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Abstract 26	

Background: Non-protein-coding regions of eukaryotic genomes remain poorly understood. 27	

Diversity studies, comparative genomics and biochemical outputs of genomic sites can be 28	

indicators of functional elements, but none produce fine-scale genome-wide descriptions of 29	

all functional elements.  30	

Results: Towards the generation of a comprehensive description of functional elements in the 31	

haploid Schizosaccharomyces pombe genome, we generated transposon mutagenesis libraries 32	

to a density of one insertion per 13 nucleotides of the genome. We applied a five-state hidden 33	

Markov model (HMM) to characterise insertion-depleted regions at nucleotide-level 34	

resolution. HMM-defined functional constraint was consistent with genetic diversity, 35	

comparative genomics, gene-expression data and genome annotation.  36	

Conclusions: We infer that transposon insertions lead to fitness consequences in 90% of the 37	

genome, including 80% of the non-protein-coding regions, reflecting the presence of 38	

numerous non-coding elements in this compact genome that have functional roles. Display of 39	

this data in genome browsers provides fine-scale views of structure-function relationships 40	

within specific genes. 41	

 42	

Keywords: Schizosaccharomyces pombe, fission yeast, transposon mutagenesis,  TraDIS, 43	

Tn-Seq, fitness landscape 44	

 45	

Background 46	

A goal of genetics is to understand what sequence elements within genomes specify cellular 47	

and organismal function. The highly-transcribed protein-coding regions of eukaryote 48	

genomes are routinely detected within genomes and are well studied. The numerous non-49	

coding elements, on the other hand, are more challenging to detect, profile and functionally 50	
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describe. While biochemical assays of genome activity can indicate functional units, inferring 51	

function based solely on biochemical activity, e.g. the ENCODE project’s definition of 52	

functional DNA [1], is inconsistent with evolutionary analysis that show no signal of 53	

conservation for substantial proportions of larger eukaryotic genomes [2,3]. 54	

 In theory, functionally important elements could be detected by their conservation 55	

between lineages relative to neutral elements. However, such analyses suffer from the 56	

paradox that more divergent species allow more sensitive detection of small functional 57	

elements, but there will be fewer shared functional regions [4]. Similarly, patterns of 58	

diversity detect evolutionarily constrained regions within a species [5-7]. However, these 59	

analyses are limited to summaries of annotation types, rather than defining particular 60	

conserved elements, because segregating genetic variants are generally too sparse within 61	

specific genes to estimate the fitness effects of mutations accurately. Additionally, various 62	

factors can affect segregating variants and/or allele frequencies at any particular genomic 63	

locus, including recombination rate [8] and recent events of selection which purge diversity 64	

in surrounding areas [9,10]. For these reasons, neither diversity nor divergence analyses have 65	

sufficient power to describe functional constraint at gene or sub-genic resolution. In contrast, 66	

high-density transposon-insertion libraries generated from independent repeats can precisely 67	

define functional elements and have provided estimators of gene-knockout fitness in bacterial 68	

genomes [11-15].  69	

 To define functional elements in a eukaryote genome, we generated multiple dense 70	

insertion libraries in fission yeast (Schizosaccharomyces pombe), using the Hermes cut and 71	

paste transposon system [16]. We developed a HMM to account for biases in insertion 72	

frequency and smooth the stochastic insertion profiles into meaningful measures of insertion-73	

fitness profiles that span multiple continuous genome positions. We analysed this data with 74	

respect to genome annotation, genetic diversity, divergence and transcriptional output. This 75	
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study provides a detailed resource for the understanding and analysis of non-genic functional 76	

regions in this model species. This analysis shows that even this well-annotated genome 77	

features abundant non-coding functional elements that have not previously been recognized. 78	

It provides a detailed resource for further study of genic and non-genic functional elements. 79	

 80	

Results 81	

Generation of Dense Hermes Insertion Libraries in Fission Yeast 82	

We generated nine Hermes insertion libraries using modifications of previously published 83	

methods [16-18]. Insertions were generated in cultures undergoing rapid mitotic proliferation, 84	

serially diluted for approximately 25 generations (supplementary fig. 1).  Insertion sites 85	

were identified using a custom Hermes-end primed sequencing strategy to produce paired-86	

end reads (supplementary fig. 2). This approach included the attachment of a 10-nucleotide 87	

(nt) unique molecular identifier (UMI) to each sequenced DNA molecule, which enabled us 88	

to remove PCR-generated duplicates of Hermes-containing DNA molecules and thus count 89	

the number of insertions per position. These counts represent either multiple independent 90	

insertions at a genomic location (in different cells within a library), or the result of a single 91	

insertion event that has been propagated by cell division.  92	

The libraries contained an average of 1.8 million genomic insertions (supplementary 93	

table 1). Collectively, our libraries contained 31 million insertions at 930,000 unique sites, an 94	

average insertion density of 1 insertion site per 13 nt of the genome.  95	

 96	

Insertion Density is Consistent with Expectations of Functional Constraint 97	

Based on previous transposon analyses in bacteria and yeasts, we expected that more 98	

important regions would tolerate fewer insertions [14,18,19]. Initial analysis showed that 99	

both insertion density (unique insertion positions/site) and average insertion count (insertion 100	
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instances per site) were significantly lower in essential genes compared to non-essential 101	

genes and higher in non-genic regions (supplementary fig. 3). This result suggested that 102	

insertions reflect the relative functional importance of these annotated elements. 103	

