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Abstract

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the
acquisition of important functions in tumors, providing a selective growth advantage,
allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to
identify these driver genes, both for the fundamental understanding of cancer and to
help finding new therapeutic targets. Although the most frequently mutated driver
genes have been identified, it is believed that many more remain to be discovered,
particularly for driver genes specific to some cancer types.

In this paper we propose a new computational method called LOTUS to predict new
driver genes. LOTUS is a machine-learning based approach which allows to integrate
various types of data in a versatile manner, including informations about gene

mutations and protein-protein interactions. In addition, LOTUS can predict cancer
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driver genes in a pan-cancer setting as well as for specific cancer types, using a
multitask learning strategy to share information across cancer types.

We empirically show that LOTUS outperforms three other state-of-the-art driver
gene prediction methods, both in terms of intrinsic consistency and prediction accuracy,

and provide predictions of new cancer genes across many cancer types.

Author summary

Cancer development is driven by mutations and dysfunction of important, so-called 1
cancer driver genes, that could be targeted by targeted therapies. While a number of 2
such cancer genes have already been identified, it is believed that many more remain to s
be discovered. To help prioritize experimental investigations of candidate genes, several
computational methods have been proposed to rank promising candidates based on 5
their mutations in large cohorts of cancer cases, or on their interactions with known 6
driver genes in biological networks. We propose LOTUS, a new computational approach
to identify genes with high oncogenic potential. LOTUS implements a machine learning
approach to learn an oncogenic potential score from known driver genes, and brings two o
novelties compared to existing methods. First, it allows to easily combine heterogeneous 10
informations into the scoring function, which we illustrate by learning a scoring function u
from both known mutations in large cancer cohorts and interactions in biological 12
networks. Second, using a multitask learning strategy, it can predict different driver 13

genes for different cancer types, while sharing information between them to improve the 1

prediction for every type. We provide experimental results showing that LOTUS 15
significantly outperforms several state-of-the-art cancer gene prediction softwares. 16
Introduction w
In our current understanding of cancer, tumors appear when some cells acquire 18
functionalities that give them a selective growth advantage, allowing uncontrolled 19
proliferation and avoiding apoptosis [1,|2]. These malignant characteristics arise from 2
various genomic alterations including point mutations, gene copy number variants 21
(CNVs), translocations, inversions, deletions, or aberrant gene fusions. Many studies 2
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have shown that these alterations are not uniformly distributed across the genome [3,4], 2

and target specific genes associated with a limited number of important cellular 2
functions such as genome maintenance, cell survival, and cell fate [5]. Among these 2
so-called driver genes, two classes have been distinguished in the literature: tumor 2
suppressors genes (TSGs) and oncogenes (OGs) 6, Chapter 15]. TSGs, such as 2

TP53 [7], participate in defense mechanisms against cancer and their inactivation by a 2
genomic alteration can increase the selective growth advantage of the cell. On the 2
contrary, alterations affecting OGs, such as KRAS [8] or ERBB2 [9], can be responsible 1
for the acquisition of new properties that provide some selective growth advantage or 3
the ability to spread to remote organs. Identifying driver genes is important not only 3
from a basic biology point of view to decipher cancer mechanisms, but also to identify s
new therapeutic strategies and develop precision medicine approaches targeting 3
specifically mutated driver genes. For example, Trastuzumab |10] is a drug given 3
against breast cancer that targets the protein precisely encoded by ERBB2, which has 3
dramatically improved the prognosis of patients whose tumors overexpress that OG. 7

Decades of research in cancer genomics have allowed to identify several hundreds of s
such cancer genes. Regularly updated databases such as the Cancer Gene Census 30
(CGQ) |11], provide catalogues of genes likely to be causally implicated in cancer, with
various levels of experimental validations. Many cancer genes have been identified n
recently by systematic analysis of somatic mutations in cancer genomes, as provided by

large-scale collaborative efforts to sequence tumors such as The Cancer Genome Atlas

(TCGA) [12] or the International Cancer Genome Consortium (ICGC) [13]. Indeed, 4
cancer genes tend to be more mutated than non-cancer genes, providing a simple a5
guiding principle to identify them. In particular, the COSMIC database [14] is the 46

world’s largest and most comprehensive resource of somatic mutations in coding regions.
It is now likely that the most frequently mutated genes have been identified [15]. a8
However, the total number of driver genes is still a debate, and many driver genes less 4
frequently mutated, with low penetrance, or specific to a given type of cancer are still to s
be discovered. 51

The first methods to identify driver genes from catalogues of somatic mutations 52
simply compared genes based on somatic mutation frequencies, which was proved to be s

far too basic [16]. Indeed, mutations do not appear uniformly on the genome: some 54

359
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regions of the genome may be more affected by errors because they are more often 55
transcribed, so that some studies actually overestimated the number of driver genes 56
because they were expecting lower mutation rates than in reality. Mathematically, they s
were formulating driver prediction as a hypothesis testing problem with an inadequate s
null hypothesis [17]. Several attempts have been made to adequately calibrate the null s
hypothesis, like [16] or [18], where it is assumed that mutations result from a mixture of e
several mutational processes related to different causes. 61

A variety of bioinformatics methods have then been developed to complete the list of e

pan-cancer or cancer specific driver genes. Globally, they fall into three main categories. 3

First, a variety of “Mutation Frequency” methods such as MuSiC [19] or 64
ActiveDriver [20] identify driver genes based on the assumption that they display &
mutation frequencies higher than those of a background mutation model expected for 66
passenger mutations. However, this background rate may differ between cell types, o7

genome positions or patients. In order to avoid such potential bias, some methods like s

MutSigCV [21] derive a patient-specific background mutation model, and may take into e

account various criteria such as cancer type, position in the genome, or clinical data. 70
Second, “Functional impact” methods such as OncodriveFM [22] assume that driver 7
genes have higher frequency of mutations expected to impact the protein function 7
(usually missense mutations) than that observed in passenger genes. Third, 73

“Pathway-based” methods consider cancer as a disease in which mutated genes occupy
key roles in cancer-related biological pathways, leading to critical functional 7
perturbations at the level of networks. For example, DriverNet (23] identifies driver 7%
genes based on their effect in the transcription networks. Although these methods tend
to successfully identify the most frequently mutated genes, their overall prediction 78
overlap is modest. Since they rely on complementary statistical strategies, one could 79
recommend to use them in combination. The results of some of these tools are available s
at the Driver DB database [24]. o

