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1  Abstract

2 Characterization of Human Endogenous Retrovirus (HERV) expression within the
3 transcriptomic landscape using RNA-seq is complicated by uncertainty in fragment
4  assignment because of sequence similarity. We present Telescope, a computational
5  software tool that provides accurate estimation of transposable element expression
6  (retrotranscriptome) resolved to specific genomic locations. Telescope directly addresses
7  uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the
8  most probable source transcript as determined within a Bayesian statistical model. We
9  demonstrate the utility of our approach through single locus analysis of HERV expression
10 in 13 ENCODE cell types. When examined at this resolution, we find that the magnitude
11 and breadth of the retrotranscriptome can be vastly different among cell types.
12 Furthermore, our approach is robust to differences in sequencing technology, and
13 demonstrates that the retrotranscriptome has potential to be used for cell type
14 identification. Telescope performs highly accurate quantification of the
15  retrotranscriptomic landscape in RNA-seq experiments, revealing a differential
16  complexity in the transposable element biology of complex systems not previously
17  observed. Telescope is available at github.com/mlbendall/telescope.
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Author Summary

Almost half of the human genome is composed of Transposable elements (TEs), but their
contribution to the transcriptome, their cell-type specific expression patterns, and their
role in disease remains poorly understood. Recent studies have found many elements to
be actively expressed and involved in key cellular processes. For example, human
endogenous retroviruses (HERVs) are reported to be involved in human embryonic stem
cell differentiation. Discovering which exact HERVs are differentially expressed in
RNA-seq data would be a major advance in understanding such processes. However,
because HERVs have a high level of sequence similarity it is hard to identify which exact
HERV is differentially expressed. To solve this problem, we developed a computer
program which addressed uncertainty in fragment assignment by reassigning
ambiguously mapped fragments to the most probable source transcript as determined
within a Bayesian statistical model. We call this program, “Telescope”. We then used
Telescope to identify HERV expression in 13 well-studied cell types from the ENCODE
consortium and found that different cell types could be characterized by enrichment for
different HERV families, and for locus specific expression. We also showed that
Telescope performed better than other methods currently used to determine TE
expression. The use of this computational tool to examine new and existing RNA-seq

data sets may lead to new understanding of the roles of TEs in health and disease.
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Introduction

Transposable elements (TEs) represent the largest class of biochemically
functional DNA elements in mammalian genomes(Dunham et al. 2012; Kellis et al. 2014)
comprising nearly 50% of the human genome. As many of these transcriptionally active
elements originated as retroelements, we refer to the set of RNA molecules transcribed
from these elements in a population of cells as the retrotranscriptome. The contribution of
the retrotranscriptome to the total transcriptome, cell-type specific expression patterns,
and the role of retroelement transcripts in disease remain poorly understood (Magiorkinis
et al. 2013). Although most TEs are hypothesized to be transcriptionally silent (due to
accumulated mutations), recent studies have found many elements to be actively
expressed and involved in key cellular processes. For example, aberrant expression of
LINE-1 (L1) elements, the most expansive group of TEs, has been implicated in the
pathogenesis of cancer (Wang-Johanning et al. 2003; Tang et al. 2017; Rodi¢ et al. 2015;
Ardeljan et al. 2017), while human endogenous retroviruses (HERVs) are reported to be
involved in human embryonic stem cell differentiation(Grow et al. 2015; Goke et al.
2015) and in the pathogenesis of amyotrophic lateral sclerosis(Li et al. 2015). We, and
others, have shown that HIV-1 infection increases HERV transcription(Garrison et al.
2007; Jones et al. 2012; Ormsby et al. 2012; Contreras-Galindo et al. 2012; Gonzalez-
Hernandez et al. 2014). These lines of evidence therefore indicate that TEs have
important roles in the regulation of human health and disease.