 Notably, the mitochondrial genome also featured high insertion density, but with little 104	

difference between coding and non-coding regions (supplementary fig. 4). This result likely 105	

reflects that any given transposon insertion among multiple mitochondrial genomes will have 106	

little or no consequence for the cell. Nevertheless, this finding shows that Hermes 107	

transposition can readily occur in mitochondria.  108	

To systematically examine the relationship between genomic regions and insertions, 109	

we compared our Hermes insertion data with genetic diversity (π), both within the species 110	

and divergence between Schizosaccharomyces species. Based on these evolutionary measures 111	

of functional constraint, we divided the genome into four annotation classes: coding regions 112	

of essential genes, coding regions of non-essential genes, 5’/3’-untranslated regions (UTRs) 113	

and introns, and genomic regions with no annotation (generally intergenic regions). The 114	

relative levels of genetic diversity and divergence consistently showed that essential coding 115	

regions were subject to higher constraint than non-essential coding regions, followed by 116	

UTRs/introns, with unannotated regions being the least constrained. Hermes insertion density 117	

(unique insertion positions/100 nt) and mean insertion count were consistent with this 118	

ranking (fig. 1). These findings indicate that analysis of Hermes insertions can quantify the 119	

fitness profiles of both coding and non-coding regions. 120	

 121	

 122	
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 123	

 124	

Fig. 1. Hermes insertion data recapitulate signals of evolutionary constraint. For protein-125	

coding regions of essential genes (eCDS), protein-coding regions of non-essential genes 126	

(nCDS), 5’/3’ UTRs and introns (UTR+int), regions of the genome without any annotation 127	

(NOA) and non-coding RNAs ncRNAs) we show: (A) the genetic diversity from 57 strains of 128	

S. pombe [5], measured in 100 nt windows, and (B) the phyloP measure of constraint [20] 129	

between four Schizosaccharomyces species (mean phyloP score, over 100 nt windows). 130	

Similarly, for pooled proliferation Hermes data, we show: (C) the number of unique insertion 131	
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 7	

sites/100 nt, and (D) the mean insertion counts/100 nt (calculated including sites without 132	

insertions as zero counts). 133	

 134	

Application of a Hidden Markov Model to Account for Insertion Biases 135	

Previous analyses have shown that the Hermes transposon insertions are biased towards 136	

nucleosome-free DNA and that they preferentially occur in DNA with a degenerate sequence 137	

motif (TNNNNA) [18,21]. We sought to develop a prediction of the fitness consequences of 138	

transposon insertions at a fine-scale resolution correcting for such bias. This prediction 139	

should also reflect that neighbouring nucleotides in a genome do not function independently 140	

but as ‘functional’ units (e.g. exons, introns, UTRs). We developed a HMM to correct for 141	

these insertion biases and smooth the signal from stochastic insertions into contiguous 142	

functional units. In this model, the observed data are the insertion counts and the ‘hidden’ 143	

state is the degree of biological importance. Regions with greater importance are expected to 144	

have fewer insertions. 145	

Our model utilised measurements of nucleosome density and sequence composition. 146	

Genome-wide profiles of nucleosome density were obtained from proliferating cells [22]. 147	

Next, the sequence composition of previously recorded in vitro insertion sites [18] were 148	

evaluated to find a degenerate insertion motif. We then constructed a sequence composition 149	

measure, termed insertion motif similarity score (IMSS), which describes the similarity of 150	

each position in the genome to this motif. Data from these two measurements was used to 151	

construct generalised linear models describing the relationship between insertion density, 152	

nucleosome density and IMSS (supplementary fig. 5). 153	

Our HMM divided the genome into five states, from state 1 (S1), indicating the sites 154	

at which transposon insertion had the greatest negative functional consequences, to state 5 155	

(S5), indicating sites at which insertion had the least negative (or potentially positive) 156	
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functional consequences. This number of states was obtained from initial trials with the 157	

model, detailed below. Annotated regions of the genome were used to train the model. The 158	

first state, S1, was trained on coding regions of essential genes (whose knockouts are 159	

inviable), S2 was trained on coding regions of non-essential genes, S3 on regions that may 160	

have some importance but weaker signals (introns and UTRs), S4 on unannotated intergenic 161	

regions that show high genetic diversity [5], where mutations or insertions may be neutral, 162	

and S5 on the top-10% insertion-dense sites to allow for the possibility that insertions in 163	

some positions enhance cell survival. 164	

The model was fitted to the data by maximum likelihood, using the EM algorithm.  165	

The Viterbi algorithm was then used to determine the most likely state (S1-S5) for each 166	

genomic position given the nucleosome density, IMSS, and insertion counts. Model fitting 167	

did not explicitly include annotations (see Methods for details on HMM). HMM states were 168	

highly consistent between independent HMM model fitting runs (see Methods). Insertion 169	

data, HMM states, nucleosome density and conservation measures are available in a 170	

dedicated genome browser http://bahlerweb.cs.ucl.ac.uk/bioda and in the fission yeast model 171	

organism database PomBase (www.pombase.org). These tools allow users to check 172	

functional information for regions of interest, including fine-scale structure-function 173	

relationships within specific genes and putative regulatory regions. 174	

 175	

Fitness Consequences of Insertions 176	

Transposon insertions had negative fitness consequences over most of the genome, with 91% 177	

of the genome being assigned to states S1 or S2. Protein-coding regions of essential genes, 178	

used as training data for S1 sites, feature both high between-species conservation and low 179	

within-species diversity (fig. 1). The HMM assigned 87% of these regions to S1 (fig. 2), 180	

along with 32% of non-essential protein-coding regions. 181	
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 9	