Some methods integrate information on mutation frequency and functional impact of e
mutations, or other types of data such as genome position, copy number variations 83
(CNVs) or gene expression. The underlying idea is that combining data should improve s
the prediction performance over tools that use a single type of information. For example, s

TUSON |[25] or DOTS-Finder |26] combine mutation frequencies and functional impact s

Ve
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of mutations to identify OGs and TSGs. Also in this category, the 20/20+ method [27] &
encodes genes with features based on their frequency and mutation types, in addition to s
other biological information such as gene expression level in difference cancer cell 89
lines [28] or replication time. Then, 20/20+4 predicts driver genes with a random forest
algorithm, which constitutes the first attempt to use a machine learning method in this «
field. In [27], the authors benchmark 8 driver gene prediction methods based on several o

criteria including the fraction of predicted genes in CGC, the number of predicted driver o

genes and the consistency. Three methods proved to perform similarly on all criteria, 0
and better than the five others: TUSON, MutSigCV, and 20/20+, validating the o
relevance of combining heterogeneous information to predict cancer genes. 96

In the present paper, we propose a new method for cancer driver gene prediction o7

called Learning Oncogenes and TUmor Suppressors (LOTUS). Like 20/204, LOTUS is o
a machine learning-based method, meaning that it starts from a list of known driver 99
genes in order to “learn” the specificities of such genes and to identify new ones. In 100
addition, LOTUS presents two unique characteristics with respect to previous work in 11
this field. First, it combines informations from all three types of informations likely to 10
contain information to predict cancer genes (mutation frequency, functional impact, and 103
pathway-based informations). This integration of heterogeneous informations is carried 104
out in a unified mathematical and computational framework thanks to the use of kernel 10
methods [29], and allows in principle to integrate other sources of data if available, such 10
as transcriptomic or epigenomic information. More precisely, in our implementation we 10
predict cancer driver genes based not only on gene mutations features like “Mutation 108
Frequency” and “Functional Impact” methods do, but also on known protein-protein 100
interaction (PPI) network like “Pathway-based” methods do. Indeed, the use of PPI 110
information is particularly relevant since it has been reported that proteins encoded by 1
driver genes are more likely to be involved in protein complexes and share higher 112

“betweenness” than a typical protein [25]. Second, LOTUS can predict cancer genes in a 13

pan-cancer setting, as well as for specific cancer types, using a multitask learning 114
strategy |30]. The pan-cancer setting has been adopted by most available prediction 115
methods, since more data is available when pooling together all cancer types. The 116
cancer type-specific prediction problem has been less explored so far, because the 17

number of known driver genes for a given cancer is often too small to build a reliable 118

559
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prediction model, and because the amount of data such as somatic mutations to train 1o
the model is smaller than in the pan-cancer setting. However, the search for cancer 120
specific driver genes is relevant, because cancer is a very heterogeneous disease: different 1z
tumorigenic processes seem to be at work in different tissue types, and consequently 122
every cancer type probably has its own list of driver genes [15]. LOTUS implements a 13
multitask algorithm that predicts new driver genes for a given cancer type based on its 12
known driver genes, while also taking into account the driver genes known for other 125

types of cancers according to their similarities with the considered type of cancer. Such 12

approaches are of particular interest when the learning data are scarce in each 127
individual tasks: they increase the amount of data available for each task and thus 128
perform statistically better. To our knowledge, while a similar approach was used to 129
predict disease genes across general human diseases [31], this is the first time a 130

multitask machine learning algorithm is used for the prediction of cancer driver genes. 1

We compare LOTUS to the three best state-of-the art cancer prediction methods 132
according to [27]. We show that that LOTUS outperforms the state-of-the-art in its 133
ability to identify novel cancer genes, and clarify the benefits of heterogeneous data 134
integration and of the multitask learning strategy to predict cancer type-specific driver 13

genes. Finally, we provide predictions of new cancer genes according to LOTUS, as well 136

as supporting evidence that those predictions are likely to contain new cancer genes. 137
Results -
LOTUS, a new method for pan-cancer and cancer specific 139
driver gene prediction 140

We propose LOTUS, a new method to predict cancer driver genes. LOTUS is a machine 1a
learning-based method that estimates a scoring function to rank candidate genes by 142
decreasing probability that they are OGs or TSGs, given a training set of known OGs 13
and TSGs. The score of a candidate gene is a weighted sum of similarities between the 1
candidate gene and the known cancer genes, where the weights are optimized by a 145
one-class support vector machine (OC-SVM) algorithm. The similarities themselves are 14

derived from the analysis of somatic mutation patterns in the genes, or from the relative 1
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positions of genes in a PPI network, or from both; the mathematical framework of 148
kernel methods allows to simply combine heterogeneous data about genes (i.e., patterns 1o
of somatic mutations and PPI information) in a single model. 150

Another salient feature of LOTUS is its ability to work in a pan-cancer setting, as 1
well as to predict driver genes specific to individual cancer types. In the later case, we 1%
use a multitask learning strategy to jointly learn scoring functions for all cancer types  1s3
by sharing information about known driver genes in different cancer types. We test 154
both a default multitask learning strategy, that shares information in the same way 155
across all cancer types, and a new strategy that shares more information across similar s
cancer types. More details about the mathematical formulation and algorithms 157
implemented in LOTUS are provided in the Material and Methods section. 158

In the following, we assess the performance of LOTUS first in the pan-cancer regime, 1so

where we compare it to three state-of-the-art methods (TUSON, MutSigCV and 160
20/20+), and second in the cancer type specific regime, where we illustrate the 161
importance of the multitask learning strategies. 162
Cross-validation performance for pan-cancer driver gene 163
prediction 164

We first study the pan-cancer regime where cancer is considered as a single disease, and 165
where we search for driver genes involved in at least one type of cancer. Several 166
computational methods have been proposed to solve this problem in the past, and we 16

compare LOTUS with the three best methods in terms of performance according to a 16

recent benchmark [27]: MutSigCV [21], which is a frequency-based method, and 169
TUSON |[25] and 20/20+ [27], which combine frequency and functional information. 170
While MutSigCV is and unsupervised method that scores candidate genes 71

independently of any training set of known drivers, TUSON and 20/20+ depend on a 1
training set, just like LOTUS. To perform a comparison as fair as possible between 173
different methods, we collect the training sets of TUSON and 20/20+, and evaluate the 1
performance of LOTUS on each of these datasets by 5-fold cross-validation (CV) 175
repeated twice (see Methods). For TUSON and 20/20+, we use the prediction results 1

