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Abstract

Background: One of the major challenges in microbial studies is to discover
associations between microbial communities and a specific disease. A specialized
feature of microbiome count data is that intestinal bacterial communities have
clusters reffered as enterotype characterized by differences in specific bacterial
taxa, which makes it difficult to analyze these data under health and disease
conditions. Traditional probabilistic modeling cannot distinguish dysbiosis of
interest with the individual differences.

Results: We propose a new probabilistic model, called ENIGMA (Enterotype-like
uNIGram mixture model for Microbial Association analysis), to address these
problems. ENIGMA enables us to simultaneously estimate enterotype-like clusters
characterized by the abundances of signature bacterial genera and environmental
effects associated with the disease.

Conclusion: We illustrate the performance of the proposed method both through

the simulation and clinical data analysis. ENIGMA is implemented with R and is
available from GitHub (https://github.com /abikoushi/enigma).

Keywords: Enterotype; Topic model; Unigram mixture; Bayesian inference;
Metagenomics

Introduction

More than 100 trillion microbes live on and within human beings and consists of
complex microbial communities (microbiota). The majority of microbes cannot be
cultured in laboratories, which makes it difficult to understand which individual
microorganisms mediate vital microbiome-host interactions under health and dis-
ease conditions. However, recent important advances in high-throughput sequencing
technology have allowed us to observe the composition of these intestinal microbes.
That is, for each sample drawn from an ecosystem, the number of occurrences of
each operational taxonomic units (OTUs) is measured and the resulting OTU abun-
dance are summarized at any level of the bacterial phylogeny. Discovering recurrent
microbial compositional patterns that are related with a specific disease is a sig-
nificant challenge since individuals with the same disease typically harbor different
microbial community structures.

The recent large-scale sequencing surveys of the human intestinal microbiome,
such as the US NIH Human Microbiome Project (HMP) and the European Metage-
nomics of the Human Intestinal Tract project (MetaHIT'), have shown considerable
variations in microbiota composition among individuals [1,2]. In particular, the

presence of community clusters characterized by differences in the abundance of
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signature taxa, referred to as enterotypes, have been first reported in humans [3].
Later, other studies found enterotype-like clusters which might reflect features of
host-microbial physiology and homeostasis in different species [4, 5] or across hu-
man body sites [6-9]. These observed microbial stratification has motivated the
development of methods to examine unknown clusters of microbial communities.

Probabilistic modeling of microbial metagenomics data often provides a powerful
framework to characterize the microbial community structures [10-12]. For example,
Knights et al. [10] applied a Dirichlet prior to a single-level hierarchy and proposed
a Bayesian approach to estimate the proportion of microbial communities. Holmes
et al. [11] extended the Dirichlet prior to Dirichlet multinomial mixtures to facilitate
clustering of microbiome samples. Shafiei et al. [12] proposed a hierarchical model
for Bayesian inference of microbial communities (BioMiCo) to identify clusters of
OTUs related with environmental factors of interest.

However, such models are not suitable for identification of enterotype-like clusters
of microbial communities doe to the following two reasons. First, the frameworks of
Knights et al. [10] and Holmes et al. [11] do not explicitly address the association
between the microbial compositional patterns and environmental factors of interest.
Second, the framework of Shafiei et al. [12] models the structure of each sample by
a hierarchical mixture of multinomial distributions that are dependent to factors of
interest. It is known that individual host properties such as body mass index, age,
or gender cannot explain the observed enterotypes [3]. Thus, such enterotype-like
clusters that describes interindividual variability among humans do not always to
directly affect host probabilities such as diseases ranging from localized gastroen-
terologic disorders to neurologic, respiratory, metabolic hepatic, and cardiovascular
illnesses.

Here, we introduce a novel probabilistic model of a microbial community struc-
tures, called ENIGMA (Enterotype-like uNIGram mixture model for Microbial As-
sociation analysis), to address these problems. ENIGMA includes the following con-
tributions:

1 ENIGMA takes OTU abundances as input and models each sample by under-
lying unigram mixture whose parameters are represented by unknown group
effects and known effects of interest. The group effects are represented by the
baseline parameters which change with a latent group of microbial commu-
nities. One of the most important features for our model is that the group
effects are independent of the effects of interest. This enables to separate in-
terindividual variability and fixed effects of the host properties related with
disease risk.

