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Abstract

Background: One of the major challenges in microbial studies is to discover
associations between microbial communities and a specific disease. A specialized
feature of microbiome count data is that intestinal bacterial communities have
clusters reffered as enterotype characterized by differences in specific bacterial
taxa, which makes it difficult to analyze these data under health and disease
conditions. Traditional probabilistic modeling cannot distinguish dysbiosis of
interest with the individual differences.

Results: We propose a new probabilistic model, called ENIGMA (Enterotype-like
uNIGram mixture model for Microbial Association analysis), to address these
problems. ENIGMA enables us to simultaneously estimate enterotype-like clusters
characterized by the abundances of signature bacterial genera and environmental
effects associated with the disease.

Conclusion: We illustrate the performance of the proposed method both through
the simulation and clinical data analysis. ENIGMA is implemented with R and is
available from GitHub (https://github.com/abikoushi/enigma).

Keywords: Enterotype; Topic model; Unigram mixture; Bayesian inference;
Metagenomics

Introduction
More than 100 trillion microbes live on and within human beings and consists of

complex microbial communities (microbiota). The majority of microbes cannot be

cultured in laboratories, which makes it difficult to understand which individual

microorganisms mediate vital microbiome-host interactions under health and dis-

ease conditions. However, recent important advances in high-throughput sequencing

technology have allowed us to observe the composition of these intestinal microbes.

That is, for each sample drawn from an ecosystem, the number of occurrences of

each operational taxonomic units (OTUs) is measured and the resulting OTU abun-

dance are summarized at any level of the bacterial phylogeny. Discovering recurrent

microbial compositional patterns that are related with a specific disease is a sig-

nificant challenge since individuals with the same disease typically harbor different

microbial community structures.

The recent large-scale sequencing surveys of the human intestinal microbiome,

such as the US NIH Human Microbiome Project (HMP) and the European Metage-

nomics of the Human Intestinal Tract project (MetaHIT), have shown considerable

variations in microbiota composition among individuals [1, 2]. In particular, the

presence of community clusters characterized by differences in the abundance of
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signature taxa, referred to as enterotypes, have been first reported in humans [3].

Later, other studies found enterotype-like clusters which might reflect features of

host-microbial physiology and homeostasis in different species [4, 5] or across hu-

man body sites [6–9]. These observed microbial stratification has motivated the

development of methods to examine unknown clusters of microbial communities.

Probabilistic modeling of microbial metagenomics data often provides a powerful

framework to characterize the microbial community structures [10–12]. For example,

Knights et al. [10] applied a Dirichlet prior to a single-level hierarchy and proposed

a Bayesian approach to estimate the proportion of microbial communities. Holmes

et al. [11] extended the Dirichlet prior to Dirichlet multinomial mixtures to facilitate

clustering of microbiome samples. Shafiei et al. [12] proposed a hierarchical model

for Bayesian inference of microbial communities (BioMiCo) to identify clusters of

OTUs related with environmental factors of interest.

However, such models are not suitable for identification of enterotype-like clusters

of microbial communities doe to the following two reasons. First, the frameworks of

Knights et al. [10] and Holmes et al. [11] do not explicitly address the association

between the microbial compositional patterns and environmental factors of interest.

Second, the framework of Shafiei et al. [12] models the structure of each sample by

a hierarchical mixture of multinomial distributions that are dependent to factors of

interest. It is known that individual host properties such as body mass index, age,

or gender cannot explain the observed enterotypes [3]. Thus, such enterotype-like

clusters that describes interindividual variability among humans do not always to

directly affect host probabilities such as diseases ranging from localized gastroen-

terologic disorders to neurologic, respiratory, metabolic hepatic, and cardiovascular

illnesses.

Here, we introduce a novel probabilistic model of a microbial community struc-

tures, called ENIGMA (Enterotype-like uNIGram mixture model for Microbial As-

sociation analysis), to address these problems. ENIGMA includes the following con-

tributions:

1 ENIGMA takes OTU abundances as input and models each sample by under-

lying unigram mixture whose parameters are represented by unknown group

effects and known effects of interest. The group effects are represented by the

baseline parameters which change with a latent group of microbial commu-

nities. One of the most important features for our model is that the group

effects are independent of the effects of interest. This enables to separate in-

terindividual variability and fixed effects of the host properties related with

disease risk.