available in the corresponding papers, in order to evaluate the consistency errors (CE) w7
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as the mean number of non-driver genes that are ranked before known driver genes of s
the TUSON and 20/20 train sets, respectively. We note that these ranks were obtained 1w
by training these two algorithms on their respective train set, and that this therefore 180
gives an advantage to TUSON and 20/20+4 compared to LOTUS in the evaluation. 181
Indeed for the former two methods the training set is used both to define the score and s
to assess the performance, while for LOTUS the CV procedure ensures that different 183
genes are used to train the model and to test its performance. However we note that the 1ss
20/20+ score itself is obtained by a bootstrap procedure similar to our cross-validation — 1ss
approach [27]. This allows us to make fair comparisons between TUSON, MutSigCV 186
and LOTUS (trained on TUSON train set), on the one hand, and between 20/20+, 187
MutSigCV and LOTUS (trained on 20/20 train set), on the other hand. We further 188
note that MutSigCV also provides a ranked list of genes, but does not make the 189
difference between TSG and OG. Therefore, it is not dependent from a train set, and 190
the C'E in this case is obtained by averaging the numbers of non-driver genes ranked 191
before each driver genes in the considered train set. 192

The CE for the different methods and the different training sets are presented in 103
Table 1] for OGs and in Table [2| for TSGs. When analyzing these results, one should 104
keep in mind that the total number of cancer driver genes is still a subject of debate, 105
but it is expected to be much lower than the size of the test set of 17849 genes, and it 196
should rather be in the range of a few hundreds. Therefore, consistency errors above a 17

few thousand can be considered as poor performance results. 108

Train set \ Method | MutSigCV ~ TUSON 20/20+ LOTUS
TUSON train set 4,489 3,286 X 931
20/20 train set 5,823 X 1,831 819
Table 1. Consistency error for OG prediction in the pan-cancer setting, for different
methods (columns) and different gold standard sets of known OG (rows).

Train set \ Method | MutSigCV ~ TUSON 20/20+ LOTUS
TUSON train set 1,443 626 X 130
20/20 train set 2,447 X 845 514
Table 2. Consistency error for TSG prediction in the pan-cancer setting, for different
methods (columns) and different gold standard sets of known TSG (rows).

These results show that LOTUS strongly outperforms all other algorithms in term of 19

CE, for both TSG and OG predictions. More precisly, for OG predictions, TUSON is 20
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about 5-fold better than MutSigCV, 3-fold better than TUSON and 2-fold better than 2n
20/20+, in terms of CE. For TSG predictions, the reduction in CFE with LOTUS is 202
4-11x, 5x and 1.6x compared to MutSigCV, TUSON and 20/20+, respectively. The 203
performances of TUSON and 20/20+ are in the same range, although we should keep 20
the above remark in mind. The results also show that MutSigCV does not perform as s
well as the three other methods, at least on the datasets used here. 206

It is interesting to note that, for all methods, the performances obtained for OG do 207
not reach those obtained for TSG, suggesting that OG prediction is a more difficult 208
problem than TSG prediction. This reflects the fundamental difference between TSG 209
mutations and OG mutations: the first lead to loss-of-function and can pile up, while 210
the second are gain-of-function mutations and have a much more subtle nature. In on
addition, gain-of-function can also be due to overexpression of the OG, which can arise 2w
from other mechanisms than gene mutation. One way to improve the OG prediction 213
performance may be to include descriptors better suited to them, such as copy number. 2.
Moreover, as mutations affecting OGs are not all likely to provide them with new 215
functionalities, many mutations on OGs present in the database and used here might 216
not bear information on OGs. Therefore, relevant information on OGs is scarce, which 21
makes OG prediction more difficult. In addition, the data themselves might also 218
contribute to difference in performance between TSG and OG prediction. For example, 210
in the case of the TUSON train set, although the TSG and OG train sets both contain 20
50 genes, the mutation matrix that we used to build the gene features contains 13,525 2=

mutations affecting TSGs and 7,717 mutations affecting OGs. Therefore, the data are 2

richer for TSG, which might contribute to the difference in prediction performance. 23
The benefits of combining mutations and PPI informations 24
LOTUS, 20/20+, MutSigCV and TUSON differ not only by the algorithm they 25
implement, but also by the type of data they use to make predictions: in particular, 226

TUSON and 20/20+ use only mutational data while LOTUS uses PPI information in 2
addition to mutational data. To highlight the contributions of the algorithm and of the s
PPI information to the performance of LOTUS, we ran LOTUS with 229

Kgenes = Kmutations O Kgenes = Kppr, i.e., with only mutation information, or only 230
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PPI information. The results are presented in Table [3| and Table [4] respectively for OG 2

and TSG. The last column of these Tables recalls the performance obtained when 23
mutation and PPI information are both used (values reported from Table |1 and 233
Table . 234
Train set \ Kernel Kmutation KPPI Kmutation + KPPI
TUSON train set 2,333 1,565 931
20/20 train set 2,072 2,013 819

Table 3. Consistency error of LOTUS for OG prediction in the pan-cancer setting, with
different gene kernels (columns) and different gold standard sets of known OGs (rows).

Train set \ Kernel Kmutation KPPI Kmutation + KPPI
TUSON train set 388 1,645 130

20/20 train set 901 1,858 514
Table 4. Consistency error of LOTUS for TSG prediction in the pan-cancer setting,
with different gene kernels (columns) and different gold standard sets of known TSGs
(rows).

These results show that, both for OG and TSG, using both mutation and PPI 235
information dramatically improves the prediction performance over using only one type 23
of them. This underlines the fact that mutation and PPI are complementary 237
informations that are both useful for the prediction tasks. The performances obtained 23
with only PPI information are similar for OG and TSG, which seems to indicate that 25
this information contributes similarly to both prediction tasks. On the contrary, the 240
performances obtained using only mutation information are much better for TSG than 2u
for OG. This is consistent with the above comment that mutation information is more 24
abundant in the database and more relevant in nature for TSG than for OG. It is also 23
consistent with the fact that using K,,ytation alone outperforms using Kppy alone for 24

TSGs, while the opposite is observed for OGs. 25

Performance on CGCv84 prediction in the pan-cancer regime 26

We now evaluate the generalization properties of the different methods on new unseen 24
data as external test set. This not only mitigates the potential bias in the evaluation of s
the performance of TUSON and 20/20+ in the previous paragraph, but also allows to 2.
evaluate the performance of the different methods when predicting supposedly “difficult” 250
new cancer genes, which have only been added recently in CGC. For that purpose we 2

train LOTUS with the full 20/20 or TUSON train sets, make predictions on the full 252

