

LOTUS: a Single- and Multitask Machine Learning Algorithm for the Prediction of Cancer Driver Genes

Olivier Collier^{1,*}, Véronique Stoven^{2,3,4}, Jean-Philippe Vert^{5,2,†}

1 Modal'X, UPL, Univ Paris Nanterre, F-92000 Nanterre, France

2 MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France

3 Institut Curie, F-75248 Paris Cedex 5, France

4 INSERM U900, F-75248 Paris Cedex 5, France

5 Google Brain, F-75009 Paris, France

* olivier.collier@parisnanterre.fr, † jpvert@google.com

Abstract

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for the fundamental understanding of cancer and to help finding new therapeutic targets. Although the most frequently mutated driver genes have been identified, it is believed that many more remain to be discovered, particularly for driver genes specific to some cancer types.

In this paper we propose a new computational method called LOTUS to predict new driver genes. LOTUS is a machine-learning based approach which allows to integrate various types of data in a versatile manner, including informations about gene mutations and protein-protein interactions. In addition, LOTUS can predict cancer

driver genes in a pan-cancer setting as well as for specific cancer types, using a multitask learning strategy to share information across cancer types.

We empirically show that LOTUS outperforms three other state-of-the-art driver gene prediction methods, both in terms of intrinsic consistency and prediction accuracy, and provide predictions of new cancer genes across many cancer types.

Author summary

Cancer development is driven by mutations and dysfunction of important, so-called cancer driver genes, that could be targeted by targeted therapies. While a number of such cancer genes have already been identified, it is believed that many more remain to be discovered. To help prioritize experimental investigations of candidate genes, several computational methods have been proposed to rank promising candidates based on their mutations in large cohorts of cancer cases, or on their interactions with known driver genes in biological networks. We propose LOTUS, a new computational approach to identify genes with high oncogenic potential. LOTUS implements a machine learning approach to learn an oncogenic potential score from known driver genes, and brings two novelties compared to existing methods. First, it allows to easily combine heterogeneous informations into the scoring function, which we illustrate by learning a scoring function from both known mutations in large cancer cohorts and interactions in biological networks. Second, using a multitask learning strategy, it can predict different driver genes for different cancer types, while sharing information between them to improve the prediction for every type. We provide experimental results showing that LOTUS significantly outperforms several state-of-the-art cancer gene prediction softwares.

Introduction

In our current understanding of cancer, tumors appear when some cells acquire functionalities that give them a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis [1, 2]. These malignant characteristics arise from various genomic alterations including point mutations, gene copy number variants (CNVs), translocations, inversions, deletions, or aberrant gene fusions. Many studies

have shown that these alterations are not uniformly distributed across the genome [3, 4], 23
and target specific genes associated with a limited number of important cellular 24
functions such as genome maintenance, cell survival, and cell fate [5]. Among these 25
so-called *driver genes*, two classes have been distinguished in the literature: *tumor* 26
suppressors genes (TSGs) and *oncogenes* (OGs) [6, Chapter 15]. TSGs, such as 27
TP53 [7], participate in defense mechanisms against cancer and their inactivation by a 28
genomic alteration can increase the selective growth advantage of the cell. On the 29
contrary, alterations affecting OGs, such as KRAS [8] or ERBB2 [9], can be responsible 30
for the acquisition of new properties that provide some selective growth advantage or 31
the ability to spread to remote organs. Identifying driver genes is important not only 32
from a basic biology point of view to decipher cancer mechanisms, but also to identify 33
new therapeutic strategies and develop precision medicine approaches targeting 34
specifically mutated driver genes. For example, Trastuzumab [10] is a drug given 35
against breast cancer that targets the protein precisely encoded by ERBB2, which has 36
dramatically improved the prognosis of patients whose tumors overexpress that OG. 37

Decades of research in cancer genomics have allowed to identify several hundreds of 38
such cancer genes. Regularly updated databases such as the Cancer Gene Census 39
(CGC) [11], provide catalogues of genes likely to be causally implicated in cancer, with 40
various levels of experimental validations. Many cancer genes have been identified 41
recently by systematic analysis of somatic mutations in cancer genomes, as provided by 42
large-scale collaborative efforts to sequence tumors such as The Cancer Genome Atlas 43
(TCGA) [12] or the International Cancer Genome Consortium (ICGC) [13]. Indeed, 44
cancer genes tend to be more mutated than non-cancer genes, providing a simple 45
guiding principle to identify them. In particular, the COSMIC database [14] is the 46
world's largest and most comprehensive resource of somatic mutations in coding regions. 47
It is now likely that the most frequently mutated genes have been identified [15]. 48
However, the total number of driver genes is still a debate, and many driver genes less 49
frequently mutated, with low penetrance, or specific to a given type of cancer are still to 50
be discovered. 51

The first methods to identify driver genes from catalogues of somatic mutations 52
simply compared genes based on somatic mutation frequencies, which was proved to be 53
far too basic [16]. Indeed, mutations do not appear uniformly on the genome: some 54

regions of the genome may be more affected by errors because they are more often
55 transcribed, so that some studies actually overestimated the number of driver genes
56 because they were expecting lower mutation rates than in reality. Mathematically, they
57 were formulating driver prediction as a hypothesis testing problem with an inadequate
58 null hypothesis [17]. Several attempts have been made to adequately calibrate the null
59 hypothesis, like [16] or [18], where it is assumed that mutations result from a mixture of
60 several mutational processes related to different causes.
61

A variety of bioinformatics methods have then been developed to complete the list of
62 pan-cancer or cancer specific driver genes. Globally, they fall into three main categories.
63 First, a variety of “Mutation Frequency” methods such as MuSiC [19] or
64 ActiveDriver [20] identify driver genes based on the assumption that they display
65 mutation frequencies higher than those of a background mutation model expected for
66 passenger mutations. However, this background rate may differ between cell types,
67 genome positions or patients. In order to avoid such potential bias, some methods like
68 MutSigCV [21] derive a patient-specific background mutation model, and may take into
69 account various criteria such as cancer type, position in the genome, or clinical data.
70 Second, “Functional impact” methods such as OncodriveFM [22] assume that driver
71 genes have higher frequency of mutations expected to impact the protein function
72 (usually missense mutations) than that observed in passenger genes. Third,
73 “Pathway-based” methods consider cancer as a disease in which mutated genes occupy
74 key roles in cancer-related biological pathways, leading to critical functional
75 perturbations at the level of networks. For example, DriverNet [23] identifies driver
76 genes based on their effect in the transcription networks. Although these methods tend
77 to successfully identify the most frequently mutated genes, their overall prediction
78 overlap is modest. Since they rely on complementary statistical strategies, one could
79 recommend to use them in combination. The results of some of these tools are available
80 at the Driver DB database [24].
81

Some methods integrate information on mutation frequency and functional impact of
82 mutations, or other types of data such as genome position, copy number variations
83 (CNVs) or gene expression. The underlying idea is that combining data should improve
84 the prediction performance over tools that use a single type of information. For example,
85 TUSON [25] or DOTS-Finder [26] combine mutation frequencies and functional impact
86

of mutations to identify OGs and TSGs. Also in this category, the 20/20+ method [27] 87 encodes genes with features based on their frequency and mutation types, in addition to 88 other biological information such as gene expression level in difference cancer cell 89 lines [28] or replication time. Then, 20/20+ predicts driver genes with a random forest 90 algorithm, which constitutes the first attempt to use a machine learning method in this 91 field. In [27], the authors benchmark 8 driver gene prediction methods based on several 92 criteria including the fraction of predicted genes in CGC, the number of predicted driver 93 genes and the consistency. Three methods proved to perform similarly on all criteria, 94 and better than the five others: TUSON, MutSigCV, and 20/20+, validating the 95 relevance of combining heterogeneous information to predict cancer genes. 96

In the present paper, we propose a new method for cancer driver gene prediction 97 called *Learning Oncogenes and TUMor Suppressors* (LOTUS). Like 20/20+, LOTUS is 98 a machine learning-based method, meaning that it starts from a list of known driver 99 genes in order to “learn” the specificities of such genes and to identify new ones. In 100 addition, LOTUS presents two unique characteristics with respect to previous work in 101 this field. First, it combines informations from all three types of informations likely to 102 contain information to predict cancer genes (mutation frequency, functional impact, and 103 pathway-based informations). This integration of heterogeneous informations is carried 104 out in a unified mathematical and computational framework thanks to the use of kernel 105 methods [29], and allows in principle to integrate other sources of data if available, such 106 as transcriptomic or epigenomic information. More precisely, in our implementation we 107 predict cancer driver genes based not only on gene mutations features like “Mutation 108 Frequency” and “Functional Impact” methods do, but also on known protein-protein 109 interaction (PPI) network like “Pathway-based” methods do. Indeed, the use of PPI 110 information is particularly relevant since it has been reported that proteins encoded by 111 driver genes are more likely to be involved in protein complexes and share higher 112 “betweenness” than a typical protein [25]. Second, LOTUS can predict cancer genes in a 113 pan-cancer setting, as well as for specific cancer types, using a multitask learning 114 strategy [30]. The pan-cancer setting has been adopted by most available prediction 115 methods, since more data is available when pooling together all cancer types. The 116 cancer type-specific prediction problem has been less explored so far, because the 117 number of known driver genes for a given cancer is often too small to build a reliable 118

prediction model, and because the amount of data such as somatic mutations to train
119
the model is smaller than in the pan-cancer setting. However, the search for cancer
120
specific driver genes is relevant, because cancer is a very heterogeneous disease: different
121
tumorigenic processes seem to be at work in different tissue types, and consequently
122
every cancer type probably has its own list of driver genes [15]. LOTUS implements a
123
multitask algorithm that predicts new driver genes for a given cancer type based on its
124
known driver genes, while also taking into account the driver genes known for other
125
types of cancers according to their similarities with the considered type of cancer. Such
126
approaches are of particular interest when the learning data are scarce in each
127
individual tasks: they increase the amount of data available for each task and thus
128
perform statistically better. To our knowledge, while a similar approach was used to
129
predict disease genes across general human diseases [31], this is the first time a
130
multitask machine learning algorithm is used for the prediction of cancer driver genes.
131