The ability to observe and quantify TE expression, especially the specific
genomic locations of active elements, is crucial for understanding the molecular basis

underlying a wide range of conditions and diseases(Flockerzi et al. 2008). Traditional
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techniques for interrogating the TE transcriptome include quantitative PCR (Muradrasoli
et al. 2006; Rangwala et al. 2009) and RNA expression microarrays (Seifarth et al. 2003;
Pérot et al. 2012; Gnanakkan et al. 2013; Young et al. 2014; Becker et al. 2017).
However, these techniques are unable to discover elements not specifically targeted by
the assay, and may fail to detect rare, previously unknown, or weakly expressed
transcripts. High-throughput RNA sequencing (RNA-seq) promises to overcome many of
these shortcomings, enabling highly sensitive detection of transcripts across a wide
dynamic range. Mathematical and computational approaches for transcriptome
quantification using RNA-seq are well established ((Mortazavi et al. 2008; Marioni et al.
2008), see review (Garber et al. 2011)) and provide researchers with reproducible
analytical pipelines (Trapnell et al. 2010, 2012). Such approaches are highly effective at
quantifying transcripts when sequenced fragments can be uniquely aligned to the
reference genome, since the original genomic template for each transcript can be
unambiguously identified (Trapnell et al. 2013; Conesa et al. 2016). In contrast,
sequencing fragments generated by TEs often have high scoring alignments to many
genomic locations with similar sequences, leading to uncertainty in transcript count
estimates. Approaches that fail to account for these uncertainties may incorrectly estimate
TE abundance and falsely detect significant changes in expression (Trapnell et al. 2013).
A growing number of studies are using high-throughput sequencing to
characterize the retrotranscriptome. Three general approaches are used to deal with
challenges of aligning short sequencing reads to repetitive elements. i) “Family-level”
approaches combine read counts across all instances of a TE family, since fragments

mapping to multiple genomic locations can often be uniquely assigned to a single repeat
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1 family. ii) “Heuristic” approaches simplify the problem of multi-mapped fragments by

2 either discarding ambiguous reads (unique counts) or randomly assigning ambiguous

3 reads to one of its best scoring alignments (best counts). Finally, iii) “statistical”

4  approaches estimate the most probable assignment of fragments given a statistical model.

5 Our approach, Telescope, implements a Bayesian statistical model for reassigning

6  ambiguous fragments; previous work that has used statistical approaches include the

7  TETranscripts package (Jin et al. 2015) and an ad hoc model implemented by (Santoni et

8 al.2012).

9 Here, we introduce Telescope, a tool which provides accurate estimation of TE
10 expression resolved to specific genomic locations. Our approach directly addresses
11 uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the
12 most probable source transcript as determined within a Bayesian statistical model. We
13 implement our approach using a descriptive statistical model of the RNA-seq process and
14 use an iterative algorithm to optimize model parameters. We use Telescope to investigate

15  the expression of HERVs in cell types from the ENCODE consortium.
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Results

Telescope: Single locus resolution of transposable element expression

Resolution of transposable element (including those of human endogenous
retroviruses, HERVs) expression from RNA-seq data sets has been complicated by the
many similarities of these repetitive elements. Telescope is a computational pipeline
program that solves the problem of ambiguously aligned fragments by assigning each
sequenced fragment to its most likely transcript of origin. We assume that the number of
fragments generated by a transcript is proportional to the amount of transcript present in
the sample; thus, the most likely source template for a randomly selected fragment is a
function of its alignment uncertainty and the relative transcript abundances. Telescope
describes this relationship using a Bayesian mixture model where the estimated
parameters include the relative transcript abundances and the latent variables define the
possible source templates for each fragment (Francis et al. 2013).

The first step in this approach is to independently align each fragment to the
reference genome; the alignment method should search for multiple valid alignments for
each fragment and report all alignments that meet or exceed a minimum score threshold
(Fig 1A). Next, alignments are tested for overlap with known TE transcripts; transcript
assignments for each fragment are weighted by the score of the corresponding alignment
(Fig 1B and 1C). In our test cases, we typically find that less than 50% of the fragments
aligning to TEs can be uniquely assigned to a single genomic location and many

fragments have more than 20 possible originating transcripts.
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Fig 1. Telescope conceptual overview. A set of possible genomic locations for each
fragment is determined by alignment to the reference genome. In order to find as many
high-scoring mappings as possible, we use sensitive local alignment parameters and
search for up to 100 alignments for each fragment using bowtie2 (A). Using an
annotation containing known TE locations, Telescope intersects the aligned fragments
with annotated TE loci (B,C). The set of alignments and corresponding alignment scores
for each fragment are used to calculate the expected assignment weights, initially
assuming equal expression for all elements (D). The assignment weights estimated in (D)
are used to find the maximum likelihood estimate (MLE) for the proportion of each
transcript (E). Next, we update the expected assignment weights, now assuming that the
MLE represents our best estimate of transcript expression (D,E). The steps in panels (D)
and (E) describe an expectation-maximization procedure, and we further refine the
assignment weights and MLE by iterating until parameter estimates converge. Telescope
produces a report that includes the maximum a posteriori estimate of the transcript
proportions and the final number of fragments assigned to each transcript, as well as an

updated alignment including the final fragment assignments (F).