10/35
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COSMIC database, and evaluate the C'E using the CGCv84 database as a gold 253
standard of true cancer genes, under the assumption that this database is enriched in 254
driver genes (a criterion that was also used in [27]). We compare these CE to those of s

TUSON (for the TUSON train set) and 20/20+ (for the 20/20 train set). For LOTUS, s

TUSON and 20/20+, genes belonging to their corresponding trains set are removed 257
from the CGCv84 database before calculating the CE. For MutSigCV, the CE is 258
calculated based on the ranked list of genes provided in the corresponding paper [21], 250

removing genes of the TUSON train set from CGCv84 database when MutSigCV is 260
compared to TUSON and LOTUS (Table [5)), and removing genes from the 20/20 train 2
set from CGCv84 when MutSigCV is compared to 20/204+ and LOTUS (Table @ 262

These results are illustrated by the corresponding ROC curves, see Figures[I] and [2| 263

Driver type \ Method | MutSigCV TUSON LOTUS
TSG 6,195 6,799 3,669
oG 7,274 7180 2,258

Table 5. C'E obtained on the CGCv84 data set with the TUSON train set.

Driver type \ Method | MutSigCV  20/20+ LOTUS
TSG 6,925 4,893 3,944
0G 6,931 3,901 2,358

Table 6. C'E obtained on the CGCv84 data set with the 20/20 train set.
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Fig 1. ROC curves for TSGs (left) and OGs (right) and the TUSON train set.
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Fig 2. ROC curves for TSGs (left) and OGs (right) and the 20/20 train set.

We observe that, again, LOTUS strongly outperforms all three other methods in this 264
setting. MutSigCV and TUSON have similar performance, and LOTUS outperforms 265
them in all settings by a 1.6- to 3-fold decrease in CE. 20/20+ has better performance 26
than MutSigCV, but has a CFE 1.2 to 1.3 larger than LOTUS. We also observe that the 2
absolute performance are overall worse than in the previous cross-validation experiment, 268
which confirms the fact that genes recently added to CGC are overall harder to identify 26

than the ones known for a long time. 270

Analysis of new driver genes predicted by LOTUS n

We now investigate the ability of LOTUS to make new driver gene predictions. For that 2

purpose we train LOTUS with the CGCv84 train set, and make predictions over the 273

complete COSMIC database (17,948 genes). The complete results are given in 74
Supplementary Table 3. 215

In the absence of experimental validation, we try to evaluate some of these 276
predictions based on independent sources of information. Complete analyses of the 277

predicted OG and TSG rankings is out of the scope of this paper. However, we consider 2
below the 20 best ranked TSGs and OGs according to LOTUS. 279

Among the 20 best ranked TSGs, 4 genes are actually known TSGs that were not 280
included yet in CGCv84: PTEN [32], FAT1 [33], STAGL1 [34], TRAP1 [35]. 21

Interestingly, 8 genes out of these 20 best ranked TSGs are genes coding for proteins
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involved in DNA repair, a role closely related to genome maintenance and cancer [36,37]. 28
These genes are EXO1 [38], ERCC1 [39], GTF2H1 and GTF2H4 (both involved in the s
TFIIH complex [40]), NTHL1 [41], ATR [42], RAD52 |43] and RPA4 [44]. In addition to 2

these clues referring to the DNA repair functions, many additional studies related to 286
these genes are available in the literature, underlining their role in various types of 287
cancers, which provides another clue for them to be confident TSG candidates. In 288

particular, mutations in NTHL1 are known to predispose to colorectal cancer, which is 28
an additional argument in favor of NTHL1 being a strong candidate TSG [45]46]. 200

For 2 additional genes, GALNT5 and PIWIL1, we find recent publications indicating o
that they could potentially act as TSG, at least in some tumor types. A non-coding 202
RNA directed against GALNTS5 is overexpressed in gastric cancer, inhibiting the 203
translation of its target gene, and the level of expression of this non-coding RNA is 204

correlated with cancer progression and metastasis [47]. These results are consistent with 20

a TSG role of GALNTS5 in gastric cancer. In the case of PIWIL1, a recent paper 206
concludes that it is an epidriver gene for lung adenocarcinoma, which means that 207
aberrant methylation of its promoter region plays a role in the development of this 208
cancer [48]. 209

Among the 20 best ranked putative OGs, 3 genes are actually known OGs at least 30
for some types of cancers, and not yet included in CGCv84: MAP3K1 [49], PLCEL [50], su
FGF5 [51). 0

One gene, GATAS, is known to behave either as an OG or as a TSG, depending on 303

the genetic context of the disease [52]. In fact, the literature provides other examples of 0

genes able to switch from oncogenes to tumor suppressor genes, depending on the 305
context [53]. In line with this remark, 3 genes among the 20 best ranked OGs are 306
known TSGs. They could in fact have a potential property to be OG or TSG, 307
depending on the context: PIK3R1 [54], APC [55], TP53 [56]. 308

Mutations in the 6th ranked HTPO gene seems to be causal in some cancer types, 3o
where it could therefore be considered as an oncogene [57]. 310
Finally 4 genes are known to be associated to cancer development and progression in  su
some cancer types, are studied as biomarkers or as therapeutic targets, which indicates s
that they could indeed be credible oncogene candidates: PPARP10 [58], HTR2B [59],  as
STAP2 [60], FXYD2 [61]. 314
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Taken together, these results show that LOTUS is able to retrieve, among the top 315

ranked genes, known driver genes that are absent from the training set. They also show s

that LOTUS suggests high confidence driver genes for which many references about 317
their implication in cancer are available. 318
Identification of cancer-specific driver genes with multitask 319
LOTUS 20

In this section, we do not consider cancer as a single disease, but as a variety of diseases sz
with different histological types and that can affect various organs. It is then important s
to identify driver genes for each type of cancer. One way to solve this problem is to use 33
a prediction method that is trained only with driver genes known for the considered 324
cancer. Such single-task methods may however display poor performance because the s
number of known drivers per cancer is often too small to derive a reliable model. 326
Indeed, scarce training data lead to a potential loss of statistical power as compared to s
the problem of identification of pan-cancer driver genes were data available for all 328
cancers are used. 329

In this context, we investigate the multitask versions of LOTUS, where we predict 33
driver genes for a given cancer based on the drivers known for this cancer but also on all  sx

driver genes known for other cancer types. For a given cancer type, this may improve s

driver genes prediction by limiting the loss of statistical power compared to the 333
aforementioned single-task approach. 33

For that purpose, we derive a list of 174 cancer diseases from COSMICv84 as 33
explained in Methods. This complete list is available in Supplementary Table 1. As 336
expected, many cancer types have only few, if any, known cancer genes (Figure |3)). 337

