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ABSTRACT

Evolutionary fitness landscapes of certain antibiotic target enzymes have been comprehensively
mapped showing strong high order epistasis between mutations, but understanding these effects
at the biochemical and molecular levels remained open. Here, we carried out an extensive
experimental and computational study to quantitatively understand the evolutionary dynamics of
Escherichia coli dihydrofolate reductase (DHFR) enzyme in the presence of trimethoprim induced
selection. Biochemical and structural characterization of resistance-conferring mutations targeting
a total of ten residues spanning the substrate binding pocket of DHFR revealed distinct resistance
mechanisms. Next, we experimentally measured biochemical parameters (K, K;, and k) for a
mutant library carrying all possible combinations of six resistance-conferring DHFR mutations and
quantified epistatic interactions between them. We found that the epistasis between DHFR
mutations is high-order for catalytic power of DHFR (ks and Kp), but less prevalent for
trimethoprim affinity (K;). Taken together our data provide a concrete illustration of how epistatic
coupling at the level of biochemical parameters can give rise to complex fitness landscapes, and

suggest new strategies for developing mutant specific inhibitors.
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Introduction:

Antibiotic resistance is one of the most important global health threats [1]. According to the
Centers for Disease Control and Prevention, antibiotic resistant pathogens cause over 20,000
deaths and two million infections annually in the United States alone [2]. Antibiotic resistance
evolves either by resistance-conferring spontaneous mutations in bacterial genomes or horizontal
transfer of mobile resistance elements [3, 4]. These genetic changes typically confer resistance
by reducing the affinities of antibiotic molecules to their targets, deactivating antibiotics by
chemical modification, and finally decreasing effective antibiotic concentrations inside bacterial
cytoplasm by either efflux pumps or reduced uptake of antibiotic molecules [5]. Among these,
understanding how mutations render antibiotics ineffective by altering their targets is particularly

important from both clinical and basic science perspectives [6, 7].

In pathogenic bacteria, there is only a handful of drug target enzymes, such as DNA gyrases and
RNA polymerases and finding new “druggable” enzymes or novel drugs that can target resistant
bacteria is often a long and extremely difficult process [8-12]. Therefore, a mechanistic
understanding of resistance-conferring mutations in already known antibiotic target enzymes is
critical for designing new drugs or drug variants that can inhibit antibiotic resistant bacteria [13,
14]. How essential enzymes can preserve their catalytic activities when they acquire mutations to
reduce drug affinity is another important question for better understanding basic principles driving
protein evolution [7, 15-18]. In this study, we scrutinize molecular mechanisms of resistance
conferring mutations in the Escherichia coli dihydrofolate reductase (DHFR) enzyme and
investigate how epistasis between these mutations shape the adaptive landscape for trimethoprim

resistance evolution.

DHFR is a ubiquitous enzyme in nature with an essential role in folic acid synthesis [19-21]. Due
to its central role in metabolism (Figure 1A), DHFR is used as a drug target in antibacterial,
anticancer, antirheumatic, and antimalarial therapies [21]. For instance, pyrimethamine is one of
the few available drugs that can be used for treating malaria caused by Plasmodium falciparum,
the most common species that causes malaria in humans. Pyrimethamine has specific toxicity
against P. falciparum by binding and inhibiting the P. falciparum dihydrofolate reductase (pfDHFR)
enzyme [13, 22, 23]. However, although pyrimethamine was one of the most commonly used
drugs for malaria treatment in the past, as of today, it is rarely prescribed due to the resistance
problem [22, 24]. The most common resistance-conferring mutations in pfDHFR are the four point
mutations N511, C59R, S108N, and 1164L [22, 23]. The quadruple mutant of pfDHFR that carries

all four of these mutations is widespread globally and is highly resistant to pyrimethamine.
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Similarly, evolution of resistance to trimethoprim (TMP), a bacteriostatic antibiotic molecule that
competitively binds to DHFR and blocks its enzymatic activity, proceeds through sequential
accumulation of resistance-conferring mutations in the bacterial DHFR enzyme [25, 26]. In our
previous work, we showed that E. coli cells evolved trimethoprim resistance by accumulating up
to four DHFR mutations in a stepwise fashion [15, 25, 26]. Since DHFR is an essential enzyme,
the evolution of resistance against DHFR inhibiting drugs is a search for finding DHFR mutants
that have reduced drug affinity and yet adequate catalytic power for organismal survival. For
better understanding the evolutionary dynamics of resistance against DHFR inhibitors, it is
important to quantitatively evaluate evolutionary paths leading to antibiotic resistance and

characterize resistance at the molecular level for the ultimate goal of improving human health.

We carried out a comprehensive experimental and computational study to better understand the
evolutionary dynamics of Escherichia coli DHFR in the presence of trimethoprim. In the following
part of this text, DHFR will be used to refer Escherichia coli dihydrofolate reductase enzyme. We
evolved several antibiotic naive E. coli populations against trimethoprim in the morbidostat, a
continuous culture device we developed to quantitatively study antibiotic resistance evolution [26,
27]. We identified genetic changes in E. coli that were responsible for trimethoprim resistance by
using both whole genome sequencing and targeted gene sequencing. The genetic changes we
found were almost exclusively targeting the folA gene that encodes for DHFR. We identified ten
residues that were frequently mutated in the DHFR as well as promoter mutations that significantly
increased DHFR expression. We characterized these mutations by quantifying their effects on
substrate binding (K,), inhibitor binding (Kj), and catalytic rate (k..:) of DHFR. We synthesized all
possible combinations for six of these DHFR mutations and quantified epistatic interactions
between these mutations. Finally, we measured the effects of these mutations on bacterial fitness
by replacing the endogenous folA gene in E. coli with its mutated variants. Our analysis shows
that the adaptive landscape of DHFR deviates from the landscape predicted from the fitness
effects of single mutations on the wild-type DHFR using Bliss independence model where fitness
effects of multiple mutations are additive. This difference is mainly because of the high-order
epistasis between mutations altering DHFR catalytic activity and substrate binding. Next, we
carried out molecular dynamics (MD) simulations to reveal structural changes responsible for
trimethoprim resistance and epistatic interactions between mutations. Analysis of the MD
simulations suggest that DHFR mutations confer resistance by utilizing distinct mechanisms
which may be exploited for drug design purposes. They also point to possible dynamical
mechanisms leading to epistasis. Finally, by running computer simulations, we identified plausible

genetic trajectories that reach to trimethoprim resistant genotypes. Our simulations suggest that
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98 the evolution of trimethoprim resistance can be impeded by exploiting epistatic interactions

99  between resistance-conferring mutations and the use of mutant specific inhibitors.

100  Results:

101  DHFR catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) by
102 hydride transfer from nicotinamide adenine dinucleotide phosphate (NADPH) (Figure 1A) [20, 21,
103  28-31]. THF is an essential precursor for cell growth as it is used in thymidylate and purine
104  synthesis. Therefore, inhibition of bacterial DHFR slows down or stops bacterial growth.
105  Trimethoprim is a bacterial DHFR inhibitor which competitively binds to the active site of DHFR.
106  Itis a commonly used antibiotic compound for treating bacterial infections and is typically used in
107  combination with sulfamethoxazole due to synergism in their combined effects. We and others
108  have previously run laboratory evolution experiments to explore evolutionary trajectories that lead
109  to high levels of trimethoprim resistance in E. coli [25, 26, 32]. In these studies, we have shown
110  that trimethoprim resistance evolved in a stepwise fashion and all populations acquired multiple
111 mutations in the folA gene that encodes DHFR. One of these mutations was always in the
112 promoter region and the rest were in the coding region of folA. Mutations elsewhere in the genome
113 were rare implying that the evolution of trimethoprim resistance was confined to a small genetic
114  target [26]. Although our results suggested a reproducibility in the temporal order of the DHFR
115  mutations, the number of evolved populations was small and it was not clear whether the
116  mutations we observed were covering all possible DHFR mutations. This observation was
117  consistent with previous studies reporting multiple DHFR mutations in clinically isolated
118  trimethoprim resistant pathogens [33, 34]. Besides, since a decrease in DHFR’s catalytic
119  efficiency is expected to decrease bacterial fitness [35], it was not clear whether evolutionary
120  trajectories would have been different if the minimum allowed growth rate in an evolution

121  experiment was changed.

122 Mutational trajectories observed in the morbidostat are independent of the imposed

123 growth rate constraints.

