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ABSTRACT 15 

Evolutionary fitness landscapes of certain antibiotic target enzymes have been comprehensively 16 
mapped showing strong high order epistasis between mutations, but understanding these effects 17 
at the biochemical and molecular levels remained open. Here, we carried out an extensive 18 
experimental and computational study to quantitatively understand the evolutionary dynamics of 19 
Escherichia coli dihydrofolate reductase (DHFR) enzyme in the presence of trimethoprim induced 20 
selection. Biochemical and structural characterization of resistance-conferring mutations targeting 21 
a total of ten residues spanning the substrate binding pocket of DHFR revealed distinct resistance 22 
mechanisms. Next, we experimentally measured biochemical parameters (Km, Ki, and kcat) for a 23 
mutant library carrying all possible combinations of six resistance-conferring DHFR mutations and 24 
quantified epistatic interactions between them. We found that the epistasis between DHFR 25 
mutations is high-order for catalytic power of DHFR (kcat and Km), but less prevalent for 26 
trimethoprim affinity (Ki). Taken together our data provide a concrete illustration of how epistatic 27 
coupling at the level of biochemical parameters can give rise to complex fitness landscapes, and 28 
suggest new strategies for developing mutant specific inhibitors.  29 

30 
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Introduction:  31 
Antibiotic resistance is one of the most important global health threats [1]. According to the 32 
Centers for Disease Control and Prevention, antibiotic resistant pathogens cause over 20,000 33 
deaths and two million infections annually in the United States alone [2]. Antibiotic resistance 34 
evolves either by resistance-conferring spontaneous mutations in bacterial genomes or horizontal 35 
transfer of mobile resistance elements [3, 4]. These genetic changes typically confer resistance 36 
by reducing the affinities of antibiotic molecules to their targets, deactivating antibiotics by 37 
chemical modification, and finally decreasing effective antibiotic concentrations inside bacterial 38 
cytoplasm by either efflux pumps or reduced uptake of antibiotic molecules [5]. Among these, 39 
understanding how mutations render antibiotics ineffective by altering their targets is particularly 40 
important from both clinical and basic science perspectives [6, 7].  41 

In pathogenic bacteria, there is only a handful of drug target enzymes, such as DNA gyrases and 42 
RNA polymerases and finding new “druggable” enzymes or novel drugs that can target resistant 43 
bacteria is often a long and extremely difficult process [8-12]. Therefore, a mechanistic 44 
understanding of resistance-conferring mutations in already known antibiotic target enzymes is 45 
critical for designing new drugs or drug variants that can inhibit antibiotic resistant bacteria [13, 46 
14]. How essential enzymes can preserve their catalytic activities when they acquire mutations to 47 
reduce drug affinity is another important question for better understanding basic principles driving 48 
protein evolution [7, 15-18]. In this study, we scrutinize molecular mechanisms of resistance 49 
conferring mutations in the Escherichia coli dihydrofolate reductase (DHFR) enzyme and 50 
investigate how epistasis between these mutations shape the adaptive landscape for trimethoprim 51 
resistance evolution. 52 

DHFR is a ubiquitous enzyme in nature with an essential role in folic acid synthesis [19-21]. Due 53 
to its central role in metabolism (Figure 1A), DHFR is used as a drug target in antibacterial, 54 
anticancer, antirheumatic, and antimalarial therapies [21]. For instance, pyrimethamine is one of 55 
the few available drugs that can be used for treating malaria caused by Plasmodium falciparum, 56 
the most common species that causes malaria in humans. Pyrimethamine has specific toxicity 57 
against P. falciparum by binding and inhibiting the P. falciparum dihydrofolate reductase (pfDHFR) 58 
enzyme [13, 22, 23]. However, although pyrimethamine was one of the most commonly used 59 
drugs for malaria treatment in the past, as of today, it is rarely prescribed due to the resistance 60 
problem [22, 24]. The most common resistance-conferring mutations in pfDHFR are the four point 61 
mutations N51I, C59R, S108N, and I164L [22, 23]. The quadruple mutant of pfDHFR that carries 62 
all four of these mutations is widespread globally and is highly resistant to pyrimethamine. 63 
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Similarly, evolution of resistance to trimethoprim (TMP), a bacteriostatic antibiotic molecule that 64 
competitively binds to DHFR and blocks its enzymatic activity, proceeds through sequential 65 
accumulation of resistance-conferring mutations in the bacterial DHFR enzyme [25, 26]. In our 66 
previous work, we showed that E. coli cells evolved trimethoprim resistance by accumulating up 67 
to four DHFR mutations in a stepwise fashion [15, 25, 26]. Since DHFR is an essential enzyme, 68 
the evolution of resistance against DHFR inhibiting drugs is a search for finding DHFR mutants 69 
that have reduced drug affinity and yet adequate catalytic power for organismal survival. For 70 
better understanding the evolutionary dynamics of resistance against DHFR inhibitors, it is 71 
important to quantitatively evaluate evolutionary paths leading to antibiotic resistance and 72 
characterize resistance at the molecular level for the ultimate goal of improving human health. 73 

We carried out a comprehensive experimental and computational study to better understand the 74 
evolutionary dynamics of Escherichia coli DHFR in the presence of trimethoprim. In the following 75 
part of this text, DHFR will be used to refer Escherichia coli dihydrofolate reductase enzyme. We 76 
evolved several antibiotic naïve E. coli populations against trimethoprim in the morbidostat, a 77 
continuous culture device we developed to quantitatively study antibiotic resistance evolution [26, 78 
27]. We identified genetic changes in E. coli that were responsible for trimethoprim resistance by 79 
using both whole genome sequencing and targeted gene sequencing. The genetic changes we 80 
found were almost exclusively targeting the folA gene that encodes for DHFR. We identified ten 81 
residues that were frequently mutated in the DHFR as well as promoter mutations that significantly 82 
increased DHFR expression. We characterized these mutations by quantifying their effects on 83 
substrate binding (Km), inhibitor binding (Ki), and catalytic rate (kcat) of DHFR. We synthesized all 84 
possible combinations for six of these DHFR mutations and quantified epistatic interactions 85 
between these mutations. Finally, we measured the effects of these mutations on bacterial fitness 86 
by replacing the endogenous folA gene in E. coli with its mutated variants. Our analysis shows 87 
that the adaptive landscape of DHFR deviates from the landscape predicted from the fitness 88 
effects of single mutations on the wild-type DHFR using Bliss independence model where fitness 89 
effects of multiple mutations are additive. This difference is mainly because of the high-order 90 
epistasis between mutations altering DHFR catalytic activity and substrate binding. Next, we 91 
carried out molecular dynamics (MD) simulations to reveal structural changes responsible for 92 
trimethoprim resistance and epistatic interactions between mutations. Analysis of the MD 93 
simulations suggest that DHFR mutations confer resistance by utilizing distinct mechanisms 94 
which may be exploited for drug design purposes. They also point to possible dynamical 95 
mechanisms leading to epistasis. Finally, by running computer simulations, we identified plausible 96 
genetic trajectories that reach to trimethoprim resistant genotypes. Our simulations suggest that 97 
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the evolution of trimethoprim resistance can be impeded by exploiting epistatic interactions 98 
between resistance-conferring mutations and the use of mutant specific inhibitors.   99 

Results: 100 

DHFR catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) by 101 
hydride transfer from nicotinamide adenine dinucleotide phosphate (NADPH) (Figure 1A) [20, 21, 102 
28-31]. THF is an essential precursor for cell growth as it is used in thymidylate and purine 103 
synthesis. Therefore, inhibition of bacterial DHFR slows down or stops bacterial growth. 104 
Trimethoprim is a bacterial DHFR inhibitor which competitively binds to the active site of DHFR. 105 
It is a commonly used antibiotic compound for treating bacterial infections and is typically used in 106 
combination with sulfamethoxazole due to synergism in their combined effects. We and others 107 
have previously run laboratory evolution experiments to explore evolutionary trajectories that lead 108 
to high levels of trimethoprim resistance in E. coli [25, 26, 32]. In these studies, we have shown 109 
that trimethoprim resistance evolved in a stepwise fashion and all populations acquired multiple 110 
mutations in the folA gene that encodes DHFR. One of these mutations was always in the 111 
promoter region and the rest were in the coding region of folA. Mutations elsewhere in the genome 112 
were rare implying that the evolution of trimethoprim resistance was confined to a small genetic 113 
target [26]. Although our results suggested a reproducibility in the temporal order of the DHFR 114 
mutations, the number of evolved populations was small and it was not clear whether the 115 
mutations we observed were covering all possible DHFR mutations.  This observation was 116 
consistent with previous studies reporting multiple DHFR mutations in clinically isolated 117 
trimethoprim resistant pathogens [33, 34]. Besides, since a decrease in DHFR’s catalytic 118 
efficiency is expected to decrease bacterial fitness [35], it was not clear whether evolutionary 119 
trajectories would have been different if the minimum allowed growth rate in an evolution 120 
experiment was changed. 121 

Mutational trajectories observed in the morbidostat are independent of the imposed 122 
growth rate constraints.  123 

We evolved 28 initially isogenic and trimethoprim sensitive E. coli populations in the morbidostat 124 
using different minimum growth rate constraints [26, 27]. Morbidostat is an automated continuous 125 
culture device that maintains a nearly constant selection pressure even when bacterial 126 
populations evolve higher antibiotic resistance. This is achieved by continuously monitoring 127 
bacterial growth and clamping bacterial growth rate by adjusting antibiotic concentrations with the 128 
help of computer controlled pumps. Addition of plain growth media or antibiotic containing growth 129 
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media is periodically done at constant dilution rates. Therefore, populations or subpopulations 130 
that cannot grow faster than the dilution rate of the morbidostat are washed out and hence cannot 131 
survive in the morbidostat. This feature enabled us run evolution experiments at different dilution 132 
settings and control the minimal growth rate allowed for the survival of bacterial populations. In 133 
our settings, the drug-free growth rate of the parental E. coli strain (MG1655) was ~0.8 hour-1 (M9 134 
minimal media supplemented with casamino acids and glucose, at ~30˚C). We evolved initially 135 
isogenic and antibiotic naïve E. coli populations (MG1655, Materials and Methods) at three 136 
different dilution rates (0.3 h-1 (n=7), 0.45 h-1 (n=7), 0.6 h-1 (n=14)) for several weeks and asked 137 
whether there would be any difference in the evolutionary dynamics of trimethoprim resistance.  138 

