

1 **Fitness Landscape of the Fission Yeast Genome**

2 Leanne Grech^{1*}, Daniel Charlton Jeffares^{1,2*†}, Christoph Yves Sadée¹, María Rodríguez-
3 López¹, Danny Asher Bitton¹, Mimoza Hoti¹, Carolina Biagosch¹, Dimitra Aravani¹, Maarten
4 Speekenbrink⁴, Christopher J. R. Illingworth⁵, Philipp H. Schiffer¹, Alison L. Pidoux⁶, Pin
5 Tong⁶, Victor A. Tallada³, Robin Allshire⁶, Henry L. Levin⁷ & Jürg Bähler^{1,8†}.

6 **Contributed Equally.*

7 *†Corresponding Authors:* daniel.jeffares@york.ac.uk, j.bahler@ucl.ac.uk.

8 ORCiDs: PHS: 0000-0001-6776-0934, DCJ: 0000-0001-7320-0706, JB: 0000-0003-4036-1532,

9 CJRI: 0000-0002-0030-2784, VAT: 0000-0001-9526-5957, CYS: 0000-0001-7416-1470

10

11 Affiliations:

- 12 1. Department of Genetics, Evolution and Environment, Gower Street – Darwin Building,
13 University College London, London, WC1E 6BT, UK.
- 14 2. Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- 15 3. Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de
16 Investigaciones Científicas, Carretera de Utrera Km1, 41013, Seville, Spain.
- 17 4. Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP,
18 UK.
- 19 5. Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 1EH, UK.
- 20 6. Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max
21 Born Crescent, Edinburgh, EH9 3BF, UK.
- 22 7. Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child
23 Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
- 24 8. UCL Genetics Institute, University College London, London, WC1E 6BT, UK.

26 **Abstract**

27 Background: Non-protein-coding regions of eukaryotic genomes remain poorly understood.

28 Diversity studies, comparative genomics and biochemical outputs of genomic sites can be

29 indicators of functional elements, but none produce fine-scale genome-wide descriptions of

30 all functional elements.

31 Results: Towards the generation of a comprehensive description of functional elements in the

32 haploid *Schizosaccharomyces pombe* genome, we generated transposon mutagenesis libraries

33 to a density of one insertion per 13 nucleotides of the genome. We applied a five-state hidden

34 Markov model (HMM) to characterise insertion-depleted regions at nucleotide-level

35 resolution. HMM-defined functional constraint was consistent with genetic diversity,

36 comparative genomics, gene-expression data and genome annotation.

37 Conclusions: We infer that transposon insertions lead to fitness consequences in 90% of the

38 genome, including 80% of the non-protein-coding regions, reflecting the presence of

39 numerous non-coding elements in this compact genome that have functional roles. Display of

40 this data in genome browsers provides fine-scale views of structure-function relationships

41 within specific genes.

42

43 **Keywords:** *Schizosaccharomyces pombe*, fission yeast, transposon mutagenesis, TraDIS,

44 Tn-Seq, fitness landscape

45

46 **Background**

47 A goal of genetics is to understand what sequence elements within genomes specify cellular

48 and organismal function. The highly-transcribed protein-coding regions of eukaryote

49 genomes are routinely detected within genomes and are well studied. The numerous non-

50 coding elements, on the other hand, are more challenging to detect, profile and functionally

51 describe. While biochemical assays of genome activity can indicate functional units, inferring
52 function based *solely* on biochemical activity, e.g. the ENCODE project's definition of
53 functional DNA [1], is inconsistent with evolutionary analysis that show no signal of
54 conservation for substantial proportions of larger eukaryotic genomes [2,3].

55 In theory, functionally important elements could be detected by their conservation
56 between lineages relative to neutral elements. However, such analyses suffer from the
57 paradox that more divergent species allow more sensitive detection of small functional
58 elements, but there will be fewer shared functional regions [4]. Similarly, patterns of
59 diversity detect evolutionarily constrained regions within a species [5-7]. However, these
60 analyses are limited to summaries of annotation types, rather than defining particular
61 conserved elements, because segregating genetic variants are generally too sparse within
62 specific genes to estimate the fitness effects of mutations accurately. Additionally, various
63 factors can affect segregating variants and/or allele frequencies at any particular genomic
64 locus, including recombination rate [8] and recent events of selection which purge diversity
65 in surrounding areas [9,10]. For these reasons, neither diversity nor divergence analyses have
66 sufficient power to describe functional constraint at gene or sub-genic resolution. In contrast,
67 high-density transposon-insertion libraries generated from independent repeats can precisely
68 define functional elements and have provided estimators of gene-knockout fitness in bacterial
69 genomes [11-15].

70 To define functional elements in a eukaryote genome, we generated multiple dense
71 insertion libraries in fission yeast (*Schizosaccharomyces pombe*), using the *Hermes* cut and
72 paste transposon system [16]. We developed a HMM to account for biases in insertion
73 frequency and smooth the stochastic insertion profiles into meaningful measures of insertion-
74 fitness profiles that span multiple continuous genome positions. We analysed this data with
75 respect to genome annotation, genetic diversity, divergence and transcriptional output. This

76 study provides a detailed resource for the understanding and analysis of non-genic functional
77 regions in this model species. This analysis shows that even this well-annotated genome
78 features abundant non-coding functional elements that have not previously been recognized.
79 It provides a detailed resource for further study of genic and non-genic functional elements.

80

81 **Results**

82 **Generation of Dense *Hermes* Insertion Libraries in Fission Yeast**

83 We generated nine *Hermes* insertion libraries using modifications of previously published
84 methods [16-18]. Insertions were generated in cultures undergoing rapid mitotic proliferation,
85 serially diluted for approximately 25 generations (**supplementary fig. 1**). Insertion sites
86 were identified using a custom *Hermes*-end primed sequencing strategy to produce paired-
87 end reads (**supplementary fig. 2**). This approach included the attachment of a 10-nucleotide
88 (nt) unique molecular identifier (UMI) to each sequenced DNA molecule, which enabled us
89 to remove PCR-generated duplicates of *Hermes*-containing DNA molecules and thus count
90 the number of insertions per position. These counts represent either multiple independent
91 insertions at a genomic location (in different cells within a library), or the result of a single
92 insertion event that has been propagated by cell division.

93 The libraries contained an average of 1.8 million genomic insertions (**supplementary**
94 **table 1**). Collectively, our libraries contained 31 million insertions at 930,000 unique sites, an
95 average insertion density of 1 insertion site per 13 nt of the genome.

96

97 **Insertion Density is Consistent with Expectations of Functional Constraint**

98 Based on previous transposon analyses in bacteria and yeasts, we expected that more
99 important regions would tolerate fewer insertions [14,18,19]. Initial analysis showed that
100 both insertion density (unique insertion positions/site) and average insertion count (insertion

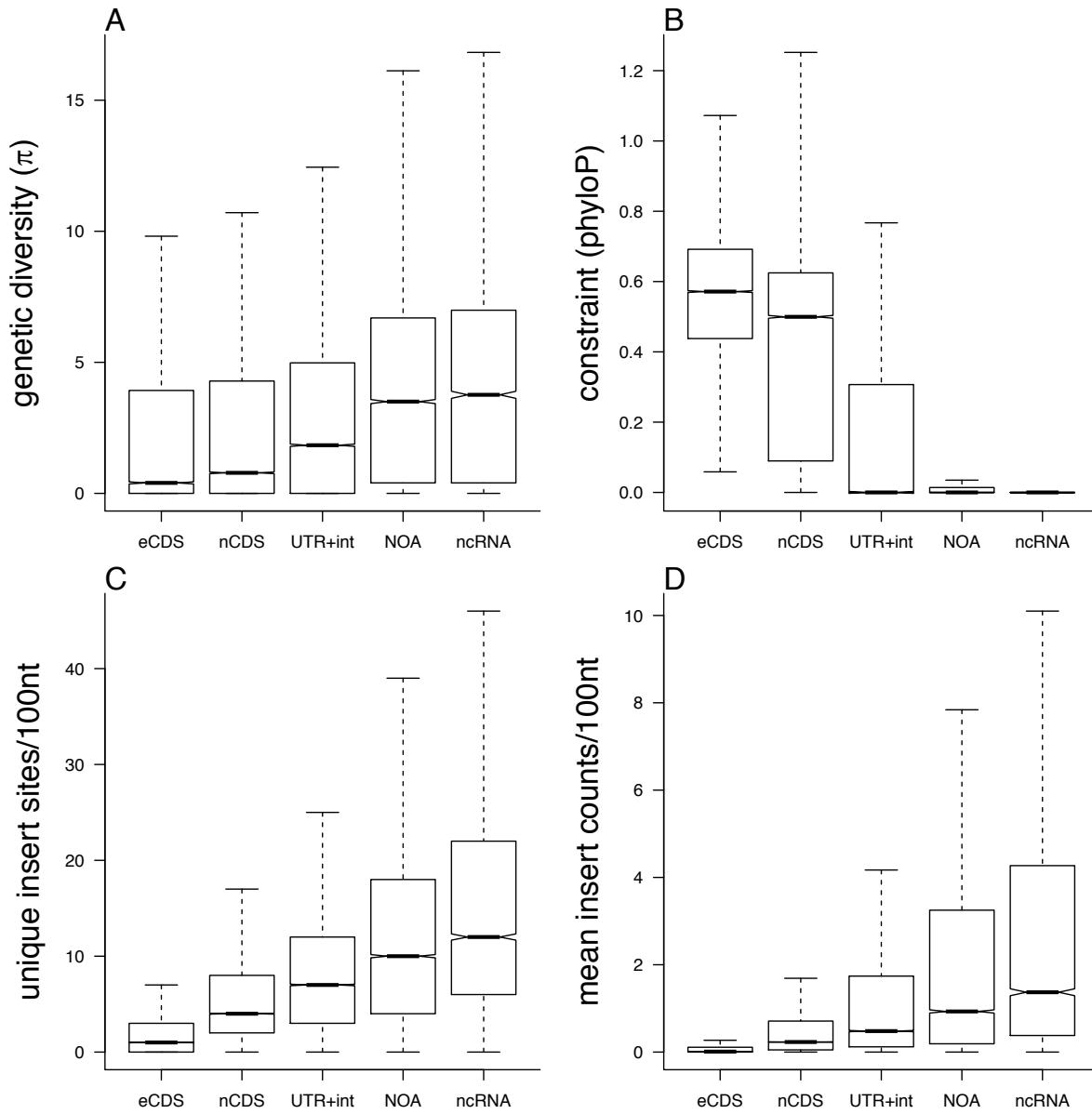
101 instances per site) were significantly lower in essential genes compared to non-essential
102 genes and higher in non-genic regions (**supplementary fig. 3**). This result suggested that
103 insertions reflect the relative functional importance of these annotated elements.

104 Notably, the mitochondrial genome also featured high insertion density, but with little
105 difference between coding and non-coding regions (**supplementary fig. 4**). This result likely
106 reflects that any given transposon insertion among multiple mitochondrial genomes will have
107 little or no consequence for the cell. Nevertheless, this finding shows that *Hermes*
108 transposition can readily occur in mitochondria.

