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Abstract

Background: Non-protein-coding regions of eukaryotic genomes remain poorly understood.
Diversity studies, comparative genomics and biochemical outputs of genomic sites can be
indicators of functional elements, but none produce fine-scale genome-wide descriptions of
all functional elements.

Results: Towards the generation of a comprehensive description of functional elements in the
haploid Schizosaccharomyces pombe genome, we generated transposon mutagenesis libraries
to a density of one insertion per 13 nucleotides of the genome. We applied a five-state hidden
Markov model (HMM) to characterise insertion-depleted regions at nucleotide-level
resolution. HMM-defined functional constraint was consistent with genetic diversity,
comparative genomics, gene-expression data and genome annotation.

Conclusions: We infer that transposon insertions lead to fitness consequences in 90% of the
genome, including 80% of the non-protein-coding regions, reflecting the presence of
numerous non-coding elements in this compact genome that have functional roles. Display of
this data in genome browsers provides fine-scale views of structure-function relationships

within specific genes.

Keywords: Schizosaccharomyces pombe, fission yeast, transposon mutagenesis, TraDIS,

Tn-Seq, fitness landscape

Background

A goal of genetics is to understand what sequence elements within genomes specify cellular
and organismal function. The highly-transcribed protein-coding regions of eukaryote
genomes are routinely detected within genomes and are well studied. The numerous non-

coding elements, on the other hand, are more challenging to detect, profile and functionally
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describe. While biochemical assays of genome activity can indicate functional units, inferring
function based solely on biochemical activity, e.g. the ENCODE project’s definition of
functional DNA [1], is inconsistent with evolutionary analysis that show no signal of
conservation for substantial proportions of larger eukaryotic genomes [2,3].

In theory, functionally important elements could be detected by their conservation
between lineages relative to neutral elements. However, such analyses suffer from the
paradox that more divergent species allow more sensitive detection of small functional
elements, but there will be fewer shared functional regions [4]. Similarly, patterns of
diversity detect evolutionarily constrained regions within a species [5-7]. However, these
analyses are limited to summaries of annotation types, rather than defining particular
conserved elements, because segregating genetic variants are generally too sparse within
specific genes to estimate the fitness effects of mutations accurately. Additionally, various
factors can affect segregating variants and/or allele frequencies at any particular genomic
locus, including recombination rate [8] and recent events of selection which purge diversity
in surrounding areas [9,10]. For these reasons, neither diversity nor divergence analyses have
sufficient power to describe functional constraint at gene or sub-genic resolution. In contrast,
high-density transposon-insertion libraries generated from independent repeats can precisely
define functional elements and have provided estimators of gene-knockout fitness in bacterial
genomes [11-15].

To define functional elements in a eukaryote genome, we generated multiple dense
insertion libraries in fission yeast (Schizosaccharomyces pombe), using the Hermes cut and
paste transposon system [16]. We developed a HMM to account for biases in insertion
frequency and smooth the stochastic insertion profiles into meaningful measures of insertion-
fitness profiles that span multiple continuous genome positions. We analysed this data with

respect to genome annotation, genetic diversity, divergence and transcriptional output. This
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76  study provides a detailed resource for the understanding and analysis of non-genic functional
77  regions in this model species. This analysis shows that even this well-annotated genome

78  features abundant non-coding functional elements that have not previously been recognized.
79 It provides a detailed resource for further study of genic and non-genic functional elements.
80

81  Results

82  Generation of Dense Hermes Insertion Libraries in Fission Yeast

83  We generated nine Hermes insertion libraries using modifications of previously published
84  methods [16-18]. Insertions were generated in cultures undergoing rapid mitotic proliferation,
85  serially diluted for approximately 25 generations (supplementary fig. 1). Insertion sites

86  were identified using a custom Hermes-end primed sequencing strategy to produce paired-
87  end reads (supplementary fig. 2). This approach included the attachment of a 10-nucleotide
88  (nt) unique molecular identifier (UMI) to each sequenced DNA molecule, which enabled us
89  toremove PCR-generated duplicates of Hermes-containing DNA molecules and thus count
90  the number of insertions per position. These counts represent either multiple independent

91 insertions at a genomic location (in different cells within a library), or the result of a single
92  insertion event that has been propagated by cell division.

93 The libraries contained an average of 1.8 million genomic insertions (supplementary
94  table 1). Collectively, our libraries contained 31 million insertions at 930,000 unique sites, an
95  average insertion density of 1 insertion site per 13 nt of the genome.

96

97  Insertion Density is Consistent with Expectations of Functional Constraint

98  Based on previous transposon analyses in bacteria and yeasts, we expected that more

99  important regions would tolerate fewer insertions [14,18,19]. Initial analysis showed that

100  both insertion density (unique insertion positions/site) and average insertion count (insertion
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instances per site) were significantly lower in essential genes compared to non-essential
genes and higher in non-genic regions (supplementary fig. 3). This result suggested that
insertions reflect the relative functional importance of these annotated elements.

Notably, the mitochondrial genome also featured high insertion density, but with little
difference between coding and non-coding regions (supplementary fig. 4). This result likely
reflects that any given transposon insertion among multiple mitochondrial genomes will have
little or no consequence for the cell. Nevertheless, this finding shows that Hermes
transposition can readily occur in mitochondria.