All E. coli populations evolved very high trimethoprim resistance in a stepwise fashion (Figure 1B) 139 
and they were able to survive even at ~3 mg/ml trimethoprim concentration which is the maximum 140 
solubility limit of trimethoprim in our growth media (M9 minimal media supplemented with 141 
casamino acids and glucose, at 30˚C). All of the populations acquired three to five mutations in 142 
the folA gene and whole genome sequencing of 15 randomly selected mutants that were isolated 143 
on the last day of morbidostat experiments revealed few mutations elsewhere in the genome 144 
(Table S1). One of the mutations in the folA was always a promoter mutation (g-9a, c-15a, g-31a, 145 
c-35t) and these promoter mutations were increasing DHFR levels 10-20 times compared to their 146 
wild type ancestor (Figure 1B, insert). The rest of the folA mutations were in the coding region of 147 
folA and targeted total of ten residues that were spanning the substrate binding pocket as 148 
illustrated in Figure 1C. Among these, the most common mutations were at the following residues: 149 
P21, A26, D27, L28, W30, and F153 (Figure 1D). However, contrary to our expectations, we did 150 
not observe any evolutionary pattern indicating that mutations or mutational trajectories were 151 
specific to the growth rate constraints we imposed by varying dilution rates in the morbidostat. 152 
This observation suggested that the acquired DHFR mutations did not have significant effects on 153 
the bacterial growth or DHFR mutations that could diminish bacterial growth never reached to 154 
detectable levels throughout morbidostat experiments. An alternative explanation could be that 155 
the DHFR enzyme already has the capacity to tolerate catalytic deficiencies due to resistance-156 
conferring mutations. This can be either because the DHFR already produces more THF than 157 
required for growth or these deficiencies were compensated by the overexpression of DHFR or 158 
by the emergence of other mutations. We conclude that E. coli populations evolving in the 159 
morbidostat can acquire three to five mutations to render trimethoprim ineffective and there were 160 
no patterns in the evolutionary trajectories specific to the growth rate constraints we imposed 161 
throughout the experiments.   162 
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Resistance-conferring mutations have diverse effects on catalytic efficiency of DHFR. 163 

Ideally, fitness effects of mutations should be measured at the organismal level. However, 164 
characterizing the evolutionary fitness landscape for DHFR requires reliable fitness 165 
measurements which is not always possible when in vivo assays are utilized. First, in our 166 
experience, several of the bacterial mutants carrying DHFR mutations survived even at the 167 
highest possible trimethoprim concentrations we could achieve (~3mg/ml) making it impossible to 168 
measure their true resistance levels [15]. Second, despite our numerous attempts, it was not 169 
possible to engineer some of the E. coli strains with desired combinations of DHFR mutations, 170 
implying that cells with some DHFR alleles may not be viable [15]. Third, the strain we engineered 171 
by replacing the endogenous folA (the gene that is transcribed into DHFR) with the wild-type folA 172 
gene had a growth defect compared to its ancestor MG1655 strain making growth rate 173 
measurements less reliable.  Fourth, overexpression of DHFR due to promoter mutations masked 174 
the true fitness effects of mutations found in the coding region of DHFR [15]. Finally, it is difficult 175 
to unequivocally attribute the effects of mutations to bacterial fitness as bacterial cells can 176 
compensate deleterious effects of DHFR mutations by gene regulation or rearranging metabolic 177 
fluxes. Therefore, we decided to characterize fitness effects of DHFR mutations at the protein 178 
level by utilizing in vitro assays.  179 

We developed a rapid assay for calculating kcat, Km, and Ki values for mutant DHFR enzymes 180 
(Figure 2). Measuring substrate affinity (Km) and catalytic rate (kcat) of an enzyme typically requires 181 
enzymatic activity measurements at various substrate concentrations and predicting kcat and Km 182 
values by fitting a Michelis-Menten function to the resulting data [7, 35, 36]. Depending on the 183 
enzyme, this can be a laborious and expensive task. In the case of DHFR, the standard assay 184 
used for measuring DHFR activity benefits from spectroscopic changes in the cofactor (NADPH) 185 
and substrate (DHF) of DHFR as THF is produced. Typically, by maintaining a high concentration 186 
of NADPH compared to the DHF, initial reduction rate of DHFR is calculated by monitoring the 187 
absorbance of NADPH and DHF at 340 nm wavelength. NADPH and DHF have high absorptions 188 
at 340nm (A340) but their absorptions become insignificant upon hydride transfer between them. 189 
When DHFR is mixed with NADPH and DHF, A340 rapidly reduces until DHF is completely 190 
consumed and this measurement needs to be repeated at several different substrate 191 
concentrations for predicting kcat and Km values. We realized that this laborious assay was not 192 
necessary for characterizing DHFR. In the presence of saturating concentrations of DHF (10-193 
20µM) and NADPH (100-200µM), DHFR molecules already sample all possible concentrations of 194 
DHF throughout the progression of the reaction while NADPH levels are still at saturating levels.  195 
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Also, the spectroscopic properties of NADPH and DHF allow us to predict both DHF and NADPH 196 
concentrations during the progression of this reaction. Since the rates of reverse reactions (Figure 197 
2A, counterclockwise direction) in the catalytic cycle are very slow relative to the forward reaction 198 
rates (Figure 2A, clockwise direction), it is possible to calculate reaction rates at various DHF 199 
concentrations from a single reaction progression curve. As shown in Figure 2B, we split the 200 
progression curve in equal time windows and calculate corresponding mean DHF concentrations 201 
and DHF reduction rates for every time interval. We then use these values to predict kcat and Km 202 
values by fitting a Michelis-Menten equation (Figure 2C). The Km values we measured using this 203 
practical method were consistent with the values we measured using the standard conventional 204 
method that needs measurements at several different DHF concentrations (Km predicted using 205 
traditional method: 3.40±0.95µM, and our method gives: 2.86±0.97µM). In addition, by measuring 206 
DHFR activity at steady state using various trimethoprim concentrations (Figure 2D), we 207 
calculated trimethoprim (TMP) affinities of DHFR mutants (Ki) assuming competitive binding 208 
kinetics between DHF and TMP (Figure 2E, equation 1). 209 

𝑉 	 𝑇𝑀𝑃 = '()*. ,-./ . ,-.

01	 23
456
78

3 9:;
71

	𝑎𝑡	𝐷𝐻𝐹 = 12.5	𝜇𝑀   (Equation 1). 210 

All of the mutations except the L28R caused significant reductions in the substrate affinity 211 
(increased Km) of DHFR (Figure 2F, Table S2). Contrary to our expectations, substrate affinity of 212 
the L28R mutant was significantly increased (decreased Km) relative to the wild type DHFR. 213 
Changes in the Km were generally accompanied with significant changes in the kcat values. 214 
Interestingly, three of the mutants (P21L, L28R, and R98P) exhibited decreased catalytic rates 215 
whereas others (D27E, W30G, and W30R) had increased catalytic rates kcat. Finally, all of the 216 
mutations but one (M20I) had reduced trimethoprim affinity (increased Ki). Although antibiotic 217 
resistance via target modifications is typically attributed to reduced drug and substrate affinities 218 
due to mutations, our measurements summarized in Figure 2F suggest that there could be distinct 219 
resistance mechanisms. That being said, Ki values alone are far from enough for explaining 220 
trimethoprim resistance [7]. In the bacterial cell, several other parameters such as expression of 221 
DHFR, catalytic efficiency (kcat/Km), thermal stability, availability of nutrients and metabolites, 222 
accumulation of excess DHF, and the need for THF can contribute to bacterial fitness in the 223 
presence of trimethoprim. Finally, we engineered mutant E. coli strains by replacing wild-type folA 224 
gene with its variants with single mutations. All of the engineered E. coli strains with single DHFR 225 
mutations were viable (Figure 2G) and had elevated trimethoprim resistance compared to their 226 
parental MG1655 strain (Figure 2H).  227 
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In summary, all DHFR mutations except the L28R and M20I mutations decreased both substrate 228 
and inhibitor binding with the exception of M20I which did not have a significantly different Ki value 229 
compared to the wild-type DHFR. On the other hand, the L28R mutation increased substrate 230 
affinity and decreased catalytic rate suggesting the existence of newly formed interactions 231 
between the mutated DHFR protein and its substrate (DHF). The catalytic rates of other DHFR 232 
mutants exhibited both decreasing and increasing phenotypes. We conclude that the resistance-233 
conferring mutations in DHFR are phenotypically diverse suggesting the presence of distinct 234 
resistance mechanisms.   235 

Structural evaluation of DHFR with single mutations reveal distinct resistance 236 
mechanisms at the molecular level 237 

We utilized molecular dynamics (MD) simulations in order to study the structural changes 238 
associated with the trimethoprim resistance conferring mutations in DHFR resulting from point 239 
mutations discussed in the previous subsection (Figure 2F). E. coli DHFR is formed of eight 240 
stranded β-sheets and four contiguous α-helices [37-39]. The enzyme is divided by the active site 241 
cleft into two subdomains: the adenosine binding subdomain and the major subdomain. The 242 
former (residues 38–88) provides the binding site for the adenosine moiety of the cofactor 243 
(NADPH) and includes the CD loop (residues 64-71). The latter subdomain consists of ~100 244 
residues and contains three loops on the ligand binding face that surrounds the active site. These 245 
loops are known as M20 (residues 9–24), FG (residues 116–132), and GH (residues 142–150) 246 
loops. The M20 loop is located directly over the active site, protecting it from the solvent, and is 247 
involved in the regulation of the active site [37]. The M20 loop is found in three conformations 248 
which are named as the open, occluded, and closed states [37, 40]. In our structural analysis, we 249 
have used the structure (PDB ID: 1rx2) that has the closed M20 loop conformation [37]. For each 250 
of the eleven mutants listed in Figure 2F as well as the wild type DHFR, we compiled 210 ns long 251 
MD simulations for both the DHFR/NADPH/DHF (green in Figure 2B) and the 252 
DHFR/NADPH/trimethoprim complexes (Materials and Methods) [41].   253 