109 To systematically examine the relationship between genomic regions and insertions,
110 we compared our *Hermes* insertion data with genetic diversity (π), both within the species
111 and divergence between *Schizosaccharomyces* species. Based on these evolutionary measures
112 of functional constraint, we divided the genome into four annotation classes: coding regions
113 of essential genes, coding regions of non-essential genes, 5'/3'-untranslated regions (UTRs)
114 and introns, and genomic regions with no annotation (generally intergenic regions). The
115 relative levels of genetic diversity and divergence consistently showed that essential coding
116 regions were subject to higher constraint than non-essential coding regions, followed by
117 UTRs/introns, with unannotated regions being the least constrained. *Hermes* insertion density
118 (unique insertion positions/100 nt) and mean insertion count were consistent with this
119 ranking (**fig. 1**). These findings indicate that analysis of *Hermes* insertions can quantify the
120 fitness profiles of both coding and non-coding regions.

121

122



123 **Fig. 1. *Hermes* insertion data recapitulate signals of evolutionary constraint.** For protein-
124 coding regions of essential genes (eCDS), protein-coding regions of non-essential genes
125 (nCDS), 5'/3' UTRs and introns (UTR+int), regions of the genome without any annotation
126 (NOA) and non-coding RNAs ncRNAs we show: **(A)** the genetic diversity from 57 strains of
127 *S. pombe* [5], measured in 100 nt windows, and **(B)** the phyloP measure of constraint [20]
128 between four *Schizosaccharomyces* species (mean phyloP score, over 100 nt windows).
129
130 Similarly, for pooled proliferation *Hermes* data, we show: **(C)** the number of unique insertion
131

132 sites/100 nt, and (D) the mean insertion counts/100 nt (calculated including sites without
133 insertions as zero counts).

134

135 **Application of a Hidden Markov Model to Account for Insertion Biases**

136 Previous analyses have shown that the *Hermes* transposon insertions are biased towards
137 nucleosome-free DNA and that they preferentially occur in DNA with a degenerate sequence
138 motif (TNNNNNA) [18,21]. We sought to develop a prediction of the fitness consequences of
139 transposon insertions at a fine-scale resolution correcting for such bias. This prediction
140 should also reflect that neighbouring nucleotides in a genome do not function independently
141 but as ‘functional’ units (e.g. exons, introns, UTRs). We developed a HMM to correct for
142 these insertion biases and smooth the signal from stochastic insertions into contiguous
143 functional units. In this model, the observed data are the insertion counts and the ‘hidden’
144 state is the degree of biological importance. Regions with greater importance are expected to
145 have fewer insertions.

146 Our model utilised measurements of nucleosome density and sequence composition.
147 Genome-wide profiles of nucleosome density were obtained from proliferating cells [22].
148 Next, the sequence composition of previously recorded *in vitro* insertion sites [18] were
149 evaluated to find a degenerate insertion motif. We then constructed a sequence composition
150 measure, termed insertion motif similarity score (IMSS), which describes the similarity of
151 each position in the genome to this motif. Data from these two measurements was used to
152 construct generalised linear models describing the relationship between insertion density,
153 nucleosome density and IMSS (**supplementary fig. 5**).

154 Our HMM divided the genome into five states, from state 1 (S1), indicating the sites
155 at which transposon insertion had the greatest negative functional consequences, to state 5
156 (S5), indicating sites at which insertion had the least negative (or potentially positive)

157 functional consequences. This number of states was obtained from initial trials with the
158 model, detailed below. Annotated regions of the genome were used to train the model. The
159 first state, S1, was trained on coding regions of essential genes (whose knockouts are
160 inviable), S2 was trained on coding regions of non-essential genes, S3 on regions that may
161 have some importance but weaker signals (introns and UTRs), S4 on unannotated intergenic
162 regions that show high genetic diversity [5], where mutations or insertions may be neutral,
163 and S5 on the top-10% insertion-dense sites to allow for the possibility that insertions in
164 some positions enhance cell survival.

165 The model was fitted to the data by maximum likelihood, using the EM algorithm.
166 The Viterbi algorithm was then used to determine the most likely state (S1-S5) for each
167 genomic position given the nucleosome density, IMSS, and insertion counts. Model fitting
168 did not explicitly include annotations (see Methods for details on HMM). HMM states were
169 highly consistent between independent HMM model fitting runs (see Methods). Insertion
170 data, HMM states, nucleosome density and conservation measures are available in a
171 dedicated genome browser <http://bahlerweb.cs.ucl.ac.uk/bioda> and in the fission yeast model
172 organism database PomBase (www.pombase.org). These tools allow users to check
173 functional information for regions of interest, including fine-scale structure-function
174 relationships within specific genes and putative regulatory regions.

175

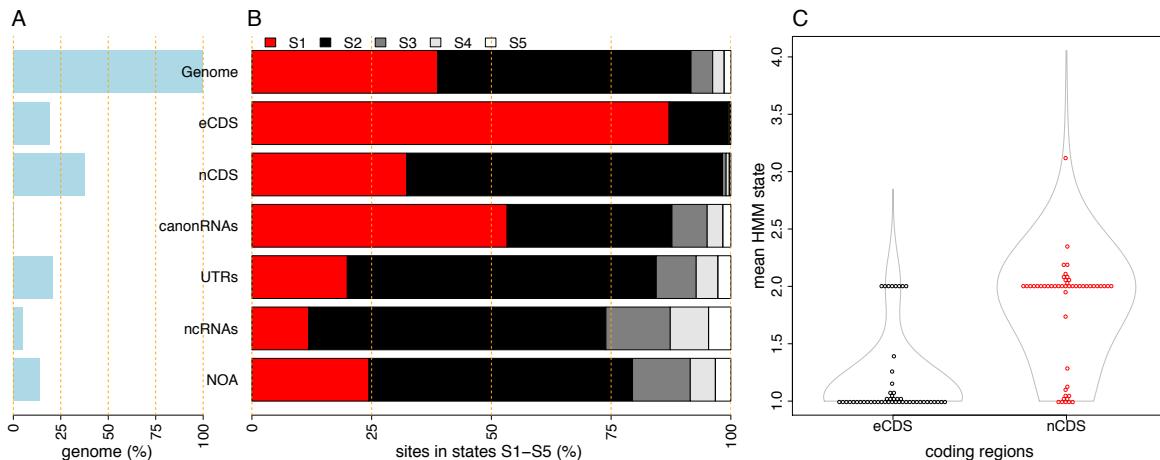
176 **Fitness Consequences of Insertions**

177 Transposon insertions had negative fitness consequences over most of the genome, with 91%
178 of the genome being assigned to states S1 or S2. Protein-coding regions of essential genes,
179 used as training data for S1 sites, feature both high between-species conservation and low
180 within-species diversity (**fig. 1**). The HMM assigned 87% of these regions to S1 (**fig. 2**),
181 along with 32% of non-essential protein-coding regions.

182 Our analysis indicates that most of the non-coding genome in this species encodes
183 functional elements. The fission yeast genome is much more compact compared to
184 mammalian and plant genomes, with 42% of the current annotation not coding for proteins or
185 canonical non-coding RNAs (ncRNAs); including 20% UTRs, 5% other ncRNAs that do not
186 overlap and protein-coding genes, and 14% with no functional annotation at present. New
187 analysis has discovered almost 6000 new ncRNAs [23], indicating that many functional units
188 remain undescribed.

189 The HMM assigned 82% non-protein-coding regions to S1 or S2, indicating that they
190 were strongly insertion-depleted relative to genome-wide expectations. UTRs, ncRNAs and
191 unannotated regions were each also insertion-depleted to some extent. (fig. 2A, B). This
192 measure far exceeds the proportion that would be defined as important with the limited
193 comparative genomics data available. For example, 24% of regions with no functional
194 annotation are strongly insertion-depleted (S1), yet these regions show very little
195 conservation between *Schizosaccharomyces* species (fig. 1). We also observe that ~12% of
196 the positions within essential genes contain sufficient insertions to be assigned HMM state 2.
197 These regions could be a mix of two components: annotation mistakes, or could reflect non-
198 essential domains within essential proteins, as described in budding yeast [19].

199



200

201

202 **Fig. 2. Functional Landscape by Annotation Type.** The HMM defined five states based on
203 *Hermes* transposon insertions. State 1 (S1) refers to the most important regions, with the least
204 insertions, and state 5 (S5) with the highest density of insertions. **(A)** Percentage of *S. pombe*
205 genome covered by various annotation types: entire genome (100%), essential protein-coding
206 regions (eCDS), protein-coding non-essential regions (nCDS), canonical non-coding RNAs
207 (snRNAs, snpRNAs, tRNAs, rRNAs, canonRNAs), 5'/3'-UTRs (UTRs), non-coding RNAs
208 (ncRNAs), and unannotated regions (no-anno). **(B)** Proportions of each annotation type in the
209 five states: S1 (red), S2 (black), S3 (dark grey), S4 (light grey) and S5 (white). **(C)** Mean
210 HMM states for essential (eCDS) and non-essential (nCDS) coding regions. Representative
211 50 points are shown for each type to indicate that most essential coding regions have mean
212 state ~1 (85% mean state <1.2).

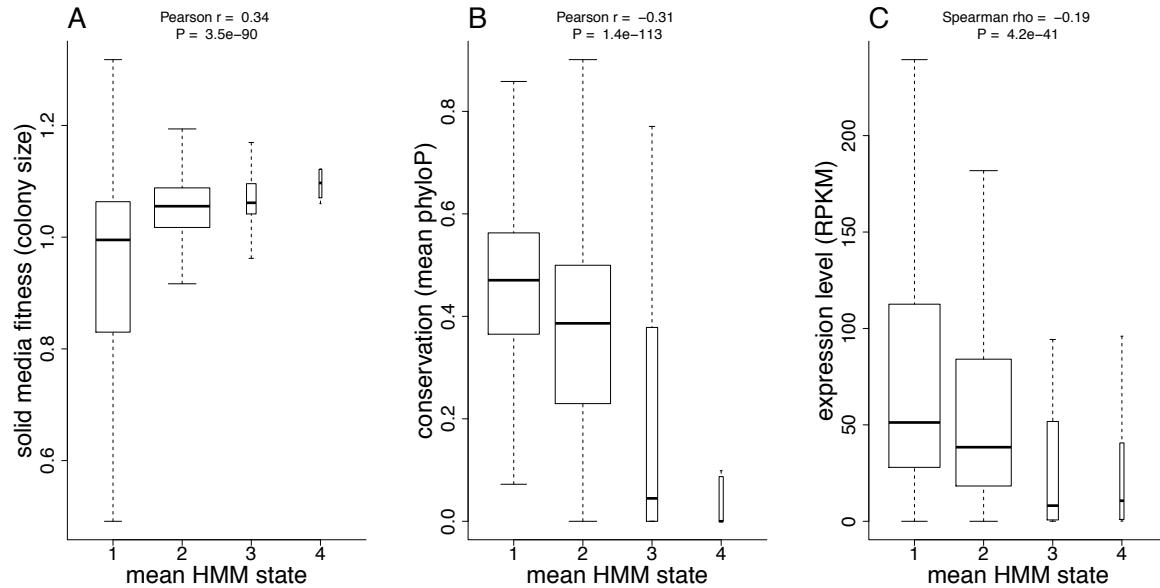
213

214 **HMM states predict the fitness costs of protein-coding gene disruption**

215 To examine whether the HMM contained information about the relative fitness cost of gene
216 disruption, we calculated the mean HMM state for each protein-coding gene. While essential
217 coding genes had much lower mean states (**fig. 2C**), essential and non-essential genes showed
218 overlapping distributions. To assess the validity of this measure, we compared it to the
219 colony sizes of viable knockout mutants on solid media, an orthogonal measure of gene
220 disruption fitness alteration that uses different media, a more direct fitness measure, and
221 different methods to obtain complete gene deletions [24]. Reassuringly, the mean HMM state
222 positively correlated with the colony size of knockout mutants (Pearson $r = 0.34$, $P = 10^{-90}$,
223 **fig. 3A**) [25,26]. Genes with fewer insertions (lower mean HMM states) were also more
224 likely to be conserved between *Schizosaccharomyces* species and highly expressed (**fig. 3B**,
225 **C**), both expectations for genes that cause strong fitness consequences when mutated. In

226 summary, these analyses show that the insertion and analysis methods recover biologically
227 meaningful fitness measures that add value beyond the binary classification of essential/non-
228 essential genes that can be obtained from whole-gene disruptions.