To systematically examine the relationship between genomic regions and insertions,
we compared our Hermes insertion data with genetic diversity (), both within the species
and divergence between Schizosaccharomyces species. Based on these evolutionary measures
of functional constraint, we divided the genome into four annotation classes: coding regions
of essential genes, coding regions of non-essential genes, 5°/3’-untranslated regions (UTRs)
and introns, and genomic regions with no annotation (generally intergenic regions). The
relative levels of genetic diversity and divergence consistently showed that essential coding
regions were subject to higher constraint than non-essential coding regions, followed by
UTRs/introns, with unannotated regions being the least constrained. Hermes insertion density
(unique insertion positions/100 nt) and mean insertion count were consistent with this
ranking (fig. 1). These findings indicate that analysis of Hermes insertions can quantify the

fitness profiles of both coding and non-coding regions.
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125  Fig. 1. Hermes insertion data recapitulate signals of evolutionary constraint. For protein-
126  coding regions of essential genes (eCDS), protein-coding regions of non-essential genes

127  (nCDS), 5°/3° UTRs and introns (UTR+int), regions of the genome without any annotation
128 (NOA) and non-coding RNAs ncRNAs) we show: (A) the genetic diversity from 57 strains of
129  S. pombe [5], measured in 100 nt windows, and (B) the phyloP measure of constraint [20]
130  between four Schizosaccharomyces species (mean phyloP score, over 100 nt windows).

131  Similarly, for pooled proliferation Hermes data, we show: (C) the number of unique insertion
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sites/100 nt, and (D) the mean insertion counts/100 nt (calculated including sites without

insertions as zero counts).

Application of a Hidden Markov Model to Account for Insertion Biases

Previous analyses have shown that the Hermes transposon insertions are biased towards
nucleosome-free DNA and that they preferentially occur in DNA with a degenerate sequence
motif (TNNNNA) [18,21]. We sought to develop a prediction of the fitness consequences of
transposon insertions at a fine-scale resolution correcting for such bias. This prediction
should also reflect that neighbouring nucleotides in a genome do not function independently
but as ‘functional’ units (e.g. exons, introns, UTRs). We developed a HMM to correct for
these insertion biases and smooth the signal from stochastic insertions into contiguous
functional units. In this model, the observed data are the insertion counts and the ‘hidden’
state is the degree of biological importance. Regions with greater importance are expected to
have fewer insertions.

Our model utilised measurements of nucleosome density and sequence composition.
Genome-wide profiles of nucleosome density were obtained from proliferating cells [22].
Next, the sequence composition of previously recorded in vitro insertion sites [18] were
evaluated to find a degenerate insertion motif. We then constructed a sequence composition
measure, termed insertion motif similarity score (IMSS), which describes the similarity of
each position in the genome to this motif. Data from these two measurements was used to
construct generalised linear models describing the relationship between insertion density,
nucleosome density and IMSS (supplementary fig. 5).

Our HMM divided the genome into five states, from state 1 (S1), indicating the sites
at which transposon insertion had the greatest negative functional consequences, to state 5

(S5), indicating sites at which insertion had the least negative (or potentially positive)
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functional consequences. This number of states was obtained from initial trials with the
model, detailed below. Annotated regions of the genome were used to train the model. The
first state, S1, was trained on coding regions of essential genes (whose knockouts are
inviable), S2 was trained on coding regions of non-essential genes, S3 on regions that may
have some importance but weaker signals (introns and UTRs), S4 on unannotated intergenic
regions that show high genetic diversity [5], where mutations or insertions may be neutral,
and S5 on the top-10% insertion-dense sites to allow for the possibility that insertions in
some positions enhance cell survival.

The model was fitted to the data by maximum likelihood, using the EM algorithm.
The Viterbi algorithm was then used to determine the most likely state (S1-S5) for each
genomic position given the nucleosome density, IMSS, and insertion counts. Model fitting
did not explicitly include annotations (see Methods for details on HMM). HMM states were
highly consistent between independent HMM model fitting runs (see Methods). Insertion
data, HMM states, nucleosome density and conservation measures are available in a

dedicated genome browser http://bahlerweb.cs.ucl.ac.uk/bioda and in the fission yeast model

organism database PomBase (www.pombase.org). These tools allow users to check

functional information for regions of interest, including fine-scale structure-function

relationships within specific genes and putative regulatory regions.

Fitness Consequences of Insertions

Transposon insertions had negative fitness consequences over most of the genome, with 91%
of the genome being assigned to states S1 or S2. Protein-coding regions of essential genes,
used as training data for S1 sites, feature both high between-species conservation and low
within-species diversity (fig. 1). The HMM assigned 87% of these regions to S1 (fig. 2),

along with 32% of non-essential protein-coding regions.
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Our analysis indicates that most of the non-coding genome in this species encodes
functional elements. The fission yeast genome is much more compact compared to
mammalian and plant genomes, with 42% of the current annotation not coding for proteins or
canonical non-coding RNAs (ncRNAs); including 20% UTRs, 5% other ncRNAs that do not
overlap and protein-coding genes, and 14% with no functional annotation at present. New
analysis has discovered almost 6000 new ncRNAs [23], indicating that many functional units
remain undescribed.