124 We evolved 28 initially isogenic and trimethoprim sensitive E. coli populations in the morbidostat
125  using different minimum growth rate constraints [26, 27]. Morbidostat is an automated continuous
126  culture device that maintains a nearly constant selection pressure even when bacterial
127  populations evolve higher antibiotic resistance. This is achieved by continuously monitoring
128  bacterial growth and clamping bacterial growth rate by adjusting antibiotic concentrations with the

129  help of computer controlled pumps. Addition of plain growth media or antibiotic containing growth
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130  media is periodically done at constant dilution rates. Therefore, populations or subpopulations
131  that cannot grow faster than the dilution rate of the morbidostat are washed out and hence cannot
132 survive in the morbidostat. This feature enabled us run evolution experiments at different dilution
133 settings and control the minimal growth rate allowed for the survival of bacterial populations. In
134 our settings, the drug-free growth rate of the parental E. coli strain (MG1655) was ~0.8 hour™ (M9
135  minimal media supplemented with casamino acids and glucose, at ~30°C). We evolved initially
136  isogenic and antibiotic naive E. coli populations (MG1655, Materials and Methods) at three
137  different dilution rates (0.3 h™ (n=7), 0.45 h™ (n=7), 0.6 h™ (n=14)) for several weeks and asked

138  whether there would be any difference in the evolutionary dynamics of trimethoprim resistance.

139  All E. coli populations evolved very high trimethoprim resistance in a stepwise fashion (Figure 1B)
140  and they were able to survive even at ~3 mg/ml trimethoprim concentration which is the maximum
141  solubility limit of trimethoprim in our growth media (M9 minimal media supplemented with
142 casamino acids and glucose, at 30°C). All of the populations acquired three to five mutations in
143 the folA gene and whole genome sequencing of 15 randomly selected mutants that were isolated
144  on the last day of morbidostat experiments revealed few mutations elsewhere in the genome
145  (Table S1). One of the mutations in the folA was always a promoter mutation (g-9a, c-15a, g-31a,
146  c-35t) and these promoter mutations were increasing DHFR levels 10-20 times compared to their
147  wild type ancestor (Figure 1B, insert). The rest of the folA mutations were in the coding region of
148  folA and targeted total of ten residues that were spanning the substrate binding pocket as
149  illustrated in Figure 1C. Among these, the most common mutations were at the following residues:
150 P21, A26, D27, L28, W30, and F153 (Figure 1D). However, contrary to our expectations, we did
151 not observe any evolutionary pattern indicating that mutations or mutational trajectories were
152 specific to the growth rate constraints we imposed by varying dilution rates in the morbidostat.
153  This observation suggested that the acquired DHFR mutations did not have significant effects on
154  the bacterial growth or DHFR mutations that could diminish bacterial growth never reached to
155 detectable levels throughout morbidostat experiments. An alternative explanation could be that
156 the DHFR enzyme already has the capacity to tolerate catalytic deficiencies due to resistance-
157  conferring mutations. This can be either because the DHFR already produces more THF than
158  required for growth or these deficiencies were compensated by the overexpression of DHFR or
159 by the emergence of other mutations. We conclude that E. coli populations evolving in the
160  morbidostat can acquire three to five mutations to render trimethoprim ineffective and there were
161  no patterns in the evolutionary trajectories specific to the growth rate constraints we imposed

162  throughout the experiments.
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163  Resistance-conferring mutations have diverse effects on catalytic efficiency of DHFR.

164 Ideally, fitness effects of mutations should be measured at the organismal level. However,
165 characterizing the evolutionary fitness landscape for DHFR requires reliable fitness
166  measurements which is not always possible when in vivo assays are utilized. First, in our
167  experience, several of the bacterial mutants carrying DHFR mutations survived even at the
168  highest possible trimethoprim concentrations we could achieve (~3mg/ml) making it impossible to
169  measure their true resistance levels [15]. Second, despite our numerous attempts, it was not
170  possible to engineer some of the E. coli strains with desired combinations of DHFR mutations,
171  implying that cells with some DHFR alleles may not be viable [15]. Third, the strain we engineered
172 by replacing the endogenous folA (the gene that is transcribed into DHFR) with the wild-type folA
173  gene had a growth defect compared to its ancestor MG1655 strain making growth rate
174  measurements less reliable. Fourth, overexpression of DHFR due to promoter mutations masked
175  the true fitness effects of mutations found in the coding region of DHFR [15]. Finally, it is difficult
176  to unequivocally attribute the effects of mutations to bacterial fithess as bacterial cells can
177  compensate deleterious effects of DHFR mutations by gene regulation or rearranging metabolic
178  fluxes. Therefore, we decided to characterize fitness effects of DHFR mutations at the protein

179  level by utilizing in vitro assays.

180  We developed a rapid assay for calculating kc.;, Km, and K; values for mutant DHFR enzymes
181  (Figure 2). Measuring substrate affinity (K,,) and catalytic rate (k.. of an enzyme typically requires
182  enzymatic activity measurements at various substrate concentrations and predicting kqo: and K,
183  values by fitting a Michelis-Menten function to the resulting data [7, 35, 36]. Depending on the
184  enzyme, this can be a laborious and expensive task. In the case of DHFR, the standard assay
185  used for measuring DHFR activity benefits from spectroscopic changes in the cofactor (NADPH)
186  and substrate (DHF) of DHFR as THF is produced. Typically, by maintaining a high concentration
187  of NADPH compared to the DHF, initial reduction rate of DHFR is calculated by monitoring the
188  absorbance of NADPH and DHF at 340 nm wavelength. NADPH and DHF have high absorptions
189  at 340nm (Aa4o) but their absorptions become insignificant upon hydride transfer between them.
190  When DHFR is mixed with NADPH and DHF, Ass rapidly reduces until DHF is completely
191 consumed and this measurement needs to be repeated at several different substrate
192 concentrations for predicting kcr and K, values. We realized that this laborious assay was not
193  necessary for characterizing DHFR. In the presence of saturating concentrations of DHF (10-
194  20uM) and NADPH (100-200uM), DHFR molecules already sample all possible concentrations of

195  DHF throughout the progression of the reaction while NADPH levels are still at saturating levels.
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196  Also, the spectroscopic properties of NADPH and DHF allow us to predict both DHF and NADPH
197  concentrations during the progression of this reaction. Since the rates of reverse reactions (Figure
198  2A, counterclockwise direction) in the catalytic cycle are very slow relative to the forward reaction
199 rates (Figure 2A, clockwise direction), it is possible to calculate reaction rates at various DHF
200  concentrations from a single reaction progression curve. As shown in Figure 2B, we split the
201  progression curve in equal time windows and calculate corresponding mean DHF concentrations
202  and DHF reduction rates for every time interval. We then use these values to predict k., and K,
203  values by fitting a Michelis-Menten equation (Figure 2C). The K, values we measured using this
204  practical method were consistent with the values we measured using the standard conventional
205 method that needs measurements at several different DHF concentrations (K, predicted using
206  traditional method: 3.40+0.95uM, and our method gives: 2.86+0.97uM). In addition, by measuring
207 DHFR activity at steady state using various trimethoprim concentrations (Figure 2D), we
208  calculated trimethoprim (TMP) affinities of DHFR mutants (K;) assuming competitive binding
209  kinetics between DHF and TMP (Figure 2E, equation 1).

keqr-[DHFR].[DHF)

[TMP]  [DHF]
Km(1+—Ki + Km)

210 V([TMP]) =

at DHF = 12.5uM (Equation 1).

211  All of the mutations except the L28R caused significant reductions in the substrate affinity
212 (increased K,,) of DHFR (Figure 2F, Table S2). Contrary to our expectations, substrate affinity of
213 the L28R mutant was significantly increased (decreased K,,) relative to the wild type DHFR.
214  Changes in the K, were generally accompanied with significant changes in the k. values.
215 Interestingly, three of the mutants (P21L, L28R, and R98P) exhibited decreased catalytic rates
216  whereas others (D27E, W30G, and W30R) had increased catalytic rates k.. Finally, all of the
217  mutations but one (M20l) had reduced trimethoprim affinity (increased K;). Although antibiotic
218  resistance via target modifications is typically attributed to reduced drug and substrate affinities
219  due to mutations, our measurements summarized in Figure 2F suggest that there could be distinct
220  resistance mechanisms. That being said, K; values alone are far from enough for explaining
221  trimethoprim resistance [7]. In the bacterial cell, several other parameters such as expression of
222  DHFR, catalytic efficiency (k.a/Km), thermal stability, availability of nutrients and metabolites,
223 accumulation of excess DHF, and the need for THF can contribute to bacterial fitness in the
224 presence of trimethoprim. Finally, we engineered mutant E. coli strains by replacing wild-type folA
225  gene with its variants with single mutations. All of the engineered E. coli strains with single DHFR
226  mutations were viable (Figure 2G) and had elevated trimethoprim resistance compared to their
227  parental MG1655 strain (Figure 2H).
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228  In summary, all DHFR mutations except the L28R and M20l mutations decreased both substrate
229  andinhibitor binding with the exception of M20I which did not have a significantly different K; value
230  compared to the wild-type DHFR. On the other hand, the L28R mutation increased substrate
231  affinity and decreased catalytic rate suggesting the existence of newly formed interactions
232 between the mutated DHFR protein and its substrate (DHF). The catalytic rates of other DHFR
233 mutants exhibited both decreasing and increasing phenotypes. We conclude that the resistance-
234 conferring mutations in DHFR are phenotypically diverse suggesting the presence of distinct

235 resistance mechanisms.