Telescope estimates the transcript proportions and expected source templates
using an expectation-maximization algorithm. In the expectation step (E-step), the
expected value of the source template for each fragment is calculated under current
estimates of transcript abundance (Fig 1D). The maximization step (M-step) finds
maximum a posteriori estimates of the transcript abundance dependent on the expected

values from the E-step (Fig 1E). These steps are repeated until parameter estimates


https://doi.org/10.1101/398172
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/398172; this version posted August 23, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

1 converge (Fig 1D and 1E). Telescope reports the proportion of fragments generated by

2 each transcript and the expected transcript of origin for each fragment (Fig 4F). The final

3 counts estimated by Telescope correspond to actual observations of sequenced fragments

4 and are suitable for normalization and differential analysis by a variety of methods. The

5  software also provides an updated alignment with final fragment assignments that can be

6  examined using common genome visualization tools. Telescope is available at

7  github.com/mlbendall/telescope.

8

9  Determination of HERYV expression in major cell types from the ENCODE
10 consortium
11 To investigate HERV expression in a robust way across a diverse platform of cell
12 types we relied on publicly available RNA-seq data. The ENCODE data project is an
13 invaluable source of genomic data from disparate sources and provides the opportunity to
14 mine the transposable element expression in a setting of maximum genomic information.
15  We profiled 13 human cell types, including common lines designated by the ENCODE
16  consortium, as well as primary cell types, and applied our approach to determine HERV
17  expression across the spectrum of human cell types, including normal or transformed, and
18  contrasting cell lines with primary cells (Table 1).
19  Table 1. ENCODE cell types used in this study
Cell Type Description Karyotype Lineage Tissue Replicates
H1-hESC Embryonic stem cell Normal ICM ESC 4
GM12878 B-lymphocyte Normal mesoderm  blood 4
K562 Leukemia Cancer mesoderm  blood 3
Hela-S3 Cervical carcinoma Cancer ectoderm  cervix 3
HepG2 Hepatocellular carcinoma Cancer endoderm liver 3
HUVEC Umbilical vein endothelial cells Normal mesoderm  vessel 3
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SK-N-SH Neuroblastoma Cancer ectoderm  brain 1
IMR90 Fetal lung fibroblasts Normal endoderm lung 1
A549 Lung carcinoma Cancer endoderm lung 1
MCF-7 Mammary gland adenocarcinoma  Cancer ectoderm  breast 2
CD20+ CD20+ B cells Normal mesoderm  blood 1
CD14+ CD14+ Monocytes Normal mesoderm blood 1
NHEK Epidermal keratinocytes Normal ectoderm  skin 3
1
2 Over 2.7 billion sequenced fragments aligned to human reference hg38 with
3 between 23.6% and 46.1% of the fragments in each sample aligning ambiguously to
4 multiple genomic locations. Telescope intersected the aligned fragments with a set of
5 14,968 manually curated HERV loci belonging to 60 families (see methods) and
6 identified over 27 million fragments that appear to originate from HERV proviruses.
7  Most (80.1%) of these fragments aligned to multiple genomic locations; we used
8  Telescope to reassign ambiguous fragments to the most likely transcript of origin and
9  estimate expression at specific HERV loci.
10 We developed genome-wide maps of HERV expression for 8 of the analyzed cell
11 types that had replicates (Table 1) , and used CIRCOS (Krzywinski 2009) to visualize the
12 data (Fig 2). The outer track is a bar chart showing the number of HERV loci in 10 Mbp
13 windows, with the red part of the bar representing the number of loci that are expressed
14 in one or more cell types. The 8 inner rings show the expression levels (log2 counts per
15  million (CPM)) of 1365 HERV loci that were expressed at least one of the cell types
16  examined. Moving from the outer ring to the inner ring are replicates for each of the 8
17  cell types with duplicates: H1-hESC, GM 12878, K562, HeLa-S3, HepG2, HUVEC,
18 MCF-7, and NHEK.
19

10
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1 Fig 2. Genome-wide maps of locus-specific HERV expression for 8§ ENCODE tier 1
2 and 2 cell types. The outer track is a bar chart showing the number of HERV loci in 10