The HMM assigned 82% non-protein-coding regions to S1 or S2, indicating that they
were strongly insertion-depleted relative to genome-wide expectations. UTRs, ncRNAs and
unannotated regions were each also insertion-depleted to some extent. (fig. 2A, B). This
measure far exceeds the proportion that would be defined as important with the limited
comparative genomics data available. For example, 24% of regions with no functional
annotation are strongly insertion-depleted (S1), yet these regions show very little
conservation between Schizosaccharomyces species (fig. 1). We also observe that ~12% of
the positions within essential genes contain sufficient insertions to be assigned HMM state 2.

These regions could be a mix of two components: annotation mistakes, or could reflect non-

essential domains within essential proteins, as described in budding yeast [19].
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201

202  Fig. 2. Functional Landscape by Annotation Type. The HMM defined five states based on
203  Hermes transposon insertions. State 1 (S1) refers to the most important regions, with the least
204 insertions, and state 5 (S5) with the highest density of insertions. (A) Percentage of S. pombe
205 genome covered by various annotation types: entire genome (100%), essential protein-coding
206  regions (eCDS), protein-coding non-essential regions (nCDS),canonical non-coding RNAs
207  (snRNAs, snpRNAs, tRNAs, rRNAs, canonRNAs), 5°/3’-UTRs (UTRs), non-coding RNAs
208 (ncRNAs), and unannotated regions (no-anno). (B) Proportions of each annotation type in the
209 five states: S1 (red), S2 (black), S3 (dark grey), S4 (light grey) and S5 (white). (C) Mean
210 HMM states for essential (eCDS) and non-essential (nCDS) coding regions. Representative
211 50 points are shown for each type to indicate that most essential coding regions have mean
212 state ~1 (85% mean state <1.2).

213

214  HMM states predict the fitness costs of protein-coding gene disruption

215  To examine whether the HMM contained information about the relative fitness cost of gene
216  disruption, we calculated the mean HMM state for each protein-coding gene. While essential
217  coding genes had much lower mean states (fig. 2C), essential and non-essential genes showed
218  overlapping distributions. To assess the validity of this measure, we compared it to the

219  colony sizes of viable knockout mutants on solid media, an orthogonal measure of gene

220  disruption fitness alteration that uses different media, a more direct fitness measure, and

221  different methods to obtain complete gene deletions [24]. Reassuringly, the mean HMM state
222 positively correlated with the colony size of knockout mutants (Pearson = 0.34, P = 10",
223 fig. 3A) [25,26]. Genes with fewer insertions (lower mean HMM states) were also more

224  likely to be conserved between Schizosaccharomyces species and highly expressed (fig. 3B,

225 (), both expectations for genes that cause strong fitness consequences when mutated. In

10
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226  summary, these analyses show that the insertion and analysis methods recover biologically
227  meaningful fitness measures that add value beyond the binary classification of essential/non-

228  essential genes that can be obtained from whole-gene disruptions.

229
A Pearsonr = 0.34 B Pearsonr = -0.31 C Spearman rho = -0.19
P = 3.5e-90 P= 1.4e-113 P= 4.2e-41
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231  Figure 3. Gene mean HMM states are estimators of gene disruption fitness. Protein-
232 coding genes classified into four categories by the mean HMM states, showing those that are
233 ~1(<1.5),~2(>1.5and<2.5),~3 (>2.5 and <3.5) and ~4 (>3.5 and < 4.5). Mean HMM
234  states were positively correlated with solid media fitness (A), an orthogonal measure. Mean
235 HMM states were also negatively correlated with conservation (lower HMM states were
236  more conserved) (B), and negatively correlated with gene expression (lower HMM states
237  were more highly expressed) (C).

238

239 HMM-Defined Functional Elements

240  To examine whether the HMM states captured previously annotated elements, such as

241  introns, promoters, and protein-coding exons, we defined 256,815 ‘HMM-defined elements’
242  (HDEs) as genomic regions that feature a continuous run of one HMM state. All S4 or S5

243  HDEs were less than 100 nt, and mostly intergenic, indicating that only short regions in this

11
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genome can tolerate insertions without affecting fitness.

We excluded these S4/S5 HDEs from further analysis, leaving 10,015 HDEs with a
median length of 618 nt, which account for 90% of the mappable genome. HDE edges were
closer to edges of existing annotations than expected by chance (Wilcoxon Rank Sum test, P
<107, fig. 4A, B). This result is consistent with these HMM-defined regions representing
boundaries of a variety of biologically-relevant elements (including transcriptional units,
spliced exons, protein-coding regions).