236  Structural evaluation of DHFR with single mutations reveal distinct resistance

237 mechanisms at the molecular level

238  We utilized molecular dynamics (MD) simulations in order to study the structural changes
239  associated with the trimethoprim resistance conferring mutations in DHFR resulting from point
240  mutations discussed in the previous subsection (Figure 2F). E. coli DHFR is formed of eight
241  stranded B-sheets and four contiguous a-helices [37-39]. The enzyme is divided by the active site
242 cleft into two subdomains: the adenosine binding subdomain and the major subdomain. The
243 former (residues 38-88) provides the binding site for the adenosine moiety of the cofactor
244 (NADPH) and includes the CD loop (residues 64-71). The latter subdomain consists of ~100
245  residues and contains three loops on the ligand binding face that surrounds the active site. These
246  loops are known as M20 (residues 9-24), FG (residues 116-132), and GH (residues 142-150)
247  loops. The M20 loop is located directly over the active site, protecting it from the solvent, and is
248  involved in the regulation of the active site [37]. The M20 loop is found in three conformations
249  which are named as the open, occluded, and closed states [37, 40]. In our structural analysis, we
250  have used the structure (PDB ID: 1rx2) that has the closed M20 loop conformation [37]. For each
251 of the eleven mutants listed in Figure 2F as well as the wild type DHFR, we compiled 210 ns long
252  MD simulations for both the DHFR/NADPH/DHF (green in Figure 2B) and the
253  DHFR/NADPH/trimethoprim complexes (Materials and Methods) [41].

254 We have closely monitored the WT and all 11 single mutant sets of MD trajectories corresponding
255 to those listed in Figure 2F to decipher the molecular mechanisms that lead to trimethoprim
256  resistance. We note that while these mutations are observed with various frequencies in the
257  morbidostat trajectories as displayed in Figure 1D, nine of them appeared as the first coding
258  region mutation. Besides, the changes in the dynamics of the system due to resistance-conferring

259  mutations are usually subtle. In particular, the effect on trimethoprim binding is indistinguishable
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260 in all DHFR/NADPH/trimethoprim complex simulations. This is expected since the free energy
261  difference implied by the K; changes reported in Figure 2F even in the most extreme case (~30
262  fold increase for R98P) is predicted to be ~2 kcal/mol. Such energy changes are often intractable
263  in a conventional MD simulation with typical fluctuations occurring on the order of RT = 0.6
264  kcal/mol. Nevertheless, it is important to note that despite the small differences in free energy,
265  the local structural changes may be accommodated by entropy-enthalpy compensation as we
266  have shown previously for the L28R mutant by isothermal titration calorimetry measurements [41].
267  This phenomena is explained by the utility of an interfacial water molecule as observed in the MD
268  simulations [41]. Similarly, the MD simulations of the DHFR/NADPH/DHF complex do not
269 implicate large dynamical changes in most of the MD trajectories. The three exceptions
270  correspond to the most frequently observed first coding region mutations in the morbidostat,
271  D27E, L28R, and W30R. Interestingly, in all three cases, distinct molecular strategies were

272 utilized for rendering DHF more effective than trimethoprim (Figure 3).

273 In figure 3, we display resistance mechanisms for the D27E, L28R, and W30R mutations.
274  Amongst the wild-type (WT) and all the single mutants we analyzed, the D27E mutant is the only
275  one where the hydride transfer distance is kept at an optimal pre-catalytic range (Figure 3A). We
276  note that in all mutations we studied, the M20 loop never leaves the closed conformation in favor
277  of the occluded form which triggers the reduction of DHF into THF. Nevertheless, the longer side
278  chain of the D27E mutant dynamically maintains the ligand at an optimal distance, keeping it
279  ready for the hydride transfer once this rare event takes place, hence explaining the increase in
280  kcq for the D27E mutant (Figure 2F). On the other hand, the L28R mutation leads to the formation
281  of extra hydrogen bonds between the enzyme and DHF, thus stabilizing its conformation [41]. In
282  figure 3B, we display the average distance of hydrogen bonds formed between the enzyme and
283  DHF. We find that while the pterin tail of DHF is permanently engaged in the binding pocket (as
284  evidenced by the hydrogen bond distances to 15 and D27), the p-aminobenzoyl glutamate tail is
285  mobile in the wild-type (WT) DHFR. In contrast, this mobility is significantly reduced in the L28R
286  mutant due to the extra interactions provided by the side chain. Unlike D27E and L28R, the effect
287  of W30R on the dynamics of DHF is indirect. In this case, the R30 side chain of the mutant forms
288 a salt bridge with the side chain of E139 residing on the B sheet supporting the catalytic region
289  (Figure 3C). The distance between the two residues is reduced from a baseline value of ~8 A to
290 ~2 A. This interaction slightly opens the tight binding pocket so that the DHF p-aminobenzoyl
291  glutamate tail motions are accommodated in the region between R52 and R57 residues, whereas

292  the glutamate tail is more disordered and closer to R52 residue in the wild-type DHFR. Reduced
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293  interactions between the p-aminobenzoyl glutamate tail and the enzyme leads to weaker

294  substrate binding and higher catalytic rate.

295  To summarize our experimental and computational findings thus far, we conclude that the effect
296  of single DHFR mutations on trimethoprim binding is not definitive for survival. It is rather the small
297  changes on the binding kinetics of the substrate (DHF) that provide the enzyme a small advantage
298  that is utilized for bacterial survival. Furthermore, the changes in the DHF binding dynamics
299  induced by single mutations are diverse. In the rest of the manuscript, we discuss the changes in
300 the fitness landscapes due to the accumulation of multiple mutations using a library of combined

301  mutants selected from a subset of those observed in the morbidostat trajectories.

302

303  Trimethoprim-free enzymatic velocity of DHFR mutants correlates well with trimethoprim-

304 free growth rates of E. coli mutants carrying corresponding DHFR mutations.

305 Resistance-conferring mutations are rarely found in natural bacterial isolates and this observation
306 is generally attributed to the fitness costs of resistance-conferring mutations. In the case of
307 enzymes such as DHFR, where multiple resistance conferring mutations are sequentially fixed, it
308 is not clear how that many mutations can be tolerated and yet sufficient enzymatic activity is
309 maintained for organismal survival. To address this question, we selected six of the mutations
310 listed in Figure 2F (P21L, A26T, L28R, W30G, W30R, and 194L) and synthesized a DHFR mutant
311 library where we had all 48 (3'x2*) possible combinations of these mutations. We purified and
312  characterized all of the mutant DHFR enzymes as previously described (Table S3). Next, we
313  measured growth rates of the E. coli mutant library (Figure 4A) that carry the same DHFR
314 mutations in various conditions (different temperature, different glucose concentrations, and
315 different casamino acids concentrations) (Figure 4B-F). We found that enzymatic activity of DHFR
316 mutants in the absence of trimethoprim (V), equation 1), calculated at saturating [DHF], correlated
317  well with the trimethoprim-free growth rates of E. coli mutants with corresponding DHFR mutations
318 (r=0.46-0.58, p < 107, Pearson Correlation Test). The correlations between growth rates and
319  other biochemical parameters such as k. or ke K, were less significant (for kot (r = 0.33, p <
320  10®); for keadKm: (r = 0.06, p < 10®), Pearson Correlation). We note that the 12.5uM DHF
321 concentration is in good agreement with the previously measured in vivo DHF concentrations in
322 which both reduced and oxidized species of folate concentrations were in the range of ~10 uM
323  [42]. These experiments and the resulting analysis suggested that V, the substrate reduction rate

324  of DHFR in the absence of trimethoprim, is a good predictor of bacterial fitness, particularly when
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325 limited nutrients are provided to bacterial populations (i.e., minimal media supplemented with
326  0.4% glucose) and bacterial cells are grown in the absence of trimethoprim.