3 Mbp windows, with the red part of the bar representing the number of loci that are

4 expressed in one or more cell types. The 8 inner rings show the expression levels (log2

5  counts per million (CPM)) of 1365 HERV loci that were expressed at least one of the cell
6  types examined. Moving from the outer ring to the inner ring are replicates for each of

7  the 8 cell types with duplicates: HI-hESC, GM 12878, K562, HeLa-S3, HepG2, HUVEC,

8  MCF-7, and NHEK.

10 We found 1365 HERV loci that were expressed in at least one of the cell types

11 (CPM > 0.5). Not all HERVs were expressed in all cell types, some were widely

12 expressed in all cells, whereas others were only expressed in one or more cell type (Fig
13 2). There is also a spectrum of differential HERV expression, with some HERVs having
14 significantly higher expression than others. On a chromosome by chromosome analysis,
15  there are certain regions of the genome that have minimal HERV expression, while other
16  regions appear dense in HERV expression. There are areas of scarce HERV expression
17  on chromosomes 3, 5, 9, 15, and the Y chromosome (Fig 2). Interestingly, the Y

18  chromosome is host to a greater density of HERV locations, yet they are mostly silent. In
19  contrast, several chromosomes exhibit a greater than expected number of active HERV
20  locations, i.e. chromosome 19 (S1 Fig) and chromosome 6 (S2 Fig).

21

22 HERV Locus-specific-analysis

11
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1 To ascertain, global, family and locus level specific HERV expression, we

2 assessed the number of HERVs expressed in each cell type. All cell types expressed

3 HERVs; the number of expressed loci ranged from 216 (in MCF-7), to 533 (H1-hESC)

4  (Fig 3A). The number and proportion of cell type specific locations (expressed in only

5  one cell) differed among cell types. Nearly half (46.3%) of locations expressed in H1-

6  hESC were not expressed in any other cell type, while 89.3% of locations expressed in

7  MCF-7 were also present in other cell types (Fig 3A). This suggests that regulatory

8  networks are shared among some cell types but not others. We next examined the relative

9  contribution of HERV families to overall HERV transcription and found that different
10 cell types could be characterized by enrichment for different HERV families. For
11 example, HERVH accounted for 91.8% of the transcriptomic output in HI-hESC cells,
12 while HERVE was dominant in K562 cells (24.4%) (Fig 4A). Other families, such as
13 HERVL, were evenly distributed across cell types, both in number of expressed locations
14 and in expression levels (Fig 4B). Resolving the most highly expressed specific locations
15  in each cell type at a locus specific level shows that the distribution of expression varies
16  among cell types. (Fig 3C). For example, HepG?2 is characterized by high expression
17  from a single locus, while HI-hESC has many locations that are activated.
18
19  Fig 3. Overall HERYV expression patterns. (A) Number of HERV elements that are
20  expressed for each cell type; expressed loci have CPM > 0.5 in the majority of replicates.
21  The darker section of the bar corresponds to expressed loci that are unique to cell type,
22 while the lighter part is expressed in other cell types. (B) The proportion of mapped

23 RNA-seq fragments that are generated from HERYV transcripts in each of eight replicated

12
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cell types. Each point is one replicate; boxplot shows the median and first and third
quartiles. (C) Top 10 most highly expressed loci for each cell type. Height of the bar is
average CPM of all replicates with error bars representing the standard error calculated

from replicates CPM values.

Fig 4. Family-level HERYV expression profiles using Telescope. Family-level HERV
expression profiles were computed from locus-specific profiles (generated by Telescope)
by summing expression across all locations within each family. (A) The proportion of
fragments assigned to each HERV family relative to the total amount of HERV
expression. Families that account for at least 5% of total HERV expression in at least one
cell type are shown, with the remaining families in “other”. (B) Number of expressed
HERYV loci and fragment counts per million mapped fragments (CPM) for selected

HERYV families.