We compare LOTUS to the three best state-of-the art cancer prediction methods
132
according to [27]. We show that that LOTUS outperforms the state-of-the-art in its
133
ability to identify novel cancer genes, and clarify the benefits of heterogeneous data
134
integration and of the multitask learning strategy to predict cancer type-specific driver
135
genes. Finally, we provide predictions of new cancer genes according to LOTUS, as well
136
as supporting evidence that those predictions are likely to contain new cancer genes.
137

Results

LOTUS, a new method for pan-cancer and cancer specific 138 driver gene prediction

We propose LOTUS, a new method to predict cancer driver genes. LOTUS is a machine
141
learning-based method that estimates a scoring function to rank candidate genes by
142
decreasing probability that they are OGs or TSGs, given a training set of known OGs
143
and TSGs. The score of a candidate gene is a weighted sum of similarities between the
144
candidate gene and the known cancer genes, where the weights are optimized by a
145
one-class support vector machine (OC-SVM) algorithm. The similarities themselves are
146
derived from the analysis of somatic mutation patterns in the genes, or from the relative
147

positions of genes in a PPI network, or from both; the mathematical framework of 148
kernel methods allows to simply combine heterogeneous data about genes (i.e., patterns 149
of somatic mutations and PPI information) in a single model. 150

Another salient feature of LOTUS is its ability to work in a pan-cancer setting, as 151
well as to predict driver genes specific to individual cancer types. In the later case, we 152
use a multitask learning strategy to jointly learn scoring functions for all cancer types 153
by sharing information about known driver genes in different cancer types. We test 154
both a default multitask learning strategy, that shares information in the same way 155
across all cancer types, and a new strategy that shares more information across similar 156
cancer types. More details about the mathematical formulation and algorithms 157
implemented in LOTUS are provided in the Material and Methods section. 158

In the following, we assess the performance of LOTUS first in the pan-cancer regime, 159
where we compare it to three state-of-the-art methods (TUSON, MutSigCV and 160
20/20+), and second in the cancer type specific regime, where we illustrate the 161
importance of the multitask learning strategies. 162

Cross-validation performance for pan-cancer driver gene 163 prediction 164

We first study the pan-cancer regime where cancer is considered as a single disease, and 165
where we search for driver genes involved in at least one type of cancer. Several 166
computational methods have been proposed to solve this problem in the past, and we 167
compare LOTUS with the three best methods in terms of performance according to a 168
recent benchmark [27]: MutSigCV [21], which is a frequency-based method, and 169
TUSON [25] and 20/20+ [27], which combine frequency and functional information. 170

While MutSigCV is an unsupervised method that scores candidate genes 171
independently of any training set of known drivers, TUSON and 20/20+ depend on a 172
training set, just like LOTUS. To perform a comparison as fair as possible between 173
different methods, we collect the training sets of TUSON and 20/20+, and evaluate the 174
performance of LOTUS on each of these datasets by 5-fold cross-validation (CV) 175
repeated twice (see Methods). For TUSON and 20/20+, we use the prediction results 176
available in the corresponding papers, in order to evaluate the consistency errors (CE) 177

as the mean number of non-driver genes that are ranked before known driver genes of
178
the TUSON and 20/20 train sets, respectively. We note that these ranks were obtained
179
by training these two algorithms on their respective train set, and that this therefore
180
gives an advantage to TUSON and 20/20+ compared to LOTUS in the evaluation.
181
Indeed for the former two methods the training set is used both to define the score and
182
to assess the performance, while for LOTUS the CV procedure ensures that different
183
genes are used to train the model and to test its performance. However we note that the
184
20/20+ score itself is obtained by a bootstrap procedure similar to our cross-validation
185
approach [27]. This allows us to make fair comparisons between TUSON, MutSigCV
186
and LOTUS (trained on TUSON train set), on the one hand, and between 20/20+,
187
MutSigCV and LOTUS (trained on 20/20 train set), on the other hand. We further
188
note that MutSigCV also provides a ranked list of genes, but does not make the
189
difference between TSG and OG. Therefore, it is not dependent from a train set, and
190
the *CE* in this case is obtained by averaging the numbers of non-driver genes ranked
191
before each driver genes in the considered train set.
192

The *CE* for the different methods and the different training sets are presented in
193
Table 1 for OGs and in Table 2 for TSGs. When analyzing these results, one should
194
keep in mind that the total number of cancer driver genes is still a subject of debate,
195
but it is expected to be much lower than the size of the test set of 17849 genes, and it
196
should rather be in the range of a few hundreds. Therefore, consistency errors above a
197
few thousand can be considered as poor performance results.
198

Train set \ Method	MutSigCV	TUSON	20/20+	LOTUS
TUSON train set	4,489	3,286	×	931
20/20 train set	5,823	×	1,831	819

Table 1. Consistency error for OG prediction in the pan-cancer setting, for different methods (columns) and different gold standard sets of known OG (rows).

Train set \ Method	MutSigCV	TUSON	20/20+	LOTUS
TUSON train set	1,443	626	×	130
20/20 train set	2,447	×	845	514

Table 2. Consistency error for TSG prediction in the pan-cancer setting, for different methods (columns) and different gold standard sets of known TSG (rows).

These results show that LOTUS strongly outperforms all other algorithms in term of
199
CE, for both TSG and OG predictions. More precisely, for OG predictions, TUSON is
200

about 5-fold better than MutSigCV, 3-fold better than TUSON and 2-fold better than 201
20/20+, in terms of *CE*. For TSG predictions, the reduction in *CE* with LOTUS is 202
4-11x, 5x and 1.6x compared to MutSigCV, TUSON and 20/20+, respectively. The 203
performances of TUSON and 20/20+ are in the same range, although we should keep 204
the above remark in mind. The results also show that MutSigCV does not perform as 205
well as the three other methods, at least on the datasets used here. 206

It is interesting to note that, for all methods, the performances obtained for OG do 207
not reach those obtained for TSG, suggesting that OG prediction is a more difficult 208
problem than TSG prediction. This reflects the fundamental difference between TSG 209
mutations and OG mutations: the first lead to loss-of-function and can pile up, while 210
the second are gain-of-function mutations and have a much more subtle nature. In 211
addition, gain-of-function can also be due to overexpression of the OG, which can arise 212
from other mechanisms than gene mutation. One way to improve the OG prediction 213
performance may be to include descriptors better suited to them, such as copy number. 214
Moreover, as mutations affecting OGs are not all likely to provide them with new 215
functionalities, many mutations on OGs present in the database and used here might 216
not bear information on OGs. Therefore, relevant information on OGs is scarce, which 217
makes OG prediction more difficult. In addition, the data themselves might also 218
contribute to difference in performance between TSG and OG prediction. For example, 219
in the case of the TUSON train set, although the TSG and OG train sets both contain 220
50 genes, the mutation matrix that we used to build the gene features contains 13,525 221
mutations affecting TSGs and 7,717 mutations affecting OGs. Therefore, the data are 222
richer for TSG, which might contribute to the difference in prediction performance. 223

The benefits of combining mutations and PPI informations 224

LOTUS, 20/20+, MutSigCV and TUSON differ not only by the algorithm they 225
implement, but also by the type of data they use to make predictions: in particular, 226
TUSON and 20/20+ use only mutational data while LOTUS uses PPI information in 227
addition to mutational data. To highlight the contributions of the algorithm and of the 228
PPI information to the performance of LOTUS, we ran LOTUS with 229
 $K_{genes} = K_{mutation}$, or $K_{genes} = K_{PPI}$, *i.e.*, with only mutation information, or only 230

PPI information. The results are presented in Table 3 and Table 4 respectively for OG and TSG. The last column of these Tables recalls the performance obtained when mutation and PPI information are both used (values reported from Table 1 and Table 2).

Train set \ Kernel	$K_{mutation}$	K_{PPI}	$K_{mutation} + K_{PPI}$
TUSON train set	2,333	1,565	931
20/20 train set	2,072	2,013	819

Table 3. Consistency error of LOTUS for OG prediction in the pan-cancer setting, with different gene kernels (columns) and different gold standard sets of known OGs (rows).

Train set \ Kernel	$K_{mutation}$	K_{PPI}	$K_{mutation} + K_{PPI}$
TUSON train set	388	1,645	130
20/20 train set	901	1,858	514

Table 4. Consistency error of LOTUS for TSG prediction in the pan-cancer setting, with different gene kernels (columns) and different gold standard sets of known TSGs (rows).