To characterise these HDEs, we calculated their conservation during evolution and
their RNA expression levels. The HDEs which were most insertion-depleted, and therefore
most critical for cell function (S1 elements), covered 35% of the mappable genome. These
HDEs showed distinct features: they were most conserved between species, the longest
(mean length 1.9 kb), most highly expressed, and generally composed of protein-coding
regions (fig. 4D). Another 52% of the genome was composed of S2 elements (mean length
1.0 kb), including mainly coding regions and UTRs, which also showed relatively high
expression levels and conservation. The inclusion of many 5°- and 3’-UTRs in S2 elements
indicates that these non-coding regions often contain regulatory sites whose disruption
impairs cellular function. Finally, the S3 elements occupied only 3% of the genome, were
seldom conserved, generally short (mean length 0.18 kb), and almost exclusively 5’-UTRs.
These UTRs likely contain regulatory sites, because they feature fewer insertions than S4
regions, but would have been difficult to identify without the insertion data because they are
neither conserved nor very highly transcribed. As the Schizosaccharomyces clade contains
only four species, subtle constraint will likely remain undetected. Overall, 10% of the

important sites in the genome (S1-S3) showed no signal of conservation between species.

12
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269

270  Fig 4. HMM-defined elements describe functional genomic outputs. Parts A-C show that
271  the boundaries of HMM-Defined Elements (HDEs) are aligned to or close to the boundaries
272  of existing annotations, as defined in the legend at top right. The random expectation is

273  derived from the same number of elements of the same lengths, placed at random on the
274  genome. (A) HDEs have a smaller distance to the nearest annotation than the random

275  expectation. (B) For all HDE edges we show the distance to the nearest annotation type,

276  including 5/3° UTRs, transcripts (transcription start/stop positions), coding sequences
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(amino-acid encoding regions, CDS), non-coding RNAS (ncRNAs), with lines coloured
according to the legend at right. C) HDEs fell closest to a variety of annotations. The pie
chart shows the proportions of nearest annotations, indicating a bias towards defining 5’UTR
edges. There were subtle differences between S1, S2 and S3 states in this respect (not
shown). (D) Density plots describe various characteristics of HDEs, from left showing S1, S2
and S3 HDEs. Conservation (y axis, top row) levels are mean phyloP measures from four
Schizosaccharomyces species. HDE lengths (y axis, middle row) are shown on a log) scale.
Expression levels (x axes) are RNA-Seq RPKMs from proliferating cells. Dashed horizontal
and vertical lines show the 5™ and 95™ percentiles of conservation, expression levels or
lengths. The positions of symbols (circle, triangle efc.) indicate the median positions within
each state for essential transcripts (ESS/T), coding regions (CDS), and 5°/3° UTRs. For
example, the few conserved S3 sites are coding regions. The bottom row shows the
proportion of HDEs that are annotated as essential transcripts (ESS/T), protein-coding

sequence (CDS), 5 UTR and 3” UTR.

Discussion

Dense transposon-insertion libraries can identify genes whose disruption affects fitness (in
particular conditions) within bacterial genomes with high resolution [11-15]. However,
similarly high-resolution descriptions of eukaryotic genomes are more limited, and have not
yet achieved nucleotide-level definitions of fitness landscapes [18,19]. Studies with
eukaryotic genomes are also more challenging, because they are larger and contain
nucleosomes, which bias integration rates. With the density of our insertions in libraries from
proliferating cells (26.7 million insertions, 1 unique insertion site/13 nt), and the application
of a HMM to account for insertion bias, we analysed functional importance at near single-

nucleotide resolution.
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The findings of the HMM are validated by the demonstration that continuous
single-state genome sections (HMM-defined elements, HDEs) are closely aligned to existing
annotations, and define elements with different properties (fig. 4). As the Hermes insertion
data recapitulates signals of genetic diversity and divergence within different annotation
categories, we can be confident that insertion density reflects functional constraint (fig. 1).
The application of a hidden Markov Model robustly accounted for insertions biases, since
HMM states strongly depended on insertion density but only weakly correlated with
nucleosome density and nucleotide motif (supplementary fig. 6).

Our HMM analysis of transposon insertions assigned 91% of the fission yeast to
HMM S1 or S2 (which were trained on essential and non-essential coding regions,
respectively). Based on this, we conclude that 91% of the genome contains functional
elements that are affected by transposon insertions. These likely functional regions of the
genome include 80% of the currently un-annotated genome, consistent with the presence of
many unrecognised functional elements in non-coding regions of this model organism. This
is the first near nucleotide-level study of fitness consequences in a eukaryote genome, so
there are no clear expectations. In theory, species with larger population sizes are expected to
maintain smaller genomes with larger proportions of functional DNA [27]. Consistent with
this prediction, analysis of comparative genomics data has estimated that 5-15% of the
human genome shows signals of conservation [28-30], whereas increasingly larger
proportions of the Drosophila (~50%), Caenorhabditis (37%), and Saccharomyces yeast (up
to 68%) genomes are conserved [31]. Our estimate of functional regions is likely larger due
to the limitation of comparative genomics, that is it only able to detect regions that have
continuously subject to purifying selection throughout the phylogeny of the species aligned
[4]. It is also possible that in some cases transposon insertions can disrupt the function of

larger neighbouring regions, although the sites of insertions themselves are not functional.
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327 A limitation of our study is that the transposon method does not reveal how non-
328  coding genomes elements function. Future work will reveal whether these elements function
329  as the widespread non-coding transcripts [22] and/or as regulatory elements controlling the
330  expression of coding genes.