 Our analysis indicates that most of the non-coding genome in this species encodes 182	

functional elements. The fission yeast genome is much more compact compared to 183	

mammalian and plant genomes, with 42% of the current annotation not coding for proteins or 184	

canonical non-coding RNAs (ncRNAs); including 20% UTRs, 5% other ncRNAs that do not 185	

overlap and protein-coding genes, and 14% with no functional annotation at present. New 186	

analysis has discovered almost 6000 new ncRNAs [23], indicating that many functional units 187	

remain undescribed. 188	

The HMM assigned 82% non-protein-coding regions to S1 or S2, indicating that they 189	

were strongly insertion-depleted relative to genome-wide expectations. UTRs, ncRNAs and 190	

unannotated regions were each also insertion-depleted to some extent. (fig. 2A, B). This 191	

measure far exceeds the proportion that would be defined as important with the limited 192	

comparative genomics data available. For example, 24% of regions with no functional 193	

annotation are strongly insertion-depleted (S1), yet these regions show very little 194	

conservation between Schizosaccharomyces species (fig. 1). We also observe that ~12% of 195	

the positions within essential genes contain sufficient insertions to be assigned HMM state 2. 196	

These regions could be a mix of two components: annotation mistakes, or could reflect non-197	

essential domains within essential proteins, as described in budding yeast [19]. 198	

 199	
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 201	

Fig. 2. Functional Landscape by Annotation Type. The HMM defined five states based on 202	

Hermes transposon insertions. State 1 (S1) refers to the most important regions, with the least 203	

insertions, and state 5 (S5) with the highest density of insertions. (A) Percentage of S. pombe 204	

genome covered by various annotation types: entire genome (100%), essential protein-coding 205	

regions (eCDS), protein-coding non-essential regions (nCDS),canonical non-coding RNAs 206	

(snRNAs, snpRNAs, tRNAs, rRNAs, canonRNAs), 5’/3’-UTRs (UTRs), non-coding RNAs 207	

(ncRNAs), and unannotated regions (no-anno). (B) Proportions of each annotation type in the 208	

five states: S1 (red), S2 (black), S3 (dark grey), S4 (light grey) and S5 (white). (C) Mean 209	

HMM states for essential (eCDS) and non-essential (nCDS) coding regions. Representative 210	

50 points are shown for each type to indicate that most essential coding regions have mean 211	

state ~1 (85% mean state <1.2). 212	

 213	

HMM states predict the fitness costs of protein-coding gene disruption 214	

To examine whether the HMM contained information about the relative fitness cost of gene 215	

disruption, we calculated the mean HMM state for each protein-coding gene. While essential 216	

coding genes had much lower mean states (fig. 2C), essential and non-essential genes showed 217	

overlapping distributions. To assess the validity of this measure, we compared it to the 218	

colony sizes of viable knockout mutants on solid media, an orthogonal measure of gene 219	

disruption fitness alteration that uses different media, a more direct fitness measure, and 220	

different methods to obtain complete gene deletions [24]. Reassuringly, the mean HMM state 221	

positively correlated with the colony size of knockout mutants (Pearson r = 0.34, P = 10-90, 222	

fig. 3A) [25,26]. Genes with fewer insertions (lower mean HMM states) were also more 223	

likely to be conserved between Schizosaccharomyces species and highly expressed (fig. 3B, 224	

C), both expectations for genes that cause strong fitness consequences when mutated. In 225	
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summary, these analyses show that the insertion and analysis methods recover biologically 226	

meaningful fitness measures that add value beyond the binary classification of essential/non-227	

essential genes that can be obtained from whole-gene disruptions. 228	

 229	

 230	

Figure 3. Gene mean HMM states are estimators of gene disruption fitness. Protein-231	

coding genes classified into four categories by the mean HMM states, showing those that are 232	

~1 (< 1.5), ~2 (> 1.5 and ≤ 2.5), ~3 (>2.5 and ≤ 3.5) and ~4 (>3.5 and ≤ 4.5). Mean HMM 233	

states were positively correlated with solid media fitness (A), an orthogonal measure. Mean 234	

HMM states were also negatively correlated with conservation (lower HMM states were 235	

more conserved) (B), and negatively correlated with gene expression (lower HMM states 236	

were more highly expressed) (C). 237	

 238	

HMM-Defined Functional Elements 239	

To examine whether the HMM states captured previously annotated elements, such as 240	

introns, promoters, and protein-coding exons, we defined 256,815 ‘HMM-defined elements’ 241	

(HDEs) as genomic regions that feature a continuous run of one HMM state. All S4 or S5 242	

HDEs were less than 100 nt, and mostly intergenic, indicating that only short regions in this 243	
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genome can tolerate insertions without affecting fitness. 244	

 We excluded these S4/S5 HDEs from further analysis, leaving 10,015 HDEs with a 245	

median length of 618 nt, which account for 90% of the mappable genome. HDE edges were 246	

closer to edges of existing annotations than expected by chance (Wilcoxon Rank Sum test, P 247	

<10-16, fig. 4A, B). This result is consistent with these HMM-defined regions representing 248	

boundaries of a variety of biologically-relevant elements (including transcriptional units, 249	

spliced exons, protein-coding regions). 250	

To characterise these HDEs, we calculated their conservation during evolution and 251	

their RNA expression levels. The HDEs which were most insertion-depleted, and therefore 252	

most critical for cell function (S1 elements), covered 35% of the mappable genome. These 253	

HDEs showed distinct features: they were most conserved between species, the longest 254	

(mean length 1.9 kb), most highly expressed, and generally composed of protein-coding 255	

regions (fig. 4D). Another 52% of the genome was composed of S2 elements (mean length 256	

1.0 kb), including mainly coding regions and UTRs, which also showed relatively high 257	

expression levels and conservation. The inclusion of many 5’- and 3’-UTRs in S2 elements 258	

indicates that these non-coding regions often contain regulatory sites whose disruption 259	

impairs cellular function. Finally, the S3 elements occupied only 3% of the genome, were 260	

seldom conserved, generally short (mean length 0.18 kb), and almost exclusively 5’-UTRs. 261	