HERY expression profiles generated by Telescope are cell type specific

Previous work has suggested that estimates of HERV expression are highly
sensitive to sequencing technology used, and differences due to sequencing technology
can obscure biological differences due to cell type (Haase et al. 2015). Since aligning
shorter fragments (i.e. single-end reads) tends to produce more ambiguously mapping
fragments compared to longer fragments, we hypothesized that Telescope (which
resolves ambiguity) would create HERV expression profiles that are robust to differences
in sequencing technology. Hierarchical clustering of all 30 polyA RNA-seq HERV

profiles shows that replicates from the same cell type cluster most closely with other

13
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samples from the same cell type, regardless of the sequencing technology used (Fig 5A).
Clusters for all cell types had significant support using multiscale bootstrap resampling
(approximately unbiased (AU) > 95%). Principal component analysis (PCA) also
indicates that cell type, not sequencing technology, is associated with the strongest
differences among expression profiles. The first principal component, accounting for
44% of the total variance in the data, separates HI-hESC samples from all other samples
(Fig 5B). The second and third components further separate the samples into the other 12
cell types, and capture 13% and 10% of the total variance, respectively. Interestingly, the
second component separates blood-derived cell types (K562, GM12878, CD20+ and
CD14+) from the other cell types, suggesting that cells derived from the same tissue may

share similarities in HERV expression profiles.

Fig 5. Cell type characterization based on HERYV expression profiles using
unsupervised learning and linear models. Unsupervised learning and linear modeling
were used to identify patterns in HERV expression profiles generated by Telescope for
30 polyA RNA-seq datasets from 13 cell types. (A) Similarities among normalized
expression profiles were explored using hierarchical cluster analysis. Supporting p-values
were based on 1000 multiscale bootstrap replicates and calculated using Approximately
Unbiased (AU, red) and Bootstrap probability (BP, green) approaches. (B) Principal
component analysis (PCA) of normalized expression profiles. The first component
accounts for 44% of the variance in the data, and is plotted against component 2 and 3,
which account for 13% and 10% of the variance, respectively. (C) Heatmap of the

number of HERV elements found to be significantly differentially expressed (DE) among

14
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each pair of cell types. Significance was determined using cutoffs for the false discovery
rate (FDR < 0.1) and log2 fold change (abs(LFC) > 1.0). Yellow indicates low numbers

of differentially expressed elements, while blue indicates high numbers.

We further explored differences among cell types using differential expression
(DE) analysis. Pairwise contrasts between cell types were performed to determine the
number of significant DE loci (FDR < 0.1, abs(LFC) > 1.0) (Fig 5C). As found in the
unsupervised analysis, HERV expression in HI-hESC was drastically different from
other cell types, with between 578 and 1127 significantly DE loci.

Finally, we asked whether heuristic approaches for TE quantification would be
sufficient to identify cell type specific signal in the data or whether these approaches
would be sensitive to other variables. We performed the same unsupervised analyses with
HERYV expression profiles obtained using unique and best counting approaches.
Hierarchical clustering using unique count expression profiles produced a very similar
topology to that found using Telescope (S3 Fig). Replicate samples were properly
clustered by cell type, though GM 12878 and HUVEC had slightly less bootstrap support.
In contrast, clustering with the best count profiles did not recover all cell type clusters;
two HeLa-S3 samples clustered with H1-hESC, while the third was more similar to A549
cells (S3 Fig). There was also less support for several clusters, including one cell type

cluster (NHEK) that did not meet the 95% threshold.

Performance of Telescope compared to current methods

15
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In order to examine the sensitivity and biases of computational approaches for
quantifying TE expression, we designed simulation experiments with known expression
values. Earlier studies have suggested that the HERV-K(HML-2) family (hereafter
referred to as HML-2) is expressed in human tissue and may be relevant to human health
(Hohn et al. 2013; Grow et al. 2015; Li et al. 2015; Weiss 2016). Furthermore, its
relatively few family members (~90 distinct genomic loci (Subramanian et al. 2011)) and
high nucleotide identity make HML-2 a good model for studying TE expression. Here,
we report on the performance of each method to detect locus-specific expression of
HML-2 by simulating RNA-seq fragments. We simulated 25 independent datasets, each
simulation consisted of 10 randomly chosen HML-2 loci and a fragment count, which
could be interpreted as an expression value. We used the following TE quantification
approaches for estimating locus specific HML-2 expression: unique counts, best counts,

RepEnrich (Criscione et al. 2014), TETranscripts (Jin et al. 2015) and Telescope.

Fig 6. Comparison of performance results for unique counts, best counts,
RepEnrich, TEtranscripts and Telescope using simulated data. 25 RNA-seq samples
were simulated, each sample consisted of 10 randomly chosen HML-2 loci with each
having different expression value. The possible expression values are shown along the x-
axis, 0 represent all HML-2 not expressed, red dashed line represents the expected
expression value. A box plot representing the count distribution from each expression
value is plotted. The resulted count from the different counting method from each
simulated expression value per sample is plotted over the boxplot. Counting methods

tested: (A) unique count, (B) best count, (C) RepEnrich, (D) TEtranscript, (E) Telescope.
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(F) The precision and recall for each sample simulated as well as the mean of both are

shown for all methods.