331

332  Conclusion

333 Our analysis indicates that the fission yeast genome is densely packed with functional

334  elements, including many uncharacterised non-protein-coding elements. We estimate that
335  90% of the genome contains functional elements that are impaired by transposon insertions,
336 including 80% of the non-protein-coding regions. We expect that saturating transposon
337  mutagenesis data has potential to define functional non-protein-coding elements within

338  eukaryote genomes that would be difficult to detect with any other contemporary method.
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Methods

Creating Hermes Insertion Libraries. Hermes insertion libraries were constructed as
described [16] using the pHL2577 and pHL2578 plasmids, except that the transposition
frequency was calculated by dividing the number of colonies on YES 5-FOA+G418 plates by
the number of colonies on YES plates. All experiments were performed in an S. pombe strain
with the genotype ura4-D18 leul—32 h. Typically, <0.2% of cells in libraries contained
genomic Hermes insertions, so we expect that most insertion mutants contain a single

insertion.

Generating DNA Libraries for Sequencing. Genomic DNA was extracted from insertion
libraries using phenol/chloroform extraction. All DNA extracted from a library was
processed. DNA was sheared to an average size of 200 bp using a Covaris S2 ultrasonicator
(Covaris, Woburn, Massachusetts). Sheared DNA was end repaired using the NEBNext®
End Repair Module (NEB, Hitchin, UK). Linkerl-Random10mer and Linker2
(supplementary table 4) were ligated using the NEBNext® Quick Ligation Module (NEB,
Hitchin, UK). In Linkerl-Random10mer, the random 10 nt sequence acted as a UMI to
distinguish unique chromosomal insertions from PCR amplifications. DNA was then digested
with Kpnl-HF (NEB, Hitchin, UK) to exclude residual Hermes pHL2577 donor plasmid from
PCR amplification (as the plasmid contains a unique Kpnl site). NEBNext® modules were
used according to manufacturer’s instructions. To enrich for fragments containing the
Hermes transposon, DNA was amplified with BIOTAQ™ DNA polymerase (Bioline, Essex,
UK) using a primer that complimentary to the Hermes transposon (1-Transposon-4NNNN),
and to the linker (Linker1-Amp, supplementary table 4). Ultimately, a second PCR attached
the multiplex oligonucleotides for Illumina MiSeq sequencing; the MS-102-2022 MiSeq

reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was used to sequence the libraries. To
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increase the complexity of the libraries, for each library, ligation and PCR reactions were
performed in multiple reactions (in 96-well plates), using a maximum of 1 pg of DNA per
well and then re-pooled before sequencing. Detailed protocols are available in the Figshare
project Hermes Transposon Mutagenesis of the Fission Yeast Genome (will be made publicly
available upon manuscript acceptance). Sequence data are available at European Nucleotide
Archive in study accession number PRJEB27324. Sample accessions are listed in

supplementary table S.

Computational Processing of Sequencing Data.

Bioinformatic processing filtered the sequence data to retain only reads derived from Hermes
insertions, removed reads with duplicate UMIs, and filtered for correctly-paired high-
confidence read-mapping, and ultimately located the positions and orientation (strand) of
genomic insertions. Details are as follows. Read 1 architecture was
[random4mer][Hermes][Genome] (with random 4mer added to increase 5’ Read 1 end
complexity to allow Illumina cluster calling). The 4mer was trimmed with fastx trimmer
(http://hannonlab.cshl.edu/fastx_toolkit/). The Reaper tool [32] was used to detect reads with
5’ ends matching the expected Hermes sequence, and excluding those within the pHL2577
donor plasmid. Read 2 architecture was [10mer][Linker][Genome]. We used a custom Perl
script to exclude duplicate reads with exactly matching 10mers. Processed Reads 1 and 2
were re-paired using Tally [32], and the 10mer and Linker were trimmed with fastx trimmer.
Paired-end reads were aligned to the reference genome [33] and the donor plasmid using
BWA-MEM (Li and Durbin 2009). SAMtools [34] was used to select correctly paired reads
with a mapping score >30 (flags 83 and 99). Finally, we applied custom scripts to identify the
location and strand of insertions from the filtered BAM outputs with SAMtools. Insertions

found on the same chromosome but on different strands were considered as unique events.
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Command lines for this procedure and scripts are available in the Figshare project Hermes
Transposon Mutagenesis of the Fission Yeast Genome, as well as all insertion data, and

HMM model fitting results.

Nucleosome Density Data. The generation of the nucleosome density data has been
described in Atkinson et al. [22] and are available at the European Nucleotide Archive under
accession number PRJEB21376. The median nucleosome density from two repeats was
transformed to a normal distribution. This normalised nucleosome density showed a stronger
correlation with insertion density than the raw nucleosome density and was used as a

predictor in the HMM.