These UTRs likely contain regulatory sites, because they feature fewer insertions than S4 262	

regions, but would have been difficult to identify without the insertion data because they are 263	

neither conserved nor very highly transcribed. As the Schizosaccharomyces clade contains 264	

only four species, subtle constraint will likely remain undetected. Overall, 10% of the 265	

important sites in the genome (S1-S3) showed no signal of conservation between species.  266	

 267	
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 268	

 269	

Fig 4. HMM-defined elements describe functional genomic outputs. Parts A-C show that 270	

the boundaries of HMM-Defined Elements (HDEs) are aligned to or close to the boundaries 271	

of existing annotations, as defined in the legend at top right. The random expectation is 272	

derived from the same number of elements of the same lengths, placed at random on the 273	

genome. (A) HDEs have a smaller distance to the nearest annotation than the random 274	

expectation. (B) For all HDE edges we show the distance to the nearest annotation type, 275	

including 5/3’ UTRs, transcripts (transcription start/stop positions), coding sequences 276	
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(amino-acid encoding regions, CDS), non-coding RNAS (ncRNAs), with lines coloured 277	

according to the legend at right. C) HDEs fell closest to a variety of annotations. The pie 278	

chart shows the proportions of nearest annotations, indicating a bias towards defining 5’UTR 279	

edges. There were subtle differences between S1, S2 and S3 states in this respect (not 280	

shown). (D) Density plots describe various characteristics of HDEs, from left showing S1, S2 281	

and S3 HDEs. Conservation (y axis, top row) levels are mean phyloP measures from four 282	

Schizosaccharomyces species. HDE lengths (y axis, middle row) are shown on a log10 scale. 283	

Expression levels (x axes) are RNA-Seq RPKMs from proliferating cells. Dashed horizontal 284	

and vertical lines show the 5th and 95th percentiles of conservation, expression levels or 285	

lengths. The positions of symbols (circle, triangle etc.) indicate the median positions within 286	

each state for essential transcripts (ESS/T), coding regions (CDS), and 5’/3’ UTRs. For 287	

example, the few conserved S3 sites are coding regions. The bottom row shows the 288	

proportion of HDEs that are annotated as essential transcripts (ESS/T), protein-coding 289	

sequence (CDS), 5’ UTR and 3’ UTR. 290	

 291	

Discussion 292	

Dense transposon-insertion libraries can identify genes whose disruption affects fitness (in 293	

particular conditions) within bacterial genomes with high resolution [11-15]. However, 294	

similarly high-resolution descriptions of eukaryotic genomes are more limited, and have not 295	

yet achieved nucleotide-level definitions of fitness landscapes [18,19]. Studies with 296	

eukaryotic genomes are also more challenging, because they are larger and contain 297	

nucleosomes, which bias integration rates. With the density of our insertions in libraries from 298	

proliferating cells (26.7 million insertions, 1 unique insertion site/13 nt), and the application 299	

of a HMM to account for insertion bias, we analysed functional importance at near single-300	

nucleotide resolution.  301	
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The	findings	of	the	HMM	are	validated	by	the	demonstration	that	continuous 302	

single-state genome sections (HMM-defined elements, HDEs) are closely aligned to existing 303	

annotations, and define elements with different properties (fig. 4). As the Hermes insertion 304	

data recapitulates signals of genetic diversity and divergence within different annotation 305	

categories, we can be confident that insertion density reflects functional constraint (fig. 1). 306	

The application of a hidden Markov Model robustly accounted for insertions biases, since 307	

HMM states strongly depended on insertion density but only weakly correlated with 308	

nucleosome density and nucleotide motif (supplementary fig. 6). 309	

 Our HMM analysis of transposon insertions assigned 91% of the fission yeast to 310	

HMM S1 or S2 (which were trained on essential and non-essential coding regions, 311	

respectively). Based on this, we conclude that 91% of the genome contains functional 312	

elements that are affected by transposon insertions. These likely functional regions of the 313	

genome include 80% of the currently un-annotated genome, consistent with the presence of 314	

many unrecognised functional elements in non-coding regions of this model organism. This 315	

is the first near nucleotide-level study of fitness consequences in a eukaryote genome, so 316	

there are no clear expectations. In theory, species with larger population sizes are expected to 317	

maintain smaller genomes with larger proportions of functional DNA [27]. Consistent with 318	

this prediction, analysis of comparative genomics data has estimated that 5-15% of the 319	

human genome shows signals of conservation [28-30], whereas increasingly larger 320	

proportions of the Drosophila (~50%), Caenorhabditis (37%), and Saccharomyces yeast (up 321	

to 68%) genomes are conserved [31]. Our estimate of functional regions is likely larger due 322	

to the limitation of comparative genomics, that is it only able to detect regions that have 323	

continuously subject to purifying selection throughout the phylogeny of the species aligned 324	

[4]. It is also possible that in some cases transposon insertions can disrupt the function of 325	

larger neighbouring regions, although the sites of insertions themselves are not functional.  326	
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 A limitation of our study is that the transposon method does not reveal how non-327	

coding genomes elements function. Future work will reveal whether these elements function 328	

as the widespread non-coding transcripts [22] and/or as regulatory elements controlling the 329	

expression of coding genes.  330	

 331	

Conclusion 332	

Our analysis indicates that the fission yeast genome is densely packed with functional 333	

elements, including many uncharacterised non-protein-coding elements. We estimate that 334	

90% of the genome contains functional elements that are impaired by transposon insertions, 335	

including 80% of the non-protein-coding regions. We expect that saturating transposon 336	

mutagenesis data has potential to define functional non-protein-coding elements within 337	

eukaryote genomes that would be difficult to detect with any other contemporary method.  338	
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Methods 339	