327 Combined effects of resistance-conferring mutations deviate from fitness values predicted
328 Dby Bliss Additivity.

329 In order to qualitatively understand the evolutionary trade-offs in DHFR evolution, we plotted V,
330 values against the corresponding K; values for DHFR mutants. Interestingly, V, values exhibited
331 a bifurcation in this geometric representation (Figure 5A). DHFR mutants either had enzymatic
332  activities comparable to their wild type ancestor or significantly lost their enzymatic activities,
333  displaying almost no activity. Interestingly, all of the mutants that were funneled into the highly
334  decreased enzymatic activity regimen carried the P21L mutation (Figure 5A, red triangles and
335 circles). In addition, none of the mutants that were detected in the morbidostat (Figure 5A, grey
336  and red circles) had V, values lower than four percent of the wild type V, (Figure 5A, horizontal
337 dashed line). We note that all of the DHFR alleles observed in the morbidostat appeared in the
338  background of a promoter mutation that increases DHFR amount by 10-20 fold (Figure 1B, insert).
339  Therefore, all the observed mutants in the morbidostat are predicted to have DHFR activity
340  equivalent to 40-80 percent of the wild type DHFR (V).

341 In order to test the existence of epistatic interactions among DHFR mutations, we asked whether
342  the K; and V), values deviated from the K; and V), values predicted by using an additive model,
343  assuming Bliss independence between the effects of the mutations [43]. According to Bliss
344  independence, effects of multiple mutations should simply add up to the sum of the individual
345  effects of mutations. However, as shown in Figure 5B, when the individual effects of six single
346  mutations on the wild type DHFR are used to calculate K; and V, values using the Bliss additivity
347  [43], the predicted K;and V, values were significantly different from the experimentally measured
348  ones (Student t-test, p<107; Figure S1, Table S3). We also found that the predicted V, values did
349  not display a bifurcation and steadily declined as the number of DHFR mutations increased. We
350 also found that the predicted K; values were not as large as the experimentally measured values
351  (Figure 5 A-B). When we instead utilized the mean effects of single mutations on all possible
352 genetic backgrounds in our mutant library (Figure 6), we were able to better estimate the K; values
353  (Figure 5C). However, the bifurcation we observed in Figure 5A disappeared and several of the
354  mutants had lower predicted V, values compared to the experimentally measured ones. These
355  observations clearly suggested the existence of epistasis (deviation from additivity) among the

356  six DHFR mutations we studied. The effects of DHFR mutations seemed to be context dependent
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357  and recovering the fithess of DHFR mutants with multiple mutations would at least require mean

358 fitness effects of mutations calculated on several different genetic backgrounds.

359  Effects of mutations on the catalytic power of DHFR were largely context dependent due

360 to epistasis between mutations.

361  We calculated (geometric) mean phenotypic effects of individual DHFR mutations on K, k.., and
362 K;and V,values (Table S3). Briefly, for every single amino acid replacement in DHFR, we divided
363 the DHFR mutant library into two groups depending on whether they have a particular mutation
364 (i.e. P21L, Figure 6A) and compared the K, k.o, Ki, and V, values of the two groups. Thus, we
365 were able to calculate mean fold changes in K, kcar, Ki, and V; values due to a single mutation
366 as shown in Figure 6B. This analysis clearly showed that all six of the mutations we analyzed
367 increased the K;values on all possible genetic backgrounds explaining their resistance-conferring
368 effects. Similarly, all of the mutations except L28R and P21L, significantly decreased substrate
369  affinity (increased K). As discussed before, the L28R mutation increased substrate affinity of
370 DHFR. The mean effect of P21L mutation on K, was not statistically significant. However,
371 although L28R decreased k., values on almost all possible genetic backgrounds, the rest of the
372  mutations did not have statistically significant effects on k.. values. The large variations in the
373  mean effects of these mutations on k.. values suggested that the effects of mutations on the

374  catalytic power of DHFR were largely context dependent due to epistasis between mutations.

375 Epistasis between resistance-conferring DHFR mutations is high-order for substrate

376  binding and catalysis (k..: and Kp,) but first-order for drug binding (Kj).

377  We quantified epistatic interactions between the six DHFR mutations (P21L, A26T, L28R, W30G,
378  W3O0R, and 194L) we studied by utilizing a linear regression model (Materials and Methods) [44]).
379  Briefly, we attempted to recover fitness values of all DHFR alleles using epistatic terms between
380  mutations. In a biological system, if the epistasis between mutations is large, it is difficult to
381  recover fitness values for genotypes with n mutations by using up to m" order epistatic terms (m
382 < n). However, if epistatic interactions are less prevalent, predicting fitness of genotypes by using
383  up to m" order epistatic terms (m < n) becomes more feasible. As shown in Figure 7A, we were
384  able to adequately predict K; values for all DHFR mutants with up to five mutations by using only
385  the first order epistasis terms (~10-20% residual error). The extra information we gain from using
386  higher order epistatic terms was relatively small (Figure 7B) indicating that measuring the K;
387  values of single DHFR mutations and first order epistatic terms (mathematically equivalent to

388  mean effect of mutations) will mostly be sufficient to predict K; values of DHFR mutants with any
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389  combination of the six DHFR mutations we studied. This analysis is consistent with our findings
390 summarized in Figures 5 and 6. On the contrary, predicting k..« and K, values of DHFR mutants
391 (with multiple mutations) by using epistatic terms was relatively more challenging due to high-
392  order epistasis. For both k; and K., in order to obtain a prediction power comparable with what
393  we had for K;, we needed to use at least up to third order epistatic terms and yet there was a big
394  variance in the prediction performance (Figure 7B). This suggested that the effects of the
395 mutations on DHFR’s catalytic activity were highly context dependent which make fitness
396 landscape of DHFR rugged [15]. We conclude that the epistasis between resistance-conferring
397  mutations is high-order for k. and K, but first-order for K; values. Since DHFR fitness in
398 trimethoprim containing environment is a convoluted function of all k., K., and K; values,
399  evolution of trimethoprim resistance in the adaptive landscape is mostly unpredictable mainly

400  because of high-order epistatic interactions in catalytic power of DHFR (k¢ and Kp,).

401 MD simulations demonstrate the context dependent effects of DHFR mutations at the
402  molecular level.

403  Epistatic interactions in biological systems are common and were previously reported by several
404 researchers. However, in most cases, the molecular basis of epistasis was not sufficiently
405 explained [6, 26]. To study molecular basis of epistasis between resistance-conferring DHFR
406  mutations, we utilized MD simulations [41]. Since our biochemical analysis and epistasis
407  calculations suggested that the epistasis was largely due to substrate binding and catalysis, we
408  performed MD simulations for the substrate-bound conformation of DHFR (Methods). We carried
409  out MD simulations for a subset of DHFR alleles including all combinations of the mutations A26T,
410 L28Rand194L. In addition, we traced the effect of adding P21L mutation to some of these mutants
411  in order to understand how adding the P21L mutation drastically reduces enzymatic efficiency
412  (Figures 5 and 6). Amongst these, L28R is frequently observed as the first coding region mutation

413  in the morbidostat while A26T and 194L are observed later in evolution experiments (Table S5).

414  We demonstrate the context dependence of the observed dynamics by focusing on four specific
415 examples involving double mutations in Figure 8. We traced the signature hydrogen bonds
416  between the enzyme and the substrate (Figure 8) and found that hydrogen bonds between the 15
417 and D27 side chains in the studied mutants were always close to their native values in the wild
418 type DHFR. However, the hydrogen bonds between the R52 and R57 side chains and DHF
419  showed significant variations (displayed in figure 8, averaged over the last 100 ns of the
420  trajectories.) For the single mutants, we do not find any significant dynamical changes in the MD

421  trajectories for P21L and A26T mutations. We note that the common reduction in the k.4 value
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422 due to the P21L mutation (Figure 2F) implied that the effect of this mutation is mainly in the
423  dynamics of the catalytic M20 loop, whose dynamics is on the time scale of seconds and is
424 therefore not within the sub-microsecond observation window of our MD simulations. Meanwhile,
425  the 194L mutant completely loses interactions with the R57 side chain since the slight change in
426  the isomerization of the side chain leads to more prolonged interactions with the aromatic ring of
427  DHF, distorting the tight binding pocket. As a result, the R57 side chain flips out of the pocket to
428  the other side of the helix spanning residues 25-37 (figure 8A).