The greatest strength of the unique counts approach was the low false detection
rate since across all 25 simulations (41.5K simulated fragments), only 6 fragments were
incorrectly assigned. However, unique counts consistently underestimated expression
levels with ~60% of all estimates (151 out of 250) missing at least 50% of the true
expression (Fig 6A). One striking example of this underestimation was for
HML2 5q33.3; this locus did not generate any fragment that could be counted by unique
counts despite being expressed in 5 simulations. We presume that the underestimation is
a direct consequence of discarding ambiguously mapped reads, as the unique counts

discarded 62.6% of the simulated fragments.

In contrast to unique counts, the best counts approach offers greater sensitivity
(Fig 5F). Instead of discarding ambiguously mapped fragments, all the fragments are
used, resulting in more accurate expression estimates (Fig 5B). The majority of fragments
were assigned to the true source transcript, while incorrect hits account for 14.2% of the
total fragments. These off-target assignments resulted in false detection of unexpressed
loci in each simulation, representing a major drawback of this approach (Fig 5B). Despite
the high sensitivity of best counts, we conclude that the high number of incorrect
detections outweighs the possible advantages of using this approach.

In order to make a direct comparison between Telescope and RepEnrich, which
quantifies TE families at the family level, we modified RepEnrich annotations to give

each locus a unique “family” name. We found that expression was underestimated by this
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approach for all expressed HML-2 elements (Fig 5C). We attribute this bias to the large
number of fragments that were discarded by this approach, 38.8%. Nevertheless, the
number of discarded reads is fewer than the unique counts approach where 62.6% of all
fragments were omitted. Another negative aspect of RepEnrich is that 12.1 % of the
counted fragments were assigned to non-expressed TE.

We tested TETranscripts on our simulated data with the TE counting method set
under “multi” mode. We provided the algorithm with our HERV annotation thus results
could be compared with Telescope. TETranscripts showed a better performance than
RepEnrich as shown in Jin et al. (2015) involving multiple mapped fragments assignment
but 21.7% of all fragments were assigned incorrectly to a non-expressed HML-2. Based
on the precision and recall of all methods tested TETranscripts performed as the third
best TE single locus counting method on the simulated data (S4 Fig).

Finally, we tested Telescope’s ability to reassign ambiguous alignments and
estimate locus-specific fragment counts using the same simulation data. On average
57.8% of the simulated fragments aligned to multiple loci, which need to be reassigned.
Telescope reassigned ambiguously mapped fragments to the expected transcript of origin
according to our model (see methods) and reported the final number of fragments aligned
to each TE. The estimated levels of expression, calculated with Telescope, from each
HML-2 resembled closely the simulated levels (Fig SE). Only 3 HML-2 loci that were
simulated to be expressed did not present any fragments and 99.9% of all simulated

fragments were counted with the Telescope approach.

Of all methods considered here, Telescope had the highest rate of precision and

recall from all other counting methods tested (Fig 5F). In contrast to the best counts
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1 approach, the second best (S4 Fig), Telescope assigned only 15 fragments were assigned
2 to genomic locations that were not expressed, while 5871 fragments were assigned

3 incorrectly by best counts. Deviations of Telescope estimates from true expression levels,
4  as measured by Fl-score, was the highest of all approaches (S4 Fig). These simulation

5  results demonstrate that Telescope resolves ambiguously aligned fragments and produces

6  unbiased estimates of TE expression that are robust to sequencing error.

19


https://doi.org/10.1101/398172
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/398172; this version posted August 23, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

23

aCC-BY 4.0 International license.

DISCUSSION

High-throughput RNA sequencing has enabled the simultaneous characterization
and quantification of an entire transcriptome with remarkable resolution and sensitivity.
Current studies have primarily focused on protein-coding transcripts, with greater
attention being given to non-coding and micro RNAs in recent years. The transposable
elements represent another major biochemically active group of transcripts and are
increasingly recognized as important regulators in complex biological systems and
disease yet have been largely ignored in the literature. We present a novel software
program, Telescope, that can be used to mine new or existing RNA-seq datasets to
accurately quantify the expression of TEs. The key advantage of our approach is the
capability to localize TE expression to an exact chromosomal location.

