHB12,	
  
PCDHB14,	
  PCDHB16,	
  PCDHB2,	
  PCDHB3,	
  
PCDHGA1,	
  PCDHGA2,	
  PCDHGA3,	
  PCDHGA6,	
  
PCDHA6,	
  PCDHA8,	
  PCDHA9,	
  PCDHB13,	
  PCDHB8	
  

BLCA,	
  BRCA,	
  COAD,	
  ESCA,	
  GLI,	
  LAML,	
  LIHC,	
  
LUAD,	
  LUSC,	
  OV,	
  PRAD,	
  READ,	
  SKCM,	
  STAD,	
  
THCA	
  

Protein	
  homeostasis	
  /	
  
ubiquitination	
   BAP1,	
  FBXW7,	
  SPOP,	
  VHL	
  

BLCA,	
  COAD,	
  KIRC,	
  LUSC,	
  PRAD,	
  READ,	
  SKCM,	
  
STAD,	
  UCEC,	
  UCS	
  

Splicing	
   SF3B1	
   BRCA,	
  PAAD	
  

Transcription	
  factors	
  

CIC,	
  EZH2,	
  FOXA1,	
  FOXJ1,	
  FOXK1,	
  FOXK2,	
  FOXL2,	
  
HIF1A,	
  LZTR1,	
  WT1,	
  ZNF107,	
  ZNF189,	
  ZNF333,	
  
ZNF560,	
  CELSR2,	
  DUSP22,	
  ZNF100,	
  ZNF138,	
  
ZNF267,	
  ZNF429,	
  ZNF43,	
  ZNF430,	
  ZNF431,	
  
ZNF479,	
  ZNF492,	
  ZNF506,	
  ZNF585A,	
  ZNF585B,	
  
ZNF676,	
  ZNF708,	
  ZNF714,	
  ZNF83,	
  ZNF98	
  

BLCA,	
  BRCA,	
  COAD,	
  DLBC,	
  GBM,	
  GLI,	
  LGG,	
  LIHC,	
  
LUSC,	
  READ,	
  SKCM,	
  THCA,	
  UCEC	
  

Other	
   CSMD1,	
  SEC24C,	
  DSP,	
  EPPK1,	
  SSH1,	
  SSH3,	
  TTN	
   BLCA,	
  COAD,	
  LIHC,	
  LUAD,	
  READ,	
  SKCM,	
  THCA	
  

 

Table 1 Summary of protein functions and cancers for the top mutated MutFam genes having some other supporting 
evidence. Genes in bold were also identified in either CGC or Miller.  
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