229



230

231 **Figure 3. Gene mean HMM states are estimators of gene disruption fitness.** Protein-
232 coding genes classified into four categories by the mean HMM states, showing those that are
233 ~1 (< 1.5), ~2 (> 1.5 and ≤ 2.5), ~3 (> 2.5 and ≤ 3.5) and ~4 (> 3.5 and ≤ 4.5). Mean HMM
234 states were positively correlated with solid media fitness (A), an orthogonal measure. Mean
235 HMM states were also negatively correlated with conservation (lower HMM states were
236 more conserved) (B), and negatively correlated with gene expression (lower HMM states
237 were more highly expressed) (C).

238

239 **HMM-Defined Functional Elements**

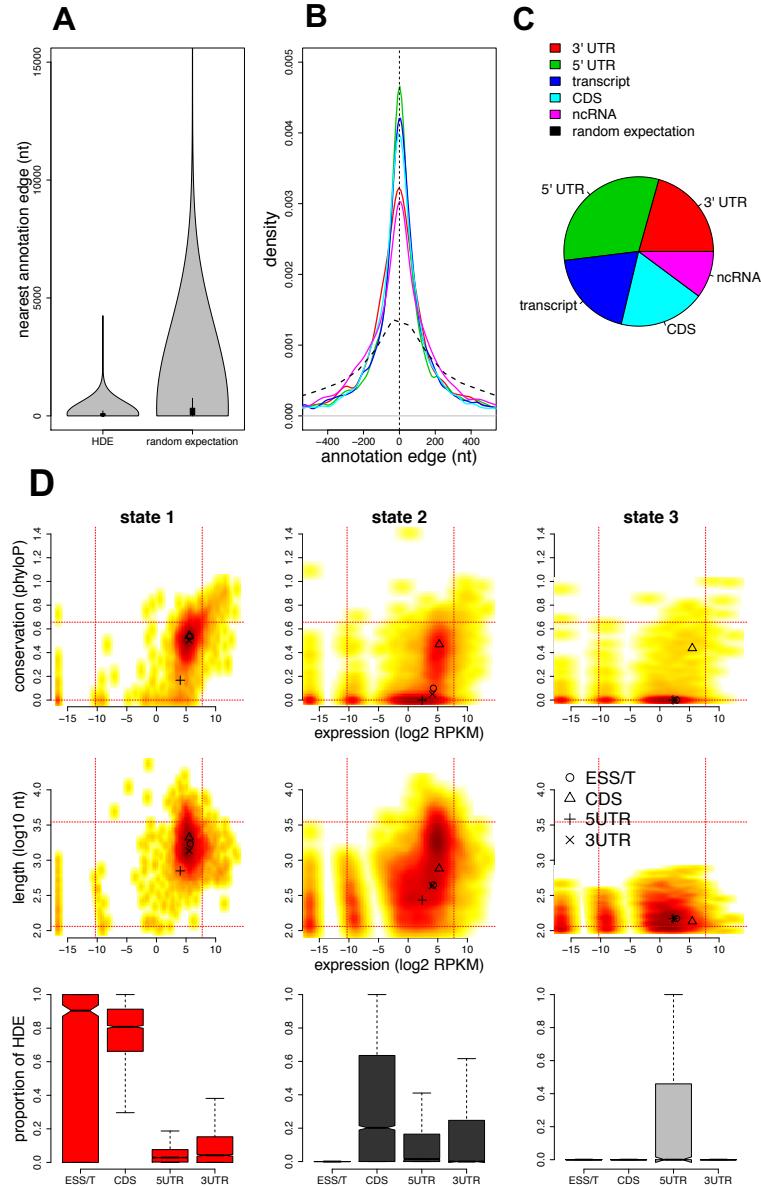
240 To examine whether the HMM states captured previously annotated elements, such as
241 introns, promoters, and protein-coding exons, we defined 256,815 ‘HMM-defined elements’
242 (HDEs) as genomic regions that feature a continuous run of one HMM state. All S4 or S5
243 HDEs were less than 100 nt, and mostly intergenic, indicating that only short regions in this

244 genome can tolerate insertions without affecting fitness.

245 We excluded these S4/S5 HDEs from further analysis, leaving 10,015 HDEs with a
246 median length of 618 nt, which account for 90% of the mappable genome. HDE edges were
247 closer to edges of existing annotations than expected by chance (Wilcoxon Rank Sum test, P
248 $<10^{-16}$, **fig. 4A, B**). This result is consistent with these HMM-defined regions representing
249 boundaries of a variety of biologically-relevant elements (including transcriptional units,
250 spliced exons, protein-coding regions).

251 To characterise these HDEs, we calculated their conservation during evolution and
252 their RNA expression levels. The HDEs which were most insertion-depleted, and therefore
253 most critical for cell function (S1 elements), covered 35% of the mappable genome. These
254 HDEs showed distinct features: they were most conserved between species, the longest
255 (mean length 1.9 kb), most highly expressed, and generally composed of protein-coding
256 regions (**fig. 4D**). Another 52% of the genome was composed of S2 elements (mean length
257 1.0 kb), including mainly coding regions and UTRs, which also showed relatively high
258 expression levels and conservation. The inclusion of many 5'- and 3'-UTRs in S2 elements
259 indicates that these non-coding regions often contain regulatory sites whose disruption
260 impairs cellular function. Finally, the S3 elements occupied only 3% of the genome, were
261 seldom conserved, generally short (mean length 0.18 kb), and almost exclusively 5'-UTRs.
262 These UTRs likely contain regulatory sites, because they feature fewer insertions than S4
263 regions, but would have been difficult to identify without the insertion data because they are
264 neither conserved nor very highly transcribed. As the *Schizosaccharomyces* clade contains
265 only four species, subtle constraint will likely remain undetected. Overall, 10% of the
266 important sites in the genome (S1-S3) showed no signal of conservation between species.

267



268

269

270 **Fig 4. HMM-defined elements describe functional genomic outputs.** Parts A-C show that
271 the boundaries of HMM-Defined Elements (HDEs) are aligned to or close to the boundaries
272 of existing annotations, as defined in the legend at top right. The random expectation is
273 derived from the same number of elements of the same lengths, placed at random on the
274 genome. **(A)** HDEs have a smaller distance to the nearest annotation than the random
275 expectation. **(B)** For all HDE edges we show the distance to the nearest annotation type,
276 including 5/3' UTRs, transcripts (transcription start/stop positions), coding sequences

277 (amino-acid encoding regions, CDS), non-coding RNAs (ncRNAs), with lines coloured
278 according to the legend at right. **C)** HDEs fell closest to a variety of annotations. The pie
279 chart shows the proportions of nearest annotations, indicating a bias towards defining 5'UTR
280 edges. There were subtle differences between S1, S2 and S3 states in this respect (not
281 shown). **(D)** Density plots describe various characteristics of HDEs, from left showing S1, S2
282 and S3 HDEs. Conservation (y axis, top row) levels are mean phyloP measures from four
283 *Schizosaccharomyces* species. HDE lengths (y axis, middle row) are shown on a \log_{10} scale.
284 Expression levels (x axes) are RNA-Seq RPKMs from proliferating cells. Dashed horizontal
285 and vertical lines show the 5th and 95th percentiles of conservation, expression levels or
286 lengths. The positions of symbols (circle, triangle *etc.*) indicate the median positions within
287 each state for essential transcripts (ESS/T), coding regions (CDS), and 5'/3' UTRs. For
288 example, the few conserved S3 sites are coding regions. The bottom row shows the
289 proportion of HDEs that are annotated as essential transcripts (ESS/T), protein-coding
290 sequence (CDS), 5' UTR and 3' UTR.

291

292 **Discussion**

293 Dense transposon-insertion libraries can identify genes whose disruption affects fitness (in
294 particular conditions) within bacterial genomes with high resolution [11-15]. However,
295 similarly high-resolution descriptions of eukaryotic genomes are more limited, and have not
296 yet achieved nucleotide-level definitions of fitness landscapes [18,19]. Studies with
297 eukaryotic genomes are also more challenging, because they are larger and contain
298 nucleosomes, which bias integration rates. With the density of our insertions in libraries from
299 proliferating cells (26.7 million insertions, 1 unique insertion site/13 nt), and the application
300 of a HMM to account for insertion bias, we analysed functional importance at near single-
301 nucleotide resolution.

302 The findings of the HMM are validated by the demonstration that continuous
303 single-state genome sections (HMM-defined elements, HDEs) are closely aligned to existing
304 annotations, and define elements with different properties (**fig. 4**). As the *Hermes* insertion
305 data recapitulates signals of genetic diversity and divergence within different annotation
306 categories, we can be confident that insertion density reflects functional constraint (**fig. 1**).
307 The application of a hidden Markov Model robustly accounted for insertions biases, since
308 HMM states strongly depended on insertion density but only weakly correlated with
309 nucleosome density and nucleotide motif (**supplementary fig. 6**).

310 Our HMM analysis of transposon insertions assigned 91% of the fission yeast to
311 HMM S1 or S2 (which were trained on essential and non-essential coding regions,
312 respectively). Based on this, we conclude that 91% of the genome contains functional
313 elements that are affected by transposon insertions. These likely functional regions of the
314 genome include 80% of the currently un-annotated genome, consistent with the presence of
315 many unrecognised functional elements in non-coding regions of this model organism. This
316 is the first near nucleotide-level study of fitness consequences in a eukaryote genome, so
317 there are no clear expectations. In theory, species with larger population sizes are expected to
318 maintain smaller genomes with larger proportions of functional DNA [27]. Consistent with
319 this prediction, analysis of comparative genomics data has estimated that 5-15% of the
320 human genome shows signals of conservation [28-30], whereas increasingly larger
321 proportions of the *Drosophila* (~50%), *Caenorhabditis* (37%), and *Saccharomyces* yeast (up
322 to 68%) genomes are conserved [31]. Our estimate of functional regions is likely larger due
323 to the limitation of comparative genomics, that is it only able to detect regions that have
324 continuously subject to purifying selection throughout the phylogeny of the species aligned
325 [4]. It is also possible that in some cases transposon insertions can disrupt the function of
326 larger neighbouring regions, although the sites of insertions themselves are not functional.