2 ENIGMA is regarded as a Bayesian learning for the association between com-
munity structure and factors of interest. Our model can be used to simulta-
neously learn how enterotype-like clusters of OTUs contributes to microbial
structure and how microbial compositional patterns might be related to the
known features of the sample.

3 We provide an efficient learning procedure for ENIGMA by using a Laplace
approximation to integrate out the latent variables and estimate the evidence
of the complete model and the credible intervals of the parameters. The soft-
ware package that implements ENIGMA in the R environment is available
from https://github.com/abikoushi/enigna.
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We describe our proposed framework and algorithm in section named “Methods”.
We evaluate the performance of ENIGMA on simulated data in terms of its accuracy
to estimate parameters and identify clusters in Section named “Simulation Study”.
We apply ENIGMA to clinical metagenomics data and demonstrate how ENIGMA
simultaneously identifies enterotype-like clusters and gut microbiota related with
Parkinson’s disease (PD) in Section named “Results on Clinical Data”.

Methods

Suppose that we observe microbiome count data of K taxa for N samples with M
individual host properties, (Ynk,Znm) (n = 1,...,n;k =1,..., K;m =1,..., M)
where y,; € N represents the abundance of the k-th taxa in the n-th sample and
Tnm represents a binary variable such that x,,, = 1 if the n-th sample has the m-th
host property and x,,, = 0 otherwise. Here the word “taxa” could be at any level
of the bactgerial phylogeny, e.g., species, genes, family, order, etc.

Model

Figure 1 illustrates the plate diagram of the proposed model for metagenome se-
quencing, where y,, is the read count vector of the n-th sample, x,, is the vector
of the host properties of the n-th sample and z, € {1,...,L} is a latent class of
the n-th sample. Our model is a simple extension of unigram mixture model. We
assume that each sample is generated from a multinomial distribution with the
parameter vector p, = (pn1,...,Pnx) . The elements of p,, por (k = 1,...,K)
are probabilities of the occurrence of the K taxa for the n-th sample. We also as-
sume that p,x can be influenced independently by the environmental factor on the
taxa that is common to all latent classes and the interindividual factor on the la-
tent enterotype-like classes. More specifically, the generative process of ENIGMA
is defined by:

Yn|2n, Tn, B ~ Multinomial(p,,)
P, = softmax(y,, + x,B)
zn|m ~ Categorical ()
7|a ~ Dirichlet(ax)
By ~ Normalg (Og, 0% Ix)

~y ~ NormalK(OK,TQIK) (1)

where ~; is baseline parameter (K-dimensional vector) which change with the la-
tent class, M x K matrix B = (S) is effect of a environmental factor common
the all enterotypes, B3, is a m-th row-vector of B, ® = (m1,...,71) is a mixing
ratio of components, O is K-dimensional zero matrix and Iy is K-dimensional
identity matrix. Here softmax function is defined by softmax(z) = —22)

o Eg=1 exp(xk)
T using element-wise exponential function and the prob-

for
a vector * = (x1,...,ZxK)
ability function of categorical distribution is parameterized as Pr(z = l|mw) = my,
1 e€{1,...,L}. In a Bayesian approach we need to define prior distributions for r,
3, and ~;. We set a prior based on the Dirichlet distribution for 7r, and flat priors
to the hyperparameters o and 7 for 3 and =, respectively. For the convenience of
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later section, let p; = softmax(-y;) be probabilities of the occurrence of bacteria in
the latent classes [.

Parameter estimation

Let us denote observed matrix by Y = (ynk), X = (Znm), the unknown parameters
by 8 = (o, B,v1,...,7L,0,7) and their prior by ¢(0). The posterior distribution
is represented as follows:

N
p(0,2]Y) o Hp(yn\zn,mn,O)p(znw)(jﬁ(@) (2)

n=1

First, latent variable z, must be marginalized. The likelihood belongs to

N N L
H p(yn|mna 0) = H Zﬂ-lp(yn|2n = l7wn7 0) (3)
n=1 n=1 (=1

The posterior distribution is proportional to product of the likelihood and prior
density:

p(0]Y) o exp {Z log p(yn|@n, 0) + log ¢(9)}

Let 0 be the MAP estimator of 8, found by maximizing logp(6,Y, X).
We use a Laplace approximation [15] for parameter estimation. A Taylor expan-
sion around 6 gives