These results show that, both for OG and TSG, using both mutation and PPI information dramatically improves the prediction performance over using only one type of them. This underlines the fact that mutation and PPI are complementary informations that are both useful for the prediction tasks. The performances obtained with only PPI information are similar for OG and TSG, which seems to indicate that this information contributes similarly to both prediction tasks. On the contrary, the performances obtained using only mutation information are much better for TSG than for OG. This is consistent with the above comment that mutation information is more abundant in the database and more relevant in nature for TSG than for OG. It is also consistent with the fact that using $K_{mutation}$ alone outperforms using K_{PPI} alone for TSGs, while the opposite is observed for OGs.

Performance on CGCv84 prediction in the pan-cancer regime

We now evaluate the generalization properties of the different methods on new unseen data as external test set. This not only mitigates the potential bias in the evaluation of the performance of TUSON and 20/20+ in the previous paragraph, but also allows to evaluate the performance of the different methods when predicting supposedly “difficult” new cancer genes, which have only been added recently in CGC. For that purpose we train LOTUS with the full 20/20 or TUSON train sets, make predictions on the full

COSMIC database, and evaluate the CE using the CGCv84 database as a gold standard of true cancer genes, under the assumption that this database is enriched in driver genes (a criterion that was also used in [27]). We compare these CE to those of TUSON (for the TUSON train set) and 20/20+ (for the 20/20 train set). For LOTUS, TUSON and 20/20+, genes belonging to their corresponding trains set are removed from the CGCv84 database before calculating the CE . For MutSigCV, the CE is calculated based on the ranked list of genes provided in the corresponding paper [21], removing genes of the TUSON train set from CGCv84 database when MutSigCV is compared to TUSON and LOTUS (Table 5), and removing genes from the 20/20 train set from CGCv84 when MutSigCV is compared to 20/20+ and LOTUS (Table 6). These results are illustrated by the corresponding ROC curves, see Figures 1 and 2.

Driver type \ Method	MutSigCV	TUSON	LOTUS
TSG	6,195	6,799	3,669
OG	7,274	7,180	2,258

Table 5. CE obtained on the CGCv84 data set with the TUSON train set.

Driver type \ Method	MutSigCV	20/20+	LOTUS
TSG	6,925	4,893	3,944
OG	6,931	3,901	2,358

Table 6. CE obtained on the CGCv84 data set with the 20/20 train set.

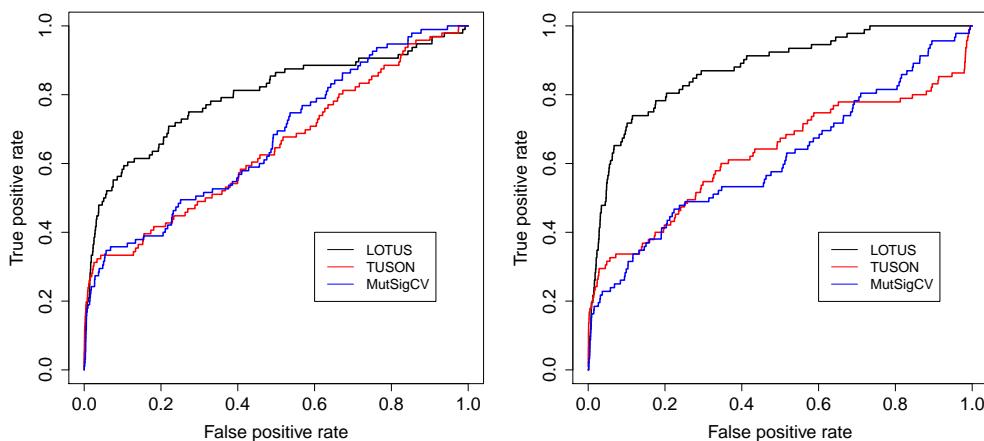


Fig 1. ROC curves for TSGs (left) and OGs (right) and the TUSON train set.

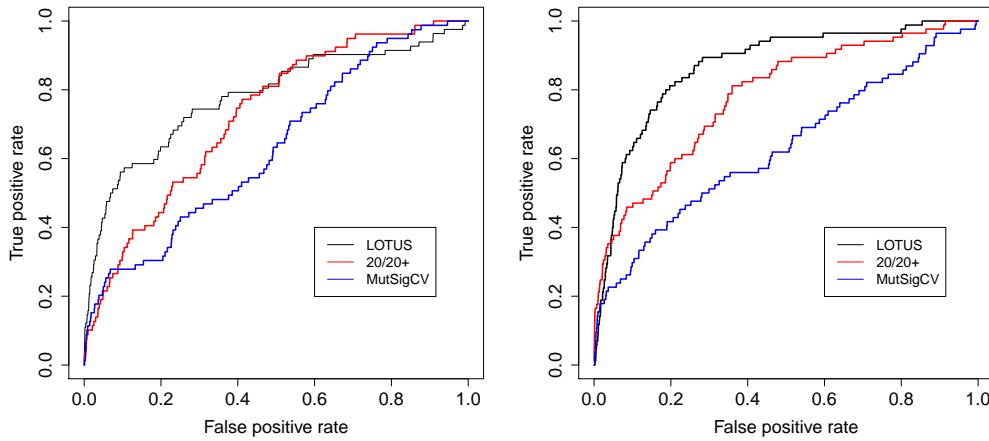


Fig 2. ROC curves for TSGs (left) and OGs (right) and the 20/20 train set.

We observe that, again, LOTUS strongly outperforms all three other methods in this setting. MutSigCV and TUSON have similar performance, and LOTUS outperforms them in all settings by a 1.6- to 3-fold decrease in CE . 20/20+ has better performance than MutSigCV, but has a CE 1.2 to 1.3 larger than LOTUS. We also observe that the absolute performance are overall worse than in the previous cross-validation experiment, which confirms the fact that genes recently added to CGC are overall harder to identify than the ones known for a long time.

Analysis of new driver genes predicted by LOTUS

We now investigate the ability of LOTUS to make new driver gene predictions. For that purpose we train LOTUS with the CGCv84 train set, and make predictions over the complete COSMIC database (17,948 genes). The complete results are given in Supplementary Table 3.

In the absence of experimental validation, we try to evaluate some of these predictions based on independent sources of information. Complete analyses of the predicted OG and TSG rankings is out of the scope of this paper. However, we consider below the 20 best ranked TSGs and OGs according to LOTUS.

Among the 20 best ranked TSGs, 4 genes are actually known TSGs that were not included yet in CGCv84: PTEN [32], FAT1 [33], STAG1 [34], TRAP1 [35].

Interestingly, 8 genes out of these 20 best ranked TSGs are genes coding for proteins

involved in DNA repair, a role closely related to genome maintenance and cancer [36,37]. 283
These genes are EXO1 [38], ERCC1 [39], GTF2H1 and GTF2H4 (both involved in the 284
TFIIH complex [40]), NTHL1 [41], ATR [42], RAD52 [43] and RPA4 [44]. In addition to 285
these clues referring to the DNA repair functions, many additional studies related to 286
these genes are available in the literature, underlining their role in various types of 287
cancers, which provides another clue for them to be confident TSG candidates. In 288
particular, mutations in NTHL1 are known to predispose to colorectal cancer, which is 289
an additional argument in favor of NTHL1 being a strong candidate TSG [45,46]. 290

For 2 additional genes, GALNT5 and PIWIL1, we find recent publications indicating 291
that they could potentially act as TSG, at least in some tumor types. A non-coding 292
RNA directed against GALNT5 is overexpressed in gastric cancer, inhibiting the 293
translation of its target gene, and the level of expression of this non-coding RNA is 294
correlated with cancer progression and metastasis [47]. These results are consistent with 295
a TSG role of GALNT5 in gastric cancer. In the case of PIWIL1, a recent paper 296
concludes that it is an epidriver gene for lung adenocarcinoma, which means that 297
aberrant methylation of its promoter region plays a role in the development of this 298
cancer [48]. 299

Among the 20 best ranked putative OGs, 3 genes are actually known OGs at least 300
for some types of cancers, and not yet included in CGCv84: MAP3K1 [49], PLCE1 [50], 301
FGF5 [51]. 302

One gene, GATA3, is known to behave either as an OG or as a TSG, depending on 303
the genetic context of the disease [52]. In fact, the literature provides other examples of 304
genes able to switch from oncogenes to tumor suppressor genes, depending on the 305
context [53]. In line with this remark, 3 genes among the 20 best ranked OGs are 306
known TSGs. They could in fact have a potential property to be OG or TSG, 307
depending on the context: PIK3R1 [54], APC [55], TP53 [56]. 308

Mutations in the 6th ranked HTP0 gene seems to be causal in some cancer types, 309
where it could therefore be considered as an oncogene [57]. 310

Finally 4 genes are known to be associated to cancer development and progression in 311
some cancer types, are studied as biomarkers or as therapeutic targets, which indicates 312
that they could indeed be credible oncogene candidates: PPARP10 [58], HTR2B [59], 313
STAP2 [60], FXYD2 [61]. 314