327 A limitation of our study is that the transposon method does not reveal how non-
328 coding genomes elements function. Future work will reveal whether these elements function
329 as the widespread non-coding transcripts [22] and/or as regulatory elements controlling the
330 expression of coding genes.

331

332 **Conclusion**

333 Our analysis indicates that the fission yeast genome is densely packed with functional
334 elements, including many uncharacterised non-protein-coding elements. We estimate that
335 90% of the genome contains functional elements that are impaired by transposon insertions,
336 including 80% of the non-protein-coding regions. We expect that saturating transposon
337 mutagenesis data has potential to define functional non-protein-coding elements within
338 eukaryote genomes that would be difficult to detect with any other contemporary method.

339 **Methods**

340 **Creating *Hermes* Insertion Libraries.** *Hermes* insertion libraries were constructed as
341 described [16] using the pHL2577 and pHL2578 plasmids, except that the transposition
342 frequency was calculated by dividing the number of colonies on YES 5-FOA+G418 plates by
343 the number of colonies on YES plates. All experiments were performed in an *S. pombe* strain
344 with the genotype *ura4*–D18 *leu1*–32 *h*[–]. Typically, <0.2% of cells in libraries contained
345 genomic *Hermes* insertions, so we expect that most insertion mutants contain a single
346 insertion.

347

348 **Generating DNA Libraries for Sequencing.** Genomic DNA was extracted from insertion
349 libraries using phenol/chloroform extraction. All DNA extracted from a library was
350 processed. DNA was sheared to an average size of 200 bp using a Covaris S2 ultrasonicator
351 (Covaris, Woburn, Massachusetts). Sheared DNA was end repaired using the NEBNext®
352 End Repair Module (NEB, Hitchin, UK). Linker1-Random10mer and Linker2
353 (**supplementary table 4**) were ligated using the NEBNext® Quick Ligation Module (NEB,
354 Hitchin, UK). In Linker1-Random10mer, the random 10 nt sequence acted as a UMI to
355 distinguish unique chromosomal insertions from PCR amplifications. DNA was then digested
356 with KpnI-HF (NEB, Hitchin, UK) to exclude residual *Hermes* pHL2577 donor plasmid from
357 PCR amplification (as the plasmid contains a unique KpnI site). NEBNext® modules were
358 used according to manufacturer's instructions. To enrich for fragments containing the
359 *Hermes* transposon, DNA was amplified with BIOTAQ™ DNA polymerase (Bioline, Essex,
360 UK) using a primer that complimentary to the *Hermes* transposon (1-Transposon-4NNNN),
361 and to the linker (Linker1-Amp, **supplementary table 4**). Ultimately, a second PCR attached
362 the multiplex oligonucleotides for Illumina MiSeq sequencing; the MS-102-2022 MiSeq
363 reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was used to sequence the libraries. To

364 increase the complexity of the libraries, for each library, ligation and PCR reactions were
365 performed in multiple reactions (in 96-well plates), using a maximum of 1 µg of DNA per
366 well and then re-pooled before sequencing. Detailed protocols are available in the Figshare
367 project *Hermes Transposon Mutagenesis of the Fission Yeast Genome* (will be made publicly
368 available upon manuscript acceptance). Sequence data are available at European Nucleotide
369 Archive in study accession number PRJEB27324. Sample accessions are listed in
370 **supplementary table 5.**

371

372 **Computational Processing of Sequencing Data.**

373 Bioinformatic processing filtered the sequence data to retain only reads derived from *Hermes*
374 insertions, removed reads with duplicate UMIs, and filtered for correctly-paired high-
375 confidence read-mapping, and ultimately located the positions and orientation (strand) of
376 genomic insertions. Details are as follows. Read 1 architecture was
377 [random4mer][*Hermes*][Genome] (with random 4mer added to increase 5' Read 1 end
378 complexity to allow Illumina cluster calling). The 4mer was trimmed with fastx_trimmer
379 (http://hannonlab.cshl.edu/fastx_toolkit/). The Reaper tool [32] was used to detect reads with
380 5' ends matching the expected *Hermes* sequence, and excluding those within the pHL2577
381 donor plasmid. Read 2 architecture was [10mer][Linker][Genome]. We used a custom Perl
382 script to exclude duplicate reads with exactly matching 10mers. Processed Reads 1 and 2
383 were re-paired using Tally [32], and the 10mer and Linker were trimmed with fastx_trimmer.
384 Paired-end reads were aligned to the reference genome [33] and the donor plasmid using
385 BWA-MEM (Li and Durbin 2009). SAMtools [34] was used to select correctly paired reads
386 with a mapping score ≥ 30 (flags 83 and 99). Finally, we applied custom scripts to identify the
387 location and strand of insertions from the filtered BAM outputs with SAMtools. Insertions
388 found on the same chromosome but on different strands were considered as unique events.

389 Command lines for this procedure and scripts are available in the Figshare project *Hermes*
390 *Transposon Mutagenesis of the Fission Yeast Genome*, as well as all insertion data, and
391 HMM model fitting results.

392

393 **Nucleosome Density Data.** The generation of the nucleosome density data has been
394 described in Atkinson et al. [22] and are available at the European Nucleotide Archive under
395 accession number PRJEB21376. The median nucleosome density from two repeats was
396 transformed to a normal distribution. This normalised nucleosome density showed a stronger
397 correlation with insertion density than the raw nucleosome density and was used as a
398 predictor in the HMM.

399

400 **Insertion Motif Similarity Score.** *In vitro* *Hermes* insertion data [18] was used to identify a
401 sequence motif corresponding to insertion events in non-nucleosome bound DNA. Strings of
402 41 nt, centred upon each *in vitro* insertion event were taken from the *S. pombe* reference
403 sequence. The percentage of each nucleotide present at each of the 41 positions was
404 measured and compared to percentage nucleotide compositions calculated across the entire
405 genome. A window of 20 positions was identified for which the composition differed from
406 the genome-wide composition by at least 1% for at least one of the four nucleotides. For each
407 position i , we denote the probability of observing the nucleotide a as

408
$$p_i(a): 1 \leq i \leq 20, a \in \{A, G, C, T\}$$

409 and denote the genome-wide probability of observing the nucleotide a as $p^{gw}(a)$.

410 A genome-wide scan was then conducted of strings of 20 consecutive nt in the genome
411 sequence, calculating a likelihood measure of the extent to which each string matched the
412 insertion motif, as compared to the genome-wide base composition. Where a string is given
413 by the nucleotides $\{a_1, a_2, \dots, a_{20}\}$ we calculate the insertion motif similarity score as follows:

414

$$IMSS = \sum_{i=1}^{20} [\log p_i(a_i) - \log p^{gw}(a_i)]$$

415 Here a positive score indicates a greater similarity to the insertion motif than to the genome-
416 wide sequence propensity. This likelihood measure was used as a predictor in the HMM.

417

418 **Hidden Markov Model.** We developed a hidden Markov model using the R package
419 `depmixS4` (Visser and Speekenbrink 2010b). These models assume that sequences of
420 observed response variables are dependent on underlying sequences of discrete hidden states.

421 The sequence of hidden states is assumed to follow a first-order Markov process, such that
422 the probability of a state at position t depends only on the hidden state at the immediately
423 preceding position $t-1$. The observed responses are assumed conditionally independent given
424 the sequence of hidden states (i.e., correlations between nearby positions are completely
425 accounted for by the hidden states. This model used \log_2 -transformed insertion numbers as
426 the observed state. Sites with zero insertions were set to observed state = 0. Each hidden state
427 defined a (zero-inflated) Poisson regression model, with \log_2 insertion count as dependent
428 variable, and the normalised nucleosome density (median of two replicates) and nucleotide
429 preference score as predictors. Missing data for nucleosome density was set to the median.

430 The models parameters (initial state probabilities, state-transition probabilities, and the
431 parameters of the state-dependent zero-inflated Poisson regressions, were estimated by
432 maximum likelihood using the Expectation-Maximisation (EM) algorithm. Initial state
433 distributions were all $1/n$, where n is the number of states. Initial transition matrix was 0.95
434 for positions remaining in the same state, and $0.05/(n-1)$ for all other transitions. Initial
435 parameter values of the Poisson regressions were obtained by pretraining each state-
436 dependent model on a subset of the data (see below). These initial parameters were used to
437 start the EM algorithm, the final resulting parameter estimates were determined by maximum

438 likelihood. Neither annotations nor transcriptome data were supplied as predictors to the
439 HMM. Models were fit to the insertion data by the EM algorithm, until convergence of the
440 likelihood (with a tolerance 1×10^{-8}) or with a maximum of 150 iterations (since log likelihood
441 fit of models improved little after 150 iterations (**supplementary fig. 7**).

442

443 **Choice of Optimal Model.** To select an appropriate number of states and state training data
444 for our HMM, we used ten ‘test data’ subsets of the genome, each a 100 kb fraction as
445 follows: Chromosome I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-
446 3200001, Chromosome II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-
447 3200001 and Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J).
448 These regions avoid the chromosome ends, which have unusual properties, such as a high
449 frequency of pseudogenes and native Tf1 transposon insertions [5].

450 We ran each of the following models on all insertion data from proliferating cells
451 (split into the ten subsets). These models defined the training data in two ways. Firstly,
452 ‘insertion-quantile’ models, where training data was defined solely by the density of unique
453 insertions, calculated over 100 nt windows. For example, a 3-state model split the data into
454 the lower, mid and upper third insertion density for states 1-3. We trialled quantile models
455 from 2 to 10 states. Secondly, annotation-based models. We trialled 2-, 3-, 4-, and 5-state
456 models where the training data was derived from current genome annotations. The 2-state
457 model included coding sequences (S1) and other regions (S2). The 3-state model, coding
458 sequences of essential genes (S1), coding sequences of non-essential genes (S2), introns,
459 unannotated regions, and UTRs (S3). The 4-state model, coding sequences of essential genes
460 (S1), coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and
461 unannotated regions (S4). It differs from the 3-state model in that it differentiates UTRs and
462 introns from unannotated regions. The 5-state model is as the 4-state model, except that it

463 includes a 5th state that contains sites with the highest 10% of unique insertions/100 nt. The
464 response for this state was a Poisson distribution rather than zero-inflated Poisson.

465 Each of these 13 models was fit (with tolerance 1×10^{-8}) to the ten fractions of the
466 genome. Fitting involved optimising the parameter of states at each position, the transition
467 state matrix, and the slope, intercept and zero-fraction of the state model. A 5-state annotation
468 model was chosen as a pragmatic the best fit for running large (million position) data sets.
469 Comparison of the Bayesian information criterion scores (BIC) for 2-5 states indicated that
470 increasing states improved the fit (**supplementary fig. 8**), but higher state models suffered
471 from increased run times and frequent run failure, and/or highly inconsistent fractions of the
472 subset data assigned to various states (with some states being absent).