Since we want to evaluate the performance of LOTUS in a cross-validation scheme, s
we only consider diseases with more than 4 known driver genes in order to be able to 339
run a 2-fold CV scheme. This leads us to keep 27 cancer types for TSG prediction and 3«
22 for OG prediction. Note however that prediction are made for these 27 and 22 cancer s
types while sharing all the driver genes known for the 174 diseases (according to their s«
similarities with these 27 and 22 cancer types). 3

The 2-fold CV consistency error of LOTUS for each of those cancer types is 4
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Fig 3. Distribution of the number of TSGs (left) and OGs (right) per cancer type

presented in Tables [7] (for TSG) and [§| (for OG). Here we compare four variants of 45
LOTUS, as explained in Methods: single-task LOTUS treats each disease in turn 36
independently from the others; aggregation LOTUS applies a pan-cancer prediction by s
pooling together the known genes of all cancer types; and the two multitask versions of s
LOTUS use either a standard multitask strategy that do not take into account the 340
relative similarities between diseases (multitask TUSON), or a more refined multitask 35
strategy where similar cancer types share more information than non-similar ones 351
(multitask TUSON?2). 352

For most diseases (25/27 for TSG, 20/22 for OG), single-task LOTUS leads to the 35
worst C'E, confirming the difficulty to treat each cancer type individually due to the 354
small number of know cancer gene for each individual type. Interestingly, Aggregation  sss
LOTUS often leads to a strong improvement in performance. This shows that different 356
cancer types often share some common mechanisms and driver genes, and therefore, 357
simply using all the available information in a pan-cancer paradigm improves the 358
performance of driver gene prediction for each cancer type. However, in many cases, the 350
multitask LOTUS and LOTUS2 algorithms lead to an additional improvement over 360
Aggregation LOTUS, LOTUS2 leading in general to the best results (in 18 types out of
27 for TSG prediction, and in 11 types out of 22 for OG prediction) . On average, the e
decrease in CE between Aggregate LOTUS and LOTUS2 is of 23% for OG and 17% for s
TSG. The improvement in performance observed between Aggregate LOTUS and 364
LOTUS2 shows that, besides some driver mechanisms common to many cancers, each 36
cancer presents some specific driver mechanisms that can only be captured by 366

prediction methods able to integrate some biological knowledge about the diseases. The s
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Number of | Single-Task | Aggregation | Multitask | Multitask
Disease TSGs LOTUS LOTUS LOTUS LOTUS2

AML 15 1,552 655 678 525

breast 20 1,308 1,149 1,151 1,131
colon carcinoma 7 943 71 67 51
colorectal 19 811 75 47 43
DLBCL 5 633 568 546 602
endometrial 9 7 77 54 33
gastric 4 2,414 27 73 55
glioblastoma 4 87 87 89 93
glioma 8 1,693 64 47 42
hepatocellular carcinoma 6 158 102 86 57
leukemia 11 1,172 59 81 31
lymphoma 4 2,069 88 62 42
MDS 4 5,095 222 178 154
medulloblastoma 9 1,427 333 333 320
melanoma 12 874 36 64 26
NSCLC 4 300 68 53 35
osteosarcoma 4 2,539 67 99 61
ovary 11 171 48 49 40
pancreatic 8 174 85 39 54

paraganglioma 5 14,699 1,993 2,446 2,404
pheochromocytoma 6 12,135 78 114 87
renal 5 2,845 76 87 107
renal cell carcinoma 6 2,932 48 33 26
skin basal cell 9 725 48 71 24
skin squamous cell 9 687 56 65 19
T-ALL 5 767 831 833 855
Wilms tumour 4 1,154 224 231 227

Table 7. C'E for prediction of disease specific TSGs in the multitask setting.

In the above table, AML stands for acute myeloid leukemia, DLBCL for diffuse large
B-cell lymphoma, MDS for myelodysplastic syndromes, NSCLC for non-small cell lung
cancer and T-ALL for T-cell acute lymphoblastic cancer.

above results show that multitask algorithms allowing to share information between
cancers according to their biological similarities such as LOTUS2, rather than on more
naive rules, better capture these specific driver genes. They also show that the kernel
Kaiscases = Kdescriptors built on disease descriptors contains some relevant information
to compare diseases.

Taken together, these results show that multitask machine learning algorithms like
LOTUS are interesting approaches to predict cancer specific driver genes. In addition,
multitask algorithms based on task descriptors (here, disease descriptors) appear to be

promising in order to include prior knowledge about diseases and share information
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Number of | Single-Task | Aggregation | Multitask | Multitask

Disease 0Gs LOTUS LOTUS LOTUS | LOTUS2
ALL 9 1,637 873 856 796
AML 20 1,447 606 600 578
bladder 5 636 83 32 54
breast 8 2,250 121 134 91
CLL 8 2,598 824 814 825
colorectal 12 2,018 68 32 27
DLBCL 5 107 355 353 327
endometrial 6 616 40 28 26
gastric 9 112 40 25 15
glioblastoma 8 3,452 74 60 54
glioma 6 613 761 773 769
head and neck 6 320 71 51 39
lymphoma 4 5,651 79 61 77
MDS 9 5,071 86 109 82
melanoma 14 1,420 281 276 295
MM 4 3,122 7 37 60
NSCLC 15 2,281 280 126 149
ovary 8 3,194 57 37 32
prostate 8 845 162 126 154
Spitzoid tumour 4 183 68 38 48

T-ALL 4 8,436 2,041 2,047 2,046

WM 4 203 162 160 78

Table 8. CF for prediction of disease specific OGs in the multitask setting

In the above table, ALL stands for acute lymphotic leukemia, AML for acute myeloid
leukemia, CLL for chronic lymphocytic leukemia, DLBCL for diffuse large B-cell lym-
phoma, MDS for myelodysplastic syndromes, MM for multiple myeloma, NSCLC for
non-small cell lung cancer, T-ALL for T-cell acute lymphoblastic cancer and WM for
Waldenstrom macroglogulinemia.