2 ENIGMA is regarded as a Bayesian learning for the association between com-

munity structure and factors of interest. Our model can be used to simulta-

neously learn how enterotype-like clusters of OTUs contributes to microbial

structure and how microbial compositional patterns might be related to the

known features of the sample.

3 We provide an efficient learning procedure for ENIGMA by using a Laplace

approximation to integrate out the latent variables and estimate the evidence

of the complete model and the credible intervals of the parameters. The soft-

ware package that implements ENIGMA in the R environment is available

from https://github.com/abikoushi/enigma.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/397091doi: bioRxiv preprint 

https://doi.org/10.1101/397091
http://creativecommons.org/licenses/by-nd/4.0/


Abe et al. Page 3 of 12

We describe our proposed framework and algorithm in section named “Methods”.

We evaluate the performance of ENIGMA on simulated data in terms of its accuracy

to estimate parameters and identify clusters in Section named “Simulation Study”.

We apply ENIGMA to clinical metagenomics data and demonstrate how ENIGMA

simultaneously identifies enterotype-like clusters and gut microbiota related with

Parkinson’s disease (PD) in Section named “Results on Clinical Data”.

Methods
Suppose that we observe microbiome count data of K taxa for N samples with M

individual host properties, (ynk, xnm) (n = 1, . . . , n; k = 1, . . . ,K;m = 1, . . . ,M)

where ynk ∈ N represents the abundance of the k-th taxa in the n-th sample and

xnm represents a binary variable such that xnm = 1 if the n-th sample has the m-th

host property and xnm = 0 otherwise. Here the word “taxa” could be at any level

of the bactgerial phylogeny, e.g., species, genes, family, order, etc.

Model

Figure 1 illustrates the plate diagram of the proposed model for metagenome se-

quencing, where yn is the read count vector of the n-th sample, xn is the vector

of the host properties of the n-th sample and zn ∈ {1, . . . , L} is a latent class of

the n-th sample. Our model is a simple extension of unigram mixture model. We

assume that each sample is generated from a multinomial distribution with the

parameter vector pn = (pn1, . . . , pnK)>. The elements of pn, pnk (k = 1, . . . ,K)

are probabilities of the occurrence of the K taxa for the n-th sample. We also as-

sume that pnk can be influenced independently by the environmental factor on the

taxa that is common to all latent classes and the interindividual factor on the la-

tent enterotype-like classes. More specifically, the generative process of ENIGMA

is defined by:

yn|zn, xn,β ∼ Multinomial(pn)

pn = softmax(γzn + xnB)

zn|π ∼ Categorical(π)

π|α ∼ Dirichlet(α)

βm ∼ NormalK(OK , σ
2IK)

γl ∼ NormalK(OK , τ
2IK) (1)

where γl is baseline parameter (K-dimensional vector) which change with the la-

tent class, M × K matrix B = (βmk) is effect of a environmental factor common

the all enterotypes, βm is a m-th row-vector of B, π = (π1, . . . , πL) is a mixing

ratio of components, OK is K-dimensional zero matrix and IK is K-dimensional

identity matrix. Here softmax function is defined by softmax(x) = exp(x)∑K
k=1 exp(xk)

for

a vector x = (x1, . . . , xK)> using element-wise exponential function and the prob-

ability function of categorical distribution is parameterized as Pr(z = l|π) = πl,

l ∈ {1, . . . , L}. In a Bayesian approach we need to define prior distributions for π,

β, and γl. We set a prior based on the Dirichlet distribution for π, and flat priors

to the hyperparameters σ and τ for β and γ, respectively. For the convenience of
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later section, let p′l = softmax(γl) be probabilities of the occurrence of bacteria in

the latent classes l.