Insertion Motif Similarity Score. /n vitro Hermes insertion data [18] was used to identify a
sequence motif corresponding to insertion events in non-nucleosome bound DNA. Strings of
41 nt, centred upon each in vitro insertion event were taken from the S. pombe reference
sequence. The percentage of each nucleotide present at each of the 41 positions was
measured and compared to percentage nucleotide compositions calculated across the entire
genome. A window of 20 positions was identified for which the composition differed from
the genome-wide composition by at least 1% for at least one of the four nucleotides. For each
position i, we denote the probability of observing the nucleotide a as
p;(a):1<i<20,a€{AGCT}
and denote the genome-wide probability of observing the nucleotide a as p*¥(a).
A genome-wide scan was then conducted of strings of 20 consecutive nt in the genome
sequence, calculating a likelihood measure of the extent to which each string matched the
insertion motif, as compared to the genome-wide base composition. Where a string is given

by the nucleotides {aj, a, ..., a0} we calculate the insertion motif similarity score as follows:
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20

IMSS = Z[logpi(ai) —logp?”(a;)]

i=1
Here a positive score indicates a greater similarity to the insertion motif than to the genome-

wide sequence propensity. This likelihood measure was used as a predictor in the HMM.

Hidden Markov Model. We developed a hidden Markov model using the R package
depmixS4 (Visser and Speekenbrink 2010b). These models assume that sequences of
observed response variables are dependent on underlying sequences of discrete hidden states.
The sequence of hidden states is assumed to follow a first-order Markov process, such that
the probability of a state at position # depends only on the hidden state at the immediately
preceding position z-1. The observed responses are assumed conditionally independent given
the sequence of hidden states (i.e., correlations between nearby positions are completely
accounted for by the hidden states. This model used log,-transformed insertion numbers as
the observed state. Sites with zero insertions were set to observed state = 0. Each hidden state
defined a (zero-inflated) Poisson regression model, with log insertion count as dependent
variable, and the normalised nucleosome density (median of two replicates) and nucleotide
preference score as predictors. Missing data for nucleosome density was set to the median.
The models parameters (initial state probabilities, state-transition probabilities, and the
parameters of the state-dependent zero-inflated Poisson regressions, were estimated by
maximum likelihood using the Expectation-Maximisation (EM) algorithm. Initial state
distributions were all 1/n, where n is the number of states. Initial transition matrix was 0.95
for positions remaining in the same state, and 0.05/(n-1) for all other transitions. Initial
parameter values of the Poisson regressions were obtained by pretraining each state-
dependent model on a subset of the data (see below). These initial parameters were used to

start the EM algorithm, the final resulting parameter estimates were determined by maximum
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likelihood. Neither annotations nor transcriptome data were supplied as predictors to the
HMM. Models were fit to the insertion data by the EM algorithm, until convergence of the
likelihood (with a tolerance 1x10™) or with a maximum of 150 iterations (since log likelihood

fit of models improved little after 150 iterations (supplementary fig. 7).

Choice of Optimal Model. To select an appropriate number of states and state training data
for our HMM, we used ten ‘test data’ subsets of the genome, each a 100 kb fraction as
follows: Chromosome I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-
3200001, Chromosome II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-
3200001 and Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J).
These regions avoid the chromosome ends, which have unusual properties, such as a high
frequency of pseudogenes and native Tfl transposon insertions [5].

We ran each of the following models on all insertion data from proliferating cells
(split into the ten subsets). These models defined the training data in two ways. Firstly,
‘insertion-quantile’ models, where training data was defined solely by the density of unique
insertions, calculated over 100 nt windows. For example, a 3-state model split the data into
the lower, mid and upper third insertion density for states 1-3. We trialled quantile models
from 2 to 10 states. Secondly, annotation-based models. We trialled 2-, 3-, 4-, and 5-state
models where the training data was derived from current genome annotations. The 2-state
model included coding sequences (S1) and other regions (S2). The 3-state model, coding
sequences of essential genes (S1), coding sequences of non-essential genes (S2), introns,
unannotated regions, and UTRs (S3). The 4-state model, coding sequences of essential genes
(S1), coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and
unannotated regions (S4). It differs from the 3-state model in that it differentiates UTRs and

introns from unannotated regions. The 5-state model is as the 4-state model, except that it
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includes a 5th state that contains sites with the highest 10% of unique insertions/100 nt. The
response for this state was a Poisson distribution rather than zero-inflated Poisson.

Each of these 13 models was fit (with tolerance 1x10™) to the ten fractions of the
genome. Fitting involved optimising the parameter of states at each position, the transition
state matrix, and the slope, intercept and zero-fraction of the state model. A 5-state annotation
model was chosen as a pragmatic the best fit for running large (million position) data sets.
Comparison of the Bayesian information criterion scores (BIC) for 2-5 states indicated that
increasing states improved the fit (supplementary fig. 8), but higher state models suffered
from increased run times and frequent run failure, and/or highly inconsistent fractions of the
subset data assigned to various states (with some states being absent).

Due to the rounding of log, insertion counts, sites with 1 or 0 insertions were set to
the same observed state. Rounded log, of insertions+1 (where sites with 0 insertions have
different value from those with 1) resulted in a worse fit to the model (supplementary fig.

9).