429

430  As was previously described in figure 3B, L28R mutation leads to the formation of extra hydrogen
431  bonds with DHF. We found that together with A26T, this effect becomes even stronger, fixing the
432 position of DHF to the space between R52 and R57 residues (figure 8B). Thus, while the A26T
433  mutation alone causes subtle structural changes in our MD simulations, together with L28R, it
434  benefits from a synergistic effect on DHF binding, with the polar side chain further stabilizing the
435  network of hydrogen bonds in the pocket. The L28R mutation has a similar synergistic effect on
436  the 194L mutation. Despite the tendency of the 194L mutant to interact strongly with the aromatic
437  part of DHF, the binding pocket is not as easy to distort due to the presence of R28 interactions
438  with the substrate, leading to a stabilized ligand (DHF). We note that addition of A26T to the 194L
439  mutation does not have the same synergistic effect as expected by the outlined mechanism of
440  action. Interestingly, although P21L mutation mostly impairs catalytic activity of DHFR, the P21L
441  mutation rescues 194L mutant. In this case, the more flexible L21 allows distortions of the tight
442  binding pocket without letting the R57 side chain to flip out (not displayed). We note that these
443  mutations significantly decrease the binding propensity of the inhibitor, as measured by the K;
444  values listed in Table S2. DHF escapes this fate due to the extra interactions of the larger ligand
445  with the side chains of the enzyme. Running longer MD simulations for all possible combinations
446  of DHFR mutations was beyond our computational capacity but even the analysis of this small
447  subset of DHFR mutants demonstrated the context dependent effects of DHFR mutations at the

448 molecular level.

449  On the other hand, we do not observe significant structural fluctuations in DHFR upon
450  trimethoprim binding unless more than two mutations are accumulated. With the introduction of a
451  third mutation, the dynamics of the DHFR is significantly altered, with amplified motions observed
452  in the loops. In Figure S2A, we display the root mean square fluctuations (RMSF) as mutations
453  are accumulated. With the triplet A26T-L28R-I94L large motions in new regions are observed

454  along with a substantial increase in the amount of fluctuations; the effect is magnified as more
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455  mutations are accrued. In fact, the RMSF of multiple mutants are well correlated with log K; values
456  asdisplayed in Figure S2B, (multiple mutants: r = 0.70, p < 0.01; all cases including WT: r = 0.60,
457  p<0.01; Pearson Correlation). Thus, the effect of decreased inhibitor binding affinity is significant
458  for reinforcing resistance in higher number of mutants, while the first two mutations are more

459  effective in the catalytic activity.

460 Promoter mutations compensate detrimental effects of several mutations and largely
461 increases number of plausible evolutionary trajectories.

462  Evolution of trimethoprim resistance is a random search for mutational trajectories that lead to the
463  resistant DHFR genotypes without sacrificing catalytic activity. We ran computer simulations to
464  visualize and quantify plausible evolutionary trajectories leading to trimethoprim resistance. As
465  demonstrated in Figure 9, for every DHFR allele, we calculated DHFR activity (V) as a function of
466  trimethoprim concentration. In Figure 9, DHFR mutants are represented as cylindrical pillars with
467  heights proportional to trimethoprim concentrations necessary to reduce mutated DHFR
468  enzymes’ activities down to 50% of V, (V,"") for the wild type DHFR. Colored filled circles on the
469  upper surface of the cylinder represent DHFR mutations. We note that this landscape dynamically
470 changes as we increase trimethoprim concentrations used in our calculations. In these
471  calculations (Equation 1), we used a saturating dihydrofolate (DHF) concentration (12.5 uM)
472  which is in the physiological range and we assumed a ten-fold increase in DHFR expression due
473  to the promoter mutation (Figure 1B). Alleles are grouped according to the number of mutations
474  they have. We then ran stochastic simulations where we consider the DHFR sequence as a lattice
475 and allow DHFR to acquire mutations as trimethoprim dosage is gradually increased. All
476  simulations start from the wild type DHFR allele and the activities of all DHFR alleles are
477  calculated at every trimethoprim concentration. In these simulations, we assume that any DHFR
478  mutant that has activity (V) less than half of the wild type DHFR activity (V,"", no trimethoprim)
479  goes extinct unless they acquire a beneficial mutation. In our simulations, we allow DHFR to
480  obtain or lose one of the seven mutations (promoter, P21L, A26T, L28R, W30G, W30R, and 194L)
481  if activity of the mutant is about to drop below half of V,". Any of these mutations can be added,
482  converted (W30R > W30G, W30G >W30R) or reverted (e.g. L21 mutant to P21). As shown in
483  Figure 9, we observed several genetic trajectories that arrive at local or global maxima. We
484  repeated these simulations 10° times and quantified relative abundance of mutational trajectories
485  (Figure 9 and Table S6).

486  Mutational trajectories that lead to high trimethoprim resistance peaks typically accumulated up

487  to five mutations and the majority of these trajectories reached to the fitness peaks in five to seven

15


https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/398065; this version posted August 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

488  genetic steps. Several viable trajectories included more than five mutational steps mainly because
489  reverting the P21L mutation back to wild-type (L21P) significantly improved DHFR fitness in
490  several genetic backgrounds. We then ranked all of the genetic trajectories that reach to high
491  trimethoprim resistance by taking the least possible number of steps and calculated the likelihood
492  of each mutation in the adaptive landscape (Table S6). We have also repeated these simulations
493  using lower fitness thresholds (i.e. 1% of V, for the wild type DHFR) and showed that number and
494  length of evolutionary trajectories that reach to fitness peaks drastically increase if minimum

495  fitness thresholds are assumed to be lower (Figure S3).

496  Finally, we computationally tested the effect of promoter mutations in DHFR evolution (Figure
497  9C). To do this, we ran simulations where all of the DHFR alleles with promoter mutations were
498  eliminated and we compared these simulations with those that allow the promoter mutation. We
499  found that number of plausible mutational trajectories that lead to trimethoprim resistant
500 genotypes significantly diminishes if the promoter mutation is not allowed (Figure 9C). When
501  promoter is not allowed, only 1.289 + 0.005% of the simulated trajectories reach to genotypes
502  that survived in 32 yM trimethoprim which is considered as resistant in clinical microbiology
503 laboratories. There are only 60 unique trajectories which acquired one or more DHFR mutations
504  and increased trimethoprim resistance. However, when promoter mutation is allowed, 5.592 +
505 0.026% of the simulated trajectories reach to genotypes that survived in trimethoprim
506  concentrations between 32 uM and ~2.58mM. In this case, 2573 unique trajectories acquired one
507  or more DHFR mutations and increased trimethoprim resistance. This effect is mainly due to
508 elimination of half of the possible genetic combinations between the six resistance-conferring
509  mutations we studied and also elimination of the compensatory effect of the promoter mutation.
510  Thus, number and length of plausible evolutionary trajectories, as well as the maximum possible
511  trimethoprim resistance significantly diminish in the absence of the promoter mutation. Therefore,
512 in the absence of promoter mutation, DHFR evolution becomes more predictable. As a result,
513  being able to target the promoter mutation with one of the novel gene editing methods together
514  with a mutant-specific drug that specifically inhibits a mutation such as L28R, that is a synergistic
515  mutation, might significantly slow down evolution of trimethoprim resistance. We note that
516  eliminating the promoter mutation or the L28R mutation does not exclude other evolutionary
517  solutions such as acquiring other resistance conferring mutations listed in Figure 2F, gene

518  duplication, and acquiring other promoter mutations.

519  We conclude that, although expected to be random, the first plausible mutation in DHFR evolution
520 is expected to be one of the promoter, W30R, or W30G mutations. Indeed, the ¢c-35t and W30R

521 mutations were previously found in clinically isolated E. coli strains [45]. Due to epistatic
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522 interactions, evolutionary trajectories become more constrained after acquiring the second and
523  third mutations. However, the promoter mutation makes the adaptive landscape of DHFR less
524  predictable by compensating for diminished catalytic activities of resistance-conferring DHFR
525  mutation(s).