Creating Hermes Insertion Libraries. Hermes insertion libraries were constructed as 340	

described [16] using the pHL2577 and pHL2578 plasmids, except that the transposition 341	

frequency was calculated by dividing the number of colonies on YES 5-FOA+G418 plates by 342	

the number of colonies on YES plates. All experiments were performed in an S. pombe strain 343	

with the genotype ura4–D18 leu1–32 h–. Typically, <0.2% of cells in libraries contained 344	

genomic Hermes insertions, so we expect that most insertion mutants contain a single 345	

insertion. 346	

 347	

Generating DNA Libraries for Sequencing. Genomic DNA was extracted from insertion 348	

libraries using phenol/chloroform extraction. All DNA extracted from a library was 349	

processed. DNA was sheared to an average size of 200 bp using a Covaris S2 ultrasonicator 350	

(Covaris, Woburn, Massachusetts). Sheared DNA was end repaired using the NEBNext® 351	

End Repair Module (NEB, Hitchin, UK). Linker1-Random10mer and Linker2 352	

(supplementary table 4) were ligated using the NEBNext® Quick Ligation Module (NEB, 353	

Hitchin, UK). In Linker1-Random10mer, the random 10 nt sequence acted as a UMI to 354	

distinguish unique chromosomal insertions from PCR amplifications. DNA was then digested 355	

with KpnI-HF (NEB, Hitchin, UK) to exclude residual Hermes pHL2577 donor plasmid from 356	

PCR amplification (as the plasmid contains a unique KpnI site). NEBNext® modules were 357	

used according to manufacturer’s instructions. To enrich for fragments containing the 358	

Hermes transposon, DNA was amplified with BIOTAQ™ DNA polymerase (Bioline, Essex, 359	

UK) using a primer that complimentary to the Hermes transposon (1-Transposon-4NNNN), 360	

and to the linker (Linker1-Amp, supplementary table 4). Ultimately, a second PCR attached 361	

the multiplex oligonucleotides for Illumina MiSeq sequencing; the MS-102-2022 MiSeq 362	

reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was used to sequence the libraries. To 363	
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increase the complexity of the libraries, for each library, ligation and PCR reactions were 364	

performed in multiple reactions (in 96-well plates), using a maximum of 1 µg of DNA per 365	

well and then re-pooled before sequencing. Detailed protocols are available in the Figshare 366	

project Hermes Transposon Mutagenesis of the Fission Yeast Genome (will be made publicly 367	

available upon manuscript acceptance). Sequence data are available at European Nucleotide 368	

Archive in study accession number PRJEB27324. Sample accessions are listed in 369	

supplementary table 5. 370	

 371	

Computational Processing of Sequencing Data.  372	

Bioinformatic processing filtered the sequence data to retain only reads derived from Hermes 373	

insertions, removed reads with duplicate UMIs, and filtered for correctly-paired high-374	

confidence read-mapping, and ultimately located the positions and orientation (strand) of 375	

genomic insertions. Details are as follows. Read 1 architecture was 376	

[random4mer][Hermes][Genome] (with random 4mer added to increase 5’ Read 1 end 377	

complexity to allow Illumina cluster calling). The 4mer was trimmed with fastx_trimmer 378	

(http://hannonlab.cshl.edu/fastx_toolkit/). The Reaper tool [32] was used to detect reads with 379	

5’ ends matching the expected Hermes sequence, and excluding those within the pHL2577 380	

donor plasmid. Read 2 architecture was [10mer][Linker][Genome]. We used a custom Perl 381	

script to exclude duplicate reads with exactly matching 10mers. Processed Reads 1 and 2 382	

were re-paired using Tally [32], and the 10mer and Linker were trimmed with fastx_trimmer. 383	

Paired-end reads were aligned to the reference genome [33] and the donor plasmid using 384	

BWA-MEM (Li and Durbin 2009). SAMtools [34] was used to select correctly paired reads 385	

with a mapping score ≥30 (flags 83 and 99). Finally, we applied custom scripts to identify the 386	

location and strand of insertions from the filtered BAM outputs with SAMtools. Insertions 387	

found on the same chromosome but on different strands were considered as unique events. 388	
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Command lines for this procedure and scripts are available in the Figshare project Hermes 389	

Transposon Mutagenesis of the Fission Yeast Genome, as well as all insertion data, and 390	

HMM model fitting results. 391	

 392	

Nucleosome Density Data. The generation of the nucleosome density data has been 393	

described in Atkinson et al. [22] and are available at the European Nucleotide Archive under 394	

accession number PRJEB21376.  The median nucleosome density from two repeats was 395	

transformed to a normal distribution. This normalised nucleosome density showed a stronger 396	

correlation with insertion density than the raw nucleosome density and was used as a 397	

predictor in the HMM. 398	

 399	

Insertion Motif Similarity Score. In vitro Hermes insertion data [18] was used to identify a 400	

sequence motif corresponding to insertion events in non-nucleosome bound DNA. Strings of 401	

41 nt, centred upon each in vitro insertion event were taken from the S. pombe reference 402	

sequence. The percentage of each nucleotide present at each of the 41 positions was 403	

measured and compared to percentage nucleotide compositions calculated across the entire 404	

genome. A window of 20 positions was identified for which the composition differed from 405	

the genome-wide composition by at least 1% for at least one of the four nucleotides. For each 406	

position i, we denote the probability of observing the nucleotide a as 407	

p"(a):	1 ≤ i ≤ 20, 𝑎 ∈ {A, G, C, T} 408	

and denote the genome-wide probability of observing the nucleotide a as pgw(a). 409	

A genome-wide scan was then conducted of strings of 20 consecutive nt in the genome 410	

sequence, calculating a likelihood measure of the extent to which each string matched the 411	

insertion motif, as compared to the genome-wide base composition. Where a string is given 412	

by the nucleotides {a1, a2, …, a20} we calculate the insertion motif similarity score as follows: 413	
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𝐼𝑀𝑆𝑆 = 	 log 𝑝" 𝑎" − log 𝑝?@ 𝑎"