473 Due to the rounding of \log_2 insertion counts, sites with 1 or 0 insertions were set to
474 the same observed state. Rounded \log_2 of insertions+1 (where sites with 0 insertions have
475 different value from those with 1) resulted in a worse fit to the model (**supplementary fig.**
476 **9**).

477

478 **Fitting of Chromosome-Wide Data.** Once the 5-state annotation model (model 5A) was
479 chosen as a pragmatic best model, it was run on all proliferation libraries, fitting data from
480 five relatively equal portions of the genome separately, to allow runs in a practical time frame
481 and memory. These fractions were: chromosome I left half (positions 1-2789566),
482 chromosome I right half (positions 2789567-5579133), chromosome II left half (positions 1-
483 2269902), chromosome II right half (positions 2269903-4539804), and the entirety of
484 chromosome III (fractions are between 2.26 Mb and 2.79 Mb). The model produced a state
485 prediction for each position in the genome, and the posterior probability of each state at each
486 position. We also fit model 5A to the ageing insertion data (pooled Days 0, 2, 4 and 6) with
487 the same genome subsets.

488 Collectively, the proliferation samples have a higher count of insertions than any of
489 the pooled ageing libraries (proliferation: 31 million insertions; ageing: 4.6 million
490 insertions). Since training datasets are based on the within-sample insertion densities for each
491 HMM fit, this should account for different densities. Nevertheless, to examine whether this
492 large difference in insertion counts produced radically different fits, we produced a down-
493 sampled dataset from proliferation samples with the same insertions as the ageing sample
494 average (4.5 million insertions). Overall, 85% of sites in this reduced data set were assigned
495 the same state as the full proliferation data, and 98% of sites were within one step of the full
496 data (i.e. full proliferation state +/- 1).

497 These separate fits to the model resulted in similar distributions of states between
498 chromosome arms for both the coding regions and introns of essential genes, supporting
499 consistent convergence of the models between these genome subsets (**supplementary fig. 10,**
500 **13**). To examine whether positions were assigned a consistent state using different subsets of
501 data, and independent fits of the HMM, we made subsets of proliferation (dense data) and
502 ageing Day 6 (less dense data) for the central half of chromosome I (positions 1394783-
503 4184350), which overlaps both the left and right halves used previously. These data were fit
504 to model 5A as before. With dense proliferation data, sites that overlapped the 96.7% of
505 positions were assigned the same state with either left *vs* middle, or right *vs* middle
506 comparisons. For ageing Day 6 data, 97.1% of overlapping positions were assigned the same
507 state. States 1-5 were all consistently assigned (e.g. > 99% of state 5 positions were the same
508 within proliferation data, and similar proportions for all other states). This analysis indicates
509 that these fractions were sufficiently large to preclude fitting to very different local optima.
510 HMM code is available in the Figshare project *Hermes Transposon Mutagenesis of the*
511 *Fission Yeast Genome*.

512

513 **Filtering Badly Mapped Sites.** To ensure accurate placement of reads, our pipeline filtered
514 reads mapped with mapping quality ≥ 30 . To avoid the tendency to misinterpret regions that
515 have few insertions due to the loss of low mapping quality, we analysed only sites that had
516 retained $\geq 90\%$ of the reads (lost $< 10\%$) over 500 nt windows after mapping quality filtering.
517 This retained 94.6% of the genome for analysis. After filtering, there was only a weak
518 negative correlation between the HMM state and the proportion of reads filtered (Pearson $r =$
519 -0.049). All data presented included only the sites that had retained $\geq 90\%$ of the reads after
520 filtering for Q30 mapping (the ‘mappable genome’).

521

522 **Annotation Data.** Annotations were from PomBase (ASM294v2, 11/02/2016), including
523 1538 annotated ncRNAs.

524

525 **Transcriptome Analysis.** Replicated RNA-Seq data from vegetatively growing, early
526 stationary and deep stationary cultures were retrieved from the European Nucleotide Archive
527 (ENA; <http://www.ebi.ac.uk/ena>) using the following accession numbers (dataset:
528 PRJEB7403; samples: ERS555567, ERS555607, ERS555570, ERS555612, ERS555571,
529 ERS555613). [22]. Reads were aligned to the *S. pombe* genome as described [35]. The
530 resultant aligned reads were used to compute normalised coverage at the nucleotide level
531 using the genomecov function in the BEDtools suite [36]. Customised R scripts were used to
532 define whether a given region is transcribed.

533

534 **Comparative Genomics.** We used updated genome assemblies of fission yeasts *S.*
535 *octosporus*, *S. japonicus*, and *S. cryophilus* [37]. To improve previous full genome
536 alignments of fission yeast species [38], we incorporated these newly assembled genomes
537 into an alignment with the *S. pombe* genome using progressive-cactus [39] (github version

538 May 2016), using a guide tree based on Rhind *et. al.* [38]. We then applied the phyloP
539 algorithm [40] as implemented in the HAL toolkit [41] to detect constraints. We trained a
540 neutral model using the four-fold degenerate sites from coding regions from the high-quality
541 *S. pombe* annotation.

542

543

544 **Declarations**

545 Ethics approval and consent to participate: N/A

546 Consent for publication: N/A

547 Availability of data and material

548 Sequence data are available at European Nucleotide Archive in study accession number

549 PRJEB27324. Sample accessions are listed in **supplementary table 5**.

550 Transposon insertion data, R code for the HMM, all other data used for analysis, and detailed
551 protocols are available in the figshare project *Hermes Transposon Mutagenesis of the Fission*
552 *Yeast Genome* (will be made public after manuscript acceptance).

553

554 Competing interests: The authors declare that they have no competing interests

555 Funding: LG was supported by a UCL Grand Challenges Award to JB. CJRI was supported
556 by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society
557 (Grant Number 101239/Z/13/Z). This work was supported by a Wellcome Trust Senior
558 Investigator Award to JB (Grant Number 095598/Z/11/Z).

559 Author Contributions

560 LG produced *Hermes* insertion data, assisted with bioinformatics, statistical analyses and
561 writing the manuscript. DCJ initiated the project, supervised students (LG, CYS, CB, DA),
562 conducted bioinformatics and statistical analyses and wrote the manuscript. CYS assisted

563 with analysis of *Hermes* insertion data. CB and DA produced initial *Hermes* insertion data.
564 DAB implemented the genome browser and analysed RNA-Seq data. MRL produced the
565 nucleosome density data and assisted with production of *Hermes* insertion data. VAT assisted
566 with production of *Hermes* insertion data. MS developed R code for HMM and assisted with
567 statistical analyses. CJRI defined the nucleotide insertion model. PHS aligned and produced
568 conservation measure of *Schizosaccharomyces* genomes. ALP and PT produced assemblies
569 of *Schizosaccharomyces* genomes. RA provided *Schizosaccharomyces* genomes. HLL
570 provided additional *Hermes* insertion data. JB funded the project, supervised the PhD student
571 and postdocs in his group, and helped with writing the manuscript.