We have closely monitored the WT and all 11 single mutant sets of MD trajectories corresponding 254 
to those listed in Figure 2F to decipher the molecular mechanisms that lead to trimethoprim 255 
resistance. We note that while these mutations are observed with various frequencies in the 256 
morbidostat trajectories as displayed in Figure 1D, nine of them appeared as the first coding 257 
region mutation. Besides, the changes in the dynamics of the system due to resistance-conferring 258 
mutations are usually subtle. In particular, the effect on trimethoprim binding is indistinguishable 259 
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in all DHFR/NADPH/trimethoprim complex simulations. This is expected since the free energy 260 
difference implied by the Ki changes reported in Figure 2F even in the most extreme case (~30 261 
fold increase for R98P) is predicted to be ~2 kcal/mol. Such energy changes are often intractable 262 
in a conventional MD simulation with typical fluctuations occurring on the order of RT  ≈ 0.6 263 
kcal/mol. Nevertheless, it is important to note that despite the small differences in free energy, 264 
the local structural changes may be accommodated by entropy-enthalpy compensation as we 265 
have shown previously for the L28R mutant by isothermal titration calorimetry measurements [41]. 266 
This phenomena is explained by the utility of an interfacial water molecule as observed in the MD 267 
simulations [41]. Similarly, the MD simulations of the DHFR/NADPH/DHF complex do not 268 
implicate large dynamical changes in most of the MD trajectories. The three exceptions 269 
correspond to the most frequently observed first coding region mutations in the morbidostat, 270 
D27E, L28R, and W30R. Interestingly, in all three cases, distinct molecular strategies were 271 
utilized for rendering DHF more effective than trimethoprim (Figure 3). 272 

In figure 3, we display resistance mechanisms for the D27E, L28R, and W30R mutations. 273 
Amongst the wild-type (WT) and all the single mutants we analyzed, the D27E mutant is the only 274 
one where the hydride transfer distance is kept at an optimal pre-catalytic range (Figure 3A). We 275 
note that in all mutations we studied, the M20 loop never leaves the closed conformation in favor 276 
of the occluded form which triggers the reduction of DHF into THF. Nevertheless, the longer side 277 
chain of the D27E mutant dynamically maintains the ligand at an optimal distance, keeping it 278 
ready for the hydride transfer once this rare event takes place, hence explaining the increase in 279 
kcat for the D27E mutant (Figure 2F). On the other hand, the L28R mutation leads to the formation 280 
of extra hydrogen bonds between the enzyme and DHF, thus stabilizing its conformation [41]. In 281 
figure 3B, we display the average distance of hydrogen bonds formed between the enzyme and 282 
DHF. We find that while the pterin tail of DHF is permanently engaged in the binding pocket (as 283 
evidenced by the hydrogen bond distances to I5 and D27), the p-aminobenzoyl glutamate tail is 284 
mobile in the wild-type (WT) DHFR. In contrast, this mobility is significantly reduced in the L28R 285 
mutant due to the extra interactions provided by the side chain. Unlike D27E and L28R, the effect 286 
of W30R on the dynamics of DHF is indirect. In this case, the R30 side chain of the mutant forms 287 
a salt bridge with the side chain of E139 residing on the b sheet supporting the catalytic region 288 
(Figure 3C). The distance between the two residues is reduced from a baseline value of ~8 Å to 289 
~2 Å. This interaction slightly opens the tight binding pocket so that the DHF p-aminobenzoyl 290 
glutamate tail motions are accommodated in the region between R52 and R57 residues, whereas 291 
the glutamate tail is more disordered and closer to R52 residue in the wild-type DHFR. Reduced 292 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 10 

interactions between the p-aminobenzoyl glutamate tail and the enzyme leads to weaker 293 
substrate binding and higher catalytic rate.  294 

To summarize our experimental and computational findings thus far, we conclude that the effect 295 
of single DHFR mutations on trimethoprim binding is not definitive for survival. It is rather the small 296 
changes on the binding kinetics of the substrate (DHF) that provide the enzyme a small advantage 297 
that is utilized for bacterial survival. Furthermore, the changes in the DHF binding dynamics 298 
induced by single mutations are diverse. In the rest of the manuscript, we discuss the changes in 299 
the fitness landscapes due to the accumulation of multiple mutations using a library of combined 300 
mutants selected from a subset of those observed in the morbidostat trajectories. 301 

 302 

Trimethoprim-free enzymatic velocity of DHFR mutants correlates well with trimethoprim-303 
free growth rates of E. coli mutants carrying corresponding DHFR mutations.  304 

Resistance-conferring mutations are rarely found in natural bacterial isolates and this observation 305 
is generally attributed to the fitness costs of resistance-conferring mutations. In the case of 306 
enzymes such as DHFR, where multiple resistance conferring mutations are sequentially fixed, it 307 
is not clear how that many mutations can be tolerated and yet sufficient enzymatic activity is 308 
maintained for organismal survival. To address this question, we selected six of the mutations 309 
listed in Figure 2F (P21L, A26T, L28R, W30G, W30R, and I94L) and synthesized a DHFR mutant 310 
library where we had all 48 (31x24) possible combinations of these mutations. We purified and 311 
characterized all of the mutant DHFR enzymes as previously described (Table S3). Next, we 312 
measured growth rates of the E. coli mutant library (Figure 4A) that carry the same DHFR 313 
mutations in various conditions (different temperature, different glucose concentrations, and 314 
different casamino acids concentrations) (Figure 4B-F). We found that enzymatic activity of DHFR 315 
mutants in the absence of trimethoprim (V0, equation 1), calculated at saturating [DHF], correlated 316 
well with the trimethoprim-free growth rates of E. coli mutants with corresponding DHFR mutations 317 
(r = 0.46-0.58, p < 10-3, Pearson Correlation Test). The correlations between growth rates and 318 
other biochemical parameters such as kcat or kcat/Km were less significant (for kcat: (r = 0.33, p < 319 
10-3); for kcat/Km: (r = 0.06, p < 10-3), Pearson Correlation). We note that the 12.5µM DHF 320 
concentration is in good agreement with the previously measured in vivo DHF concentrations in 321 
which both reduced and oxidized species of folate concentrations were in the range of ~10 µM 322 
[42]. These experiments and the resulting analysis suggested that V0, the substrate reduction rate 323 
of DHFR in the absence of trimethoprim, is a good predictor of bacterial fitness, particularly when 324 
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limited nutrients are provided to bacterial populations (i.e., minimal media supplemented with 325 
0.4% glucose) and bacterial cells are grown in the absence of trimethoprim.  326 

Combined effects of resistance-conferring mutations deviate from fitness values predicted 327 
by Bliss Additivity.  328 

In order to qualitatively understand the evolutionary trade-offs in DHFR evolution, we plotted V0 329 
values against the corresponding Ki values for DHFR mutants. Interestingly, V0 values exhibited 330 
a bifurcation in this geometric representation (Figure 5A). DHFR mutants either had enzymatic 331 
activities comparable to their wild type ancestor or significantly lost their enzymatic activities, 332 
displaying almost no activity. Interestingly, all of the mutants that were funneled into the highly 333 
decreased enzymatic activity regimen carried the P21L mutation (Figure 5A, red triangles and 334 
circles). In addition, none of the mutants that were detected in the morbidostat (Figure 5A, grey 335 
and red circles) had V0 values lower than four percent of the wild type V0 (Figure 5A, horizontal 336 
dashed line). We note that all of the DHFR alleles observed in the morbidostat appeared in the 337 
background of a promoter mutation that increases DHFR amount by 10-20 fold (Figure 1B, insert). 338 
Therefore, all the observed mutants in the morbidostat are predicted to have DHFR activity 339 
equivalent to 40-80 percent of the wild type DHFR (V0).  340 

In order to test the existence of epistatic interactions among DHFR mutations, we asked whether 341 
the Ki and V0 values deviated from the Ki and V0 values predicted by using an additive model, 342 
assuming Bliss independence between the effects of the mutations [43]. According to Bliss 343 
independence, effects of multiple mutations should simply add up to the sum of the individual 344 
effects of mutations. However, as shown in Figure 5B, when the individual effects of six single 345 
mutations on the wild type DHFR are used to calculate Ki and V0  values using the Bliss additivity 346 
[43],  the predicted Ki and V0 values were significantly different from the experimentally measured 347 
ones (Student t-test, p<10-3; Figure S1, Table S3). We also found that the predicted V0 values did 348 
not display a bifurcation and steadily declined as the number of DHFR mutations increased. We 349 
also found that the predicted Ki values were not as large as the experimentally measured values 350 
(Figure 5 A-B). When we instead utilized the mean effects of single mutations on all possible 351 
genetic backgrounds in our mutant library (Figure 6), we were able to better estimate the Ki values 352 
(Figure 5C).  However, the bifurcation we observed in Figure 5A disappeared and several of the 353 
mutants had lower predicted V0 values compared to the experimentally measured ones. These 354 
observations clearly suggested the existence of epistasis (deviation from additivity) among the 355 
six DHFR mutations we studied. The effects of DHFR mutations seemed to be context dependent 356 
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and recovering the fitness of DHFR mutants with multiple mutations would at least require mean 357 
fitness effects of mutations calculated on several different genetic backgrounds. 358 

Effects of mutations on the catalytic power of DHFR were largely context dependent due 359 
to epistasis between mutations.  360 

We calculated (geometric) mean phenotypic effects of individual DHFR mutations on Km, kcat, and 361 
Ki and V0 values (Table S3). Briefly, for every single amino acid replacement in DHFR, we divided 362 
the DHFR mutant library into two groups depending on whether they have a particular mutation 363 
(i.e. P21L, Figure 6A) and compared the Km, kcat, Ki, and V0 values of the two groups. Thus, we 364 
were able to calculate mean fold changes in Km, kcat, Ki, and V0 values due to a single mutation 365 
as shown in Figure 6B. This analysis clearly showed that all six of the mutations we analyzed 366 
increased the Ki values on all possible genetic backgrounds explaining their resistance-conferring 367 
effects. Similarly, all of the mutations except L28R and P21L, significantly decreased substrate 368 
affinity (increased Km). As discussed before, the L28R mutation increased substrate affinity of 369 
DHFR. The mean effect of P21L mutation on Km was not statistically significant.  However, 370 
although L28R decreased kcat values on almost all possible genetic backgrounds, the rest of the 371 
mutations did not have statistically significant effects on kcat values. The large variations in the 372 
mean effects of these mutations on kcat values suggested that the effects of mutations on the 373 
catalytic power of DHFR were largely context dependent due to epistasis between mutations. 374 