As TEs are repetitive elements located throughout the genome, existing programs
have limitations in performing accurate alignments from RNA fragments because of
sequence similarity. The management of alignment uncertainty has been approached in
several ways. The unique count approach discards fragments that align ambiguously, but
this approach underestimates or fails to detect gene expression. The best count method
assigns each fragment to the source template with the best scoring alignment, but this
underestimates TEs that are truly expressed and spuriously detects those that are in fact
absent. While the family method of alignment mitigates uncertainty in alignments by
classification according to repeat family, this method does not locate the genomic site of
TE transcription. Our approach, Telescope, reassigns fragments to the most likely
originating transcript using Bayesian mixture model that relating the relative transcript

abundances to the possible source templates for each fragment. This approach thus
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resolves ambiguously aligned fragments and results in accurate quantification of TE loci
for differential analysis.

Telescope will have widespread utility in other settings. Studies on TE expression
have become prominent in studies of embryonic stem cell development (Grow et al.
2015)(Goke et al. 2015), neural cell plasticity (Muotri et al. 2010; Gage and Muotri
2012), oncogenesis (Wang-Johanning et al. 2003; Rakoff-Nahoum et al. 2006; Takahashi
et al. 2008; Tang et al. 2017; Rodi¢ et al. 2015; Ardeljan et al. 2017), psychiatric and
neurological disorders(Perron et al. 2012; Christensen 2016; Mortelmans et al. 2016) and
autoimmune diseases (Nexg et al. 2015; Hanke et al. 2016). As the breadth of knowledge
on TEs expands, expression profiling of TEs using Telescope will allow scientists to
discover unique and collective TE transcripts involved in the biology of complex

systems.
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Methods

Fragment reassignment mixture model

Telescope implements a generative model of RNA-seq relating the probability of
observing a sequenced fragment to the proportions of fragments originating from each
transcript. Formally, let F = [f;, f5, ..., fy| be the set of N observed sequencing
fragments. We assume these fragments originate from K annotated transcripts in the
transcriptome T = [tq, t,, ..., tx]. In practice, annotations fail to identify all possible
transcripts that generate fragments, thus we include an additional category, t,, for
fragments that cannot be assigned to annotated transcripts. Let G =[G4, G, ..., Gy |
represent the true generating transcripts for F, where G; € T and G; = t; if f; originates
from ¢;. Since the process of generating F from T cannot be directly observed, the true
generating transcripts G are considered to be “missing” data. The objective of our model

is to estimate the proportions of T by learning the generating transcripts of F.

As described above, the alignment stage identifies one or more possible alignments for
each fragment, along with corresponding alignment scores. Let q; = [qiq, i1, --» Gix | b€
the set of mapping qualities for fragment f;, where q;; = Pr (f;|G; = t;) represents the
conditional probability of observing f; assuming it was generated from t;; we calculate
this by scaling the raw alignment score by the maximum alignment score observed for the
data. We write the likelihood of observing uniquely aligned fragment f;, as a function of
the conditional probabilities g,, and the relative expression of each transcript for all

possible generating transcripts G,

K

Pr(fuln, QU) = Z Tiqu;

j=0
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1 where ™ = [m,, mq, ..., Tx] represents the fraction of observed fragments originating from
2 each transcript. Note that g, ; = 0 for all transcripts that are not aligned by f,. For non-

3 unique fragments, we introduce an additional parameter in the above likelihood to
4  reweight each ambiguous alignment among the set of possible alignments. The

5  probability of observing ambiguous fragment f; is given by

K

6 Pr(film,0,q.) = anejqa,-
j=0

7  where 8 = [0,, 04, ..., O] is a reassignment parameter representing the fraction of non-

8  unique reads generated by each transcript.