572

573 Acknowledgments

574 We thank Dr Rachel Brown for guidance with *Hermes* methods.

575

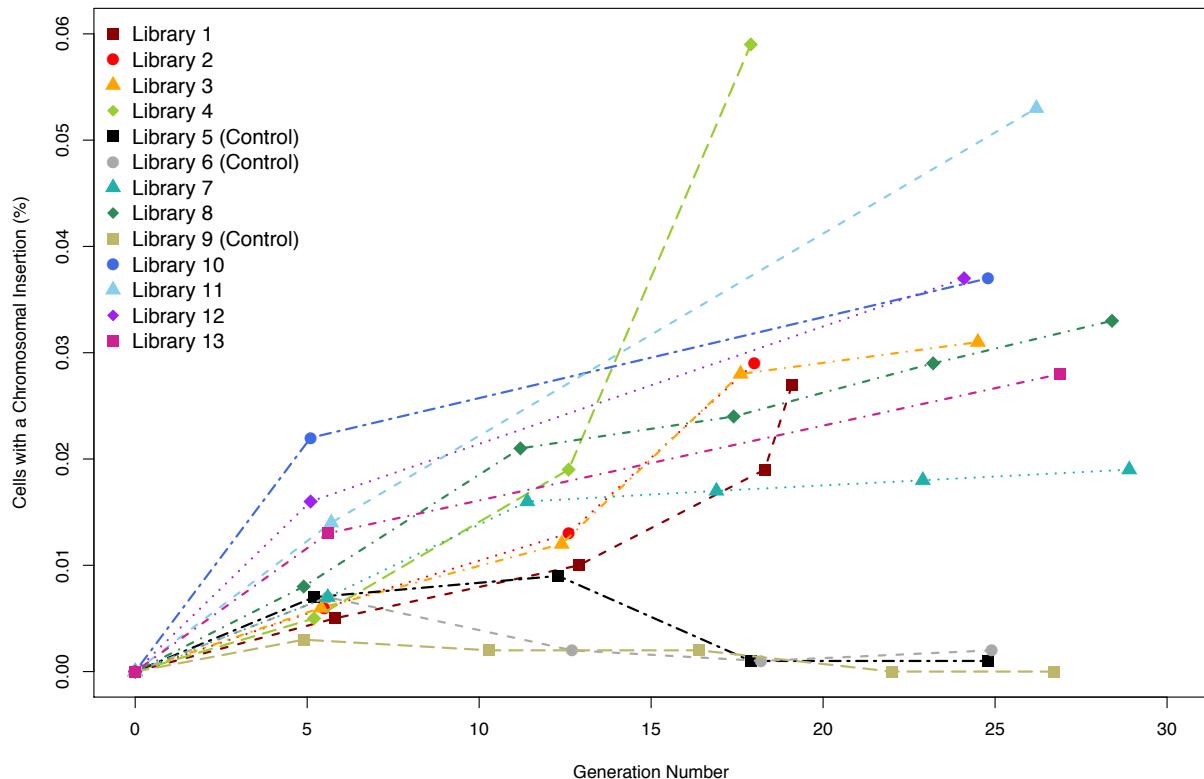
576 References

577

578 **Supplementary Figures**

579
580
581

Percentage of Cells with a Chromosomal Insertion

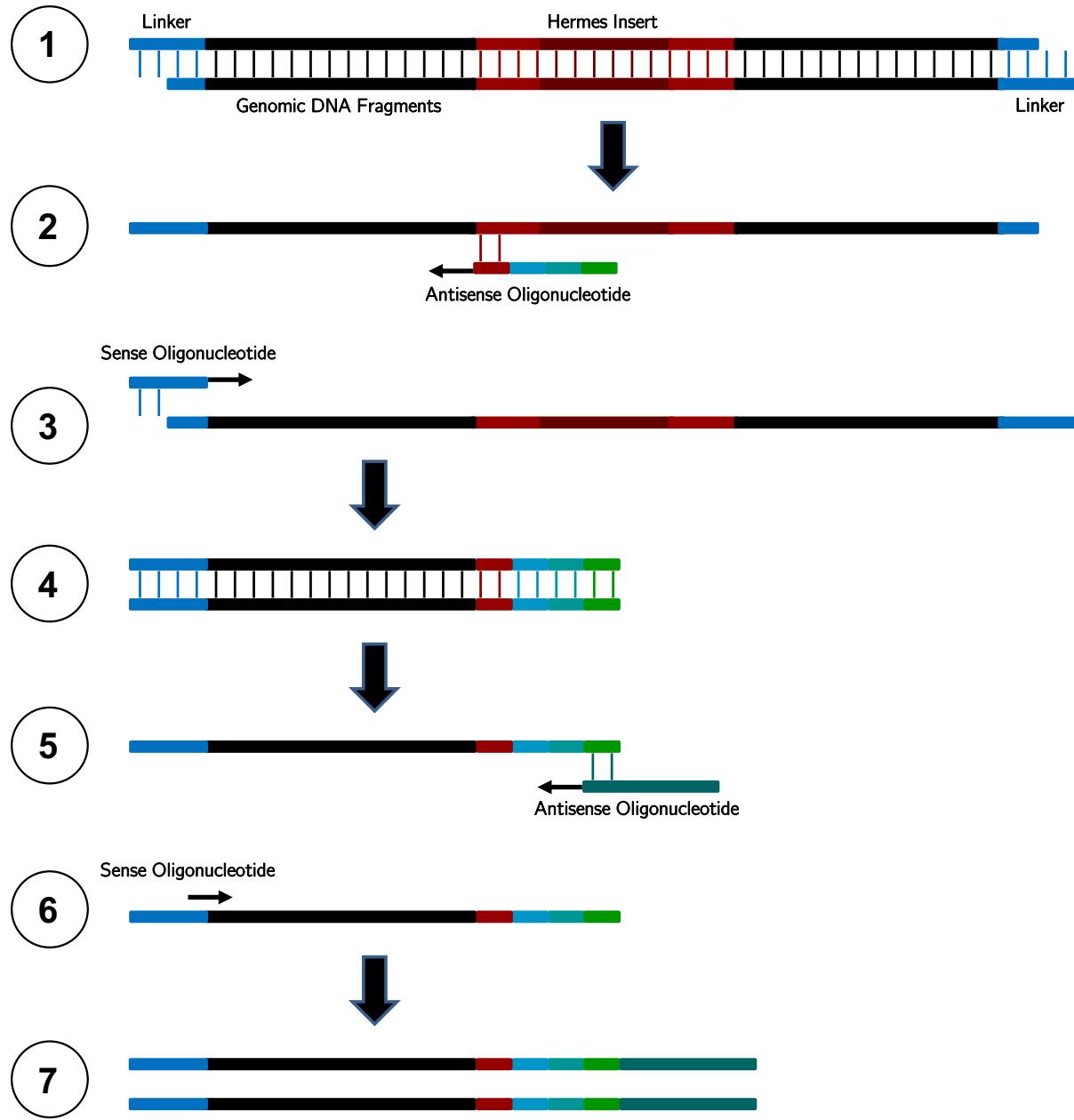


582
583

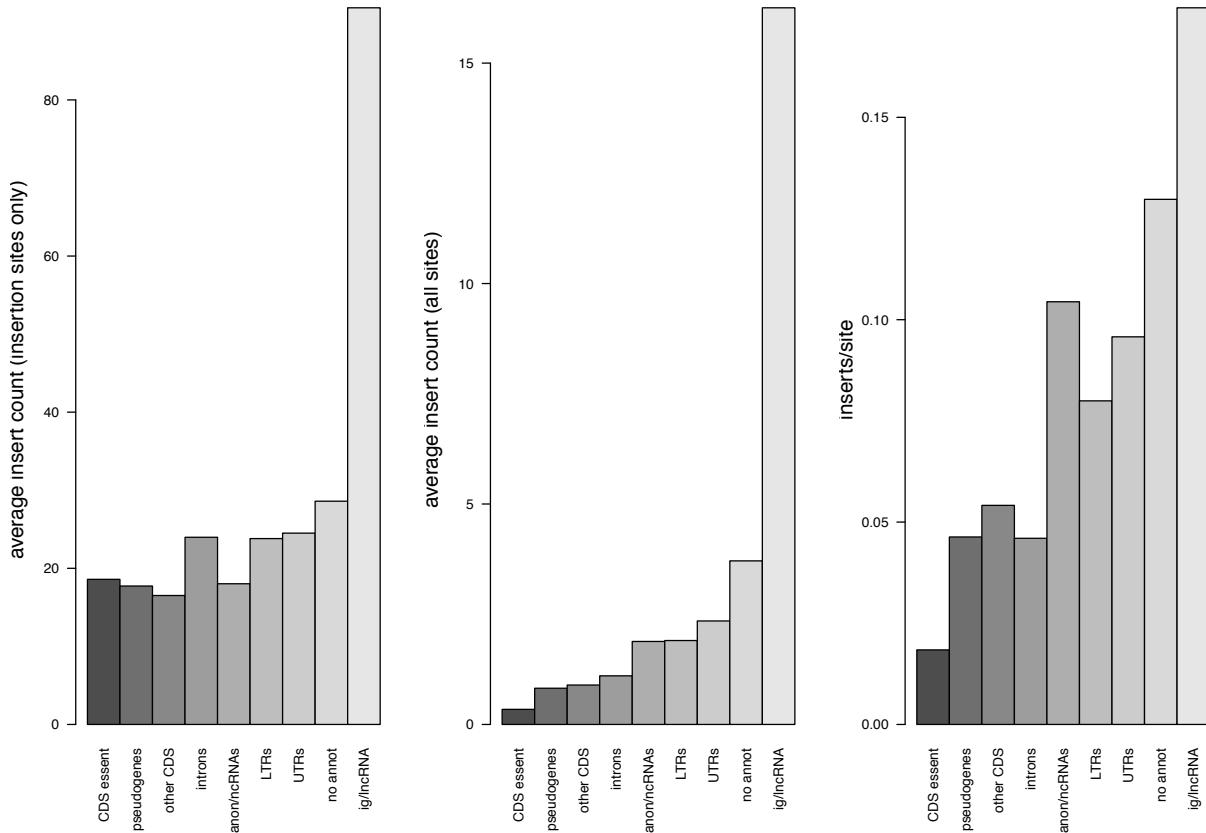
584 **Supplementary fig. 1. Percentage of cells with a chromosomal insertion.**

585 For the nine libraries we generated (and others not described here), we show the percentage
586 of cells with a chromosomal insertion. The proportion was calculated as the number of
587 colonies present on YES + FOA + G418 plates (chromosomal insertions), divided by the
588 number of colonies present on YES plates (all cells).

589
590
591



Supplementary fig. 2. The custom *Hermes*-end primed sequencing strategy. Shows the end-priming strategy used to sequence *Hermes*-containing fragments. Initially, genomic DNA is extracted, sheared, end repaired, and linkers (Linker1-Random10mer and Linker2) ligated at both terminal ends (1). To enrich for fragments containing the *Hermes* transposon, DNA was amplified with using a primer that is complimentary to the *Hermes* transposon (1-Transposon-4NNNN) (2), and to the linker (Linker1-Amp) (3), to produce fragments that contain linkers, genomic DNA and the *Hermes* right terminal inverted repeat (4). A second PCR attached the multiplex oligonucleotides for Illumina sequencing (5,6), producing the final product that is sequenced (7). Detailed protocols are available in the Figshare project *Hermes Transposon Mutagenesis of the Fission Yeast Genome*.

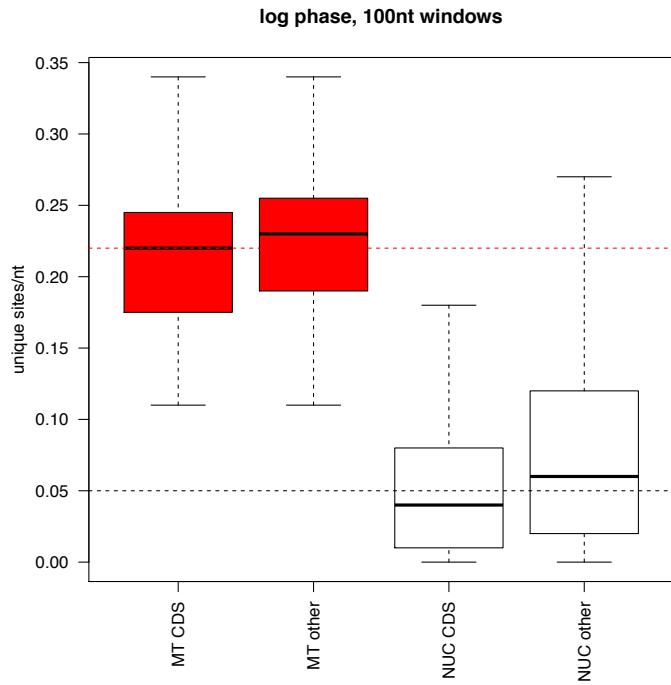


609
610

611 **Supplementary fig. 3. Properties of insertions in different annotation regions.**

612 Left panel shows average insertion count in coding regions of essential genes, pseudogenes,
613 other (non-essential) coding regions, introns, canonical non-coding RNAs (snoRNAs, tRNAs,
614 rRNAs, snRNAs), long terminal repeats of transposons, 5' and 3' untranslated regions,
615 regions with no annotation and intergenic long non-coding RNAs. Middle panel shows and
616 average insertion count (all sites, including sites with no insertions) for the same annotation
617 classes. Right panel shows average insertion density (unique insertion positions/site) for the
618 same annotations.

619
620



621
622
623
624
625
626
627
628
629

Supplementary fig. 4. Insertions in the mitochondrial genome.

Unique insertions per site in the mitochondrial genome showed little difference between coding and non-coding regions, whereas the nuclear genome showed far fewer insertions in the coding regions.



630

631

632 **Supplementary fig. 5. Relationships between insertion density, nucleosome density and**
 633 **the insertion motif similarity score.**

634 All plots show relationships with mean insertion count for sites with Hermes insertions (left
 635 panels) or mean insertions/site. In each case, the genome was divided into 100 partitions
 636 according to the measure on the x axis, and the insertion counts or insertion densities were
 637 calculated from these partitions. A) insertion counts plotted against normalised nucleosome
 638 density (nucsome.norm). B) insertion density plotted against normalised nucleosome density.
 639 C) log scale insertion counts plotted against log scale normalised nucleosome density. D) log
 640 scale insertion density plotted against log scale normalised nucleosome density. E) insertion
 641 counts plotted against insertion motif similarity score (IMSS). F) insertion density plotted
 642 against insertion motif similarity score.