AB

"CD

	 414	

Here a positive score indicates a greater similarity to the insertion motif than to the genome-415	

wide sequence propensity. This likelihood measure was used as a predictor in the HMM. 416	

 417	

Hidden Markov Model. We developed a hidden Markov model using the R package 418	

depmixS4 (Visser and Speekenbrink 2010b). These models assume that sequences of 419	

observed response variables are dependent on underlying sequences of discrete hidden states. 420	

The sequence of hidden states is assumed to follow a first-order Markov process, such that 421	

the probability of a state at position t depends only on the hidden state at the immediately 422	

preceding position t-1. The observed responses are assumed conditionally independent given 423	

the sequence of hidden states (i.e., correlations between nearby positions are completely 424	

accounted for by the hidden states. This model used log2-transformed insertion numbers as 425	

the observed state. Sites with zero insertions were set to observed state = 0. Each hidden state 426	

defined a (zero-inflated) Poisson regression model, with log2 insertion count as dependent 427	

variable, and the normalised nucleosome density (median of two replicates) and nucleotide 428	

preference score as predictors. Missing data for nucleosome density was set to the median.  429	

The models parameters (initial state probabilities, state-transition probabilities, and the 430	

parameters of the state-dependent zero-inflated Poisson regressions, were estimated by 431	

maximum likelihood using the Expectation-Maximisation (EM) algorithm. Initial state 432	

distributions were all 1/n, where n is the number of states. Initial transition matrix was 0.95 433	

for positions remaining in the same state, and 0.05/(n-1) for all other transitions. Initial 434	

parameter values of the Poisson regressions were obtained by pretraining each state-435	

dependent model on a subset of the data (see below). These initial parameters were used to 436	

start the EM algorithm, the final resulting parameter estimates were determined by maximum 437	
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likelihood. Neither annotations nor transcriptome data were supplied as predictors to the 438	

HMM. Models were fit to the insertion data by the EM algorithm, until convergence of the 439	

likelihood (with a tolerance 1x10-8) or with a maximum of 150 iterations (since log likelihood 440	

fit of models improved little after 150 iterations (supplementary fig. 7).	441	

 442	

Choice of Optimal Model. To select an appropriate number of states and state training data 443	

for our HMM, we used ten ‘test data’ subsets of the genome, each a 100 kb fraction as 444	

follows: Chromosome I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-445	

3200001, Chromosome II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-446	

3200001 and Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J). 447	

These regions avoid the chromosome ends, which have unusual properties, such as a high 448	

frequency of pseudogenes and native Tf1 transposon insertions [5]. 449	

We ran each of the following models on all insertion data from proliferating cells 450	

(split into the ten subsets). These models defined the training data in two ways. Firstly, 451	

‘insertion-quantile’ models, where training data was defined solely by the density of unique 452	

insertions, calculated over 100 nt windows. For example, a 3-state model split the data into 453	

the lower, mid and upper third insertion density for states 1-3. We trialled quantile models 454	

from 2 to 10 states. Secondly, annotation-based models. We trialled 2-, 3-, 4-, and 5-state 455	

models where the training data was derived from current genome annotations. The 2-state 456	

model included coding sequences (S1) and other regions (S2). The 3-state model, coding 457	

sequences of essential genes (S1), coding sequences of non-essential genes (S2), introns, 458	

unannotated regions, and UTRs (S3). The 4-state model, coding sequences of essential genes 459	

(S1), coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and 460	

unannotated regions (S4). It differs from the 3-state model in that it differentiates UTRs and 461	

introns from unannotated regions. The 5-state model is as the 4-state model, except that it 462	
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includes a 5th state that contains sites with the highest 10% of unique insertions/100 nt. The 463	

response for this state was a Poisson distribution rather than zero-inflated Poisson. 464	

Each of these 13 models was fit (with tolerance 1x10-8) to the ten fractions of the 465	

genome. Fitting involved optimising the parameter of states at each position, the transition 466	

state matrix, and the slope, intercept and zero-fraction of the state model. A 5-state annotation 467	

model was chosen as a pragmatic the best fit for running large (million position) data sets. 468	

Comparison of the Bayesian information criterion scores (BIC) for 2-5 states indicated that 469	

increasing states improved the fit (supplementary fig. 8), but higher state models suffered 470	

from increased run times and frequent run failure, and/or highly inconsistent fractions of the 471	

subset data assigned to various states (with some states being absent).  472	

Due to the rounding of log2 insertion counts, sites with 1 or 0 insertions were set to 473	

the same observed state. Rounded log2 of insertions+1 (where sites with 0 insertions have 474	

different value from those with 1) resulted in a worse fit to the model (supplementary fig. 475	

9). 476	

 477	

Fitting of Chromosome-Wide Data. Once the 5-state annotation model (model 5A) was 478	

chosen as a pragmatic best model, it was run on all proliferation libraries, fitting data from 479	

five relatively equal portions of the genome separately, to allow runs in a practical time frame 480	

and memory. These fractions were: chromosome I left half (positions 1-2789566), 481	

chromosome I right half (positions 2789567-5579133), chromosome II left half (positions 1-482	

2269902), chromosome II right half (positions 2269903-4539804), and the entirety of 483	

chromosome III (fractions are between 2.26 Mb and 2.79 Mb). The model produced a state 484	

prediction for each position in the genome, and the posterior probability of each state at each 485	

position. We also fit model 5A to the ageing insertion data (pooled Days 0, 2, 4 and 6) with 486	

the same genome subsets. 487	
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Collectively, the proliferation samples have a higher count of insertions than any of 488	

the pooled ageing libraries (proliferation: 31 million insertions; ageing: 4.6 million 489	

insertions). Since training datasets are based on the within-sample insertion densities for each 490	