9 Using these probabilities of observing ambiguous and unique fragments, we
10 formulate a mixture model describing the likelihood of the data given parameters T and
11 6. The K mixture weights in the model are given by m, the proportion of all fragments
12 originating from each transcript. To account for uncertainty in the initial fragment
13 assignments, let x; = [x;q, X;1, ..., Xix| be a set of partial assignment (or membership)
14 weights for fragment f;, where 25{:0 x;j = 1 and x;; = 0 if f; does not align to t;. We
15  assume that x; is distributed according to a multinomial distribution with success
16  probability 7. Intuitively, x;; represents our confidence that f; was generated by
17 transcript t;. In order to simplify our notation, we introduce an indicator variable y =
18  [y1, ¥, ..., yn| where y; = 1 if f; is ambiguously aligned and y; = 0 otherwise. The

19  complete data likelihood is

K

N
; Xij
20 L(m,6x,q,y) « Hn[ﬂjﬂf‘qii] ]

i=1 j=0

21
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Parameter estimation and fragment reassignment by EM

Telescope iteratively optimizes the likelihood function using an expectation-
maximization algorithm (Dempster et al. 1977). First, the parameters  and @ are
initialized by assigning equal weight to all transcripts. In the expectation step, we
compute the expected values of x; under current estimates of the model parameters. The
expectation is given by the posterior probability of x;:

vi
m;6;" qij

K Vi
k=0 7Tk9k qix

Elx;| =

In the M-step we calculate the maximum a posteriori (MAP) estimates for T and 6

P ZﬁvzlE[xU] + a]- an 5 _ ZﬁvzlE[xU] Vi + b]
! N + legzo Qg g iy + legzo by

where a; and b; are prior information for transcript ¢;. Intuitively, these priors are
equivalent to adding unique or ambiguous fragments to ¢;; providing non-zero values for
these parameters prevents parameter estimates from converging to boundary values.
Convergence of EM algorithms to local maxima has been shown by (Wu 1983), and is
achieved when the absolute change in parameter estimates is less than a user defined

level, typically € < 0.001.

HERYV Annotations

A Telescope analysis requires an annotation that defines the transcriptional unit of each
TE to be quantified. For HERV proviruses, the prototypical transcriptional unit contains
an internal protein-coding region flanked by LTR regulatory regions. Existing
annotations, such as those identified by RepeatMasker (Tarailo-Graovac and Chen 2009)

(using the RepBase database (Jurka et al. 2005)) or Dfam (Wheeler et al. 2013) identify
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sequence regions belonging to TE families but do not seek to annotate transcriptional
units. Both databases represent the internal region and corresponding LTRs using
separate models, and the regions identified are sometimes discontinuous. Thus, a HERV
transcriptional unit is likely to appear as a collection of nearby annotations from the same
HERYV family.

Transcriptional units for HERV proviruses were defined by combining RepeatMasker
annotations belonging to the same HERV family that are located in adjacent or nearby
genomic regions. Briefly, repeat families belonging to the same HERV family (internal
region plus flanking LTRs) were identified using the RepBase database (Jurka et al.
2005). RepeatMasker annotations for each repeat family were downloaded using the
UCSC table browser (Karolchik et al. 2004) and converted to GTF format, merging
nearby annotations from the same repeat family. Next, LTR found flanking internal
regions were identified and grouped using BEDtools (Quinlan and Hall 2010). HERV
transcriptional units containing internal regions were assembled using custom python
scripts. Each putative locus was categorized according to provirus organization; loci that
did not conform to expected HERV organization or conflicted with other loci were
visually inspected using IGV (Thorvaldsdéttir et al. 2013) and manually curated. As
validation, we compared our annotations to the HERV-K(HML-2) annotations published
by (Subramanian et al. 2011); the two annotations were concordant. Final annotations
were output as GTF files and are available; all annotations, scripts, and supporting

documentation are available at https://github.com/mlbendall/telescope annotation_db.

Simulated HML-2 expression data
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We simulated 25 independent datasets, each consisted of randomly chosen 10
HML-2 which were expressed at different level, ranging from 30 to 300 fragments per
locus. Using the expression pattern and the chosen HML-2, we simulated sequencing
fragments with the Bioconductor package for RNA-seq simulation, Polyester (Frazee et
al. 2014). All simulations used the parameters of read length: 75 bp; average fragment
size: 250; fragment size standard deviation: 25; and an Illumina error model with an error

rate of 5e-3.

Alignment to reference genome

Sequenced fragments from each sample or simulation were aligned to human reference
genome hg38 using bowtie2. Alignment options were specified to perform a sensitive
local alignment search (--very-sensitive-local) with up to 100 alignments reported for
each fragment pair (-k 100). The minimum alignment score threshold was chosen so that
fragments with ~95% or greater sequence identity would be reported (--score-min

L,0,1.6).

Software Availability
All scripts used for simulating and analyzing data are available at

https://github.com/mlbendall/TelescopeEncode. The Telescope package is available at

https://github.com/mlbendall/telescope.
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