Parameter estimation

Let us denote observed matrix by Y = (ynk), X = (xnm), the unknown parameters

by θ = (α,B,γ1, . . . ,γL, σ, τ) and their prior by φ(θ). The posterior distribution

is represented as follows:

p(θ, z|Y ) ∝
N∏

n=1

p(yn|zn,xn,θ)p(zn|θ)φ(θ) (2)

First, latent variable zn must be marginalized. The likelihood belongs to

N∏
n=1

p(yn|xn,θ) =
N∏

n=1

L∑
l=1

πlp(yn|zn = l,xn,θ). (3)

The posterior distribution is proportional to product of the likelihood and prior

density:

p(θ|Y ) ∝ exp

{
N∑

n=1

log p(yn|xn,θ) + log φ(θ)

}

Let θ̂ be the MAP estimator of θ, found by maximizing log p(θ,Y ,X).

We use a Laplace approximation [15] for parameter estimation. A Taylor expan-

sion around θ̂ gives

log p(θ|Y ,X) ≈ log p(θ̂|Y ,X) +
1

2
(θ − θ̂)>H(θ̂)(θ − θ̂) (4)

where and H(θ̂) is Hessian of log p(θ|Y ,X) evaluated at θ̂. Eq.4 gives

p(θ|Y ,X) ≈ 1

C
exp

{
1

2
(θ − θ̂)>H(θ̂)(θ − θ̂)

}
where C is normalizing constant. This relation shows that p(θ|Y ,X) can be approx-

imated by normal distribution N(θ̂, H−1(θ̂)). Credible intervals can be calculated

from this multivariate normal distribution.

We used stochastic programming language Stan (http://mc-stan.org/) for its

implementation. The MAP estimators were obtained by L-BFGS method. Credible

intervals were computed from the using a Stan function to compute the Hessian at

the MAP estimates.

After fitting the model, we are left with the task of classify the enterotype of each

samples. The conditional probability of zn = l is

Pr(zn = l) =
πlp(yn|γl,β,xn)∑L
l=1 πlp(yn|γl,β,xn)

. (5)

This is the probability which n-th sample belong enterotype l. Then, n-th sample is

then classified into the l-th enterotype that maximizizes the conditional probability

gven by Eq.5.
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Model Selection

We are also interested in whether or not the whole set rather than individual bacteria

is related to the environmental factors of interest. We consider the comparison

between the two models when B 6= 0 and B = 0. We can use the log marginal

likelihood as the goodness of fit for model comparison. The marginal likelihood is

given by

P (Y |X) =

∫
p(Y ,θ|X) dθ. (6)

From Eq.4, we have∫
p(θ,Y |X) dθ ≈ p(θ̂|Y ,X)

∫
exp

(
1

2
(θ − θ̂)>H(θ̂)(θ − θ̂)

)
dθ. (7)

So, log marginal likelihood is approximated by following formula:

logP (Y |X) ≈ log p(Y |θ̂,X) + φ(θ̂) +
D

2
log 2π − 1

2
log |H(θ̂)| (8)

where D is the number of free parameters. In model comparison, we choose the

model with the larger log marginal likelihood.

Simulation Study
To show the performance of ENIGMA, we conducted several experiments by sim-

ulation. The synthetic data can be naturally produced via our generative process

given by Eq.1. We set M = 1, L = 3, πl = 1/3, and α = (1, 1, 1)T . We first

generated B and γl from the standard normal distribution. The variables xn, zn,

and yn are then sampled from the Bernoulli distribution with probability of 0.5,

the categorical distribution, and the multinomial distribution, respectively. For the

above parameter setting, we randomly generate a count dataset of 100 taxa for 100

samples for evaluation.

• Coverage probability (CP): The coverage probability is the proportion of

the time that the interval contains the true value. A discrepancy between the

coverage probability and the nominal coverage probability frequently occurs.

When the actual coverage is greater than the nominal coverage, the interval

is called conservative. If the interval is conservative, there is no inconsistency

in interpretation.

• Bias: The bias of B is defined by difference between true value and estimated

value E[B̂]−B.

• Standard error (SE): The standard error is the standard deviation of the

estimate. The smaller standard error indicates the higher accuracy of estima-

tion.

• Root mean squared error (RMSE): The RMSE is defined by√
E[(B̂ −B)2]. The smaller RMSE indicates the higher accuracy of estima-

tion.

• Accuracy: The accuracy is the percentage of samples correctly classified into

original group.
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For calculating these metrics, we note that we calculated the sample means and

standard deviations of B̂ and (B̂ −B)2 from the 10,000 synthetic datasets.