Epistasis between resistance-conferring DHFR mutations is high-order for substrate 375 
binding and catalysis (kcat and Km) but first-order for drug binding (Ki). 376 

We quantified epistatic interactions between the six DHFR mutations (P21L, A26T, L28R, W30G, 377 
W30R, and I94L) we studied by utilizing a linear regression model (Materials and Methods) [44]). 378 
Briefly, we attempted to recover fitness values of all DHFR alleles using epistatic terms between 379 
mutations. In a biological system, if the epistasis between mutations is large, it is difficult to 380 
recover fitness values for genotypes with n mutations by using up to mth order epistatic terms (m 381 
< n). However, if epistatic interactions are less prevalent, predicting fitness of genotypes by using 382 
up to mth order epistatic terms (m < n) becomes more feasible. As shown in Figure 7A, we were 383 
able to adequately predict Ki values for all DHFR mutants with up to five mutations by using only 384 
the first order epistasis terms (~10-20% residual error). The extra information we gain from using 385 
higher order epistatic terms was relatively small (Figure 7B) indicating that measuring the Ki 386 
values of single DHFR mutations and first order epistatic terms (mathematically equivalent to 387 
mean effect of mutations) will mostly be sufficient to predict Ki values of DHFR mutants with any 388 
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combination of the six DHFR mutations we studied. This analysis is consistent with our findings 389 
summarized in Figures 5 and 6. On the contrary, predicting kcat and Km values of DHFR mutants 390 
(with multiple mutations) by using epistatic terms was relatively more challenging due to high-391 
order epistasis. For both kcat and Km, in order to obtain a prediction power comparable with what 392 
we had for Ki, we needed to use at least up to third order epistatic terms and yet there was a big 393 
variance in the prediction performance (Figure 7B). This suggested that the effects of the 394 
mutations on DHFR’s catalytic activity were highly context dependent which make fitness 395 
landscape of DHFR rugged [15].  We conclude that the epistasis between resistance-conferring 396 
mutations is high-order for kcat and Km but first-order for Ki values. Since DHFR fitness in 397 
trimethoprim containing environment is a convoluted function of all kcat, Km, and Ki values, 398 
evolution of trimethoprim resistance in the adaptive landscape is mostly unpredictable mainly 399 
because of high-order epistatic interactions in catalytic power of DHFR (kcat and Km). 400 

MD simulations demonstrate the context dependent effects of DHFR mutations at the 401 
molecular level.   402 
Epistatic interactions in biological systems are common and were previously reported by several 403 
researchers. However, in most cases, the molecular basis of epistasis was not sufficiently 404 
explained [6, 26]. To study molecular basis of epistasis between resistance-conferring DHFR 405 
mutations, we utilized MD simulations [41]. Since our biochemical analysis and epistasis 406 
calculations suggested that the epistasis was largely due to substrate binding and catalysis, we 407 
performed MD simulations for the substrate-bound conformation of DHFR (Methods). We carried 408 
out MD simulations for a subset of DHFR alleles including all combinations of the mutations A26T, 409 
L28R and I94L. In addition, we traced the effect of adding P21L mutation to some of these mutants 410 
in order to understand how adding the P21L mutation drastically reduces enzymatic efficiency 411 
(Figures 5 and 6). Amongst these, L28R is frequently observed as the first coding region mutation 412 
in the morbidostat while A26T and I94L are observed later in evolution experiments (Table S5).  413 

We demonstrate the context dependence of the observed dynamics by focusing on four specific 414 
examples involving double mutations in Figure 8. We traced the signature hydrogen bonds 415 
between the enzyme and the substrate (Figure 8) and found that hydrogen bonds between the I5 416 
and D27 side chains in the studied mutants were always close to their native values in the wild 417 
type DHFR. However, the hydrogen bonds between the R52 and R57 side chains and DHF 418 
showed significant variations (displayed in figure 8, averaged over the last 100 ns of the 419 
trajectories.) For the single mutants, we do not find any significant dynamical changes in the MD 420 
trajectories for P21L and A26T mutations. We note that the common reduction in the kcat value 421 
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due to the P21L mutation (Figure 2F) implied that the effect of this mutation is mainly in the 422 
dynamics of the catalytic M20 loop, whose dynamics is on the time scale of seconds and is 423 
therefore not within the sub-microsecond observation window of our MD simulations. Meanwhile, 424 
the I94L mutant completely loses interactions with the R57 side chain since the slight change in 425 
the isomerization of the side chain leads to more prolonged interactions with the aromatic ring of 426 
DHF, distorting the tight binding pocket. As a result, the R57 side chain flips out of the pocket to 427 
the other side of the helix spanning residues 25-37 (figure 8A).  428 
 429 
As was previously described in figure 3B, L28R mutation leads to the formation of extra hydrogen 430 
bonds with DHF. We found that together with A26T, this effect becomes even stronger, fixing the 431 
position of DHF to the space between R52 and R57 residues (figure 8B). Thus, while the A26T 432 
mutation alone causes subtle structural changes in our MD simulations, together with L28R, it 433 
benefits from a synergistic effect on DHF binding, with the polar side chain further stabilizing the 434 
network of hydrogen bonds in the pocket. The L28R mutation has a similar synergistic effect on 435 
the I94L mutation. Despite the tendency of the I94L mutant to interact strongly with the aromatic 436 
part of DHF, the binding pocket is not as easy to distort due to the presence of R28 interactions 437 
with the substrate, leading to a stabilized ligand (DHF). We note that addition of A26T to the I94L 438 
mutation does not have the same synergistic effect as expected by the outlined mechanism of 439 
action. Interestingly, although P21L mutation mostly impairs catalytic activity of DHFR, the P21L 440 
mutation rescues I94L mutant. In this case, the more flexible L21 allows distortions of the tight 441 
binding pocket without letting the R57 side chain to flip out (not displayed). We note that these 442 
mutations significantly decrease the binding propensity of the inhibitor, as measured by the Ki 443 
values listed in Table S2. DHF escapes this fate due to the extra interactions of the larger ligand 444 
with the side chains of the enzyme. Running longer MD simulations for all possible combinations 445 
of DHFR mutations was beyond our computational capacity but even the analysis of this small 446 
subset of DHFR mutants demonstrated the context dependent effects of DHFR mutations at the 447 
molecular level.  448 

On the other hand, we do not observe significant structural fluctuations in DHFR upon 449 
trimethoprim binding unless more than two mutations are accumulated. With the introduction of a 450 
third mutation, the dynamics of the DHFR is significantly altered, with amplified motions observed 451 
in the loops. In Figure S2A, we display the root mean square fluctuations (RMSF) as mutations 452 
are accumulated. With the triplet A26T-L28R-I94L large motions in new regions are observed 453 
along with a substantial increase in the amount of fluctuations; the effect is magnified as more 454 
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mutations are accrued. In fact, the RMSF of multiple mutants are well correlated with log Ki values 455 
as displayed in Figure S2B, (multiple mutants: r = 0.70, p < 0.01; all cases including WT: r = 0.60, 456 
p < 0.01; Pearson Correlation). Thus, the effect of decreased inhibitor binding affinity is significant 457 
for reinforcing resistance in higher number of mutants, while the first two mutations are more 458 
effective in the catalytic activity. 459 

Promoter mutations compensate detrimental effects of several mutations and largely 460 
increases number of plausible evolutionary trajectories.   461 
Evolution of trimethoprim resistance is a random search for mutational trajectories that lead to the 462 
resistant DHFR genotypes without sacrificing catalytic activity. We ran computer simulations to 463 
visualize and quantify plausible evolutionary trajectories leading to trimethoprim resistance. As 464 
demonstrated in Figure 9, for every DHFR allele, we calculated DHFR activity (V) as a function of 465 
trimethoprim concentration. In Figure 9, DHFR mutants are represented as cylindrical pillars with 466 
heights proportional to trimethoprim concentrations necessary to reduce mutated DHFR 467 
enzymes’ activities down to 50% of V0 (V0

WT) for the wild type DHFR. Colored filled circles on the 468 
upper surface of the cylinder represent DHFR mutations. We note that this landscape dynamically 469 
changes as we increase trimethoprim concentrations used in our calculations. In these 470 
calculations (Equation 1), we used a saturating dihydrofolate (DHF) concentration (12.5 µM) 471 
which is in the physiological range and we assumed a ten-fold increase in DHFR expression due 472 
to the promoter mutation (Figure 1B). Alleles are grouped according to the number of mutations 473 
they have. We then ran stochastic simulations where we consider the DHFR sequence as a lattice 474 
and allow DHFR to acquire mutations as trimethoprim dosage is gradually increased. All 475 
simulations start from the wild type DHFR allele and the activities of all DHFR alleles are 476 
calculated at every trimethoprim concentration. In these simulations, we assume that any DHFR 477 
mutant that has activity (V) less than half of the wild type DHFR activity (V0

WT, no trimethoprim) 478 
goes extinct unless they acquire a beneficial mutation. In our simulations, we allow DHFR to 479 
obtain or lose one of the seven mutations (promoter, P21L, A26T, L28R, W30G, W30R, and I94L) 480 
if activity of the mutant is about to drop below half of V0

WT. Any of these mutations can be added, 481 
converted (W30R à W30G, W30G àW30R) or reverted (e.g. L21 mutant to P21). As shown in 482 
Figure 9, we observed several genetic trajectories that arrive at local or global maxima. We 483 
repeated these simulations 106 times and quantified relative abundance of mutational trajectories 484 
(Figure 9 and Table S6).   485 

Mutational trajectories that lead to high trimethoprim resistance peaks typically accumulated up 486 
to five mutations and the majority of these trajectories reached to the fitness peaks in five to seven 487 
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genetic steps. Several viable trajectories included more than five mutational steps mainly because 488 
reverting the P21L mutation back to wild-type (L21P) significantly improved DHFR fitness in 489 
several genetic backgrounds. We then ranked all of the genetic trajectories that reach to high 490 
trimethoprim resistance by taking the least possible number of steps and calculated the likelihood 491 
of each mutation in the adaptive landscape (Table S6). We have also repeated these simulations 492 
using lower fitness thresholds (i.e. 1% of V0 for the wild type DHFR) and showed that number and 493 
length of evolutionary trajectories that reach to fitness peaks drastically increase if minimum 494 
fitness thresholds are assumed to be lower (Figure S3).   495 