Taken together, these results show that LOTUS is able to retrieve, among the top 315
ranked genes, known driver genes that are absent from the training set. They also show 316
that LOTUS suggests high confidence driver genes for which many references about 317
their implication in cancer are available. 318

Identification of cancer-specific driver genes with multitask 319 LOTUS 320

In this section, we do not consider cancer as a single disease, but as a variety of diseases 321
with different histological types and that can affect various organs. It is then important 322
to identify driver genes for each type of cancer. One way to solve this problem is to use 323
a prediction method that is trained only with driver genes known for the considered 324
cancer. Such single-task methods may however display poor performance because the 325
number of known drivers per cancer is often too small to derive a reliable model. 326

Indeed, scarce training data lead to a potential loss of statistical power as compared to 327
the problem of identification of pan-cancer driver genes were data available for all 328
cancers are used. 329

In this context, we investigate the multitask versions of LOTUS, where we predict 330
driver genes for a given cancer based on the drivers known for this cancer but also on all 331
driver genes known for other cancer types. For a given cancer type, this may improve 332
driver genes prediction by limiting the loss of statistical power compared to the 333
aforementioned single-task approach. 334

For that purpose, we derive a list of 174 cancer diseases from COSMICv84 as 335
explained in Methods. This complete list is available in Supplementary Table 1. As 336
expected, many cancer types have only few, if any, known cancer genes (Figure 3). 337

Since we want to evaluate the performance of LOTUS in a cross-validation scheme, 338
we only consider diseases with more than 4 known driver genes in order to be able to 339
run a 2-fold CV scheme. This leads us to keep 27 cancer types for TSG prediction and 340
22 for OG prediction. Note however that prediction are made for these 27 and 22 cancer 341
types while sharing all the driver genes known for the 174 diseases (according to their 342
similarities with these 27 and 22 cancer types). 343

The 2-fold CV consistency error of LOTUS for each of those cancer types is 344

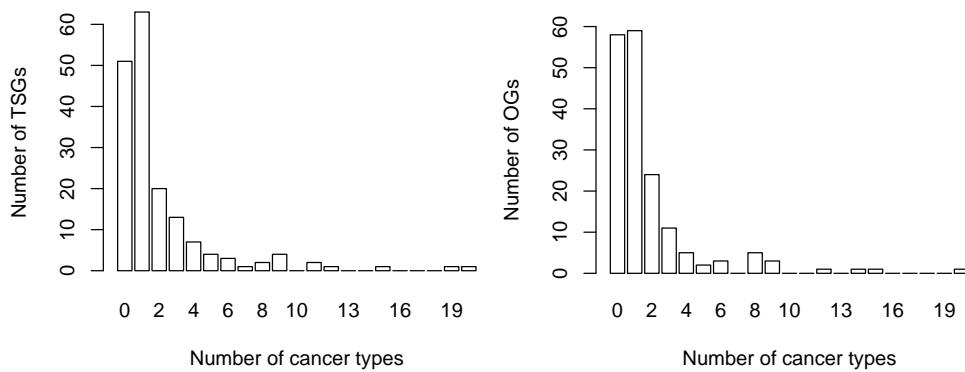


Fig 3. Distribution of the number of TSGs (left) and OGs (right) per cancer type

presented in Tables 7 (for TSG) and 8 (for OG). Here we compare four variants of
345
LOTUS, as explained in Methods: single-task LOTUS treats each disease in turn
346
independently from the others; aggregation LOTUS applies a pan-cancer prediction by
347
pooling together the known genes of all cancer types; and the two multitask versions of
348
LOTUS use either a standard multitask strategy that do not take into account the
349
relative similarities between diseases (multitask TUSON), or a more refined multitask
350
strategy where similar cancer types share more information than non-similar ones
351
(multitask TUSON2).
352

For most diseases (25/27 for TSG, 20/22 for OG), single-task LOTUS leads to the
353
worst *CE*, confirming the difficulty to treat each cancer type individually due to the
354
small number of known cancer gene for each individual type. Interestingly, Aggregation
355
LOTUS often leads to a strong improvement in performance. This shows that different
356
cancer types often share some common mechanisms and driver genes, and therefore,
357
simply using all the available information in a pan-cancer paradigm improves the
358
performance of driver gene prediction for each cancer type. However, in many cases, the
359
multitask LOTUS and LOTUS2 algorithms lead to an additional improvement over
360
Aggregation LOTUS, LOTUS2 leading in general to the best results (in 18 types out of
361
27 for TSG prediction, and in 11 types out of 22 for OG prediction). On average, the
362
decrease in *CE* between Aggregate LOTUS and LOTUS2 is of 23% for OG and 17% for
363
TSG. The improvement in performance observed between Aggregate LOTUS and
364
LOTUS2 shows that, besides some driver mechanisms common to many cancers, each
365
cancer presents some specific driver mechanisms that can only be captured by
366
prediction methods able to integrate some biological knowledge about the diseases. The
367

Disease	Number of TSGs	Single-Task LOTUS	Aggregation LOTUS	Multitask LOTUS	Multitask LOTUS2
AML	15	1,552	655	678	525
breast	20	1,308	1,149	1,151	1,131
colon carcinoma	7	943	71	67	51
colorectal	19	811	75	47	43
DLBCL	5	633	568	546	602
endometrial	9	77	77	54	33
gastric	4	2,414	27	73	55
glioblastoma	4	87	87	89	93
glioma	8	1,693	64	47	42
hepatocellular carcinoma	6	158	102	86	57
leukemia	11	1,172	59	81	31
lymphoma	4	2,069	88	62	42
MDS	4	5,095	222	178	154
medulloblastoma	9	1,427	333	333	320
melanoma	12	874	36	64	26
NSCLC	4	300	68	53	35
osteosarcoma	4	2,539	67	99	61
ovary	11	171	48	49	40
pancreatic	8	174	85	39	54
paraganglioma	5	14,699	1,993	2,446	2,404
pheochromocytoma	6	12,135	78	114	87
renal	5	2,845	76	87	107
renal cell carcinoma	6	2,932	48	33	26
skin basal cell	9	725	48	71	24
skin squamous cell	9	687	56	65	19
T-ALL	5	767	831	833	855
Wilms tumour	4	1,154	224	231	227

Table 7. *CE* for prediction of disease specific TSGs in the multitask setting.

In the above table, AML stands for acute myeloid leukemia, DLBCL for diffuse large B-cell lymphoma, MDS for myelodysplastic syndromes, NSCLC for non-small cell lung cancer and T-ALL for T-cell acute lymphoblastic cancer.

above results show that multitask algorithms allowing to share information between cancers according to their biological similarities such as LOTUS2, rather than on more naive rules, better capture these specific driver genes. They also show that the kernel $K_{diseases} = K_{descriptors}$ built on disease descriptors contains some relevant information to compare diseases.

Taken together, these results show that multitask machine learning algorithms like LOTUS are interesting approaches to predict cancer specific driver genes. In addition, multitask algorithms based on task descriptors (here, disease descriptors) appear to be promising in order to include prior knowledge about diseases and share information

Disease	Number of OGs	Single-Task LOTUS	Aggregation LOTUS	Multitask LOTUS	Multitask LOTUS2
ALL	9	1,637	873	856	796
AML	20	1,447	606	600	578
bladder	5	636	83	32	54
breast	8	2,250	121	134	91
CLL	8	2,598	824	814	825
colorectal	12	2,018	68	32	27
DLBCL	5	107	355	353	327
endometrial	6	616	40	28	26
gastric	9	112	40	25	15
glioblastoma	8	3,452	74	60	54
glioma	6	613	761	773	769
head and neck	6	320	71	51	39
lymphoma	4	5,651	79	61	77
MDS	9	5,071	86	109	82
melanoma	14	1,420	281	276	295
MM	4	3,122	77	37	60
NSCLC	15	2,281	280	126	149
ovary	8	3,194	57	37	32
prostate	8	845	162	126	154
Spitzoid tumour	4	183	68	38	48
T-ALL	4	8,436	2,041	2,047	2,046
WM	4	203	162	160	78

Table 8. *CE* for prediction of disease specific OGs in the multitask setting

In the above table, ALL stands for acute lymphocytic leukemia, AML for acute myeloid leukemia, CLL for chronic lymphocytic leukemia, DLBCL for diffuse large B-cell lymphoma, MDS for myelodysplastic syndromes, MM for multiple myeloma, NSCLC for non-small cell lung cancer, T-ALL for T-cell acute lymphoblastic cancer and WM for Waldenstrom macroglobulinemia.

according to biological features characterizing the diseases.

377

Finally, note that we did not try to run TUSON, MutSigCV or 20/20+ to search for cancer specific driver genes. Indeed, according to the results of pan-cancer studies in the single-task setting, they do not perform as well as single-task LOTUS. Moreover, they are not adapted, as such, to the multitask setting.