Figure 2 shows the comparison of true B and the mean and standard deviation

of estimates B̂ through the 10,000 simulations. We observed that the points are

arranged diagonally, which implies the estimator of ENIGMA is unbiased. We also

calculated the proportion of the time that the 95% credible interval contains the

true value of B. We found that this proportion is greater than nominal value 0.95

for all B in Figure 3. Table 2 shows the coverage probability (CP), bias, standard

error (SE), and RMSE of B̂, respectively. We observed that the bias and standard

error decrease when βmk is large (i.e. the corresponding abundance is large). We

also found that the accuracy of classification given by Eq.5 is exactly 100%. Thus,

these results indicate that ENIGMA can produce reasonable estimates.

Results on Clinical Data
To validate the performance of ENIGMA on discovering clusters of micribial com-

munities and associations between microbes and a specific disease, we applied

ENIGMA to the real metagenomic sequencing data from Scheperjans et al. [16],

Hill-Burns et al. [17], Heintz-Buschart et al. [18] and Hopfner et al. [19]. The data

is analized by sequencing the bacterial 16S ribosomal RNA genes sampled from

patients of Parkinson’s disease (PD) and control in Finland, USA, and Germany.

Table 1 shows the summary statistics of the data. The OTUs are mapped to the

SILVA taxonomic reference, version 132 (https://www.arb-silva.de/) and the

abundances of family-level taxa are calculated. Following the evidence of Arumugam

et al. [3], the number of latent classes in ENIGMA is chosen to be L = 3. We set

the hyperparameters of Dirichlet prior α = (1, 1, 1)>, which is equivalent to a non-

informative prior.

We evaluated whether the model where bacteria have the associations to the PD

patients is better than the model without the associations in terms of marginal

likelihood. We note that the marginal likelihood represents the model evidence

which expresses the preference of the data for different models. Let M1 be the

model which is described Eq. 1 and M0 be the model setting all βmk = 0 in Eq. 1.

Table 3 shows that the marginal likelihood of M1 is greater than M0. It is better

to explain the data by considering the association between the microbiota and PD.

Figure 4 shows the estimated probabilities of the occurrences of bacteria for the

three latent classes, p′l, (l = 1, 2, 3). Bacteria detected in less than three countries

were removed. Arumugam et al. [3] showed that enterotype is characterized by the

differences in the abundance of Bacteroides, Prevotella, and Ruminococcus. The

result of ENIGMA shows the same tendency as previous survey. According to the

results of ENIGMA, the abundance of Enterobacteriaceae and Lachnospiraceae also

differ greatly among clusters. Bacterial abundance differs between countries. In USA

there is a large abundance of Verrucomicrobiaceae, but in Finland there are few.

Conversely, in Finland there is more Prevotellaceae, but in USA it is less.

Table 5 shows the coefficients whose 95% credible intervals do not contain zero

in more than two countries. The microbes with these coefficients indicates that

the corresponding microbial composition patterns are significantly related to PD.

We found that, in family levels, Clostridiaceae, Comamonadaceae, Pasteurellacea,
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Prevotellaceae, Actinomycetaceae, Bifidobacteriaceae, Enterococcaceae, Lactobacil-

laceae, Synergistaceae, Verrucomicrobiaceae and Victivallaceae, the signs of these

coefficients matched in all countries. These results are consistent with previous stud-

ies. Hill-Burns et al. [17] reported PD patients contained high levels of Bifidobacte-

riaceae and Verrucomicrobiaceae and low levels of Pasteurellaceae. Scheperjans et

al. [16] reported PD patients contained high levels of Lactobacillaceae, Verrucomi-

crobiaceae and low levels of Prevotellaceae. Hopfner et al reported PD patients have

high levels of Lactobacillaceae and Enterococcaceae.

We compared ENIGMA to the Wilcoxon rank sum test, one of the classical meth-

ods for identifying bacteria related with a environmental factor of interest [18]. Table

4 shows bacteria significantly related with the PD patients with p-value < 0.05 in

more than two countries. We observed that the bacteria detected by the Wilcoxon

test were almost included in those of ENIGMA (Table 5). We note that all of the

corrected p-values in Table 4 are larger than 0.05. This result shows that ENIGMA

is superior to the Wilcoxon rank sum test in terms of identifying more associations

between microbiota and the PD patients.