Finally, we computationally tested the effect of promoter mutations in DHFR evolution (Figure 496 
9C). To do this, we ran simulations where all of the DHFR alleles with promoter mutations were 497 
eliminated and we compared these simulations with those that allow the promoter mutation. We 498 
found that number of plausible mutational trajectories that lead to trimethoprim resistant 499 
genotypes significantly diminishes if the promoter mutation is not allowed (Figure 9C). When 500 
promoter is not allowed, only 1.289 ± 0.005% of the simulated trajectories reach to genotypes 501 
that survived in 32 µM trimethoprim which is considered as resistant in clinical microbiology 502 
laboratories. There are only 60 unique trajectories which acquired one or more DHFR mutations 503 
and increased trimethoprim resistance. However, when promoter mutation is allowed, 5.592 ± 504 
0.026% of the simulated trajectories reach to genotypes that survived in trimethoprim 505 
concentrations between 32 µM and ~2.58mM. In this case, 2573 unique trajectories acquired one 506 
or more DHFR mutations and increased trimethoprim resistance. This effect is mainly due to 507 
elimination of half of the possible genetic combinations between the six resistance-conferring 508 
mutations we studied and also elimination of the compensatory effect of the promoter mutation. 509 
Thus, number and length of plausible evolutionary trajectories, as well as the maximum possible 510 
trimethoprim resistance significantly diminish in the absence of the promoter mutation. Therefore, 511 
in the absence of promoter mutation, DHFR evolution becomes more predictable. As a result, 512 
being able to target the promoter mutation with one of the novel gene editing methods together 513 
with a mutant-specific drug that specifically inhibits a mutation such as L28R, that is a synergistic 514 
mutation, might significantly slow down evolution of trimethoprim resistance. We note that 515 
eliminating the promoter mutation or the L28R mutation does not exclude other evolutionary 516 
solutions such as acquiring other resistance conferring mutations listed in Figure 2F, gene 517 
duplication, and acquiring other promoter mutations.  518 

We conclude that, although expected to be random, the first plausible mutation in DHFR evolution 519 
is expected to be one of the promoter, W30R, or W30G mutations. Indeed, the c-35t and W30R 520 
mutations were previously found in clinically isolated E. coli strains [45]. Due to epistatic 521 
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interactions, evolutionary trajectories become more constrained after acquiring the second and 522 
third mutations. However, the promoter mutation makes the adaptive landscape of DHFR less 523 
predictable by compensating for diminished catalytic activities of resistance-conferring DHFR 524 
mutation(s). 525 

Discussion: 526 

DHFR is a ubiquitous enzyme commonly used as a drug target in antibacterial, anticancer, and 527 
antimalarial therapies [21]. Developing a better understanding of the evolution of drug resistance 528 
through sequential accumulation of DHFR mutations is therefore an important scientific task to 529 
help improve drug therapies. Our experimental findings and computational analyses demonstrate 530 
that DHFR is a highly evolvable enzyme that can maintain its catalytic activity while accumulating 531 
multiple resistance-conferring mutations. Throughout the evolution of trimethoprim resistance in 532 
E. coli, DHFR can accumulate mutations in at least ten residues and four different promoter 533 
positions. In addition, amplification of chromosomal regions spanning the folA gene that encodes 534 
for DHFR is rarely observed [26]. Experimental and computational analysis of six of these 535 
mutations demonstrate the prevalence of epistatic interactions between them which imply the 536 
ruggedness of the adaptive landscape that lead to trimethoprim resistance. Epistasis between 537 
resistance-conferring mutations in E. coli DHFR and PfDHFR was previously reported and 538 
quantified by engineering all possible combinations of a small number of resistance-conferring 539 
mutations [15, 22]. A similar analysis was also done for a beta-lactamase gene in the landmark 540 
study of Weinreich and Hartl [6]. These studies mainly utilized bacterial growth assays to quantify 541 
fitness effects of mutations and assessed the predictability for evolution of resistance. In another 542 
landmark study by Lunzer et al., where they systematically studied effects of amino acid changes 543 
in isopropylmalate dehydrogenase’s coenzyme choice, they demonstrated that each amino acid 544 
additively contributed to the function of isopropylmalate dehydrogenase’s enzymatic function, and 545 
that the epistasis comes from non-linearities in the fitness [46]. Conversely, in this study, by 546 
utilizing both biochemical assays and growth rate measurements, we deconvolved epistasis 547 
between resistance-conferring mutations and demonstrated that epistasis was largely due to 548 
changes in catalytic activity of the mutant DHFR enzymes rather than nonlinearity in bacterial 549 
fitness. We also showed that epistatic interactions and the compensatory effects of promoter 550 
mutations significantly diminish our ability to predict DHFR evolution in the presence of 551 
trimethoprim induced selection.  552 

In a recent study, Rodrigues et al. investigated epistasis between three of the mutations we 553 
studied (P21L, L28R, and W30R) and developed an elegant framework to predict fitness of E. coli 554 
strains carrying DHFR alleles with combinations of these three mutations by using biophysical 555 
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properties of DHFR mutations [7]. However, because of the low number of possible combinations 556 
(23) of DHFR mutations they studied, they were not able to observe the P21L-caused bifurcation 557 
in the fitness landscape we report here (Figure 5). Therefore, for a larger set of combinations of 558 
DHFR mutations that include the P21L, fitness prediction of DHFR alleles will naturally be more 559 
difficult. Using the available biochemical fitness values we have, we were able to identify partial 560 
correlation between catalytic power and bacterial growth rates of DHFR mutants. However, we 561 
were not able to demonstrate a direct correlation between trimethoprim resistance and 562 
biochemical parameters we measured. We note that predicting trimethoprim resistance levels 563 
might be possible by using extra biophysical parameters such as thermal stability and abundance 564 
of DHFR mutants as was demonstrated by Rodrigues et al. [7].  565 