378

379

380

381

Discussion

382

Our work demonstrates that LOTUS outperforms several state-of-the-art methods on all tested situations for driver gene prediction. This improvement results from various aspects of the LOTUS algorithm. First, LOTUS allows to include the PPI network

383

384

385

information as independent prior biological knowledge. In the single-task setting, we 386
proved that this information has significance for the prediction of cancer driver genes. 387
Because LOTUS is based on kernel methods, it is well suited to integrate other data 388
from multiple sources such as protein expression data, information from chip-seq, HiC 389
or methylation data, or new features for mutation timing as designed in [62]. Further 390
development could involve the definition of other gene kernels based on such type of 391
data, and combine them with our current gene kernel, in order to evaluate their 392
relevance in driver gene prediction. 393

We also showed how LOTUS can serve as a multitask method. It relies on a disease 394
kernel that controls how driver gene information is shared between diseases. 395

Interestingly, we showed that building a kernel based on independent biological prior 396
knowledge about disease similarity leads on average to the best prediction performance 397
with respect to single-task algorithms, and also with respect to a more generic multitask 398
learning strategy that does not incorporate knowledge about the cancer types. Again, 399
the kernel approach leaves space for integration of other types and possibly more 400
complex biological sources of information about diseases. Our multitask approach thus 401
allows to make prediction for cancer types with very few known driver genes, which 402
would be less reliable with the single-task methods. We considered here only diseases 403
with at least 4 known driver genes, in order to perform cross-validation studies, which 404
was necessary to evaluate the methods. However, it is important to note that in 405
real-case studies, at the extreme, both versions of multitask LOTUS could make driver 406
gene prediction for cancer types for which no driver gene is known. 407

Among the 174 diseases derived from the COSMIC database, we kept only 27 cancer 408
types for TSG prediction and 22 for OG prediction, for which at least four driver genes 409
were available. However, inspection of the 174 disease names indicates that there might 410
be diseases that could be grouped (for example “colorectal” and “colorectal 411
adenocarcinoma”, or “skin” with “skin basal cell” or “skin squamous cell”), which 412
would have allowed to enlarge the training sets and possibly improve the predictions. 413
Future directions could be to have experts analyze and potentially modify this disease 414
list, in order to optimize the training sets, or help to derive finer disease descriptors. 415

LOTUS is a machine learning algorithm based on one-class SVM. In fact, the most 416
classical problem in machine learning is binary classification, where the task is to 417

classify observations into two classes (positives and negatives), based on training sets \mathcal{P} 418
of known positives and \mathcal{N} of known negatives. Driver gene detection can be seen as 419
binary classification of TSGs vs. neutral genes, and of OGs vs. neutral genes. However, 420
although the \mathcal{P} set is composed of known driver genes, it is not straightforward to build 421
the \mathcal{N} set because we cannot claim that some genes cannot be drivers. Thus, driver 422
gene detection should rather be seen as binary classification problem with only one 423
training set \mathcal{P} of known positives. This problem is called classically called PU learning 424
(for Positive-Unknown), as opposed to PN learning (for Positive-Negative). 425

The classical way to solve PU learning problems is to choose a set \mathcal{N} of negatives 426
among the unlabeled data and apply a PN learning method. For example, one can 427
consider all unknown items as negatives (some of which may be reclassified afterwards 428
as positives), or randomly choose bootstrapped sets of negatives among the unknown, 429
like in [31]. Both methods assume that a minority of the unlabeled items are in fact 430
positives, which is expected for driver genes. 431

The one-class SVM algorithm [63] can also be used as a PU learning method, in 432
which a virtual item is chosen as the training set of negatives. We preferred this 433
approach because in preliminary studies, we found that it had slightly better 434
performances than PU learning methods and was also faster. 435

For LOTUS, as for all machine learning algorithm, the set of known driver genes is 436
critical: if this set is poorly chosen (*i.e.*, if some genes were wrongly reported as driver 437
genes, or more likely, if the reported genes are not the best driver genes), the best 438
algorithm might not minimize the consistency error CE . To circumvent this problem, 439
we propose two new approaches for future developments: one could build a multi-step 440
algorithm that iteratively removes some genes from the positive set and labels them as 441
unknown, and add relabel as positives some of the best ranked unknown genes. We 442
believe that such an algorithm would make the set of positives converge to a more 443
relevant list. Alternatively, one could assign (finite) scores to the known driver genes 444
before performing classification and increment these scores at each step. 445

Materials and methods

446

Pan-cancer LOTUS

447

LOTUS is a new machine learning-based method to predict new cancer genes, given a list of known ones. In the simplest, pan-cancer setting, we thus assume given a list of N known cancer genes $\{g_1, \dots, g_N\}$, and the goal of LOTUS is to learn from them a scoring function $f(g)$, for any other gene g , that predicts how likely it is that g is also a cancer gene. Since TSGs and OGs have different characteristics, we treat them separately and build in fact two scoring functions f_{TSG} and f_{OG} trained from lists of known TSGs and OGs, respectively.

448
449
450
451
452
453
454

LOTUS learns the scoring function $f(g)$ with a one-class support vector machine (OC-SVM) algorithm [63], a classical method for novelty detection and density level set estimation [64]. The scoring function $f(g)$ learned by a OC-SVM given a training set $\{g_1, \dots, g_N\}$ of known cancer genes takes the form:

455
456
457
458

$$f(g) = \sum_{i=1}^N \alpha_i K(g_i, g), \quad (1)$$

where $\alpha_1, \dots, \alpha_N$ are weights optimized during the training of OC-SVM [63], and $K(g, g')$ is a so-called *kernel* function that quantifies the similarity between any two genes g and g' . In other words, the score of a new gene g is a weighted combination of its similarities with the known cancer genes.

459
460
461
462

The kernel K encodes the similarity among genes. Mathematically, the only constraint that K must fulfill is that it should be a symmetric positive definite function [29]. This leaves a lot of freedom to create specific kernels encoding one's prior knowledge about relevant information to predict cancer genes. In addition, one can easily combine heterogeneous information in a single kernel by, e.g., summing together two kernels based on different sources of data. In this work, we restrict ourselves to the following basic kernels, and leave for future work a more exhaustive search of optimization of kernels for cancer gene prediction.

463
464
465
466
467
468
469
470

- *Mutation kernel.* Given a large data set of somatic mutations in cohorts of cancer patients, we characterize each gene g by a vector $\Phi_{mutation}(g) \in \mathbb{R}^3$ encoding 3 features. For OG prediction the three features are the number of damaging

missense mutations, the total number of missense mutations, and the entropy of the spatial distribution of the missense mutations on each gene. For TSG prediction, the features are the number of frameshift mutations, the number of LOF mutations (defined as the nonsense and frameshift mutations), and the number of splice site mutations. These features were calculated as proposed by [25]. We chose them because they were found to best discriminate OGs and TSGs by the TUSON algorithm [25] and were also all found among the most important features selected by the random forest algorithm used by the 20/20+ method [27]. Given two genes g and g' represented by their 3-dimensional vectors $\Phi(g)$ and $\Phi(g')$, we then define the mutation kernel as the inner product between these vectors:

$$K_{mutation}(g, g') = \Phi_{mutation}(g)^\top \Phi_{mutation}(g').$$

Notice that using $K_{mutation}$ as a kernel in OC-SVM produces a scoring function (1) which is simply a linear combination of the three features used to define the vector $\Phi_{mutation}$.

- *PPI kernel.* Given an undirected graph with genes as vertices, such as a PPI network, we define a PPI kernel K_{PPI} as a graph kernel over the network [65, 66]. More precisely, we used a diffusion kernel of the form $K_{PPI} = \exp_M(-L)$, where $L = I - D^{-1/2}AD^{-1/2}$ is the normalized Laplacian of the graph and \exp_M is the matrix exponential function. Here I is the identity matrix, A stands for the adjacency matrix of the graph ($A_{i,j} = 1$ if vertices i and j are connected, 0 otherwise) and D for the diagonal matrix of degrees ($D_{ii} = \sum_{j=1}^n A_{ij}$). Intuitively, two genes are similar according to K_{PPI} when they are close and well connected through several routes to each other on the PPI network, hence learning a OC-SVM with K_{PPI} allows to diffuse the information about cancer genes over the network.

- *Integrated kernel.* In order to train a model that incorporates informations about both mutational features and PPI, we create an integrated gene kernel by simply

averaging the mutation and PPI kernels:

$$K_{gene}(g, g') = (K_{mutation}(g, g') + K_{PPI}(g, g')) / 2.$$

While more complex kernel combination strategies such as multiple kernel learning
could be considered, we restrict ourselves to this simple kernel addition scheme to
illustrate the potential of our approach for heterogeneous data integration.

485
486
487

Multitask LOTUS for cancer type-specific predictions

488
489
490
491
492
493
494
495
496
497
498
499
500
501

The pan-cancer LOTUS approach can also be used for cancer-specific predictions, by
restricting the training set of known cancer genes to those cancer genes known to be
driver in a particular cancer type. However, for many cancer types, only few driver
genes have been validated, creating a challenging situation for machine learning-based
methods like LOTUS that rely on a training set of known genes to learn a scoring
function. Since cancer genes of different cancer types are likely to have similar features,
we propose instead to learn jointly cancer type-specific scoring functions by sharing
information about known cancer genes across cancer types, using the framework of
multitask learning [30,31]. Instead of starting from a list of known cancer genes, we now
start from a list of known (cancer gene, cancer type) pairs of the form
 $\{(g_1, d_1), \dots, (g_N, d_N)\}$, where a sample (g_i, d_i) means that gene g_i is a known cancer
gene in disease d_i . Note that a given gene (and a given cancer type) may of course
appear in several such pairs.