526 Discussion:

527 DHFR is a ubiquitous enzyme commonly used as a drug target in antibacterial, anticancer, and
528  antimalarial therapies [21]. Developing a better understanding of the evolution of drug resistance
529  through sequential accumulation of DHFR mutations is therefore an important scientific task to
530  help improve drug therapies. Our experimental findings and computational analyses demonstrate
531 that DHFR is a highly evolvable enzyme that can maintain its catalytic activity while accumulating
532 multiple resistance-conferring mutations. Throughout the evolution of trimethoprim resistance in
533  E. coli, DHFR can accumulate mutations in at least ten residues and four different promoter
534  positions. In addition, amplification of chromosomal regions spanning the folA gene that encodes
535 for DHFR is rarely observed [26]. Experimental and computational analysis of six of these
536  mutations demonstrate the prevalence of epistatic interactions between them which imply the
537  ruggedness of the adaptive landscape that lead to trimethoprim resistance. Epistasis between
538  resistance-conferring mutations in E. coli DHFR and PfDHFR was previously reported and
539  quantified by engineering all possible combinations of a small number of resistance-conferring
540  mutations [15, 22]. A similar analysis was also done for a beta-lactamase gene in the landmark
541  study of Weinreich and Hartl [6]. These studies mainly utilized bacterial growth assays to quantify
542  fitness effects of mutations and assessed the predictability for evolution of resistance. In another
543  landmark study by Lunzer et al., where they systematically studied effects of amino acid changes
544 in isopropylmalate dehydrogenase’s coenzyme choice, they demonstrated that each amino acid
545  additively contributed to the function of isopropylmalate dehydrogenase’s enzymatic function, and
546  that the epistasis comes from non-linearities in the fitness [46]. Conversely, in this study, by
547  utilizing both biochemical assays and growth rate measurements, we deconvolved epistasis
548  between resistance-conferring mutations and demonstrated that epistasis was largely due to
549  changes in catalytic activity of the mutant DHFR enzymes rather than nonlinearity in bacterial
550 fitness. We also showed that epistatic interactions and the compensatory effects of promoter
551  mutations significantly diminish our ability to predict DHFR evolution in the presence of

552  trimethoprim induced selection.

553 In a recent study, Rodrigues et al. investigated epistasis between three of the mutations we
554  studied (P21L, L28R, and W30R) and developed an elegant framework to predict fithess of E. coli

555  strains carrying DHFR alleles with combinations of these three mutations by using biophysical
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556  properties of DHFR mutations [7]. However, because of the low number of possible combinations
557  (2°) of DHFR mutations they studied, they were not able to observe the P21L-caused bifurcation
558 in the fitness landscape we report here (Figure 5). Therefore, for a larger set of combinations of
559  DHFR mutations that include the P21L, fitness prediction of DHFR alleles will naturally be more
560 difficult. Using the available biochemical fitness values we have, we were able to identify partial
561 correlation between catalytic power and bacterial growth rates of DHFR mutants. However, we
562 were not able to demonstrate a direct correlation between trimethoprim resistance and
563  biochemical parameters we measured. We note that predicting trimethoprim resistance levels
564  might be possible by using extra biophysical parameters such as thermal stability and abundance

565  of DHFR mutants as was demonstrated by Rodrigues et al. [7].
566  Our analysis suggests that although predicting DHFR evolution is a difficult task, it might still be

567 possible to steer evolution of trimethoprim resistance towards clinically less challenging
568  phenotypes. Among all the mutations we studied, promoter and L28R mutations can potentially
569 be targeted to reduce the number of plausible evolutionary trajectories and trimethoprim
570  resistance. For example, being able to specifically target the promoter mutation by utilizing one
571  of the novel gene editing tools will substantially decrease both the number of accessible
572  trajectories and maximum resistance levels (Figure 9) [47]. Also, since the L28R mutation has a
573  distinct molecular mechanism that increases its relative preference for the substrate over the drug
574  molecules (Figure 3), it might be possible to design L28R-specific DHFR inhibitors that will mimic
575 DHF without losing its specificity against bacterial DHFR. Since L28R mutation is observed in
576  almost 80 percent of all morbidostat trajectories and is synergistically interacting with several
577 mutations, an L28R specific inhibitor will substantially impede evolution of trimethoprim

578 resistance.
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Materials & Methods:

Growth Rate Measurements

All DHFR mutant strains were constructed in MG1655 attTn7::pRNA1-tdCherry (gift from Johan Paulsson).
Detailed procedures for making mutant strains can be found [15]. Bacterial cultures were grown at 30 °C in
M9 minimal medium supplemented with 0.4% glucose (Fisher Scientific B152-1), 0.2% amicase (MP
Biomedicals 104778), 2mM MgSO, (Fisher Scientific M63-500) and 100uM of CaCl, (Fisher Scientific
S25222A). Overnight grown cultures normalized to OD:0.001. Plates were incubated in 30°C with
continuous shaking in Liconic Shaking Incubator and growth is measured with Tecan Plate Reader Infinite
M200. Background optical density levels (OD~0.04) are substracted from all wells. Growth rates are
calculated by making an exponential fit to growth curve when bacterial growth is in its’ exponential phase.

Intracellular DHFR abundance Measurements

E. coli NDL47 cells were grown overnight, and final OD600 was adjusted to unity. These cells were then
diluted by 10*-fold in 5 mL of M9 minimal media (supplemented with 0.4% glucose and 0.2% amicase)
and grown for 6 h at 37°C (220 rpm) Cells were then washed three times with cold PBS buffer (pH 7.4),
and bacterial pellets were lysed in 1X Laemmli sample buffer (5 mL/O.D.). Equivalent amounts of the cell
lysates (10 yL of the above sample) from each set were electrophoresed in a 4%—-15% precast
polyacrylamide gel (561081; BIO-RAD), and western blotting was performed following standard
procedures. DHFR antibodies are kindly provided by Kimberly Reynolds. IR-labeled secondary antibodies
(IRDye 800CW (926-32213) and IRDye 680RD (925-68072); Li-COR) were used for detection. DHFR
protein amount was quantified using an ODYSSEY infrared imaging system (LI-COR).

Steady state Kinetic measurements
Reactants of DHFR reaction (DHF (Sigma-Aldrich D7006) and NADPH (Sigma-Aldrich N7505)) has

absorbance at 340nm which the products (THF and NADP®) do not absorb light. Using LAMBDA 650

UV/Vis Spectrophotometer we measured reaction progression with 1sec resolution with two cells. First
cuvette is sample cuvette containing the reaction components (DHFR, DHF and NADPH) and the second
is reference cell contains only NADPH and DHFR in it. Biochemical measurements were done at 25°C in
MTEN buffer (pH ~7) which includes, 50mM MES hydrate (Sigma-Aldrich M8250), 25mM Tris-Base (Fisher
Scientific B152-1), 25mM Ethanolamine Hydrochloride (Sigma-Aldrich E6133), 100mM NaCl (Fisher
Scientific S271-3) and 5mM DTT (Fisher Scientific BP172-25) which is added fresh before starting the
reaction. MTEN solution containing DHFR protein and 200 uM NADPH is prepared and 12.5uM DHF and
200uM NADPH solution is added preceding the data collection. Data collection is stopped when all the DHF
is consumed which happens when the curve reach a plateau down below zero. Data analysis is done as
explained in the main text (Figure 2A-B).

Inhibition constant (K;) for TMP Determination

To calculate inhibition constants for TMP, we used initial rates of the reactions with saturating
concentrations of DHF and NADPH with different TMP concentrations. These initial rates used to fit
Michelis-Menten competitive inhibition formula to calculate K; values (Figure 2C-D).

Protein Overexpression and Purification

All combinations of six mutations of folA gene at five sites (194L, W30R, W30G, L28R, A26T, P21L) are
constructed by using Quick-Change Site-Directed Mutagenesis kit (Stratagene). 6XHis Tag is added on C-
terminal of the protein sequence. Constructs are cloned into the expression plasmids (pET24a-KanR) for
further protein purification. BL21 cells are transformed with pET24a-folA-6xHisTag were grown overnight
in selective media (LB+Kan) and then diluted 100 times into TB media for further growth at 30°C. Protein
overexpression induced when OD reached 0.6-0.8 using 250uM IPTG at 18°C with 220rpm shaking.
Recombinant proteins are further purified using Ni-NTA columns (Qiagen) and dialyzed overnight using
dialysis buffer containing 50mM Tris-Base, pH8.0, 0.5M NaCl, and 400mM Imidazole (Sigma Aldrich
792527).

Epistasis Calculations and Linear Regression Model
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633  Alinear regression model is used to recover fitness of DHFR alleles by using epistatic interactions terms
634 between DHFR mutations. The theory and algorithm we used to calculate epistatic terms and perform linear
635  regression is described in detain by Poelwijk et al. [44].