HMM fit, this should account for different densities. Nevertheless, to examine whether this 491	

large difference in insertion counts produced radically different fits, we produced a down-492	

sampled dataset from proliferation samples with the same insertions as the ageing sample 493	

average (4.5 million insertions). Overall, 85% of sites in this reduced data set were assigned 494	

the same state as the full proliferation data, and 98% of sites were within one step of the full 495	

data (i.e. full proliferation state +/- 1). 496	

These separate fits to the model resulted in similar distributions of states between 497	

chromosome arms for both the coding regions and introns of essential genes, supporting 498	

consistent convergence of the models between these genome subsets (supplementary fig. 10, 499	

13). To examine whether positions were assigned a consistent state using different subsets of 500	

data, and independent fits of the HMM, we made subsets of proliferation (dense data) and 501	

ageing Day 6 (less dense data) for the central half of chromosome I (positions 1394783-502	

4184350), which overlaps both the left and right halves used previously. These data were fit 503	

to model 5A as before. With dense proliferation data, sites that overlapped the 96.7% of 504	

positions were assigned the same state with either left vs middle, or right vs middle 505	

comparisons. For ageing Day 6 data, 97.1% of overlapping positions were assigned the same 506	

state. States 1-5 were all consistently assigned (e.g. > 99% of state 5 positions were the same 507	

within proliferation data, and similar proportions for all other states). This analysis indicates 508	

that these fractions were sufficiently large to preclude fitting to very different local optima. 509	

HMM code is available in the Figshare project Hermes Transposon Mutagenesis of the 510	

Fission Yeast Genome. 511	

  512	
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Filtering Badly Mapped Sites. To ensure accurate placement of reads, our pipeline filtered 513	

reads mapped with mapping quality ≥30. To avoid the tendency to misinterpret regions that 514	

have few insertions due to the loss of low mapping quality, we analysed only sites that had 515	

retained ≥90% of the reads (lost <10%) over 500 nt windows after mapping quality filtering. 516	

This retained 94.6% of the genome for analysis. After filtering, there was only a weak 517	

negative correlation between the HMM state and the proportion of reads filtered (Pearson r = 518	

-0.049). All data presented included only the sites that had retained ≥90% of the reads after 519	

filtering for Q30 mapping (the ‘mappable genome’). 520	

 521	

Annotation Data. Annotations were from PomBase (ASM294v2, 11/02/2016), including 522	

1538 annotated ncRNAs. 523	

 524	

Transcriptome Analysis. Replicated RNA-Seq data from vegetatively growing, early 525	

stationary and deep stationary cultures were retrieved from the European Nucleotide Archive 526	

(ENA; http://www.ebi.ac.uk/ena) using the following accession numbers (dataset: 527	

PRJEB7403; samples: ERS555567, ERS555607, ERS555570, ERS555612, ERS555571, 528	

ERS555613). [22]. Reads were aligned to the S. pombe genome as described [35]. The 529	

resultant aligned reads were used to compute normalised coverage at the nucleotide level 530	

using the genomecov function in the BEDtools suite [36]. Customised R scripts were used to 531	

define whether a given region is transcribed. 532	

 533	

Comparative Genomics. We used updated genome assemblies of fission yeasts S. 534	

octosporus, S. japonicus, and S. cryophilus [37]. To improve previous full genome 535	

alignments of fission yeast species [38], we incorporated these newly assembled genomes 536	

into an alignment with the S. pombe genome using progressive-cactus [39] (github version 537	
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May 2016), using a guide tree based on Rhind et. al. [38]. We then applied the phyloP 538	

algorithm [40] as implemented in the HAL toolkit [41] to detect constraints. We trained a 539	

neutral model using the four-fold degenerate sites from coding regions from the high-quality 540	

S. pombe annotation. 541	
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Supplementary Figures 578	
 579	
 580	
 581	

 582	
 583	
Supplementary fig. 1. Percentage of cells with a chromosomal insertion. 584	
For the nine libraries we generated (and others not described here), we show the percentage 585	
of cells with a chromosomal insertion. The proportion was calculated as the number of 586	
colonies present on YES + FOA + G418 plates (chromosomal insertions), divided by the 587	
number of colonies present on YES plates (all cells). 588	
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 592	
 593	
Supplementary fig. 2. The custom Hermes-end primed sequencing strategy. Shows the 594	
end-priming strategy used to sequence Hermes-containing fragments. Initially, genomic DNA 595	
is extracted, sheared, end repaired, and linkers (Linker1-Random10mer and Linker2) ligated 596	
at both terminal ends (1). To enrich for fragments containing the Hermes transposon, DNA 597	
was amplified with using a primer that is complimentary to the Hermes transposon (1-598	
Transposon-4NNNN) (2), and to the linker (Linker1-Amp) (3), to produce fragments that 599	
contain linkers, genomic DNA and the Hermes right terminal inverted repeat (4). A second 600	
PCR attached the multiplex oligonucleotides for Illumina sequencing (5,6), producing the 601	
final product that is sequenced (7). Detailed protocols are available in the Figshare project 602	
Hermes Transposon Mutagenesis of the Fission Yeast Genome. 603	
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 609	
 610	
Supplementary fig. 3. Properties of insertions in different annotation regions. 611	
Left panel shows average insertion count in coding regions of essential genes, pseudogenes, 612	
other (non-essential) coding regions, introns, canonical non-coding RNAs (snoRNas, tRNAs, 613	
rRNAs, snRNAs), long terminal repeats of transposons,5’ and 3’ untranslated regions, 614	
regions with no annotation and intergenic long non-coding RNAs. Middle panel shows and 615	
average insertion count (all sites, including sites with no insertions) for the same annotation 616	
classes. Right panel shows average insertion density (unique insertion positions/site) for the 617	
same annotations. 618	
 619	
 620	