The extension of OC-SVM to the multitask setting is straightforwardly obtained by
creating a kernel for (gene, disease) pairs of the form:

$$K_{pair}((g, d), (g', d')) = K_{gene}(g, g') \times K_{disease}(d, d'),$$

where K_{gene} is a kernel between genes such as the one used in pan-cancer LOTUS and
 $K_{disease}$ is a kernel between cancer types described below. We then simply run the
OC-SVM algorithm using K_{pair} as kernel and $\{(g_1, d_1), \dots, (g_N, d_N)\}$ as training set, in
order to learn a cancer type-specific scoring function of the form $f(g, d)$ that estimates
the probability that g is a cancer gene for cancer type d .

502
503
504
505
506

The choice of the disease kernel $K_{disease}$ influences how information is shared across 507
cancer types. One extreme situation is to take the uniform kernel $K_{uniform}(d, d') = 1$ 508
for any d, d' . In that case, no distinction is made between diseases, and all known 509
cancer genes are pooled together, recovering the pan-cancer setting (with the slight 510
difference that genes may be counted several times in the training set if they appear in 511
several diseases). Another extreme situation is to take the Dirac kernel 512
 $K_{Dirac}(d, d') = 1$ if $d = d'$, 0 otherwise. In that case, no information is shared across 513
cancer types, and the joint model over (gene, disease) pairs is equivalent to learning 514
independently a model for each disease. 515

In order to leverage the benefits of multitask learning and learn disease-specific 516
models by sharing information across diseases, we consider instead the following two 517
disease kernels: 518

- First, we consider the standard multitask learning kernel:

$$K_{multitask}(d, d') = (K_{uniform}(d, d') + K_{Dirac}(d, d')) / 2,$$

which makes a compromise between the two extreme uniform and Dirac 519
kernels [30]. Intuitively, for a given cancer type, prediction of driver genes is made 520
by assigning twice more weight to the data available for this cancer than to the 521
data available for all other cancer types. 522

- Second, we test a more elaborate multitask version where we implement the idea
that a given cancer might share various degrees of similarities with other cancers.
Therefore, known cancer genes for other cancers should be shared with those of
the considered cancer based on this similarity. Hence we create a specific disease
kernel $K_{cancer}(d, d')$ to capture our prior hypothesis about how similar cancer
genes are likely to be between different cancers. To create K_{cancer} , we first
represent each cancer type as a 50-dimensional binary vector as follows. The first
15 bits correspond to a list of cancer type characteristics used in COSMIC to
describe tumors: adenocarcinoma, benign, blastoma, carcinoma, gastro-intestinal
stromal tumour, germ cell tumour, glioma, leukemia, lymphoma, melanoma,
meningioma, myeloma, neuro-endocrine, sarcoma, stromal. The last 35

components correspond to localization characteristics also used in COSMIC to describe tumors: bile ducts, bladder, blood vessels, bone, bone marrow, breast, central nervous system, cervix, colorectal, endocrine glands, endometrium, eye, gall bladder, germ cell, head and neck, heart, intestine, kidney, liver, lung, lymphocytes, mouth, muscle, nerve, oesophagus, ovary, pancreas, pituitary glands, prostate, salivary glands, skin, soft tissue, stomach, tendon, thyroid. A disease might be assigned one or several types and be associated to one or several locations. For example, neurofibroma is associated with a single localization (“nerve”) and two types (“benign” and “sarcoma”), so that neurofibroma is described by a vector with three 1’s and forty-seven 0’s. For each disease, we construct the list of binary features by documenting every disease in the literature. The corresponding vectors encoding the considered disease are given in Supplementary Table S2. Finally, if $\Psi(d) \in \mathbb{R}^{50}$ denotes the binary vector representation of disease d , we create the disease kernel as a simple inner product between these vectors, combined with the standard multitask kernel, i.e.:

$$K_{cancer}(d, d') = (\Psi(d)^\top \Psi(d') + K_{uniform}(d, d') + K_{Dirac}(d, d')) / 3.$$

Data

In all experiments, we restrict ourselves to the total set of 17,948 genes considered in the TUSON, 20/20 and MutSigCV papers, as candidate driver genes. Somatic mutations were collected from COSMIC [14], TCGA (<http://cancergenome.nih.gov/>) and [18]. This dataset contains a total of 1,195,223 mutations across 8,207 patients. We obtained the PPI network from the HPRD database release 9 from April 13, 2010 [67]. It contains 39,239 interactions among 7,931 proteins. As for known pan-cancer driver genes, we consider three lists in our experiments: (i) the TUSON train set, proposed in [25], consists of two high confidence lists of 50 OGs and 50 TSGs extracted from CGC (release v71) based on several criteria, in particular excluding driver genes reported through translocations; (ii) the 20/20 train set, proposed in [27] to train the 20/20+ method, contains 53 OGs and 60 TSGs; finally, (iii) the CGCv84 train set consists of two broader lists that we extracted from CGC release v84 of the

COSMIC database: the list of all 136 dominant driver genes in the CGC database that 536
were not reported through translocations (i.e., OGs), and the list of all 138 recessive 537
driver genes in the CGC database that were not reported through translocations (i.e., 538
TSGs). For cancer type-specific lists of driver genes, we only consider the CGCv84 train 539
set. We distinguished 174 diseases based on the available annotations describing 540
patients in COSMIC, using as few interpretations as possible: for example, we merged 541
together diseases corresponding to obvious synonyms like singular and plural forms of 542
the same cancer name. The names of these diseases and their numbers of associated 543
TSGs and OGs can be found in Supplementary Table 1. For each of the resulting 544
diseases, 1 to 20 TSGs/OGs were known in CGCv84. We considered only diseases with 545
at least 4 known TSGs or OGs available, in order to have enough learning data points 546
to perform a cross-validation scheme, which led us to consider 27 diseases for TSG 547
prediction and 22 for OG prediction. 548

Experimental protocol

549

To assess the performance of a driver gene prediction method on a given gold standard 550
of known driver genes, we score all genes in the COSMIC database and measure how 551
well the known driver genes are ranked. For that purpose, we plot the receiver operating 552
characteristic (ROC) curve, considering all known drivers as positive examples and all 553
other genes in COSMIC as negative ones, and define the consistency error (*CE*) as

$$CE = \#\mathcal{N} \times (1 - AUC),$$

where $\#\mathcal{N}$ is the number of negative genes, and *AUC* denotes the area under the ROC 554
curve. In words, *CE* measures the mean number of “non-driver” genes that the 555
prediction method ranks higher than known driver genes. Hence, a perfect prediction 556
method should have $CE = 0$, while a random predictor should have a CE near $\#\mathcal{N}/2$. 557

To estimate the performance of a machine learning-based prediction method that 558
estimates a scoring function from a training set of known driver genes, we use *k*-fold 559
cross-validation (CV) for each given gold standard set of known driver genes. In *k*-fold 560
CV, the gold standard set is randomly split into *k* subsets of roughly equal sizes. Each 561
subset is removed from the gold standard in turn, the prediction method is trained on 562
the remaining *k* - 1 subsets, and the prediction error is measured on the removed subset. 563

the remaining $k - 1$ subsets, and its CE is estimated considering the subset left apart as 559
positive examples, and all other genes of COSMIC not in the gold standard set as 560
negative examples. A mean ROC curve and mean CE is then computed from the k 561
resulting ROC curves. This computation is repeated several times to consider several 562
possibly different partitions of the gold standard set. 563

Tuning of parameters

Each version of LOTUS depends on a unique parameter, the regularization parameter C 564
of the OC-SVM algorithm. Each time a LOTUS model is trained, its C parameter is 565
optimized by 5-fold CV on the training set, by picking the value in a grid of candidate 566
values $\{2^{-5/2}, 2^{-4/2}, \dots, 2^{5/2}\}$ that minimizes the mean CE over the folds. 567
568

Other driver prediction methods

We compare the performance of LOTUS to three other state-of-the-art methods: 569
570
MutSigCV [21], which is a frequency-based method, and TUSON [25] and 20/20+ [27] 571
that combine frequency and functional information. 572

MutSigCV searches driver genes among significantly mutated genes which adjusts for 573
known covariates of mutation rates. The method estimates a background mutation rate 574
for each gene and patient, based on the observed silent mutations in the gene and 575
noncoding mutations in the surrounding regions. Incorporating mutational 576
heterogeneity, MutSigCV eliminates implausible driver genes that are often predicted by 577
simpler frequency-based models. For each gene, the mutational signal from the observed 578
non-silent counts are compared to the mutational background. The output of the 579
method is an ordered list of all considered genes as a function of a p-value that 580
estimates how likely this gene is to be a driver gene. 581

TUSON uses gene features that encode frequency mutations and functional impact 582
mutations. The underlying idea is that the proportion of mutation types observed in a 583
given gene can be used to predict the likelihood of this gene to be a cancer driver. After 584
having identified the most predicting parameters for OGs and TSGs based on a train 585
set (called the TUSON train set in the present paper), TUSON uses a statistical model 586
in which a p-value is derived for each gene that characterizes its potential as being an 587

OG or a TSG, then scores all genes in the COSMIC database, to obtain two ranked lists 588
of genes in increasing orders of p-values for OGs and TSGs. 589