Our analysis suggests that although predicting DHFR evolution is a difficult task, it might still be 566 
possible to steer evolution of trimethoprim resistance towards clinically less challenging 567 
phenotypes. Among all the mutations we studied, promoter and L28R mutations can potentially 568 
be targeted to reduce the number of plausible evolutionary trajectories and trimethoprim 569 
resistance. For example, being able to specifically target the promoter mutation by utilizing one 570 
of the novel gene editing tools will substantially decrease both the number of accessible 571 
trajectories and maximum resistance levels (Figure 9) [47]. Also, since the L28R mutation has a 572 
distinct molecular mechanism that increases its relative preference for the substrate over the drug 573 
molecules (Figure 3), it might be possible to design L28R-specific DHFR inhibitors that will mimic 574 
DHF without losing its specificity against bacterial DHFR. Since L28R mutation is observed in 575 
almost 80 percent of all morbidostat trajectories and is synergistically interacting with several 576 
mutations, an L28R specific inhibitor will substantially impede evolution of trimethoprim 577 
resistance.   578 
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Materials & Methods: 579 
 580 
Growth Rate Measurements 581 
All DHFR mutant strains were constructed in MG1655 attTn7::pRNA1-tdCherry (gift from Johan Paulsson). 582 
Detailed procedures for making mutant strains can be found [15]. Bacterial cultures were grown at 30 °C in 583 
M9 minimal medium supplemented with 0.4% glucose (Fisher Scientific B152-1), 0.2% amicase (MP 584 
Biomedicals 104778), 2mM MgSO4 (Fisher Scientific M63-500) and 100µM of CaCl2 (Fisher Scientific 585 
S25222A). Overnight grown cultures normalized to OD:0.001. Plates were incubated in 30˚C with 586 
continuous shaking in Liconic Shaking Incubator and growth is measured with Tecan Plate Reader Infinite 587 
M200. Background optical density levels (OD~0.04) are substracted from all wells. Growth rates are 588 
calculated by making an exponential fit to growth curve when bacterial growth is in its’ exponential phase.  589 
 590 
Intracellular DHFR abundance Measurements 591 
E. coli NDL47 cells were grown overnight, and final OD600 was adjusted to unity. These cells were then 592 
diluted by 104-fold in 5 mL of M9 minimal media (supplemented with 0.4% glucose and 0.2% amicase) 593 
and grown for 6 h at 37°C (220 rpm) Cells were then washed three times with cold PBS buffer (pH 7.4), 594 
and bacterial pellets were lysed in 1X Laemmli sample buffer (5 mL/O.D.). Equivalent amounts of the cell 595 
lysates (10 μL of the above sample) from each set were electrophoresed in a 4%–15% precast 596 
polyacrylamide gel (561081; BIO-RAD), and western blotting was performed following standard 597 
procedures. DHFR antibodies are kindly provided by Kimberly Reynolds. IR-labeled secondary antibodies 598 
(IRDye 800CW (926–32213) and IRDye 680RD (925–68072); Li-COR) were used for detection. DHFR 599 
protein amount was quantified using an ODYSSEY infrared imaging system (LI-COR). 600 
 601 
Steady state Kinetic measurements 602 
Reactants of DHFR reaction (DHF (Sigma-Aldrich D7006) and NADPH (Sigma-Aldrich N7505)) has 603 
absorbance at 340nm which the products (THF and NADP+) do not absorb light. Using LAMBDA 650 604 
UV/Vis Spectrophotometer we measured reaction progression with 1sec resolution with two cells. First 605 
cuvette is sample cuvette containing the reaction components (DHFR, DHF and NADPH) and the second 606 
is reference cell contains only NADPH and DHFR in it. Biochemical measurements were done at 25˚C in 607 
MTEN buffer (pH ~7) which includes, 50mM MES hydrate (Sigma-Aldrich M8250), 25mM Tris-Base (Fisher 608 
Scientific B152-1), 25mM Ethanolamine Hydrochloride (Sigma-Aldrich E6133), 100mM NaCl (Fisher 609 
Scientific S271-3) and 5mM DTT (Fisher Scientific BP172-25) which is added fresh before starting the 610 
reaction. MTEN solution containing DHFR protein and 200 µM NADPH is prepared and 12.5µM DHF and 611 
200µM NADPH solution is added preceding the data collection. Data collection is stopped when all the DHF 612 
is consumed which happens when the curve reach a plateau down below zero. Data analysis is done as 613 
explained in the main text (Figure 2A-B).  614 
 615 
Inhibition constant (Ki) for TMP Determination 616 
To calculate inhibition constants for TMP, we used initial rates of the reactions with saturating 617 
concentrations of DHF and NADPH with different TMP concentrations. These initial rates used to fit 618 
Michelis-Menten competitive inhibition formula to calculate Ki values (Figure 2C-D).   619 
 620 
Protein Overexpression and Purification 621 
All combinations of six mutations of folA gene at five sites (I94L, W30R, W30G, L28R, A26T, P21L) are 622 
constructed by using Quick-Change Site-Directed Mutagenesis kit (Stratagene). 6XHis Tag is added on C-623 
terminal of the protein sequence. Constructs are cloned into the expression plasmids (pET24a-KanR) for 624 
further protein purification. BL21 cells are transformed with pET24a-folA-6xHisTag were grown overnight 625 
in selective media (LB+Kan) and then diluted 100 times into TB media for further growth at 30˚C. Protein 626 
overexpression induced when OD reached 0.6-0.8 using 250µM IPTG at 18˚C with 220rpm shaking. 627 
Recombinant proteins are further purified using Ni-NTA columns (Qiagen) and dialyzed overnight using 628 
dialysis buffer containing 50mM Tris-Base, pH8.0, 0.5M NaCl, and 400mM Imidazole (Sigma Aldrich 629 
792527).   630 
 631 
Epistasis Calculations and Linear Regression Model 632 
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A linear regression model is used to recover fitness of DHFR alleles by using epistatic interactions terms 633 
between DHFR mutations. The theory and algorithm we used to calculate epistatic terms and perform linear 634 
regression is described in detain by Poelwijk et al. [44]. 635 
 636 
Molecular Dynamics Simulations  637 
The NAMD package is used to model the dynamics of the protein–water systems [48]. Solvation is achieved via 638 
the VMD 1.9.1 program solvate plug-in version 1.2  [49]. The protein is soaked in a cubic solvent box such that 639 
there is at least a 10 Å layer of solvent in each direction from any atom of the protein to the edge of the box. The 640 
system is neutralized and 150 mM of ionic strength in all the simulations is maintained by adding a suitable number 641 
of K+ and Cl- ions. The CharmM22 all-atom force field is used to model the protein and the TIP3P potential for 642 
water [41, 50]. We have adopted the force field parameters for 5-protonated 7,8-dihydrofolate and trimethoprim 643 
in two protonation states as reported in the literature [51]. Periodic boundary conditions are imposed on the 644 
simulation boxes that have 60 × 67 × 58 Å3 dimensions. Long range electrostatic interactions are calculated by 645 
the particle mesh Ewald method, [52] with a cutoff distance of 12 Å and a switching function at 10 Å. The RATTLE 646 
algorithm [53] is applied and a time step size of 2 fs in the Verlet algorithm is used. Temperature control is carried 647 
out by Langevin dynamics with a dampening coefficient of 5 ps-1. Pressure control is attained by a Langevin piston. 648 
All systems are first subjected to 10000 steps of energy minimization with the conjugate gradients algorithm. The 649 
resulting structures are then run in the NPT ensemble at 1 atm and 310 K until volumetric fluctuations are stabilized 650 
and the desired average pressure is maintained.  651 
MD simulation of the ternary complex of the DHF bound systems are constructed based on the crystallographic 652 
structure with PDB code 1rx2 [37]. DHFR is complexed with folate and oxidized NADP (NADP+) in this native 653 
form. We protonate NADP and folate so that the former is in the reduced form (NADPH) and the latter is 5-654 
protonated 7,8-dihydrofolate to model the stable state prior to the hydride transfer step. 655 
In a separate set of MD simulations, we study the effect of trimethoprim binding in its unprotonated (TMP) or 656 
ground state (TMP+) on the DHFR conformation. Since there are no crystal structures of E. coli DHFR with 657 
trimethoprim, we have docked the inhibitor based on the coordination of equivalent residues of the trimethoprim 658 
binding region of Staphylococcus Aureus DHFR (PDB code: 2w9g) [38]. Details of trimethoprim binding site 659 
selection is provided in reference [41]. For MD simulations of the various mutants of DHF, TMP and TMP+ bound 660 
forms of DHFR, we mutated the WT structures in silico via BIOVIA Discovery Studio 4.0 package using build and 661 
edit protein tool [54]. For systems with multiple mutations, we substituted the native positions with the target 662 
mutations simultaneously. The solvation, ionization, minimization and equilibration were performed as described 663 
for the WT systems. All MD simulations are 210 ns long, with the first 10 ns discarded for equilibration. Simulations 664 
for the WT cases were repeated to confirm the reproducibility of the results. 665 
The mutants studied are as follows: The single mutants I5F, M20I, P21L, A26T, D27E, L28R, W30G, W30R, 666 
I94L, R98P and F153S; all double mutant combinations of the A26T, L28R, I94L sets; the A26T-L28R-I94L triplet; 667 
the A26T-L28R-W30R-I94L and the A26T-L28R-W30G-I94L quadruplet. Also, to test the effect of the P21L 668 
mutation, we have studied the double mutant combinations of P21L with each of A26T, L28R, I94L as well as the 669 
P21L-A26T-L28R, P21L-A26T-I94L and P21L-L28R-I94L triplet, P21L-A26T-L28R-I94L quadruplet; and the 670 
P21L-A26T-L28R-W30R-I94L and the P21L-A26T-L28R-W30G-I94L quintets. Thus, we have carried out 210 ns 671 
long simulations of 26 sets of mutants, with DHF, TMP and TMP+ bound, leading to simulations exceeding 17.6 672 
µs, including the WT sets.  673 
We use the approach in reference [41] to confirm the native form of trimethoprim in the DHFR bound state, by 674 
monitoring the distribution of the native hydrogen bonds in the binding pockets. In all the sets, TMP+ remains 675 
tightly bound while TMP flips in and out of the binding pocket throughout the simulation. We thus accept the 676 
protonated form of trimethoprim to be the native form in all the systems; note that this is not the case for D27N 677 
and D27S mutants, as discussed at length in reference [41]. 678 
 679 
Simulations of Protein Evolution and Visualization 680 
Protein evolution simulations works on a DHFR mutational lattice (proteins as nodes and single mutation 681 
acquisition, conversion or reversion as lines). Simulations starts from WT in no trimethoprim condition. 682 
Trimethoprim concentration gradually increases and at each drug concentration fitness landscape of DHFR 683 
lattice is calculated. When drug concentration hits a value where enzyme activity is lower than threshold 684 
activity (50,10,1,0.1% of WT enzyme activity at [TMP] = 0 nM) a random mutational step is taken (a mutation 685 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 21 

acquisition, conversion or reversion). If the new mutant has lower activity than threshold, the simulation 686 
stops, otherwise the new mutation is fixed, and drug concentration starts increasing again till new mutants’ 687 
activity drops down to the threshold level (Figure 9B). Simulations are repeated for a million times to sample 688 
all possible unique trajectories. Python scripts to run the simulation is added to supplementary files. 689 
Visualization of the simulations is done by VPython, an open source software package for interactive 3D 690 
graphics [55]. 691 
 692 
Acknowledgements: We would like to thank Roy Kishony, Adam Palmer, Shimon Bershtein, Adrian Veres, 693 
and Seungsoo Kim for their help. 694 
 695 
  696 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

 697 
References 698 
 699 
 700 
1. Laxminarayan, R., et al., Antibiotic resistance-the need for global solutions. 701 

Lancet Infect Dis, 2013. 13(12): p. 1057-98. 702 
2. CDC, Antibiotic Resistance Threats in the United States. 2013. 703 
3. Martinez, J.L., Antibiotics and antibiotic resistance genes in natural 704 

environments. Science, 2008. 321(5887): p. 365-7. 705 
4. Davies, J. and D. Davies, Origins and evolution of antibiotic resistance. Microbiol 706 

Mol Biol Rev, 2010. 74(3): p. 417-33. 707 
5. Blair, J.M., et al., Molecular mechanisms of antibiotic resistance. Nat Rev 708 

Microbiol, 2015. 13(1): p. 42-51. 709 
6. Weinreich, D.M., et al., Darwinian evolution can follow only very few mutational 710 

paths to fitter proteins. Science, 2006. 312(5770): p. 111-4. 711 
7. Rodrigues, J.V., et al., Biophysical principles predict fitness landscapes of drug 712 

resistance. Proc Natl Acad Sci U S A, 2016. 713 
8. Xu, C., et al., Fluoroquinolone resistance associated with specific gyrase 714 

mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J 715 
Infect Dis, 1996. 174(5): p. 1127-30. 716 

9. Comas, I., et al., Whole-genome sequencing of rifampicin-resistant 717 
Mycobacterium tuberculosis strains identifies compensatory mutations in RNA 718 
polymerase genes. Nat Genet, 2012. 44(1): p. 106-10. 719 

10. Hartkoorn, R.C., et al., Towards a new tuberculosis drug: pyridomycin - nature's 720 
isoniazid. EMBO Mol Med, 2012. 4(10): p. 1032-42. 721 

11. Smith, D.R. and J.M. Calvo, Nucleotide sequence of dihydrofolate reductase 722 
genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that 723 
dihydrofolate reductase interacts with another essential gene product. Mol Gen 724 
Genet, 1982. 187(1): p. 72-8. 725 

12. Huovinen, P., et al., Trimethoprim and sulfonamide resistance. Antimicrob 726 
Agents Chemother, 1995. 39(2): p. 279-89. 727 

13. Dasgupta, T., et al., Exploiting structural analysis, in silico screening, and 728 
serendipity to identify novel inhibitors of drug-resistant falciparum malaria. ACS 729 
Chem Biol, 2009. 4(1): p. 29-40. 730 

14. Pokrovskaya, V., et al., Design, synthesis, and evaluation of novel 731 
fluoroquinolone-aminoglycoside hybrid antibiotics. J Med Chem, 2009. 52(8): p. 732 
2243-54. 733 

15. Palmer, A.C., et al., Delayed commitment to evolutionary fate in antibiotic 734 
resistance fitness landscapes. Nat Commun, 2015. 6: p. 7385. 735 