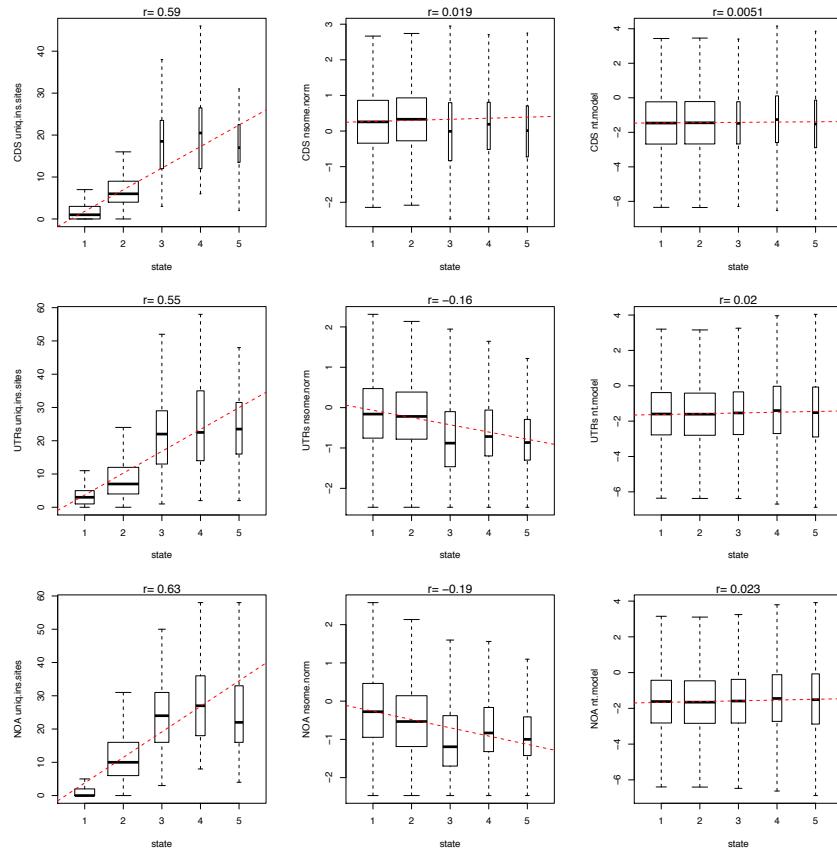
643

644

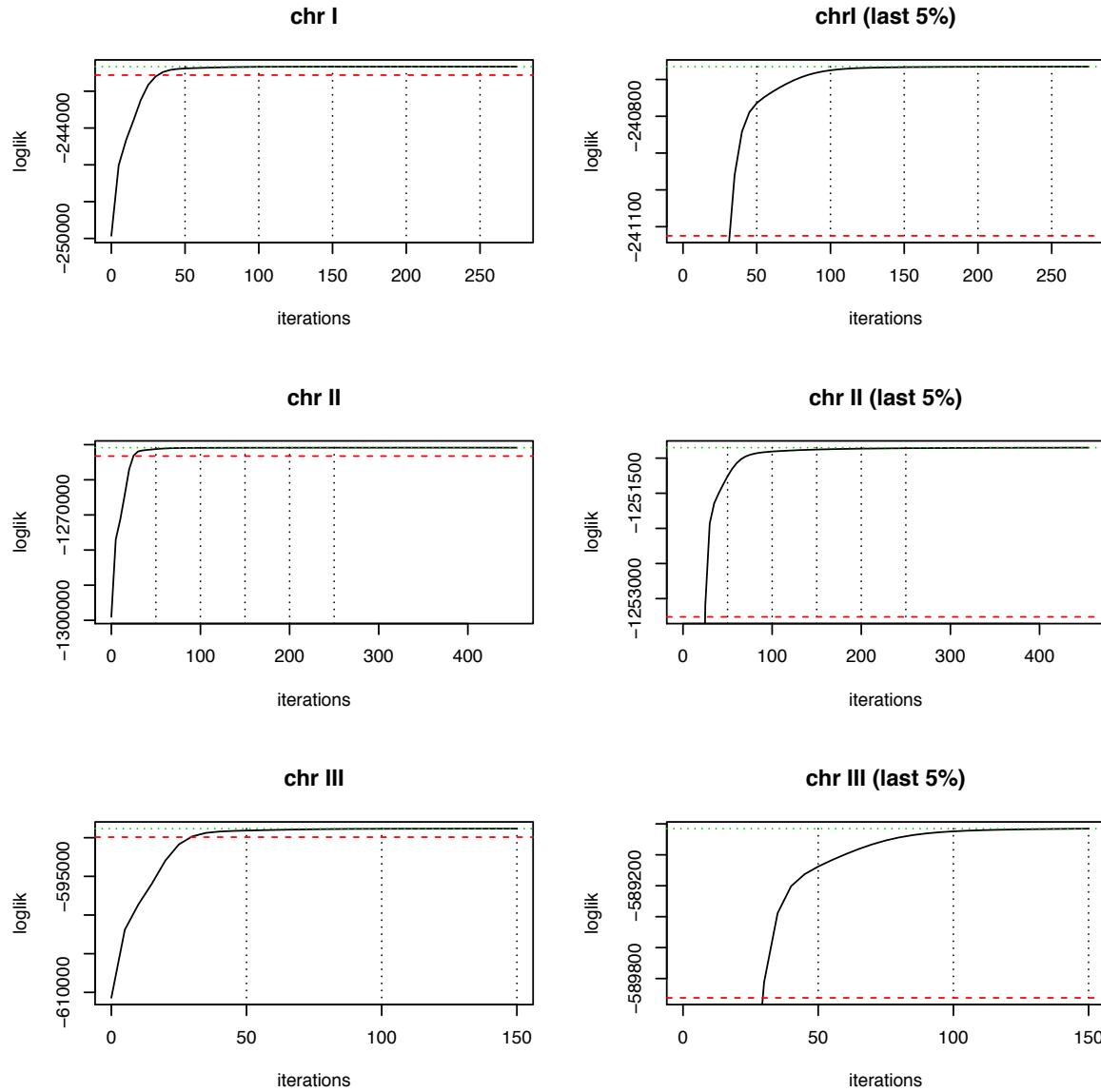
645

646

647

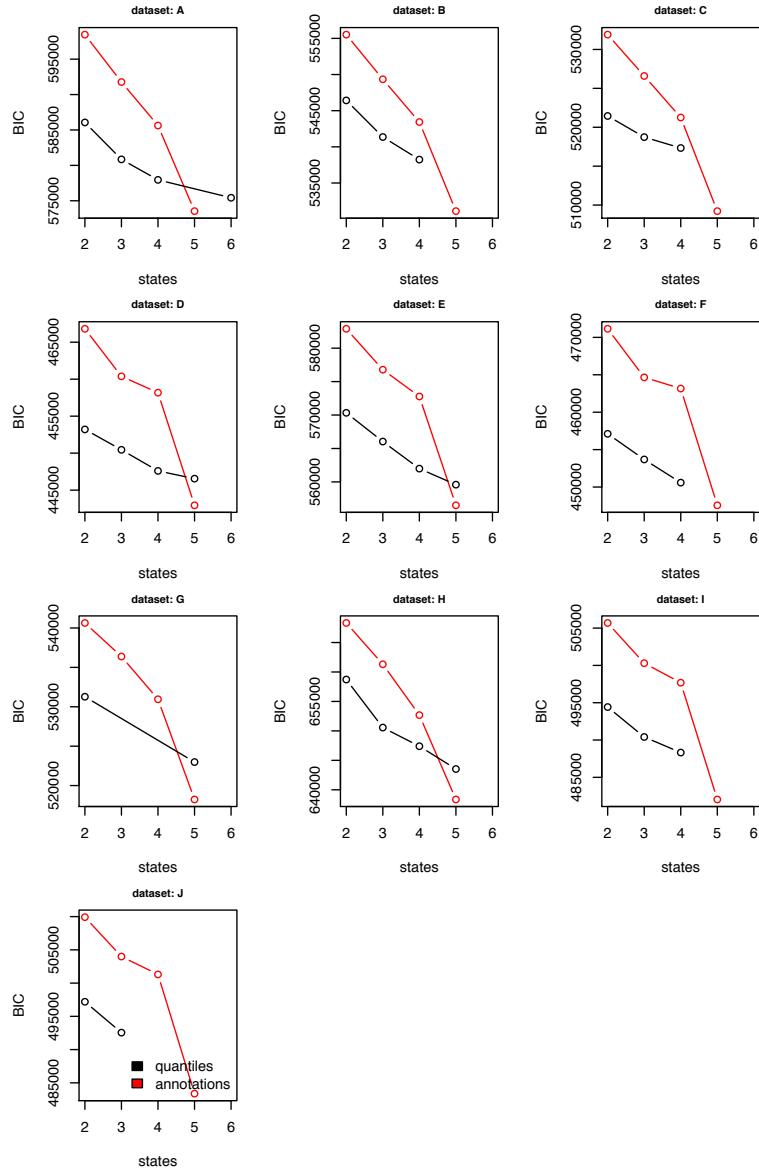


648
649
650
651 **Supplementary fig. 6. HMM states strongly depended on insertion density but only**
652 **weakly correlated with nucleosome density and nucleotide motif.**
653 Top row; for coding regions we show the relationship between HMM states defined and
654 insertion density (unique insertions/100 nt) (left panel), normalised nucleosome density
655 (nsome.norm, middle panel) and the insertion motif similarity score (nt.model, right panel).
656 Middle row; the same relationships for 5' and 3' untranslated regions. Lower row, the same
657 relationships for regions with no annotations. In all cases Spearman rank correlations are
658 shown above plots.
659
660
661



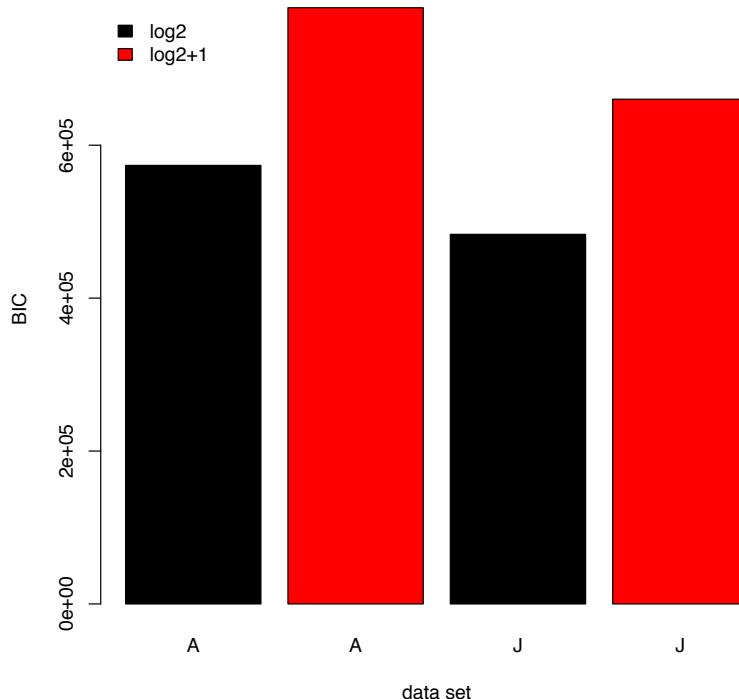
662
663
664
665
666
667
668
669

Supplementary fig. 7. Log likelihoods for fits of HMM models improved little after 150 iterations. For sections of chromosomes I, II and III we show the log likelihood of the model fit to the data with successive iterations of the Viterbi algorithm. Left panels show the entire range of likelihoods, with red and green dashed lines showing the 95th and 99th percentiles. Right panels show the upper 5th percentiles. Model fits improved little after 150 iterations.