The analyses with real data thus show that ENIGMA can identify enterotype-like

clusters and the associations between the gut microbiota and the PD patients, and

some of the results are strongly supported by the previous researches.

Conclusion
We proposed a novel hierarchical Bayesian model, ENIGMA, to discover the un-

derlying microbial community structures and associations between microbiota and

their environmental factors from microbial metagenome data. ENIGMA is based on

a probabilistic model of a microbial community structures and supplied with labels

for one or more environmental factors of interest for each sample. The structures

of each sample is modeled by a multinomial distribution whose parameters are rep-

resented independently by group and environmental effects of each sample, which

prevent mixing of individual differences and effects of interest. This framework en-

ables the model to learn (i) how microbes contribute to an underlying community

structures (cluster) and (ii) how microbial compositional patterns are explained en-

vironmental factors of interest, simultaneously. The effectiveness of ENIGMA was

evaluated on the bases of experiments involving both synthetic and read datasets.

We believe that these newly discovered clusters and associations estimated from

ENIGMA would provide more insight in the the mechanisms of a microbial com-

munity.

There is one major limitation of ENIGMA is its scalability and efficiency, since

the number of the parameters in the model grow proportional to the number of

taxa when the number of environmental factors of interest is large. Further works

should focus on developing a scalable probabilistic model of microbial compositions

to analyze underlying microbial structures with a large number of these effects

by using sparse parameter estimation [20]. We are also interested in developing a

dynamic probabilistic model similar to reproted by Blei and Lafferty [21] to analyze

time-varying bacteria compositions during the progression of a disease.
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Table 1 The data summary

PD CO
Finland 74 74
German 55 64

USA 207 139
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Figure 1 Plate diagram of the model for ENIGMA. yn is affected from environmental factors
xn and latent variables zn.

−4

−2

0

2

4

−4 −2 0 2 4

true

e
s
ti
m

a
te

s

Figure 2 Simulation result of B. The comparison true B and the mean of B̂. The error bars
indicates SE.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/397091doi: bioRxiv preprint 

https://doi.org/10.1101/397091
http://creativecommons.org/licenses/by-nd/4.0/


Abe et al. Page 10 of 12

coverage probability

F
re

q
u

e
n

c
y

0.970 0.975 0.980 0.985 0.990 0.995 1.000

0
1

0
2

0
3

0
4

0
5

0
6

0

Figure 3 Coverage probability of B. The histogram of coverage probability of B.
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Figure 4 Heatmap showing (p̂′l).This quantities corresponds to the probabilities of the
occurrences of bacteria for the three latent classes.
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Table 2 Coverage probability (CP), bias, standard error (SW) and RMSE of B̂