16. Salverda, M.L., J.A. De Visser, and M. Barlow, Natural evolution of TEM-1 beta-736 
lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol 737 
Rev, 2010. 34(6): p. 1015-36. 738 

17. Schenk, M.F., et al., Role of pleiotropy during adaptation of TEM-1 beta-739 
lactamase to two novel antibiotics. Evol Appl, 2015. 8(3): p. 248-60. 740 

18. Stiffler, M.A., D.R. Hekstra, and R. Ranganathan, Evolvability as a function of 741 
purifying selection in TEM-1 beta-lactamase. Cell, 2015. 160(5): p. 882-92. 742 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 23 

19. Matthews, D.A., et al., Dihydrofolate reductase: x-ray structure of the binary 743 
complex with methotrexate. Science, 1977. 197(4302): p. 452-5. 744 

20. Benkovic, S.J., C.A. Fierke, and A.M. Naylor, Insights into enzyme function from 745 
studies on mutants of dihydrofolate reductase. Science, 1988. 239(4844): p. 746 
1105-10. 747 

21. Schnell, J.R., H.J. Dyson, and P.E. Wright, Structure, dynamics, and catalytic 748 
function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct, 2004. 33: 749 
p. 119-40. 750 

22. Lozovsky, E.R., et al., Stepwise acquisition of pyrimethamine resistance in the 751 
malaria parasite. Proc Natl Acad Sci U S A, 2009. 106(29): p. 12025-30. 752 

23. Yuthavong, Y., et al., Malarial dihydrofolate reductase as a paradigm for drug 753 
development against a resistance-compromised target. Proc Natl Acad Sci U S 754 
A, 2012. 109(42): p. 16823-8. 755 

24. Hecht, D. and G.B. Fogel, Modeling the evolution of drug resistance in malaria. J 756 
Comput Aided Mol Des, 2012. 26(12): p. 1343-53. 757 

25. Oz, T., et al., Strength of selection pressure is an important parameter 758 
contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol, 759 
2014. 31(9): p. 2387-401. 760 

26. Toprak, E., et al., Evolutionary paths to antibiotic resistance under dynamically 761 
sustained drug selection. Nat Genet, 2011. 44(1): p. 101-5. 762 

27. Toprak, E., et al., Building a morbidostat: an automated continuous-culture 763 
device for studying bacterial drug resistance under dynamically sustained drug 764 
inhibition. Nat Protoc, 2013. 8(3): p. 555-67. 765 

28. Huennekens, F.M., In search of dihydrofolate reductase. Protein Sci, 1996. 5(6): 766 
p. 1201-8. 767 

29. Hammes-Schiffer, S., Quantum-classical simulation methods for hydrogen 768 
transfer in enzymes: a case study of dihydrofolate reductase. Curr Opin Struct 769 
Biol, 2004. 14(2): p. 192-201. 770 

30. Boehr, D.D., et al., The dynamic energy landscape of dihydrofolate reductase 771 
catalysis. Science, 2006. 313(5793): p. 1638-42. 772 

31. Boehr, D.D., H.J. Dyson, and P.E. Wright, Conformational relaxation following 773 
hydride transfer plays a limiting role in dihydrofolate reductase catalysis. 774 
Biochemistry, 2008. 47(35): p. 9227-33. 775 

32. Baym, M., et al., Spatiotemporal microbial evolution on antibiotic landscapes. 776 
Science, 2016. 353(6304): p. 1147-51. 777 

33. Queener, S.F., et al., Trimethoprim resistance of dihydrofolate reductase variants 778 
from clinical isolates of Pneumocystis jirovecii. Antimicrob Agents Chemother, 779 
2013. 57(10): p. 4990-8. 780 

34. Maskell, J.P., A.M. Sefton, and L.M. Hall, Multiple mutations modulate the 781 
function of dihydrofolate reductase in trimethoprim-resistant Streptococcus 782 
pneumoniae. Antimicrob Agents Chemother, 2001. 45(4): p. 1104-8. 783 

35. Reynolds, K.A., R.N. McLaughlin, and R. Ranganathan, Hot spots for allosteric 784 
regulation on protein surfaces. Cell, 2011. 147(7): p. 1564-75. 785 

36. Bershtein, S., W. Mu, and E.I. Shakhnovich, Soluble oligomerization provides a 786 
beneficial fitness effect on destabilizing mutations. Proc Natl Acad Sci U S A, 787 
2012. 109(13): p. 4857-62. 788 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 24 

37. Sawaya, M.R. and J. Kraut, Loop and Subdomain Movements in the Mechanism 789 
of Escherichia coli Dihydrofolate Reductase:  Crystallographic Evidence. 790 
Biochemistry, 1997. 36(3): p. 586-603. 791 

38. Heaslet, H., et al., Structural comparison of chromosomal and exogenous 792 
dihydrofolate reductase from Staphylococcus aureus in complex with the potent 793 
inhibitor trimethoprim. Proteins: Structure, Function, and Bioinformatics, 2009. 794 
76(3): p. 706-717. 795 

39. Dams, T., et al., The crystal structure of dihydrofolate reductase from 796 
Thermotoga maritima: molecular features of thermostability1. Journal of 797 
Molecular Biology, 2000. 297(3): p. 659-672. 798 

40. Miller, G.P., D.C. Wahnon, and S.J. Benkovic, Interloop contacts modulate ligand 799 
cycling during catalysis by Escherichia coli dihydrofolate reductase. 800 
Biochemistry, 2001. 40(4): p. 867-75. 801 

41. Abdizadeh, H., et al., Increased Substrate Affinity in the Escherichia Coli L28R 802 
Dihydrofolate Reductase Mutant Causes Trimethoprim Resistance. Physical 803 
Chemistry Chemical Physics, 2017. 804 

42. Kwon, Y.K., et al., A domino effect in antifolate drug action in Escherichia coli. 805 
Nat Chem Biol, 2008. 4(10): p. 602-8. 806 

43. Bliss, C.I., The Toxicity of Poisons Applied Jointly1. Annals of Applied Biology, 807 
1939. 26(3): p. 585-615. 808 

44. Poelwijk, F.J., V. Krishna, and R. Ranganathan, The Context-Dependence of 809 
Mutations: A Linkage of Formalisms. PLoS Comput Biol, 2016. 12(6): p. 810 
e1004771. 811 

45. Flensburg, J. and O. Skold, Massive overproduction of dihydrofolate reductase in 812 
bacteria as a response to the use of trimethoprim. Eur J Biochem, 1987. 162(3): 813 
p. 473-6. 814 

46. Lunzer, M., et al., The biochemical architecture of an ancient adaptive landscape. 815 
Science, 2005. 310(5747): p. 499-501. 816 

47. Jiang, W., et al., RNA-guided editing of bacterial genomes using CRISPR-Cas 817 
systems. Nat Biotechnol, 2013. 31(3): p. 233-9. 818 

48. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of 819 
Computational Chemistry, 2005. 26(16): p. 1781-1802. 820 

49. Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. 821 
Journal of Molecular Graphics 1996. 14: p. 33-38. 822 

50. Brooks, B.R., et al., CHARMM: A program for macromolecular energy, 823 
minimization, and dynamics calculations. Journal of Computational Chemistry, 824 
1983. 4(2): p. 187-217. 825 

51. Garcia-Viloca, M., D.G. Truhlar, and J. Gao, Reaction-Path Energetics and 826 
Kinetics of the Hydride Transfer Reaction Catalyzed by Dihydrofolate Reductase. 827 
Biochemistry, 2003. 42(46): p. 13558-13575. 828 

52. Darden, T., et al., New tricks for modelers from the crystallography toolkit: the 829 
particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure. 830 
7(3): p. R55-R60. 831 

53. Andersen, H.C., Rattle: A “velocity” version of the shake algorithm for molecular 832 
dynamics calculations. Journal of Computational Physics, 1983. 52(1): p. 24-34. 833 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

54. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 834 
4.5, San Diego: Dassault Systèmes. 2015. 835 

55. Scherer, D., P. Dubois, and B. Sherwood, VPython: 3D interactive scientific 836 
graphics for students. Computing in Science & Engineering, 2000. 2(5): p. 56-62. 837 

838 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/398065doi: bioRxiv preprint 

https://doi.org/10.1101/398065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 26 

Figure Captions 

Figure 1: Trimethoprim resistance evolves through sequential accumulation of DHFR mutations. A) 
Enzymatic activity of DHFR is crucial for nucleotide and amino acid synthesis in E. coli. Trimethoprim is a 
competitive inhibitor of DHFR that blocks its enzymatic activity by occupying its active site. B) Morbidostat 
experiments revealed stepwise acquisition of resistance conferring mutations; a sample morbidostat 
trajectory demonstrating temporal changes in trimethoprim resistance. Colored arrows indicate the timing 
of the first detection of DHFR mutations. (Insert) Promoter mutations (c-35t, g-31a) lead to 10 to 20-fold 
higher DHFR expression relative to WT. C) Mutated DHFR residues are highlighted in different colors on 
DHFR structure (PDB ID: 1rx2). D) Observed frequencies of resistance conferring mutations plotted for 33 
independent morbidostat experiments (28 populations from this study and 5 populations from a previous 
study [26]). 