670
671

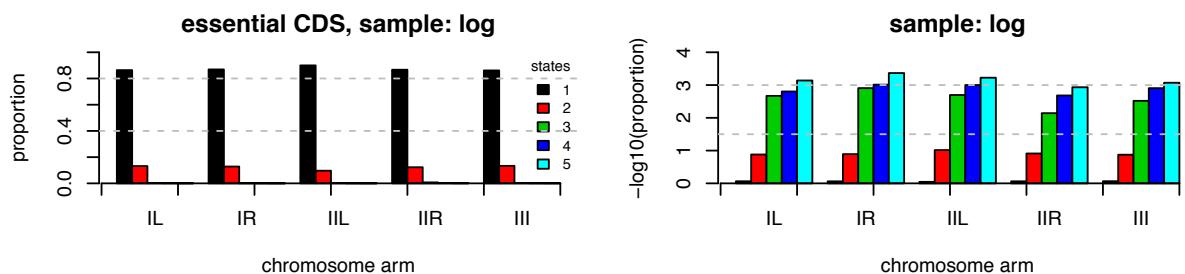
672 **Supplementary fig. 8. Bayesian information criterion scores (BIC) indicated that the 5-state annotation model was the best fit.** For ten 100 kb fractions of the genome (data sets A – J), we show the BIC scores for model fitting with the depmixS4 package [42,43]. Red points show the annotation-based models from 2-5 states (see methods for state definitions). Black points show the quantile models, where training data is defined based on insertion density quantiles (unique insertions/100 nt). For example a three-state model used the first third of insertion-dense data to train S1, the second third to train S2, *etc*. The five-state model which was used for this analysis was trained on coding sequences of essential genes (S1), coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and unannotated regions (S4), and sites with the highest 10% of unique insertions/100 nt (S5). The ten ‘test data’ subsets of the genome, each a 100 kb fraction as are follows: Chromosome I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001, Chromosome II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001 and Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J).



687
688
689
690
691
692
693
694
695
696
697

Supplementary fig. 9. Excluding singleton insertions produced better model fits.

HMM code used \log_2 of insertion counts (rounded to the nearest integer). Since $\log_2(1)$ is zero, this treats sites with one insertion the same as sites with no insertions. Trails of the HMM code that used $\log_2(\text{insertions}+1)$, where sites with 0 insertions have different value from those with 1, resulted in a worse fit to the model. For two of the test data sets (A, J), we show the BIC for models fitted with $\log_2(\text{insertions})$ and $\log_2(\text{insertions}+1)$.



698
699
700
701
702
703
704
705
706
707
708

Supplementary fig. 10. Separate fits to the model with different data resulted in similar distributions of states. Model fitting was performed on five subsets of the data; IL (left arm of chromosome I), IR (right arm of chromosome I), IIL (left arm of chromosome II), IIR (right arm of chromosome II), and III (all of chromosome III). The left panel shows the proportion of essential coding regions for each subset that were assigned to states 1-5, according to the key. Most were assigned to state 1 or 2. The right panel shows the $-\log_{10}$ of the proportion, which indicates that the less frequent states are also similarly distributed between subset model fits, supporting consistent convergence of the model between these genome subsets.

709
710 1. ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, et
711 al. An integrated encyclopedia of DNA elements in the human genome. *Nature*.
712 2012;489:57–74.

713 2. Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of
714 television sets: “Function” in the human genome according to the evolution-free gospel of
715 encode. *Genome Biol Evol*. 2013;5:578–90.

716 3. Doolittle WF. Is junk DNA bunk? A critique of ENCODE. *Proc Natl Acad Sci USA*.
717 National Acad Sciences; 2013;110:5294–300.

718 4. Stone EA, Cooper GM, Sidow A. Trade-offs in detecting evolutionarily constrained
719 sequence by comparative genomics. *Annual review of genomics and human genetics*. Annual
720 Reviews; 2005;6:143–64.

721 5. Jeffares DC, Rallid C, Rieux A, Speed D, Převorovský M, Mourier T, et al. The genomic
722 and phenotypic diversity of *Schizosaccharomyces pombe*. *Nature Genetics*. March.
723 2015;47:235–41.

724 6. Fawcett JA, Iida T, Takuno S, Sugino RP, Kado T, Kugou K, et al. Population Genomics
725 of the Fission Yeast *Schizosaccharomyces pombe*. *PLoS ONE*. 2014;9:e104241.

726 7. Yu F, Lu J, Liu X, Gazave E, Chang D, Raj S, et al. Population genomic analysis of 962
727 whole genome sequences of humans reveals natural selection in non-coding regions. Mariño-
728 Ramírez L, editor. *PLoS ONE*. Public Library of Science; 2015;10:e0121644.

729 8. Campos JL, Halligan DL, Haddrill PR, Charlesworth B. The relation between
730 recombination rate and patterns of molecular evolution and variation in *drosophila*
731 *melanogaster*. *Mol Biol Evol*. 2014;31:1010–28.

732 9. Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. *Genet Res*. 1974;23:23–
733 35.

734 10. Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome
735 region underlying artemisinin resistance in malaria. *Science (New York, NY)*. American
736 Association for the Advancement of Science; 2012;336:79–82.

737 11. van Opijnen T, Bodi KL, Camilli A. Tn-seq: High-throughput parallel sequencing for
738 fitness and genetic interaction studies in microorganisms. *Nature Methods*. 2009;6:767–72.

739 12. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, et al.
740 Global assessment of genomic regions required for growth in *Mycobacterium tuberculosis*.
741 *PLoS Pathog*. 2012;8:e1002946.

742 13. DeJesus MA, Ioerger TR. A Hidden Markov Model for identifying essential and growth-
743 defect regions in bacterial genomes from transposon insertion sequencing data. *BMC
744 Bioinformatics*. BioMed Central; 2013;14:303.

745 14. Chao MC, Abel S, Davis BM, Waldor MK. The design and analysis of transposon
746 insertion sequencing experiments. *Nat Rev Microbiol*. 2016;14:119–28.

747 15. Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, et al. Mutant
748 phenotypes for thousands of bacterial genes of unknown function. *Nature*. Nature Publishing
749 Group; 2018;44:D330–509.

750 16. Park JM, Evertts AG, Levin HL. The Hermes transposon of *Musca domestica* and its use
751 as a mutagen of *Schizosaccharomyces pombe*. *Methods*. 2009;49:243–7.

752 17. Evertts AG, Plymire C, Craig NL, Levin HL. The hermes transposon of *Musca domestica*
753 is an efficient tool for the mutagenesis of *Schizosaccharomyces pombe*. *Genetics*.
754 2007;177:2519–23.

755 18. Guo Y, Park JM, Cui B, Humes E, Gangadharan S, Hung S, et al. Integration profiling of
756 gene function with dense maps of transposon integration. *Genetics*. 2013;195:599–609.

757 19. Michel AH, Hatakeyama R, Kimmig P, Arter M, Peter M, Matos J, et al. Functional
758 mapping of yeast genomes by saturated transposition. *eLife*. eLife Sciences Publications
759 Limited; 2017;6:E3179.

760 20. Gagliano SA, Barnes MR, Weale ME, Knight J. A Bayesian method to incorporate
761 hundreds of functional characteristics with association evidence to improve variant
762 prioritization. Li Y, editor. *PLoS ONE*. Public Library of Science; 2014;9:e98122.

763 21. Gangadharan S, Mularoni L, Fain-Thornton J, Wheelan SJ, Craig NL. Inaugural Article:
764 DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo. *Proc Natl
765 Acad Sci USA*. 2010;107:21966–72.

766 22. Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay J-F, et al.
767 Long non-coding RNA repertoire and regulation by nuclear exosome, cytoplasmic
768 exonuclease and RNAi in fission yeast. 2017.

769 23. Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay J-F, et al.
770 Long non-coding RNA repertoire and targeting by nuclear exosome, cytoplasmic
771 exonuclease and RNAi in fission yeast. *RNA*. In revision.

772 24. Kim D-U, Hayles J, Kim D, Wood V, Park H-O, Won M, et al. Analysis of a genome-
773 wide set of gene deletions in the fission yeast *Schizosaccharomyces pombe*. *Nat Biotechnol*.
774 2010;28:617–23.

775 25. Malecki M, Bähler J. Identifying genes required for respiratory growth of fission yeast.
776 *Wellcome Open Res*. 2016;1:12.

777 26. Malecki M, Bitton DA, Rodríguez-López M, Rallis C, Calavia NG, Smith GC, et al.
778 Functional and regulatory profiling of energy metabolism in fission yeast. *Genome Biol*.
779 *BioMed Central*; 2016;17:240.

780 27. Lynch M, Conery JS. The Origins of Genome Complexity. *Science*. American
781 Association for the Advancement of Science; 2003;302:1401–4.

782 28. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. A high-
783 resolution map of human evolutionary constraint using 29 mammals. *Nature*. 2011;478:476–
784 82.

785 29. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al. Defining
786 functional DNA elements in the human genome. 2014.

787 30. Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the Human genome is constrained:
788 variation in rates of turnover across functional element classes in the human lineage.
789 Schierup MH, editor. PLoS Genet. 2014;10:e1004525.

790 31. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al.
791 Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome
792 Res. 2005;15:1034–50.

793 32. Davis MPA, Van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set
794 of tools for quality control and analysis of high-throughput sequence data. Methods.
795 2013;63:41–9.

796 33. Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, et al. The genome
797 sequence of *Schizosaccharomyces pombe*. Nature [Internet]. 2002;415:871–80. Available
798 from:
799 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11859360&retmode=ref&cmd=prlinks>

800 34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
801 Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

802 35. Bitton DA, Rallis C, Jeffares DC, Smith GC, Chen YY, Codlin S, et al. LaSSO, a strategy
803 for genome-wide mapping of intronic lariats and branch-points using RNA-seq. Genome Res.
804 2014;24:1169–79.

805 36. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
806 features. Bioinformatics. 2010;26:841–2.

807 37. Tong P, Pidoux AL, Toda NR, Ard R, Berger H, Shukla M, et al. Inter-species
808 conservation of organisation and function between non-homologous regional centromeres.
809 RNA. Cold Spring Harbor Laboratory; 2018;:309815.

810 38. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, et al. Comparative
811 functional genomics of the fission yeasts. Science (New York, NY). 2011;332:930–6.

812 39. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus: Algorithms for
813 genome multiple sequence alignment. Genome Res. Cold Spring Harbor Lab; 2011;21:1512–
814 28.

815 40. Siepel A, Pollard KS, Haussler D. New Methods for Detecting Lineage-Specific
816 Selection. Research in Computational Molecular Biology. Berlin, Heidelberg: Springer
817 Berlin Heidelberg; 2006. pp. 190–205.

818 41. Hickey G, Paten B, Earl D, Zerbino D, Haussler D. HAL: a hierarchical format for
819 storing and analyzing multiple genome alignments. Bioinformatics. 2013;29:1341–2.

820 42. Visser I, Speekenbrink M. depmixS4: An R-package for hidden Markov models. Journal
821 of Statistical Software. 2010.

823 43. Visser I, Speekenbrink M. *depmixS4: Dependent Mixture Models - Hidden Markov*
824 *Models of GLMs and Other Distributions in S4*. (Version 1.3-3). [Software]. (2015). 2015.

825