β CP bias SE RMSE β CP bias SE RMSE
-3.40 0.97 0.08 0.15 0.17 -0.04 1.00 0.01 0.05 0.05
-2.65 0.97 0.06 0.15 0.16 -0.04 1.00 0.01 0.05 0.05
-2.34 0.99 0.04 0.12 0.13 -0.01 1.00 0.01 0.05 0.05
-2.32 0.99 0.03 0.12 0.12 0.01 1.00 0.01 0.04 0.04
-1.83 0.98 0.03 0.14 0.15 0.02 1.00 0.01 0.06 0.06
-1.59 0.99 0.02 0.13 0.13 0.02 1.00 0.01 0.04 0.05
-1.58 0.99 0.03 0.13 0.13 0.03 1.00 0.01 0.04 0.04
-1.51 0.99 0.02 0.14 0.14 0.10 1.00 -0.00 0.08 0.08
-1.51 0.99 0.02 0.13 0.13 0.13 1.00 0.01 0.03 0.03
-1.29 0.99 0.02 0.11 0.11 0.14 1.00 0.01 0.03 0.03
-1.14 0.99 0.01 0.11 0.11 0.21 1.00 0.01 0.06 0.06
-0.95 1.00 0.01 0.09 0.09 0.23 1.00 0.00 0.08 0.08
-0.95 0.99 0.01 0.12 0.12 0.29 1.00 0.01 0.04 0.04
-0.92 1.00 0.01 0.09 0.09 0.31 1.00 0.01 0.05 0.05
-0.88 0.99 0.01 0.12 0.12 0.32 1.00 0.00 0.08 0.08
-0.84 1.00 0.01 0.05 0.05 0.33 1.00 0.01 0.04 0.04
-0.82 1.00 0.01 0.08 0.08 0.44 0.99 -0.02 0.10 0.10
-0.78 0.99 0.01 0.13 0.13 0.46 1.00 0.01 0.05 0.05
-0.78 1.00 0.01 0.07 0.07 0.50 1.00 -0.01 0.08 0.08
-0.76 1.00 0.01 0.08 0.08 0.53 1.00 0.00 0.06 0.06
-0.72 0.99 0.00 0.12 0.12 0.54 1.00 -0.00 0.08 0.08
-0.68 1.00 0.01 0.10 0.10 0.55 1.00 0.01 0.04 0.04
-0.65 0.99 0.01 0.11 0.11 0.55 1.00 0.01 0.03 0.03
-0.65 0.99 0.01 0.11 0.11 0.56 1.00 0.01 0.05 0.05
-0.65 1.00 0.01 0.06 0.06 0.76 1.00 -0.00 0.07 0.07
-0.61 1.00 0.01 0.06 0.06 0.79 1.00 0.00 0.06 0.06
-0.58 1.00 0.01 0.06 0.06 0.84 1.00 0.00 0.05 0.05
-0.58 1.00 0.01 0.07 0.07 0.90 1.00 0.01 0.04 0.04
-0.56 1.00 0.01 0.05 0.05 0.93 1.00 0.00 0.05 0.05
-0.52 1.00 0.01 0.06 0.06 0.96 1.00 -0.01 0.08 0.08
-0.52 1.00 0.01 0.07 0.07 0.98 1.00 0.01 0.04 0.04
-0.51 1.00 0.01 0.04 0.05 1.01 1.00 -0.01 0.08 0.08
-0.50 1.00 0.01 0.05 0.05 1.08 1.00 0.00 0.05 0.06
-0.50 1.00 0.01 0.04 0.04 1.10 1.00 0.00 0.05 0.05
-0.49 0.99 0.00 0.11 0.11 1.13 1.00 0.01 0.04 0.04
-0.47 1.00 0.01 0.05 0.05 1.14 1.00 0.01 0.04 0.04
-0.45 1.00 0.01 0.09 0.09 1.16 1.00 -0.01 0.07 0.07
-0.42 0.99 -0.01 0.13 0.13 1.22 1.00 0.01 0.04 0.04
-0.33 1.00 0.01 0.07 0.07 1.23 1.00 -0.02 0.09 0.09
-0.28 1.00 0.00 0.09 0.09 1.43 1.00 0.00 0.04 0.04
-0.27 1.00 0.01 0.07 0.07 1.45 1.00 0.01 0.04 0.04
-0.23 1.00 0.00 0.09 0.09 1.47 1.00 0.00 0.04 0.04
-0.21 1.00 0.01 0.07 0.07 1.55 1.00 -0.01 0.07 0.08
-0.18 1.00 0.00 0.10 0.10 1.60 1.00 0.01 0.03 0.03
-0.15 0.99 -0.01 0.11 0.11 1.61 1.00 0.00 0.05 0.05
-0.15 0.99 -0.00 0.11 0.11 1.62 1.00 0.00 0.05 0.05
-0.11 1.00 0.01 0.06 0.06 1.89 1.00 0.01 0.03 0.03
-0.09 1.00 0.00 0.09 0.09 1.91 1.00 0.01 0.03 0.03
-0.05 1.00 0.01 0.04 0.04 1.95 1.00 0.01 0.02 0.02
-0.05 1.00 0.01 0.04 0.04 2.25 1.00 0.00 0.04 0.04

Table 3 The comparison marginal likelihood.