Fitting of Chromosome-Wide Data. Once the 5-state annotation model (model 5A) was
chosen as a pragmatic best model, it was run on all proliferation libraries, fitting data from
five relatively equal portions of the genome separately, to allow runs in a practical time frame
and memory. These fractions were: chromosome I left half (positions 1-2789566),
chromosome I right half (positions 2789567-5579133), chromosome II left half (positions 1-
2269902), chromosome II right half (positions 2269903-4539804), and the entirety of
chromosome III (fractions are between 2.26 Mb and 2.79 Mb). The model produced a state
prediction for each position in the genome, and the posterior probability of each state at each
position. We also fit model 5A to the ageing insertion data (pooled Days 0, 2, 4 and 6) with

the same genome subsets.
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Collectively, the proliferation samples have a higher count of insertions than any of
the pooled ageing libraries (proliferation: 31 million insertions; ageing: 4.6 million
insertions). Since training datasets are based on the within-sample insertion densities for each
HMM fit, this should account for different densities. Nevertheless, to examine whether this
large difference in insertion counts produced radically different fits, we produced a down-
sampled dataset from proliferation samples with the same insertions as the ageing sample
average (4.5 million insertions). Overall, 85% of sites in this reduced data set were assigned
the same state as the full proliferation data, and 98% of sites were within one step of the full
data (i.e. full proliferation state +/- 1).

These separate fits to the model resulted in similar distributions of states between
chromosome arms for both the coding regions and introns of essential genes, supporting
consistent convergence of the models between these genome subsets (supplementary fig. 10,
13). To examine whether positions were assigned a consistent state using different subsets of
data, and independent fits of the HMM, we made subsets of proliferation (dense data) and
ageing Day 6 (less dense data) for the central half of chromosome I (positions 1394783-
4184350), which overlaps both the left and right halves used previously. These data were fit
to model 5A as before. With dense proliferation data, sites that overlapped the 96.7% of
positions were assigned the same state with either left vs middle, or right vs middle
comparisons. For ageing Day 6 data, 97.1% of overlapping positions were assigned the same
state. States 1-5 were all consistently assigned (e.g. > 99% of state 5 positions were the same
within proliferation data, and similar proportions for all other states). This analysis indicates
that these fractions were sufficiently large to preclude fitting to very different local optima.
HMM code is available in the Figshare project Hermes Transposon Mutagenesis of the

Fission Yeast Genome.
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513  Filtering Badly Mapped Sites. To ensure accurate placement of reads, our pipeline filtered
514  reads mapped with mapping quality >30. To avoid the tendency to misinterpret regions that
515 have few insertions due to the loss of low mapping quality, we analysed only sites that had
516  retained >90% of the reads (lost <10%) over 500 nt windows after mapping quality filtering.
517  This retained 94.6% of the genome for analysis. After filtering, there was only a weak

518 negative correlation between the HMM state and the proportion of reads filtered (Pearson r =
519  -0.049). All data presented included only the sites that had retained >90% of the reads after
520 filtering for Q30 mapping (the ‘mappable genome’).

521

522  Annotation Data. Annotations were from PomBase (ASM294v2, 11/02/2016), including
523 1538 annotated ncRNAs.

524

525 Transcriptome Analysis. Replicated RNA-Seq data from vegetatively growing, early

526  stationary and deep stationary cultures were retrieved from the European Nucleotide Archive
527  (ENA; http://www.ebi.ac.uk/ena) using the following accession numbers (dataset:

528 PRJEB7403; samples: ERS555567, ERS555607, ERS555570, ERS555612, ERS555571,
529  ERS555613). [22]. Reads were aligned to the S. pombe genome as described [35]. The

530 resultant aligned reads were used to compute normalised coverage at the nucleotide level
531  using the genomecov function in the BEDtools suite [36]. Customised R scripts were used to
532  define whether a given region is transcribed.

533

534  Comparative Genomics. We used updated genome assemblies of fission yeasts S.

535  octosporus, S. japonicus, and S. cryophilus [37]. To improve previous full genome

536  alignments of fission yeast species [38], we incorporated these newly assembled genomes

537 into an alignment with the S. pombe genome using progressive-cactus [39] (github version
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May 2016), using a guide tree based on Rhind ez. al. [38]. We then applied the phyloP
algorithm [40] as implemented in the HAL toolkit [41] to detect constraints. We trained a
neutral model using the four-fold degenerate sites from coding regions from the high-quality

S. pombe annotation.
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584  Supplementary fig. 1. Percentage of cells with a chromosomal insertion.

585  For the nine libraries we generated (and others not described here), we show the percentage
586  of cells with a chromosomal insertion. The proportion was calculated as the number of
587  colonies present on YES + FOA + G418 plates (chromosomal insertions), divided by the
588  number of colonies present on YES plates (all cells).

589
590
591

27


https://doi.org/10.1101/398024
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/398024; this version posted August 22, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Linker Hermes Insert
NEENEEREEEEEEEEEEERRENEEEEEEEEEENENNEEAEEEEEEEERN

Genomic DNA Fragments Linker

1

O T—

Antisense Oligonucleotide

1

O I

Antisense Oligonucleotide
Sense Oligonucleotide
@

593

594  Supplementary fig. 2. The custom Hermes-end primed sequencing strategy. Shows the
595  end-priming strategy used to sequence Hermes-containing fragments. Initially, genomic DNA
596 is extracted, sheared, end repaired, and linkers (Linkerl1-Random10mer and Linker2) ligated
597  at both terminal ends (1). To enrich for fragments containing the Hermes transposon, DNA
598  was amplified with using a primer that is complimentary to the Hermes transposon (1-

599  Transposon-4NNNN) (2), and to the linker (Linkerl-Amp) (3), to produce fragments that
600  contain linkers, genomic DNA and the Hermes right terminal inverted repeat (4). A second
601  PCR attached the multiplex oligonucleotides for Illumina sequencing (5,6), producing the
602 final product that is sequenced (7). Detailed protocols are available in the Figshare project
603  Hermes Transposon Mutagenesis of the Fission Yeast Genome.
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611  Supplementary fig. 3. Properties of insertions in different annotation regions.