637  Molecular Dynamics Simulations

638  The NAMD package is used to model the dynamics of the protein—water systems [48]. Solvation is achieved via
639 the VMD 1.9.1 program solvate plug-in version 1.2 [49]. The protein is soaked in a cubic solvent box such that
640 thereis at least a 10 A layer of solvent in each direction from any atom of the protein to the edge of the box. The
641 system is neutralized and 150 mM of ionic strength in all the simulations is maintained by adding a suitable number
642 of K" and CI ions. The CharmM22 all-atom force field is used to model the protein and the TIP3P potential for
643 water [41, 50]. We have adopted the force field parameters for 5-protonated 7,8-dihydrofolate and trimethoprim
644  in two protonation states as reported in the literature [51]. Periodic boundary conditions are imposed on the
645 simulation boxes that have 60 x 67 x 58 A®dimensions. Long range electrostatic interactions are calculated by
646  the particle mesh Ewald method, [52] with a cutoff distance of 12 A and a switching function at 10 A. The RATTLE
647 algorithm [53] is applied and a time step size of 2 fs in the Verlet algorithm is used. Temperature control is carried
648 out by Langevin dynamics with a dampening coefficient of 5 ps'1. Pressure control is attained by a Langevin piston.
649  All systems are first subjected to 10000 steps of energy minimization with the conjugate gradients algorithm. The
650 resulting structures are then run in the NPT ensemble at 1 atm and 310 K until volumetric fluctuations are stabilized
651  and the desired average pressure is maintained.

652 MD simulation of the ternary complex of the DHF bound systems are constructed based on the crystallographic
653 structure with PDB code 1rx2 [37]. DHFR is complexed with folate and oxidized NADP (NADP") in this native
654  form. We protonate NADP and folate so that the former is in the reduced form (NADPH) and the latter is 5-
655 protonated 7,8-dihydrofolate to model the stable state prior to the hydride transfer step.

656 In a separate set of MD simulations, we study the effect of trimethoprim binding in its unprotonated (TMP) or
657 ground state (TMP") on the DHFR conformation. Since there are no crystal structures of E. coli DHFR with
658 trimethoprim, we have docked the inhibitor based on the coordination of equivalent residues of the trimethoprim
659 binding region of Staphylococcus Aureus DHFR (PDB code: 2w9g) [38]. Details of trimethoprim binding site
660  selection is provided in reference [41]. For MD simulations of the various mutants of DHF, TMP and TMP" bound
661  forms of DHFR, we mutated the WT structures in silico via BIOVIA Discovery Studio 4.0 package using build and
662 edit protein tool [54]. For systems with multiple mutations, we substituted the native positions with the target
663 mutations simultaneously. The solvation, ionization, minimization and equilibration were performed as described
664 for the WT systems. All MD simulations are 210 ns long, with the first 10 ns discarded for equilibration. Simulations
665  for the WT cases were repeated to confirm the reproducibility of the results.

666  The mutants studied are as follows: The single mutants I5F, M20I, P21L, A26T, D27E, L28R, W30G, W30R,
667  194L, R98P and F153S; all double mutant combinations of the A26T, L28R, 194L sets; the A26T-L28R-194L triplet;
668  the A26T-L28R-W30R-194L and the A26T-L28R-W30G-194L quadruplet. Also, to test the effect of the P21L
669  mutation, we have studied the double mutant combinations of P21L with each of A26T, L28R, 194L as well as the
670 P21L-A26T-L28R, P21L-A26T-194L and P21L-L28R-194L triplet, P21L-A26T-L28R-I194L quadruplet; and the
671 P21L-A26T-L28R-W30R-194L and the P21L-A26T-L28R-W30G-194L quintets. Thus, we have carried out 210 ns
672 long simulations of 26 sets of mutants, with DHF, TMP and TMP" bound, leading to simulations exceeding 17.6
673  us, including the WT sets.

674 We use the approach in reference [41] to confirm the native form of trimethoprim in the DHFR bound state, by
675 monitoring the distribution of the native hydrogen bonds in the binding pockets. In all the sets, TMP* remains
676 tightly bound while TMP flips in and out of the binding pocket throughout the simulation. We thus accept the
677 protonated form of trimethoprim to be the native form in all the systems; note that this is not the case for D27N
678  and D27S mutants, as discussed at length in reference [41].

680  Simulations of Protein Evolution and Visualization

681 Protein evolution simulations works on a DHFR mutational lattice (proteins as nodes and single mutation
682 acquisition, conversion or reversion as lines). Simulations starts from WT in no trimethoprim condition.
683 Trimethoprim concentration gradually increases and at each drug concentration fitness landscape of DHFR
684 lattice is calculated. When drug concentration hits a value where enzyme activity is lower than threshold
685 activity (50,10,1,0.1% of WT enzyme activity at [TMP] = 0 nM) a random mutational step is taken (a mutation
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acquisition, conversion or reversion). If the new mutant has lower activity than threshold, the simulation
stops, otherwise the new mutation is fixed, and drug concentration starts increasing again till new mutants’
activity drops down to the threshold level (Figure 9B). Simulations are repeated for a million times to sample
all possible unique trajectories. Python scripts to run the simulation is added to supplementary files.
Visualization of the simulations is done by VPython, an open source software package for interactive 3D
graphics [55].
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Figure Captions

Figure 1: Trimethoprim resistance evolves through sequential accumulation of DHFR mutations. A)
Enzymatic activity of DHFR is crucial for nucleotide and amino acid synthesis in E. coli. Trimethoprim is a
competitive inhibitor of DHFR that blocks its enzymatic activity by occupying its active site. B) Morbidostat
experiments revealed stepwise acquisition of resistance conferring mutations; a sample morbidostat
trajectory demonstrating temporal changes in trimethoprim resistance. Colored arrows indicate the timing
of the first detection of DHFR mutations. (Insert) Promoter mutations (c-35t, g-31a) lead to 10 to 20-fold
higher DHFR expression relative to WT. C) Mutated DHFR residues are highlighted in different colors on
DHFR structure (PDB ID: 1rx2). D) Observed frequencies of resistance conferring mutations plotted for 33
independent morbidostat experiments (28 populations from this study and 5 populations from a previous
study [26]).

Figure 2: Biochemical characterization of resistance-conferring DHFR mutations. A) Catalytic cycle
of DHFR. Forward reaction rates are obtained from Schnell et al. [21]. Rate limiting step in the catalytic
cycle is release of THF (red arrow). E stands for DHFR. E-NADPH-DHF (green fonts) is the state used in
our molecular dynamics simulations. B) Left panel shows a typical reaction progression curve after
absorbance (340 nm) values are converted to DHF concentration (see Methods). By utilizing moving time
windows, we calculate catalysis rates at corresponding DHF concentrations. C) K, and k., values are
predicted by fitting a Michelis-Menten equation to measured catalysis rates. D-E) Initial reaction rates in
the presence of various trimethoprim concentrations are used to predict the affinity (K;) of DHFR mutants
to trimethoprim molecules. F) Ky, kco: and K; values of DHFR mutants with single amino acid
replacements. Error bars show standard error of the mean. Student’s t-test (two tailed) is used to quantify
significance of K,,, k.ot and K; changes relative to the wild type (WT) DHFR (*: p<0.05; **: p<0.01; ***:
p<0.001). G) (Upper Panel) All engineered E. coli strains carrying single DHFR mutations are viable.
Endogenous folA gene was replaced with the wild-type (WT) or mutated folA genes (Materials and
Methods). Cells were grown at ~30°C in minimal M9 media supplemented with 0.4% glucose and 0.2%
amicase in 12 replicates. Exponential growth rates of all mutants except the I5F and L28R are all
significantly lower than the parental MG1655 E. coli strain but higher that the strain (WT) we engineered
by reinserting the wild-type (WT) folA gene. Despite our several attempts, the engineered WT strain had a
growth defect most likely as a result of the selection markers we used for cloning (Materials and
Methods). (Lower Panel) All engineered E. coli strains carrying single DHFR mutations have elevated
trimethoprim resistance. Inhibitory concentrations reducing growth by ninety percent (ICq) were
measured by growing mutants in a gradient of trimethoprim using 12 replicates (~30°C in minimal M9
media supplemented with 0.4% glucose and 0.2% amicase). Student’s t-test (two tailed) is used to
quantify significance of ICyy changes relative to the wild type (WT) DHFR (*: p<0.05; **: p<0.01; ***:
p<0.001, error bars shows the standard error on the mean for each mutant).