Finland German USA
M0 -442734.62 -5913441.14 -3010279.35
M1 -355079.50 -3807297.76 -2063932.02

Table 4 p-value of Wilcoxon test

Finland German USA
Lachnospiraceae 0.009371 0.719014 0.002839
Lactobacillaceae 0.030404 0.077771 0.000002
Pasteurellaceae 0.006493 0.495315 0.004232
Prevotellaceae 0.001303 0.030892 0.194592
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Table 5 The bacteria which significant associated with PD in more than two countries. The “-” notation indicates the bacteria undetected in that country.

Finland German USA

family β̂ lower bound upper bound β̂ lower bound upper bound β̂ lower bound upper bound
Anaeroplasmataceae -0.87 -1.28 -0.45 -1.69 -2.03 -1.35 - - -
Bacteroidales S24-7 group -0.52 -0.93 -0.11 0.22 -0.12 0.56 -0.69 -1.04 -0.33
Bradyrhizobiaceae - - - -0.82 -1.17 -0.47 -1.51 -2.29 -0.74
Brevibacteriaceae - - - -1.02 -1.38 -0.66 -0.58 -0.97 -0.19
Brucellaceae - - - -1.69 -2.50 -0.87 -1.35 -1.76 -0.94
Clostridiaceae 1 -0.54 -0.96 -0.13 -0.08 -0.42 0.26 -0.43 -0.79 -0.08
Comamonadaceae -0.85 -1.35 -0.35 -1.27 -1.61 -0.93 -0.20 -0.55 0.16
Elusimicrobiaceae -4.17 -5.60 -2.74 -2.11 -2.54 -1.68 2.36 1.04 3.67
Intrasporangiaceae - - - -3.47 -4.86 -2.07 -3.03 -4.77 -1.28
Leuconostocaceae -2.66 -4.30 -1.02 0.50 0.13 0.86 -1.63 -2.11 -1.15
Moraxellaceae - - - -1.58 -1.92 -1.24 -0.91 -1.26 -0.56
Pasteurellaceae -1.62 -2.07 -1.17 0.30 -0.04 0.64 -1.80 -2.16 -1.44
Prevotellaceae -2.46 -2.87 -2.05 -0.03 -0.37 0.30 -0.45 -0.80 -0.09
Rhodocyclaceae - - - -3.53 -4.93 -2.13 -0.70 -1.13 -0.27
Actinomycetaceae 0.11 -0.78 1.01 0.42 0.07 0.78 1.07 0.70 1.43
Bacillaceae 1.72 0.34 3.11 -2.35 -2.72 -1.99 0.86 0.50 1.22
Bdellovibrionaceae - - - 1.43 0.40 2.46 2.87 1.69 4.05
Bifidobacteriaceae 1.34 0.82 1.86 0.54 0.20 0.88 0.09 -0.26 0.45
Campylobacteraceae 0.36 -0.31 1.03 4.90 4.48 5.33 1.04 0.67 1.41
Cytophagaceae - - - 2.45 1.56 3.34 1.50 0.20 2.81
Enterococcaceae 3.87 2.70 5.05 0.74 0.40 1.08 0.16 -0.20 0.52
Lactobacillaceae 3.00 2.56 3.43 -0.51 -0.85 -0.18 1.80 1.44 2.16
Leptotrichiaceae -0.90 -1.89 0.09 2.57 1.88 3.26 0.92 0.46 1.37
Methanobacteriaceae - - - 0.93 0.59 1.27 0.76 0.39 1.12
Mitochondria 0.60 -1.27 2.46 0.73 0.11 1.36 1.60 0.98 2.21
Paenibacillaceae - - - 2.19 1.28 3.10 1.73 1.32 2.13
Planococcaceae - - - 1.06 0.72 1.41 3.26 2.69 3.84
Rhizobiaceae - - - 0.64 0.24 1.03 1.52 1.09 1.94
Streptococcaceae 0.44 0.03 0.86 0.84 0.50 1.17 0.34 -0.02 0.69
Succinivibrionaceae -0.32 -0.76 0.11 0.74 0.40 1.08 4.29 3.76 4.82
Synergistaceae 1.26 0.80 1.71 0.25 -0.10 0.61 1.51 1.14 1.89
Verrucomicrobiaceae 1.71 1.23 2.19 1.62 1.29 1.96 0.03 -0.32 0.39
Victivallaceae 0.42 -0.00 0.85 0.68 0.34 1.02 1.02 0.63 1.40
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