according to biological features characterizing the diseases. 377

Finally, note that we did not try to run TUSON, MutSigCV or 20/20+ to search for s
cancer specific driver genes. Indeed, according to the results of pan-cancer studies in the s
single-task setting, they do not perform as well as single-task LOTUS. Moreover, they 30

are not adapted, as such, to the multitask setting. 381

Discussion s

Our work demonstrates that LOTUS outperforms several state-of-the-art methods on s
all tested situations for driver gene prediction. This improvement results from various  ss

aspects of the LOTUS algorithm. First, LOTUS allows to include the PPI network 385
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information as independent prior biological knowledge. In the single-task setting, we 336
proved that this information has significance for the prediction of cancer driver genes. s
Because LOTUS is based on kernel methods, it is well suited to integrate other data 388
from multiple sources such as protein expression data, information from chip-seq, HiC 380

or methylation data, or new features for mutation timing as designed in [62]. Further 300

development could involve the definition of other gene kernels based on such type of 301
data, and combine them with our current gene kernel, in order to evaluate their 302
relevance in driver gene prediction. 303

We also showed how LOTUS can serve as a multitask method. It relies on a disease 30
kernel that controls how driver gene information is shared between diseases. 305
Interestingly, we showed that building a kernel based on independent biological prior 306
knowledge about disease similarity leads on average to the best prediction performance 3o
with respect to single-task algorithms, and also with respect to a more generic multitask 30
learning strategy that does not incorporate knowledge about the cancer types. Again, 30
the kernel approach leaves space for integration of other types and possibly more 400
complex biological sources of information about diseases. Our multitask approach thus s
allows to make prediction for cancer types with very few known driver genes, which 402
would be less reliable with the single-task methods. We considered here only diseases 203
with at least 4 known driver genes, in order to perform cross-validation studies, which 40
was necessary to evaluate the methods. However, it is important to note that in 405
real-case studies, at the extreme, both versions of multitask LOTUS could make driver s
gene prediction for cancer types for which no driver gene is known. a07

Among the 174 diseases derived form the COSMIC database, we kept only 27 cancer o
types for TSG prediction and 22 for OG prediction, for which at least four driver genes 00

were available. However, inspection of the 174 disease names indicates that there might a0

be diseases that could be grouped (for example “colorectal” and “colorectal an
adenocarcinoma”, or “skin” with “skin basal cell” or “skin squamous cell”), which a12
would have allowed to enlarge the training sets and possibly improve the predictions. a13

Future directions could be to have experts analyze and potentially modify this disease a1
list, in order to optimize the training sets, or help to derive finer disease descriptors. a5
LOTUS is a machine learning algorithm based on one-class SVM. In fact, the most s

classical problem in machine learning is binary classification, where the task is to a7
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classify observations into two classes (positives and negatives), based on training sets P s
of known positives and A of known negatives. Driver gene detection can be seen as 410
binary classification of TSGs vs. neutral genes, and of OGs vs. neutral genes. However, 0
although the P set is composed of known driver genes, it is not straightforward to build
the A/ set because we cannot claim that some genes cannot be drivers. Thus, driver a2
gene detection should rather be seen as binary classification problem with only one 23

training set P of known positives. This problem is called classically called PU learning

(for Positive-Unknown), as opposed to PN learning (for Positive-Negative). 425
The classical way to solve PU learning problems is to choose a set N of negatives 26
among the unlabeled data and apply a PN learning method. For example, one can a7

consider all unknown items as negatives (some of which may be reclassified afterwards s

as positives), or randomly choose bootstrapped sets of negatives among the unknown, o

like in [31]. Both methods assume that a minority of the unlabeled items are in fact 430
positives, which is expected for driver genes. 31

The one-class SVM algorithm [63] can also be used as a PU learning method, in 42
which a virtual item is chosen as the training set of negatives. We preferred this 233
approach because in preliminary studies, we found that it had slightly better a3
performances than PU learning methods and was also faster. a3

For LOTUS, as for all machine learning algorithm, the set of known driver genes is a3
critical: if this set is poorly chosen (i.e., if some genes were wrongly reported as driver
genes, or more likely, if the reported genes are not the best driver genes), the best 238
algorithm might not minimize the consistency error CE. To circumvent this problem,
we propose two new approaches for future developments: one could build a multi-step 0

algorithm that iteratively removes some genes from the positive set and labels them as  u

unknown, and add relabel as positives some of the best ranked unknown genes. We a2
believe that such an algorithm would make the set of positives converge to a more a3
relevant list. Alternatively, one could assign (finite) scores to the known driver genes o
before performing classification and increment these scores at each step. w5
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Materials and methods wio

Pan-cancer LOTUS wr

LOTUS is a new machine learning-based method to predict new cancer genes, given a s
list of know ones. In the simplest, pan-cancer setting, we thus assume given a list of N a9
known cancer genes {g1,...,9n}, and the goal of LOTUS is to learn from them a 450
scoring function f(g), for any other gene g, that predicts how likely it is that g is also a
cancer gene. Since TSGs and OGs have different characteristics, we treat them 252
separately and build in fact two scoring functions frgg and fog trained from lists of — 4s3
know TSGs and OGs, respectively. a4

LOTUS learns the scoring function f(g) with a one-class support vector machine 255
(OC-SVM) algorithm [63], a classical method for novelty detection and density level set  as
estimation [64]. The scoring function f(g) learned by a OC-SVM given a training set as7

{g91,...,9n} of known cancer genes takes the form: as8

where «1,...,ay are weights optimized during the training of OC-SVM [63], and 459
K(g,¢') is a so-called kernel function that quantifies the similarity between any two 460

genes g and ¢’. In other words, the score of a new gene g is a weighted combination of 4

its similarities with the know cancer genes. a6
The kernel K encodes the similarity among genes. Mathematically, the only 463
constraint that K must fulfill is that it should be a symmetric positive definite a6

function [29]. This leaves a lot of freedom to create specific kernels encoding one’s prior s
knowledge about relevant information to predict cancer genes. In addition, one can 466
easily combine heterogeneous information in a single kernel by, e.g., summing together s
two kernels based on different sources of data. In this work, we restrict ourselves to the e
following basic kernels, and leave for future work a more exhaustive search of 469

optimization of kernels for cancer gene prediction. 470

o Mutation kernel. Given a large data set of somatic mutations in cohorts of cancer
patients, we characterize each gene g by a vector ®,,utation(g) € R? encoding 3

features. For OG prediction the three features are the number of damaging
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missense mutations, the total number of missense mutations, and the entropy of
the spatial distribution of the missense mutations on each gene. For TSG
prediction, the features are the number of frameshift mutations, the number of
LOF mutations (defined as the nonsense and frameshift mutations), and the
number of splice site mutations. These features were calculated as proposed

by [25]. We chose them because they were found to best discriminate OGs and
TSGs by the TUSON algorithm [25] and were also all found among the most
important features selected by the random forest algorithm used by the 20/20+
method [27]. Given two genes g and ¢’ represented by their 3-dimensional vectors
®(g) and ®(g’), we then define the mutation kernel as the inner product between

these vectors:

Kmutation (g, 9’) - (I)mutation (g)T(I)nLutation (9/) .