Figure 2: Biochemical characterization of resistance-conferring DHFR mutations. A) Catalytic cycle 
of DHFR. Forward reaction rates are obtained from Schnell et al. [21]. Rate limiting step in the catalytic 
cycle is release of THF (red arrow). E stands for DHFR. E-NADPH-DHF (green fonts) is the state used in 
our molecular dynamics simulations. B) Left panel shows a typical reaction progression curve after 
absorbance (340 nm) values are converted to DHF concentration (see Methods). By utilizing moving time 
windows, we calculate catalysis rates at corresponding DHF concentrations. C)  Km and kcat values are 
predicted by fitting a Michelis-Menten equation to measured catalysis rates. D-E) Initial reaction rates in 
the presence of various trimethoprim concentrations are used to predict the affinity (Ki) of DHFR mutants 
to trimethoprim molecules. F) Km, kcat and Ki values of DHFR mutants with single amino acid 
replacements. Error bars show standard error of the mean. Student’s t-test (two tailed) is used to quantify 
significance of Km, kcat and Ki changes relative to the wild type (WT) DHFR (*: p<0.05;  **: p<0.01;  ***: 
p<0.001). G) (Upper Panel) All engineered E. coli strains carrying single DHFR mutations are viable. 
Endogenous folA gene was replaced with the wild-type (WT) or mutated folA genes (Materials and 
Methods). Cells were grown at ~30ºC in minimal M9 media supplemented with 0.4% glucose and 0.2% 
amicase in 12 replicates. Exponential growth rates of all mutants except the I5F and L28R are all 
significantly lower than the parental MG1655 E. coli strain but higher that the strain (WT) we engineered 
by reinserting the wild-type (WT) folA gene. Despite our several attempts, the engineered WT strain had a 
growth defect most likely as a result of the selection markers we used for cloning (Materials and 
Methods). (Lower Panel) All engineered E. coli strains carrying single DHFR mutations have elevated 
trimethoprim resistance. Inhibitory concentrations reducing growth by ninety percent (IC90) were 
measured by growing mutants in a gradient of trimethoprim using 12 replicates (~30ºC in minimal M9 
media supplemented with 0.4% glucose and 0.2% amicase). Student’s t-test (two tailed) is used to 
quantify significance of IC90 changes relative to the wild type (WT) DHFR (*: p<0.05; **: p<0.01; ***: 
p<0.001, error bars shows the standard error on the mean for each mutant). 
 
Figure 3. Molecular mechanisms operating in the DHF bound dynamics of DHFR for the three 
frequently observed DHFR mutations. (A) D27E replacement alters hydride transfer distance between 
the cofactor (NADPH) and the substrate (DHF). The measured distance is between the cyan and blue 
spheres shown in the inset for the crystal structure positioning of NADPH (black) and DHF, which is 
readily lost in the wild type structure as in all the other simulations of the single mutants except for D27E. 
Dynamical motions of NADPH and DHF are displayed on the right. (B) L28R mutations yields extra direct 
hydrogen bonds with DHF and stabilizes it in the binding pocket. The distance between the donors and 
acceptors of the hydrogen bonds originally present in the crystal structure is monitored throughout the MD 
trajectories with their averages and standard deviations displayed. While the original hydrogen bonds are 
lost in both the wild type and the L28R mutant, there are many new hydrogen bond donor sites on the 
R28 side chain, maintaining a dynamical hydrogen bonding ecology around the substrate. (C) W30R 
mutation releases the tension in the tight binding pocket by forming a salt bridge with E139. The distance 
between the E139 acceptor (O- group) and the closest heavy atom of residue 30 is plotted for the wild 
type and the W30R mutant. In the latter case a salt bridge is established between the side groups 
frequently, relaxing the tight binding pocket where the substrate resides. As shown on the right, DHF 
maintains a position between the stabilizing R52 and R57 side chains in the mutant while the contacts 
with R57 group is lost in the wild type. 
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Figure 4: Bacterial growth rates correlate with DHFR’s enzymatic activity. A) Growth rates (µ) of E. 
coli cells with DHFR mutations are calculated by fitting an exponential growth function; OD(t) = OD(0). 
eµ.t, to the cell density (OD600) readings. B-F) Mean growth rate values (± standard deviation) of all 
mutations are measured for different M9 minimal media compositions and temperature (T). Correlation 
between V0 and growth rate is calculated using Pearson Correlation test. r: correlation coefficient, p: 
significance.  [Amc] stands for amicase concentration; [Glc] stands for glucose concentration. 
 
Figure 5: Combined effects of resistance-conferring mutations deviate from fitness values 
predicted by Bliss Additivity model. A) V0 vs Ki values of the 48 DHFR mutants are plotted. Curved 
and straight lines are used to separate mutants with different number of mutations. Horizontal dashed line 
shows the minimum V0 value for a DHFR mutant that was observed in the morbidostat experiment. Red 
markers show mutants with P21L mutation. Gray markers show mutants without P21L mutation. Circle 
markers show mutants that are observed in evolution experiments. (Insert) V0 values bifurcate depending 
on the presence of P21L mutation. B) Predicted V0 and Ki values for multiple DHFR mutants by Bliss 
Independence model using the V0 and Ki values measured for DHFR variant with single mutations 
(relative to the wild-type DHFR). These predictions significantly deviate from experimental observations 
(both for V0, and for Ki (Student t-test, p<10-3). This model under-predicts Ki values by a factor of 0.27 
±0.35 and over-predicts V0 values by 3.34 ± 0.35 (Mean ± standard deviation; Figure S1, Table S3). C) 
Predicted V0 and Ki values for multiple DHFR mutants by Bliss Independence model using the 
(geometric) mean effects of single mutations on all possible genetic backgrounds (Table S4). This model 
over-predicts Ki values by a factor of 6 ±3.96 and under-predicts V0 values by 0.35 ± 0.39 (Mean ± 
standard deviation; Figure S1, Table S3). The bifurcation observed in panel A disappears in both analysis 
summarized in panels B and C. 
 
Figure 6: Mean effects of DHFR mutations in catalytic activity and trimethoprim binding. A) Each 
marker in upper panels show fitness changes when a mutant acquires P21L mutation. x axis shows Km, 
kcat and Ki values of mutant alleles without P21L mutation and y axis shows the values mutant alleles with 
P21L mutation. For instance, the black encircled points has the Km, kcat or Ki value of WT on x axis and 
corresponding values for P21L on y axis. B) Fold change effects when each single mutant is added on 
top of all other genotypes. Student’s t-test (two tailed) is used to quantify significance of Km, kcat and Ki, V0 
changes relative to the wild type DHFR (*: p<0.05; **: p<0.01; ***: p<0.001). 
 
Figure 7: Epistasis between resistance-conferring DHFR mutations is high-order for substrate 
binding and catalysis (kcat and Km). A) A linear regression model is used to predict fitness information 
stored in epistatic terms with increasing orders. Correlations between predicted fitness values of all 
genotypes using nth order epistatic terms and the measured fitness values are calculated. B) Median 
residual errors for predicted fitness values as function of degree of epistatic terms used in regression. 
First order epistatic terms are sufficient to recover experimental Ki values with ~10-20% residual error. 
However, at least second and third order epistatic terms are required to recover experimental Km and kcat 
values with with ~10-20% residual error. 
 
Figure 8. Epistasis between resistance-conferring DHFR mutations are largely due to interactions 
of the mutated enzyme with the p-aminobenzoyl glutamate tail of DHF. (A) The I94L mutation 
exacerbates substrate binding of DHFR by altering tight interactions with the p-aminobenzoyl glutamate 
tail of DHF in the binding pocket, allowing the R57 side chain to flip out. (B) L28R mutation is a highly 
epistatic mutation; together with either A26T or I94L, the L28R further stabilizes the substrate in the 
pocket. Note that the P21L-I94L double mutation also rescues the negative effect of I94L as traced 
through the hydrogen bond distances. 
 
Figure 9: Simulated evolutionary trajectories leading to trimethoprim resistance. A) DHFR alleles are 
represented as cylindrical pillars. Atop of pillars, colored filled circles are used to show DHFR mutation. 
Heights of the cylinders correspond to trimethoprim concentrations required to reduce the activity of mutant 
DHFR enzymes down to half of the V0 for the wild type DHFR (V0

WT). Note that several pillars have zero 
height because their activities never exceed half of V0

WT even in the absence of trimethoprim. The trajectory 
represented with solid arrowed lines is one of the shortest and most common pathways leading to global 
maximum of the adaptive landscape. The trajectory represented with dashed arrowed lines lead to a local 
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maximum of the adaptive landscape if the promoter mutation is not allowed. B) Schematics summarizing 
the algorithm used in simulations. C) Simulations analysis summarized in heat maps. In simulations where 
the promoter mutation is not allowed (left), trajectories are shorter compared to the trajectories where the 
promoter mutation is allowed (right). If the promoter mutation is allowed, an increased number of trajectories 
lead to adaptive peaks with higher trimethoprim resistance levels. 

 
Figure S1: Comparison of predicted V0 and Ki values using Bliss additivity with experimentally 
measured values. Panels on left side shows x-axis values predicted with a Bliss Independence model 
using single mutant data. Panels on the right shows x-axis values predicted with a Bliss Independence 
model using the (geometric) mean effects of single mutants. 
 
Figure S2: RMSF of inhibitor bound DHFR obtained from MD trajectories is increased as new 
mutations are added to the protein. A) Maximum fluctuations in a residue are less than 3 Å in the WT 
protein (two replica simulations); the L28R single mutation and the L28R-I94L double mutation display 
their largest motions in the same regions as the WT, albeit with larger amplitude; with the addition of more 
mutations, largest amplitude motions are increased in size along with the introduction of additional mobile 
regions. B) The maximum RMSF values calculated for all the systems studied via MD are well correlated 
with experimentally measured log(Ki) values for multiple mutant cases (filled circles; r = 0.71, p < 0.01) 
while they are uncorrelated for single mutants (r = 0.04, p > 0.9); overall correlations have r = 0.60; p < 
0.01. 
 
Figure S3: Simulations are repeated for different threshold values (%V0 of WT as threshold) 
showing the number and length of evolutionary trajectories that reach to fitness peaks drastically 
increase if minimum fitness thresholds are assumed to be lower. 
 
Table S1: WGS results of last days of morbidostat experiments show coding region mutations 
mostly occurred on folA gene (encodes DHFR).  
 
Table S2: Mean measured Km, kcat, and Ki values of single mutants are shown in the table with 
standard error of the mean. Additional sheets show measured replicates separately for each parameter 
(Km, kcat and Ki).  
 
Table S3: Summary of all measured Km, kcat, and Ki values for combination dataset. This excel file 
also shows the Bliss Additivity calculations of Km, kcat, and Ki for both models with Single Mutant data and 
Mean Effects of Single Mutants. 
 
Table S4: Effects of addition of a single mutant in all backgrounds are shown as a table. This data 
is plotted in Figure 6B. 
 
Table S5: Single mutants are appeared at different times in the morbidostat experiment. Table 
shows the number of times each single mutant is appeared as the first coding sequence mutation. In the 
morbidostat experiment in almost all the cultures end with a single genotype dominating the culture. 
Second data column in this table shows the number of times a mutant is appeared in the last day of the 
evolution experiment.  
 
Table S6: Probability of seeing a mutant in the simulations are put in this table. Each column shows 
different threshold (%V0 of WT as threshold) and whether the promoter mutation is allowed in the 
simulation.  
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