Figure 3. Molecular mechanisms operating in the DHF bound dynamics of DHFR for the three
frequently observed DHFR mutations. (A) D27E replacement alters hydride transfer distance between
the cofactor (NADPH) and the substrate (DHF). The measured distance is between the cyan and blue
spheres shown in the inset for the crystal structure positioning of NADPH (black) and DHF, which is
readily lost in the wild type structure as in all the other simulations of the single mutants except for D27E.
Dynamical motions of NADPH and DHF are displayed on the right. (B) L28R mutations yields extra direct
hydrogen bonds with DHF and stabilizes it in the binding pocket. The distance between the donors and
acceptors of the hydrogen bonds originally present in the crystal structure is monitored throughout the MD
trajectories with their averages and standard deviations displayed. While the original hydrogen bonds are
lost in both the wild type and the L28R mutant, there are many new hydrogen bond donor sites on the
R28 side chain, maintaining a dynamical hydrogen bonding ecology around the substrate. (C) W30R
mutation releases the tension in the tight binding pocket by forming a salt bridge with E139. The distance
between the E139 acceptor (O- group) and the closest heavy atom of residue 30 is plotted for the wild
type and the W30R mutant. In the latter case a salt bridge is established between the side groups
frequently, relaxing the tight binding pocket where the substrate resides. As shown on the right, DHF
maintains a position between the stabilizing R52 and R57 side chains in the mutant while the contacts
with R57 group is lost in the wild type.
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Figure 4: Bacterial growth rates correlate with DHFR’s enzymatic activity. A) Growth rates (u) of E.
coli cells with DHFR mutations are calculated by fitting an exponential growth function; OD(t) = OD(0).
e"!, to the cell density (OD600) readings. B-F) Mean growth rate values (+ standard deviation) of all
mutations are measured for different M9 minimal media compositions and temperature (T). Correlation
between V, and growth rate is calculated using Pearson Correlation test. r: correlation coefficient, p:
significance. [Amc] stands for amicase concentration; [Glc] stands for glucose concentration.

Figure 5: Combined effects of resistance-conferring mutations deviate from fitness values
predicted by Bliss Additivity model. A) V, vs K; values of the 48 DHFR mutants are plotted. Curved
and straight lines are used to separate mutants with different number of mutations. Horizontal dashed line
shows the minimum V|, value for a DHFR mutant that was observed in the morbidostat experiment. Red
markers show mutants with P21L mutation. Gray markers show mutants without P21L mutation. Circle
markers show mutants that are observed in evolution experiments. (Insert) V, values bifurcate depending
on the presence of P21L mutation. B) Predicted V, and K; values for multiple DHFR mutants by Bliss
Independence model using the Vj and K; values measured for DHFR variant with single mutations
(relative to the wild-type DHFR). These predictions significantly deviate from experimental observations
(both for Vp, and for K; (Student t-test, p<10™). This model under-predicts K; values by a factor of 0.27
+0.35 and over-predicts V, values by 3.34 + 0.35 (Mean + standard deviation; Figure S1, Table S3). C)
Predicted V,, and K; values for multiple DHFR mutants by Bliss Independence model using the
(geometric) mean effects of single mutations on all possible genetic backgrounds (Table S4). This model
over-predicts K; values by a factor of 6 £3.96 and under-predicts V), values by 0.35 + 0.39 (Mean %
standard deviation; Figure S1, Table S3). The bifurcation observed in panel A disappears in both analysis
summarized in panels B and C.

Figure 6: Mean effects of DHFR mutations in catalytic activity and trimethoprim binding. A) Each
marker in upper panels show fitness changes when a mutant acquires P21L mutation. x axis shows K,
ket and K; values of mutant alleles without P21L mutation and y axis shows the values mutant alleles with
P21L mutation. For instance, the black encircled points has the K, k.o or K; value of WT on x axis and
corresponding values for P21L on y axis. B) Fold change effects when each single mutant is added on
top of all other genotypes. Student’s t-test (two tailed) is used to quantify significance of K, k.ot and Kj, V,
changes relative to the wild type DHFR (*: p<0.05; **: p<0.01; ***: p<0.001).

Figure 7: Epistasis between resistance-conferring DHFR mutations is high-order for substrate
binding and catalysis (k:,: and K,;). A) A linear regression model is used to predict fitness information
stored in epistatic terms with increasing orders. Correlations between predicted fitness values of all
genotypes using n" order epistatic terms and the measured fitness values are calculated. B) Median
residual errors for predicted fitness values as function of degree of epistatic terms used in regression.
First order epistatic terms are sufficient to recover experimental K; values with ~10-20% residual error.
However, at least second and third order epistatic terms are required to recover experimental K, and kga
values with with ~10-20% residual error.

Figure 8. Epistasis between resistance-conferring DHFR mutations are largely due to interactions
of the mutated enzyme with the p-aminobenzoyl glutamate tail of DHF. (A) The 194L mutation
exacerbates substrate binding of DHFR by altering tight interactions with the p-aminobenzoyl glutamate
tail of DHF in the binding pocket, allowing the R57 side chain to flip out. (B) L28R mutation is a highly
epistatic mutation; together with either A26T or 194L, the L28R further stabilizes the substrate in the
pocket. Note that the P21L-194L double mutation also rescues the negative effect of 194L as traced
through the hydrogen bond distances.

Figure 9: Simulated evolutionary trajectories leading to trimethoprim resistance. A) DHFR alleles are
represented as cylindrical pillars. Atop of pillars, colored filled circles are used to show DHFR mutation.
Heights of the cylinders correspond to trimethoprim concentrations required to reduce the activity of mutant
DHFR enzymes down to half of the V| for the wild tyvee DHFR (VOWT). Note that several pillars have zero
height because their activities never exceed half of V, "even in the absence of trimethoprim. The trajectory
represented with solid arrowed lines is one of the shortest and most common pathways leading to global
maximum of the adaptive landscape. The trajectory represented with dashed arrowed lines lead to a local
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maximum of the adaptive landscape if the promoter mutation is not allowed. B) Schematics summarizing
the algorithm used in simulations. C) Simulations analysis summarized in heat maps. In simulations where
the promoter mutation is not allowed (left), trajectories are shorter compared to the trajectories where the
promoter mutation is allowed (right). If the promoter mutation is allowed, an increased number of trajectories
lead to adaptive peaks with higher trimethoprim resistance levels.

Figure S1: Comparison of predicted V, and K;values using Bliss additivity with experimentally
measured values. Panels on left side shows x-axis values predicted with a Bliss Independence model
using single mutant data. Panels on the right shows x-axis values predicted with a Bliss Independence
model using the (geometric) mean effects of single mutants.

Figure S2: RMSF of inhibitor bound DHFR obtained from MD trajectories is increased as new
mutations are added to the protein. A) Maximum fluctuations in a residue are less than 3 A in the WT
protein (two replica simulations); the L28R single mutation and the L28R-194L double mutation display
their largest motions in the same regions as the WT, albeit with larger amplitude; with the addition of more
mutations, largest amplitude motions are increased in size along with the introduction of additional mobile
regions. B) The maximum RMSF values calculated for all the systems studied via MD are well correlated
with experimentally measured log(K;) values for multiple mutant cases (filled circles; r=0.71, p < 0.01)
while they are uncorrelated for single mutants (r = 0.04, p > 0.9); overall correlations have r = 0.60; p <
0.01.

Figure S3: Simulations are repeated for different threshold values (%V, of WT as threshold)
showing the number and length of evolutionary trajectories that reach to fitness peaks drastically
increase if minimum fitness thresholds are assumed to be lower.

Table S1: WGS results of last days of morbidostat experiments show coding region mutations
mostly occurred on folA gene (encodes DHFR).

Table S2: Mean measured K, k.., and K; values of single mutants are shown in the table with
standard error of the mean. Additional sheets show measured replicates separately for each parameter
(Km, kcat and K,)

Table S3: Summary of all measured K, k.., and K;values for combination dataset. This excel file
also shows the Bliss Additivity calculations of Ky, kcar, and K; for both models with Single Mutant data and
Mean Effects of Single Mutants.

Table S4: Effects of addition of a single mutant in all backgrounds are shown as a table. This data
is plotted in Figure 6B.

Table S5: Single mutants are appeared at different times in the morbidostat experiment. Table
shows the number of times each single mutant is appeared as the first coding sequence mutation. In the
morbidostat experiment in almost all the cultures end with a single genotype dominating the culture.
Second data column in this table shows the number of times a mutant is appeared in the last day of the
evolution experiment.

Table S6: Probability of seeing a mutant in the simulations are put in this table. Each column shows

different threshold (% V, of WT as threshold) and whether the promoter mutation is allowed in the
simulation.
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