Notice that using Kutation as a kernel in OC-SVM produces a scoring function
which is simply a linear combination of the three features used to define the

vector @, utation- a3

e PPI kernel. Given an undirected graph with genes as vertices, such as a PPI a7
network, we define a PPI kernel Kpp; as a graph kernel over the network [65,(66]. 5
More precisely, we used a diffusion kernel of the form Kpp; = exp,;(—L), where s
L =1—D"24D~'/2 is the normalized Laplacian of the graph and exp,, is the a7
matrix exponential function. Here I is the identity matrix, A stands for the a78
adjacency matrix of the graph (A; ; = 1 if vertices ¢ and j are connected, 0 479
otherwise) and D for the diagonal matrix of degrees (D;; = Z?Zl A;;). Intuitively, 0
two genes are similar according to Kppy when they are close and well connected s
through several routes to each other on the PPI network, hence learning a a8
OC-SVM with Kpp; allows to diffuse the information about cancer genes over the s

netWOI‘k 484

e Integrated kernel. In order to train a model that incorporates informations about

both mutational features and PPI, we create an integrated gene kernel by simply
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averaging the mutation and PPI kernels:

ngne(ga g/) = (Kmutation(gvg/) + KPPI(Q, g/)) /2 .

While more complex kernel combination strategies such as multiple kernel learning  sss
could be considered, we restrict ourselves to this simple kernel addition scheme to s

illustrate the potential of our approach for heterogeneous data integration. a87

Multitask LOTUS for cancer type-specific predictions a8

The pan-cancer LOTUS approach can also be used for cancer-specific predictions, by 489
restricting the training set of known cancer genes to those cancer genes known to be 490
driver in a particular cancer type. However, for many cancer types, only few driver 201
genes have been validated, creating a challenging situation for machine learning-based 49
methods like LOTUS that rely on a training set of known genes to learn a scoring 403
function. Since cancer genes of different cancer types are likely to have similar features, a0
we propose instead to learn jointly cancer type-specific scoring functions by sharing a05
information about known cancer genes across cancer types, using the framework of 296

multitask learning [30L31]. Instead of starting from a list of known cancer genes, we now s

start from a list of known (cancer gene, cancer type) pairs of the form 208
{(¢1,d1),-..,(gn,dn)}, where a sample (g;,d;) means that gene g; is a known cancer 40
gene in disease d;. Note that a given gene (and a given cancer type) may of course 500
appear in several such pairs. 501

The extension of OC-SVM to the multitask setting is straightforwardly obtained by

creating a kernel for (gene, disease) pairs of the form:

Kpair ((gv d)7 (g/a dl)) = ngne(gvgl) X Kdisease(d7 d/) 9

where Kgene is a kernel between genes such as the one used in pan-cancer LOTUS and s
Kisease 18 a kernel between cancer types described below. We then simply run the 503
OC-SVM algorithm using Ky as kernel and {(g1,d1), ..., (gn,dn)} as training set, in s
order to learn a cancer type-specific scoring function of the form f(g,d) that estimates sos

the probability that g is a cancer gene for cancer type d. 506
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The choice of the disease kernel K y;seqse influences how information is shared across  sor
cancer types. One extreme situation is to take the uniform kernel Kyniform(d, d)y=1 s
for any d, d’. In that case, no distinction is made between diseases, and all known 500
cancer genes are pooled together, recovering the pan-cancer setting (with the slight 510

difference that genes may be counted several times in the training set if they appear in  su

several diseases). Another extreme situation is to take the Dirac kernel 512
Kpirac(d,d') =1if d = d’, 0 otherwise. In that case, no information is shared across 513
cancer types, and the joint model over (gene, disease) pairs is equivalent to learning 514
independently a model for each disease. 515

In order to leverage the benefits of multitask learning and learn disease-specific 516
models by sharing information across diseases, we consider instead the following two 517
disease kernels: 518

e First, we consider the standard multitask learning kernel:

Kmultitask (d7 d/) = (Kuniform(d; dl) + KDirac(da dl)) /2 3

which makes a compromise between the two extreme uniform and Dirac 519
kernels [30]. Intuitively, for a given cancer type, prediction of driver genes is made so
by assigning twice more weight to the data available for this cancer than to the 521

data available for all other cancer types. 522

e Second, we test a more elaborate multitask version where we implement the idea
that a given cancer might share various degrees of similarities with other cancers.
Therefore, known cancer genes for other cancers should be shared with those of
the considered cancer based on this similarity. Hence we create a specific disease
kernel K.qneer(d,d’) to capture our prior hypothesis about how similar cancer
genes are likely to be between different cancers. To create K.qncer, we first
represent each cancer type as a 50-dimensional binary vector as follows. The first
15 bits correspond to a list of cancer type characteristics used in COSMIC to
describe tumors: adenocarcinoma, benign, blastoma, carcinoma, gastro-intestinal
stromal tumour, germ cell tumour, glioma, leukemia, lymphoma, melanoma,

meningioma, myeloma, neuro-endocrine, sarcoma, stromal. The last 35
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components correspond to localization characteristics also used in COSMIC to
describe tumors: bile ducts, bladder, blood vessels, bone, bone marrow, breast,
central nervous system, cervix, colorectal, endocrine glands, endometrium, eye,
gall bledder, germ cell, head and neck, heart, intestine, kidney, liver, lung,
lymphocytes, mouth, muscle, nerve, oesophagus, ovary, pancreas, pituitary glands,
prostate, salivary glands, skin, soft tissue, stomach, tendon, thyroid. A disease
might be assigned one or several types and be associated to one or several
locations. For example, neurofibroma is associated with a single localization
(“nerve”) and two types (“benign” and “sarcoma’”), so that neurofibroma is
described by a vector with three 1’s and forty-seven 0’s. For each disease, we
construct the list of binary features by documenting every disease in the literature.
The corresponding vectors encoding the considered disease are given in
Supplementary Table S2. Finally, if ¥(d) € R®® denotes the binary vector
representation of disease d, we create the disease kernel as a simple inner product

between these vectors, combined with the standard multitask kernel, i.e.:

Kcancer(da d/) - (\IJ(d)T\II(d/) + Kuniform(da d/) + KDirac(da d/)) /3 .