C
D

S 
es

se
nt

ps
eu

do
ge

ne
s

ot
he

r C
D

S

in
tro

ns

ca
no

n/
nc

R
N

As

LT
R

s

U
TR

s

no
 a

nn
ot

ig
/ln

cR
N

A

av
er

ag
e 

in
se

rt 
co

un
t (

in
se

rti
on

 s
ite

s 
on

ly
)

0

20

40

60

80

C
D

S 
es

se
nt

ps
eu

do
ge

ne
s

ot
he

r C
D

S

in
tro

ns

ca
no

n/
nc

R
N

As

LT
R

s

U
TR

s

no
 a

nn
ot

ig
/ln

cR
N

A

av
er

ag
e 

in
se

rt 
co

un
t (

al
l s

ite
s)

0

5

10

15

C
D

S 
es

se
nt

ps
eu

do
ge

ne
s

ot
he

r C
D

S

in
tro

ns

ca
no

n/
nc

R
N

As

LT
R

s

U
TR

s

no
 a

nn
ot

ig
/ln

cR
N

A

in
se

rts
/s

ite

0.00

0.05

0.10

0.15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2018. ; https://doi.org/10.1101/398024doi: bioRxiv preprint 

https://doi.org/10.1101/398024
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

 30	

 621	
 622	
Supplementary fig. 4. Insertions in the mitochondrial genome. 623	
Unique insertions per site in the mitochondrial genome showed little difference between 624	
coding and non-coding regions, whereas the nuclear genome showed far fewer insertions in 625	
the coding regions. 626	
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 630	
 631	
Supplementary fig. 5. Relationships between insertion density, nucleosome density and 632	
the insertion motif similarity score. 633	
All plots show relationships with mean insertion count for sites with Hermes insertions (left 634	
panels) or mean insertions/site. In each case, the genome was divided into 100 partitions 635	
according to the measure on the x axis, and the insertion counts or insertion densities were 636	
calculated from these partitions. A) insertion counts plotted against normalised nucleosome 637	
density (nucsome.norm). B) insertion density plotted against normalised nucleosome density. 638	
C) log scale insertion counts plotted against log scale normalised nucleosome density. D) log 639	
scale insertion density plotted against log scale normalised nucleosome density. E) insertion 640	
counts plotted against insertion motif similarity score (IMSS). F) insertion density plotted 641	
against insertion motif similarity score. 642	
 643	
 644	
 645	
 646	
 647	
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 648	
 649	
 650	
Supplementary fig. 6. HMM states strongly depended on insertion density but only 651	
weakly correlated with nucleosome density and nucleotide motif. 652	
Top row; for coding regions we show the relationship between HMM states defined and 653	
insertion density (unique insertions/100 nt) (left panel), normalised nucleosome density 654	
(nsome.norm, middle panel) and the insertion motif similarity score (nt.model, right panel). 655	
Middle row; the same relationships for 5’ and 3’ untranslated regions. Lower row, the same 656	
relationships for regions with no annotations. In all cases Spearman rank correlations are 657	
shown above plots. 658	
 659	
 660	
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 662	
Supplementary fig. 7. Log likelihoods for fits of HMM models improved little after 150 663	
iterations. For sections of chromosomes I, II and III we show the log likelihood of the model 664	
fit to the data with successive iterations of the Viterbi algorithm. Left panels show the entire 665	
range of likelihoods, with red and green dashed lines showing the 95th and 99th percentiles. 666	
Right panels show the upper 5th percentiles. Model fits improved little after 150 iterations. 667	
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 670	
 671	
Supplementary fig. 8. Bayesian information criterion scores (BIC) indicated that the 5-672	
state annotation model was the best fit. For ten 100 kb fractions of the genome (data sets A 673	
– J), we show the BIC scores for model fitting with the depmixS4 package [42,43]. Red 674	
points show the annotation-based models from 2-5 states (see methods for state definitions). 675	
Black points show the quantile models, where training data is defined based on insertion 676	
density quantiles (unique insertions/100 nt). For example a three-state model used the first 677	
third of insertion-dense data to train S1, the second third to train S2, etc. The five-state model 678	
which was used for this analysis was trained on coding sequences of essential genes (S1), 679	
coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and 680	
unannotated regions (S4), and sites with the highest 10% of unique insertions/100 nt (S5). 681	
The ten ‘test data’ subsets of the genome, each a 100 kb fraction as are follows: Chromosome 682	
I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001, Chromosome 683	
II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001 and 684	
Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J). 685	
 686	
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 687	
 688	
Supplementary fig. 9. Excluding singleton insertions produced better model fits. 689	
HMM code used log2 of insertion counts (rounded to the nearest integer). Since log2(1) is 690	
zero, this treats sites with one insertion the same as sites with no insertions. Trails of the 691	
HMM code that used log2(insertions+1), where sites with 0 insertions have different value 692	
from those with 1, resulted in a worse fit to the model. For two of the test data sets (A, J), we 693	
show the BIC for models fitted with log2(insertions) and log2(insertions+1). 694	
 695	
 696	
 697	

 698	
 699	
Supplementary fig. 10. Separate fits to the model with different data resulted in similar 700	
distributions of states. Model fitting was performed on five subsets of the data; IL (left arm 701	
of chromosome I), IR (right arm of chromosome I), IIL (left arm of chromosome II), IIR 702	
(right arm of chromosome II), and III (all of chromosome III). The left panel shows the 703	
proportion of essential coding regions for each subset that were assigned to states 1-5, 704	
according to the key. Most were assigned to state 1 or 2. The right panel shows the –log10 of 705	
the proportion, which indicates that the less frequent states are also similarly distributed 706	
between subset model fits, supporting consistent convergence of the model between these 707	
genome subsets. 708	
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