612  Left panel shows average insertion count in coding regions of essential genes, pseudogenes,
613  other (non-essential) coding regions, introns, canonical non-coding RNAs (snoRNas, tRNAs,
614 rRNAs, snRNAs), long terminal repeats of transposons,5’ and 3 untranslated regions,

615  regions with no annotation and intergenic long non-coding RNAs. Middle panel shows and
616  average insertion count (all sites, including sites with no insertions) for the same annotation
617  classes. Right panel shows average insertion density (unique insertion positions/site) for the
618  same annotations.
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623  Supplementary fig. 4. Insertions in the mitochondrial genome.

624  Unique insertions per site in the mitochondrial genome showed little difference between
625  coding and non-coding regions, whereas the nuclear genome showed far fewer insertions in
626  the coding regions.
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632  Supplementary fig. 5. Relationships between insertion density, nucleosome density and
633  the insertion motif similarity score.

634  All plots show relationships with mean insertion count for sites with Hermes insertions (left
635  panels) or mean insertions/site. In each case, the genome was divided into 100 partitions
636  according to the measure on the x axis, and the insertion counts or insertion densities were
637  calculated from these partitions. A) insertion counts plotted against normalised nucleosome
638  density (nucsome.norm). B) insertion density plotted against normalised nucleosome density.
639 () log scale insertion counts plotted against log scale normalised nucleosome density. D) log
640  scale insertion density plotted against log scale normalised nucleosome density. E) insertion
641  counts plotted against insertion motif similarity score (IMSS). F) insertion density plotted
642  against insertion motif similarity score.
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651  Supplementary fig. 6. HMM states strongly depended on insertion density but only
652  weakly correlated with nucleosome density and nucleotide motif.

653  Top row; for coding regions we show the relationship between HMM states defined and
654  insertion density (unique insertions/100 nt) (left panel), normalised nucleosome density
655  (nsome.norm, middle panel) and the insertion motif similarity score (nt.model, right panel).
656  Middle row; the same relationships for 5’ and 3’ untranslated regions. Lower row, the same
657  relationships for regions with no annotations. In all cases Spearman rank correlations are
658  shown above plots.
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662
663  Supplementary fig. 7. Log likelihoods for fits of HMM models improved little after 150

664 iterations. For sections of chromosomes I, II and III we show the log likelihood of the model
665 fit to the data with successive iterations of the Viterbi algorithm. Left panels show the entire
666  range of likelihoods, with red and green dashed lines showing the 95" and 99™ percentiles.
667  Right panels show the upper 5™ percentiles. Model fits improved little after 150 iterations.
668
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672  Supplementary fig. 8. Bayesian information criterion scores (BIC) indicated that the 5-
673  state annotation model was the best fit. For ten 100 kb fractions of the genome (data sets A
674 —1J), we show the BIC scores for model fitting with the depmixS4 package [42,43]. Red

675  points show the annotation-based models from 2-5 states (see methods for state definitions).
676  Black points show the quantile models, where training data is defined based on insertion

677  density quantiles (unique insertions/100 nt). For example a three-state model used the first
678  third of insertion-dense data to train S1, the second third to train S2, etc. The five-state model
679  which was used for this analysis was trained on coding sequences of essential genes (S1),
680  coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and

681  unannotated regions (S4), and sites with the highest 10% of unique insertions/100 nt (S5).
682  The ten ‘test data’ subsets of the genome, each a 100 kb fraction as are follows: Chromosome
683 1, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001, Chromosome
684 11, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001 and

685  Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J).
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689  Supplementary fig. 9. Excluding singleton insertions produced better model fits.

690 HMM code used log, of insertion counts (rounded to the nearest integer). Since logy(1) is
691  zero, this treats sites with one insertion the same as sites with no insertions. Trails of the

692 HMM code that used logy(insertions+1), where sites with 0 insertions have different value
693  from those with 1, resulted in a worse fit to the model. For two of the test data sets (A, J), we
694  show the BIC for models fitted with logy(insertions) and log,(insertions+1).
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700  Supplementary fig. 10. Separate fits to the model with different data resulted in similar
701  distributions of states. Model fitting was performed on five subsets of the data; IL (left arm
702  of chromosome I), IR (right arm of chromosome I), IIL (left arm of chromosome II), IIR

703  (right arm of chromosome II), and III (all of chromosome III). The left panel shows the

704  proportion of essential coding regions for each subset that were assigned to states 1-5,

705  according to the key. Most were assigned to state 1 or 2. The right panel shows the —log10 of
706  the proportion, which indicates that the less frequent states are also similarly distributed

707  between subset model fits, supporting consistent convergence of the model between these
708  genome subsets.
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