Data 523

In all experiments, we restrict ourselves to the total set of 17,948 genes considered in 524
the TUSON, 20/20 and MutSigCV papers, as candidate driver genes. Somatic 525
mutations were collected from COSMIC [14], TCGA (http://cancergenome.nih.gov/) s

and [18]. This dataset contains a total of 1,195, 223 mutations across 8,207 patients. 527

We obtained the PPI network from the HPRD database release 9 from April 13, 528
2010 [67]. It contains 39,239 interactions among 7,931 proteins. As for known 520
pan-cancer driver genes, we consider three lists in our experiments: (i) the TUSON 530

train set, proposed in [25], consists of two high confidence lists of 50 OGs and 50 TSGs s
extracted from CGC (release v71) based on several criteria, in particular excluding 532
driver genes reported through translocations; (ii) the 20/20 train set, proposed in [27] to  s3:
train the 20/204 method, contains 53 OGs and 60 TSGs; finally, (iii) the CGCv84 train s

set consists of two broader lists that we extracted from CGC release v84 of the 535
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COSMIC database: the list of all 136 dominant driver genes in the CGC database that s
were not reported through translocations (i.e., OGs), and the list of all 138 recessive 537
driver genes in the CGC database that were not reported through translocations (i.e., s
TSGs). For cancer type-specific lists of driver genes, we only consider the CGCv84 train s
set. We distinguished 174 diseases based on the available annotations describing 540
patients in COSMIC, using as few interpretations as possible: for example, we merged sa
together diseases corresponding to obvious synonyms like singular and plural forms of  sa
the same cancer name. The names of these diseases and their numbers of associated 543
TSGs and OGs can be found in Supplementary Table 1. For each of the resulting 544
diseases, 1 to 20 TSGs/OGs were known in CGCv84. We considered only diseases with s

at least 4 known TSGs or OGs available, in order to have enough learning data points s

to perform a cross-validation scheme, which led us to consider 27 diseases for TSG 547
prediction and 22 for OG prediction. 548
Experimental protocol 549

To assess the performance of a driver gene prediction method on a given gold standard
of known driver genes, we score all genes in the COSMIC database and measure how

well the known driver genes are ranked. For that purpose, we plot the receiver operating
characteristic (ROC) curve, considering all known drivers as positive examples and all

other genes in COSMIC as negative ones, and define the consistency error (CE) as

CE = #N x (1 — AUC),

where #N is the number of negative genes, and AUC denotes the area under the ROC s
curve. In words, CE measures the mean number of “non-driver” genes that the 551
prediction method ranks higher than known driver genes. Hence, a perfect prediction  ss
method should have CE = 0, while a random predictor should have a CE near #/N /2. s

To estimate the performance of a machine learning-based prediction method that 554
estimates a scoring function from a training set of known driver genes, we use k-fold 555
cross-validation (CV) for each given gold standard set of known driver genes. In k-fold  ss
CV, the gold standard set is randomly split into k subsets of roughly equal sizes. Each  ss

subset is removed from the gold standard in turn, the prediction method is trained on  sss
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the remaining k — 1 subsets, and its C'E is estimated considering the subset left apart as  ss
positive examples, and all other genes of COSMIC not in the gold standard set as 560
negative examples. A mean ROC curve and mean C'E is then computed from the k s61
resulting ROC curves. This computation is repeated several times to consider several 562

possibly different partitions of the gold standard set. 563

Tuning of parameters 564

Each version of LOTUS depends on a unique parameter, the regularization parameter C'  ses
of the OC-SVM algorithm. Each time a LOTUS model is trained, its C' parameter is 566

optimized by 5-fold CV on the training set, by picking the value in a grid of candidate s

values {27°/2274/2 _ 25/2} that minimizes the mean C'E over the folds. 568
Other driver prediction methods 569
We compare the performance of LOTUS to three other state-of-the-art methods: 570

MutSigCV |21], which is a frequency-based method, and TUSON [25] and 20/20+ [27] sn
that combine frequency and functional information. 572

MutSigCV searches driver genes among significantly mutated genes which adjusts for s
known covariates of mutation rates. The method estimates a background mutation rate su
for each gene and patient, based on the observed silent mutations in the gene and 575
noncoding mutations in the surrounding regions. Incorporating mutational 576
heterogeneity, MutSigCV eliminates implausible driver genes that are often predicted by s~

simpler frequency-based models. For each gene, the mutational signal from the observed s

non-silent counts are compared to the mutational background. The output of the 579
method is an ordered list of all considered genes as a function of a p-value that 580
estimates how likely this gene is to be a driver gene. 581

TUSON uses gene features that encode frequency mutations and functional impact  ss
mutations. The underlying idea is that the proportion of mutation types observed in a  ss3
given gene can be used to predict the likelihood of this gene to be a cancer driver. After ss
having identified the most predicting parameters for OGs and TSGs based on a train  sss
set (called the TUSON train set in the present paper), TUSON uses a statistical model  sss

in which a p-value is derived for each gene that characterizes its potential as being an s
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OG or a TSG, then scores all genes in the COSMIC database, to obtain two ranked lists  sss

of genes in increasing orders of p-values for OGs and TSGs. 589
The 20/20+ method encodes genes based on frequency and mutation types, and 590
other biological information. It uses a train set of OGs and TSGs (called the 20/20 501

train set in the present paper) to train a random forest algorithm. Then, the random 50
forest is used on the COSMIC database and the output of the method is again a list of s
genes ranked according to their predicted score to be a driver gene [27]. We did not 594
implement this method, so we decided to evaluate its performance only on its original  ses
training set: the 20/20 dataset. Moreover, we applied the same method to compute the s

CE as for MutSigCV and TUSON, which should actually give an advantage to 20/204,  sor

since it is harder to make predictions in a cross-validation loop using a smaller set of 508
known driver genes. 599
Code and data availability 600
We implemented LOTUS and performed all experiments in R using in particular the 601

kernlab package for OC-SVM [68]. The code and data to reproduce all experiments are o0

available at http://members.cbio.mines-paristech.fr/~ocollier/lotus.html. 603
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S1 Table List of cancer types (CGC v84). Cancer types derived from COSMIC 709
annotations along with their numbers of associated OG and TSG. The resulting names s
are sometimes very general and sometimes very specific, and some redundancies may be su

present, because we chose to add as little interpretation as possible. 802

S2 Table Description of cancer types (CGC v84). Descriptors of all cancer 803
types according to their localizations and types that are used to compute the disease 804

kernel used by LOTUS2. 805
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S3 Table TSG and OG rankings for LOTUS with the 20/20, the TUSON s

and the CGCv84 datasets. Note that the training sets were removed every time. 807
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