The 20/20+ method encodes genes based on frequency and mutation types, and 590
other biological information. It uses a train set of OGs and TSGs (called the 20/20 591
train set in the present paper) to train a random forest algorithm. Then, the random 592
forest is used on the COSMIC database and the output of the method is again a list of 593
genes ranked according to their predicted score to be a driver gene [27]. We did not 594
implement this method, so we decided to evaluate its performance only on its original 595
training set: the 20/20 dataset. Moreover, we applied the same method to compute the 596
CE as for MutSigCV and TUSON, which should actually give an advantage to 20/20+, 597
since it is harder to make predictions in a cross-validation loop using a smaller set of 598
known driver genes. 599

Code and data availability 600

We implemented LOTUS and performed all experiments in R using in particular the 601
kernlab package for OC-SVM [68]. The code and data to reproduce all experiments are 602
available at <http://members.cbio.mines-paristech.fr/~ocollier/lotus.html>. 603

Acknowledgments 604

This work was supported the European Research Council grant ERC-SMAC- 280032 605
(OC, JPV) and the Labex MME-DII ANR11-LBX-0023-01 (OC). 606

References 607

1. D. HANAHAN AND R. WEINBERG *The hallmarks of cancer*. Cell, 100(1), 57-70, 608
2000. 609
2. D. HANAHAN AND R. WEINBERG *The hallmarks of cancer: the next generation*. 610
Cell, 144, 646-674, 2011. 611

3. L. DING, G. GETZ, D.A. WHEELER, E.R. MARDIS, M.D. MCLELLAN, K. CIBULKIS ET AL. *Somatic mutations affect key pathways in lung adenocarcinoma.* 612
Nature, 455(7216), 1069-1075, 2008. 613
614

4. R.D. MORIN, M. MENDEZ-LAGO, A.J. MUNGALL, R. GOYA, K.L. MUNGALL, R.D. CORBETT ET AL. *Frequent mutation of histone modifying genes in non-Hodgkin lymphoma.* Nature, 476(7360), 298-303, 2012. 615
616
617

5. J.G. PAEZ, P.A. JÄNNE, J.C. LEE, S. TRACY, H. GREULICH, S. GABRIEL ET AL. *EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.* Science, 304(5676), 1497-1500, 2004. 618
619
620

6. G.M. COOPER *The cell: a molecular approach, 2nd edition.* Sunderland (MA): 621
Sinauer Associates, 2000. 622

7. P.L. CHEN, Y.M. CHEN, R. BOOKSTEIN AND W.H. LEE *Genetic mechanisms of tumor suppression by the human p53 gene.* Science, 250(4987), 1576-1580, 1990. 623
624

8. M.L. GEMIGNANI, A.C. SCHLAERTH, F. BOGOMOLNIY, R.R. BARAKAT, O. LIN, R. SOSLOW ET AL. (2003) *Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma.* Gynecol Oncol, 90(2003), 378-381, 2003. 625
626
627

9. A.L. SCHECHTER, D.F. STERN, L. VAIDYANATHAN, S.J. DECKER, J.A. DREBIN, M.I. GREENE ET AL. *The neu oncogene: an erb-B-related gene encoding an 185,000-M tumor antigen.* Nature, 312:513-516, 1984. 628
629
630

10. C.A. HUDIS *Trastuzumab—mechanism of action and use in clinical practice.* N Engl J Med, 357(1), 39-51, 2007. 631
632

11. P. FUTREAL, L. COIN, M. MARSHALL, T. DOWN, T., HUBBARD, R. WOOSTER ET AL. *A census of human cancer genes.* Nat Rev Cancer, 4, 177-183, 2004. 633
634

12. J.N. WEINSTEIN, E.A. COLLISON, G.B. MILLS, K.M. SHAW, B.A. OZENBERGER, K. ELLROTT ET AL. *The Cancer Genome Atlas Pan-Cancer Analysis Project* Nature Genet, 45(10):1113-1120, 2013. 635
636
637

13. J. ZHANG, J. BARAN, A. CROS, J.M. GUBERMAN, S. HAIDER, J. HSU ET AL. *International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data.* Database (Oxford), 2011. 638
639
640

14. S.A. FORBES, D. BEARE, H. BOUTSELAKIS, S. BAMFORD, N. BINDAL ET AL. 641
COSMIC: somatic cancer genetics at high-resolution Nucleic Acids Res, 45, 642
D777-D783, 2017. 643

15. B. VOGELSTEIN, N. PAPADOPOULOS, V.E. VELCULESCU, S. ZHOU, L.A. DIAZ 644
AND K.W. KINZLER *Cancer Genome Landscapes*. Science, 339(6127):1546–1558, 645
2013. 646

16. M. LAWRENCE, P. STOJANOV, P. POLAK, G.V. KRYUKOV, K. CIBULKIS, A. 647
SIVACHENKO ET AL. *Mutational heterogeneity in cancer and the search for new* 648
cancer associated genes. Nature, 499, 214-218, 2013. 649

17. *Comprehensive genomic characterization of squamous cell lung cancers*. Nature, 650
489.7417: 519-52, 2012. 651

18. L. ALEXANDROV, S. NIK-ZAINAL, D. WEDGE, S. APARICIO, S. BEHJATI, A. 652
BIANKIN ET AL. *Signatures of mutational processes in human cancer*. Nature, 653
500, 415-421, 2013. 654

19. N.D. DEES, Q. ZHANG, C. KANDOTH, M.C. WENDL, W. SCHIERDING, D.C. 655
KOBOLDT ET AL. *Identifying mutational significance in cancer genomes*. Genome 656
Res, 22(8): 1589-1598, 2012. 657

20. J. REIMAND AND G.D. BADER *Systematic analysis of somatic mutations in* 658
phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol, 9:637, 659
2013. 660

21. M.S. LAWRENCE, P. STOJANOV, C.H. MERMEL, J.T. ROBINSON, L.A. 661
GARRAWAY, T.R. GOLUB ET AL. *Discovery and saturation analysis of cancer* 662
genes across 21 tumor types. Nature, 505(7484): 495–501, 2014. 663

22. A. GONZALEZ-PEREZ AND N. LOPEZ-BIGAS *Functional impact bias reveals* 664
cancer drivers. Nucleic Acids Res, 40(21), 2012. 665

23. A. BASHASHATI, G. HAFFARI, J. DING, G. HA, K. LUI, J. ROSNER ET AL. 666
DriverNet: uncovering the impact of somatic driver mutations on transcriptional 667
networks in cancer. Genome Biol, 13(12):R124, 2012. 668

24. I.F. CHUNG, C.Y. CHEN, S.C. SU, C.Y. LI, K.J. WU, H.W. WANG ET AL. 669
DriverDBv2: a database for human cancer driver gene research. Nucleic Acids 670
Res, 44(D1):D975-9, 2016. 671

25. T. DAVOLI, A. XU, K. MENGWASSER, L. SACK, J. YOON, P. PARK ET AL. 672
Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and 673
shape the cancer genome. Cell, 155(4), 948-962, 2013. 674

26. G.E.M MELLONI, A.G.E. OGIER, S. DE PRETIS, L. MAZZARELLA, M. 675
PELIZZOLA, P.G. PELICCI ET AL. *DOTS-Finder: a comprehensive tool for* 676
assessing driver genes in cancer genomes. Genome Med, 6(6):44, 2014. 677

27. C.J. TOKHEIM, N. PAPADOPOULOS, K.W. KINZLER, B. VOGELSTEIN AND R. 678
KARCHIN *Evaluating the evaluation of cancer driver genes.* Proc Natl Acad Sci U 679
S A, 113(50):14330-14335, 2016. 680

28. J. BARRETINA, G. CAPONIGRO, N. STRANSKY, K. VENKATESAN, A.A. 681
MARGOLIN, S. KIM ET AL. *The Cancer Cell Line Encyclopedia enables* 682
predictive modelling of anticancer drug sensitivity. Nature, 483(7391):603-7, 2012. 683

29. B. SCHÖLKOPF ET AL. *Kernel methods in computational biology.* MIT Press, 684
2004. 685

30. T. EVGENIOU, C. MICCHELLI AND M. PONTIL *Learning multiple tasks with* 686
kernel methods. J Mach Learn Res, 6:615-637, 2005. 687

31. F. MORDELET AND J.-P. VERT *ProDiGe: Prioritization Of Disease Genes with* 688
multitask machine learning from positive and unlabeled examples. BMC 689
Bioinformatics, 12(1), 389, 2011. 690

32. M.S. SONG, L. SALMENA AND P.P. PANDOLFI *The functions and regulation of* 691
the PTEN tumour suppressor. Nature Rev, Molecular Cell Biology, 13(5), 283-96, 692
2012. 693

33. L.G. MORRIS, A.M. KAUFMAN, Y. GONG, D. RAMASWAMI, L.A. WALSH, S. 694
TURCAN ET AL. *Recurrent somatic mutation of FAT1 in multiple human cancers* 695
leads to aberrant Wnt activation. Nature Genet, 45(3), 253-61, 2013. 696

34. L. BENEDETTI, M. CEREDA, L. MONTEVERDE, N. DESAI AND F.D. 697
CICCARELLI *Synthetic lethal interaction between the tumour suppressor STAG2* 698
and its paralog STAG1. Oncotarget, 8(23), 37619–32, 2017. 699

35. D. MATASSA, I. AGLIARULO, R. AVOLIO, M. LANDRISCINA AND F. ESPOSITO 700
TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor 701
Suppressor. Genes, 9(4), 195, 2018. 702

36. Y.K. CHAE, J.F. ANKER, B.A. CARNEIRO, S. CHANDRA, J. KAPLAN, A. 703
KALYAN ET AL. *Genomic landscape of DNA repair genes in cancer.* Oncotarget, 704
7(17), 23312–21, 2016. 705

37. A. TORGOVNICK AND B. SCHUMACHER *DNA repair mechanisms in cancer* 706
development and therapy. Front Genet, 6, 157, 2015. 707

38. J. GENSCHEL, L.R. BAZEMORE AND P.J. MODRICH *Human exonuclease I is* 708
required for 5' and 3' mismatch repair. J Biol Chem, 277:13302–11, 2002. 709

39. M. MANANDHAR, K.S. BOULWARE AND R.D. WOOD *The ERCC1 and ERCC4* 710
(XPF) genes and gene products. Gene, 569(2):153–161, 2015. 711

40. M. OKUDA, NAKAZAWA, C. GUO, T. OGI AND Y. NISHIMURA *Common TFIIH* 712
recruitment mechanism in global genome and transcription-coupled repair 713
subpathways. Nucleic Acids Res, 45(22):13043–55, 2017. 714

41. R. ASPINWALL, D.G. ROTHWELL, T. ROLDAN-ARJONA, C. ANSELMINO, C.J. 715
WARD, J.P. CHEADLE ET AL. *Cloning and characterization of a functional* 716
human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci U S A, 717
94:109–114, 1997. 718

42. A. KUMAGAI, J. LEE, H.Y. YOO AND W.G. DUNPHY *TopBP1 activates the* 719
ATR-ATRIP complex. Cell, 124(5):943–55, 2006. 720

43. M.S. PARK, D.L. LUDWIG, E. STIGGER AND S.H. LEE *Physical interaction* 721
between human RAD52 and RPA is required for homologous recombination in 722
mammalian cells. J Biol Chem, 271:18996–19000, 1996. 723

44. A.C. MASSON, R. ROY, D.T. SIMMONS AND M.S. WOLD *Functions of alternative replication protein A in initiation and elongation.* Biochem, 724
49:5919–28, 2010. 725
726

45. R.P. KUIPER AND N. HOOGERBRUGGE *NTHL1 defines novel cancer syndrome.* 727
Oncotarget, 6(33):34069–70, 2015. 728

46. I. TOMLINSON *The Mendelian colorectal cancer syndromes.* Ann Clin Biochem, 729
52(6):690–692, 2015. 730

47. H. GUO, L. ZHAO, B. SHI, J. BAO, D. ZHENG, B. ZHOU ET AL. *GALNT5* 731
uaRNA promotes gastric cancer progression through its interaction with HSP90. 732
Oncogene, 1, 2018. 733

48. K. XIE, K. ZHANG, J. KONG, C. WANG, Y. GU, C. LIANG ET AL. 734
Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in 735
lung adenocarcinoma. Cancer Med, 7(1):157–166, 2018. 736

49. P.J. STEPHENS, P.S. TARPEY, H. DAVIES, P. VAN LOO, C. GREENMAN, D.C. 737
WEDGE ET AL. *The landscape of cancer genes and mutational processes in breast* 738
cancer. Nature, 486(7403):400–4, 2012. 739

50. S. ZHAI, C. LIU, L. ZHANG, J. ZHU, J. GUO, J. ZHANG ET AL. *PLCE1* 740
Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional 741
Activity of Snail. Neoplasia, 19(3):154–164, 2017. 742

51. S. ALLERSTORFER, G. SONVILLA, H. FISCHER, S. SPIEGL-KREINECKER, C. 743
GAUGLHOFER, U. SETINEK ET AL. *FGF5 as an oncogenic factor in human* 744
glioblastoma multiforme: autocrine and paracrine activities. Oncogene, 745
27(30):4180–90, 2008. 746

52. H. COHEN, R. BEN-HAMO, M. GIDONI, I. YITZHAKI, R. KOZOL, A. 747
ZILBERGER ET AL. *Shift in GATA3 functions, and GATA3 mutations, control* 748
progression and clinical presentation in breast cancer. Breast Cancer Res, 749
16(6):464, 2014. 750

53. C. LOBRY, P. OH, M.R. MANSOUR, A.T. LOOK AND I. AIFANTIS *Notch* 751
signaling: switching an oncogene to a tumor suppressor. Blood, 123(16):2451–9, 752
2014. 753

54. L.X. YAN, Y.H. LIU, J.W. XIANG, Q.N. WU, L.B. XU, X.L. LUO ET AL. 754
PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by 755
reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome 756
of breast cancer. Int J Oncol, 48(2), 471–484, 2016. 757

55. A.C. LESKO, K.H. GOSS, F.F. YANG, A. SCHWERTNER, I. HULUR, K. ONEL 758
ET AL. *The APC tumor suppressor is required for epithelial cell polarization and* 759
three-dimensional morphogenesis. Biochim Biophys Acta, 1853(3):711–23, 2015. 760

56. E. KOTLER, O. SHANI, G. GOLDFELD, M. LOTAN-POMPAN, O. TARCIC, A. 761
GERSHONI ET AL. *A Systematic p53 Mutation Library Links Differential* 762
Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. 763
Mol Cell, 71(1):178–190, 2018. 764

57. M.E. HOUWING, E.A. KOOPMAN-COENEN, R. KERSSEBOO, S. GOOSKENS, I.M. 765
APPEL, S.T. ARENTSEN-PETERS ET AL. *Somatic thrombopoietin (THPO) gene* 766
mutations in childhood myeloid leukemias. Int J Hematol, 102(1):140–3, 2015. 767

58. T. EKBLAD, A.E. LINDGREN, C.D. ANDERSSON, R. CARABALLO, A.G. 768
THORSELL, T. KARLBERG ET AL. (2015) *Towards small molecule inhibitors of* 769
mono-ADP-ribosyltransferases. Eur J Med Chem, 95:546–51, 2015. 770

59. S. TEN HOORN, A. TRINH, J. DE JONG, L. KOENS AND L. VERMEULEN 771
Classification of Colorectal Cancer in Molecular Subtypes by 772
Immunohistochemistry. Methods Mol Biol, 1765:179–191, 2018. 773

60. Y. KITAI, M. IWAKAMI, K. SAITO, S. TOGI, S. ISAYAMA, Y. SEKINE ET AL. 774
STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth 775
factor receptor stabilization. J Mol Biol, 292(47):19392–99, 2017. 776

61. K.L. NG, C. MORAIS, A. BERNARD, N. SAUNDERS, H. SAMARATUNGA, G. 777
GOBE ET AL. *A systematic review and meta-analysis of immunohistochemical* 778

biomarkers that differentiate chromophobe renal cell carcinoma from renal 779
oncocytoma. J Clin Pathol, 69(8):661–71, 2016. 780

62. T. SAKOPARNIG, P. FRIED ET N. BEERENWINKEL *Identification of constrained 781
cancer driver genes based on mutation timing.* PLoS Comput Biol, 782
11(1):e1004027, 2015. 783

63. B. SCHÖLKOPF, R. WILLIAMSON, A. SMOLA, J. SHawe-Taylor, J. PLATT 784
Support vector method for novelty detection. Mach Learn Interpret Neuroimaging 785
(1999), 582-588, 1999. 786

64. R. VERT AND J.-P. VERT *Consistency and convergence rates of one-class SVMs 787
and related algorithms.* J. Mach. Learn. Res., 7:817-54, 2006. 788

65. R.I. KONDOR AND J. LAFFERTY *Diffusion kernels on graphs and other discrete 789
input spaces.* Proc Int Conf Mach Learn,3:315-322, 2002. 790

66. L. COWEN, T. IDEKER, B.J. RAPHAEL AND R. SHARAN *Network propagation: 791
a universal amplifier of genetic associations.* Nature Rev Genet, 2017. 792

67. T.S.K. PRASSAD, R. GOEL, K. KANDASAMY, S. KEERTHIMUKAR, S. KUMAR, 793
S. MATHIVANAN ET AL. *Human Protein Reference Database - 2009 update.* 794
Nucleic Acids Res, 37, D767-72, 2009. 795

68. A. KARATZOGLOU, A. SMOLA, K. HORNIK AND A. ZEILEIS *kernlab – An S4 796
Package for Kernel Methods in R.* J Stat Softw, 11-9, 1-20, 2004. 797

Supporting information

S1 Table List of cancer types (CGC v84). Cancer types derived from COSMIC 799
annotations along with their numbers of associated OG and TSG. The resulting names 800
are sometimes very general and sometimes very specific, and some redundancies may be 801
present, because we chose to add as little interpretation as possible. 802

S2 Table Description of cancer types (CGC v84). Descriptors of all cancer 803
types according to their localizations and types that are used to compute the disease 804
kernel used by LOTUS2. 805

**S3 Table TSG and OG rankings for LOTUS with the 20/20, the TUSON 806
and the CGCv84 datasets.** Note that the training sets were removed every time. 807