~

logp(0|Y, X) ~ logp(é\Y, X)+ %(0 —0)"H(H)(6 - 6) (4)

where and H () is Hessian of log p(8]Y, X) evaluated at 8. Eq.4 gives

POV, X) ~ éeXp {;w —6)TH(H)(0 — é)}

where C' is normalizing constant. This relation shows that p(6|Y", X ) can be approx-
imated by normal distribution N(8, H=1(8)). Credible intervals can be calculated
from this multivariate normal distribution.

We used stochastic programming language Stan (http://mc-stan.org/) for its
implementation. The MAP estimators were obtained by L-BFGS method. Credible
intervals were computed from the using a Stan function to compute the Hessian at
the MAP estimates.

After fitting the model, we are left with the task of classify the enterotype of each
samples. The conditional probability of z,, =1 is

Pr(z, =1) = Wlp(yn|7l7ﬁvmn) ) 5
r(z ) Zlel Trlp(yn|'7h/6.7wn) ( )

This is the probability which n-th sample belong enterotype I. Then, n-th sample is
then classified into the [-th enterotype that maximizizes the conditional probability
gven by Eq.5.
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Model Selection

We are also interested in whether or not the whole set rather than individual bacteria
is related to the environmental factors of interest. We consider the comparison
between the two models when B # 0 and B = 0. We can use the log marginal
likelihood as the goodness of fit for model comparison. The marginal likelihood is
given by

PY|X) = /p(Y,9|X)da. (6)

From Eq.4, we have
~ 1 ~ A ~
/p(@, Y|X)do ~p(0lY,X) /cxp <2(0 —-6)"H(6)(6 - 0)) de. (7)
So, log marginal likelihood is approximated by following formula:
N ~ D 1 A
log P(Y|X) ~logp(Y|0,X) + ¢(0) + 5 log 2w — 5 log |H(0)| (8)

where D is the number of free parameters. In model comparison, we choose the
model with the larger log marginal likelihood.

Simulation Study

To show the performance of ENIGMA, we conducted several experiments by sim-
ulation. The synthetic data can be naturally produced via our generative process
given by Eq.1. We set M = 1, L = 3, m = 1/3, and a = (1,1,1)T. We first
generated B and -; from the standard normal distribution. The variables x,,, z,,
and y,, are then sampled from the Bernoulli distribution with probability of 0.5,
the categorical distribution, and the multinomial distribution, respectively. For the
above parameter setting, we randomly generate a count dataset of 100 taxa for 100
samples for evaluation.

e Coverage probability (CP): The coverage probability is the proportion of
the time that the interval contains the true value. A discrepancy between the
coverage probability and the nominal coverage probability frequently occurs.
When the actual coverage is greater than the nominal coverage, the interval
is called conservative. If the interval is conservative, there is no inconsistency
in interpretation.

e Bias: The bias of B is defined by difference between true value and estimated
value E[B] — B.

e Standard error (SE): The standard error is the standard deviation of the
estimate. The smaller standard error indicates the higher accuracy of estima-
tion.

e Root mean squared error (RMSE): The RMSE is defined by

E[(B — B)?]. The smaller RMSE indicates the higher accuracy of estima-
tion.

e Accuracy: The accuracy is the percentage of samples correctly classified into
original group.
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For calculating these metrics, we note that we calculated the sample means and
standard deviations of B and (B — B)? from the 10,000 synthetic datasets.

Figure 2 shows the comparison of true B and the mean and standard deviation
of estimates B through the 10,000 simulations. We observed that the points are
arranged diagonally, which implies the estimator of ENIGMA is unbiased. We also
calculated the proportion of the time that the 95% credible interval contains the
true value of B. We found that this proportion is greater than nominal value 0.95
for all B in Figure 3. Table 2 shows the coverage probability (CP), bias, standard
error (SE), and RMSE of B, respectively. We observed that the bias and standard
error decrease when B, is large (i.e. the corresponding abundance is large). We
also found that the accuracy of classification given by Eq.5 is exactly 100%. Thus,
these results indicate that ENIGMA can produce reasonable estimates.

Results on Clinical Data

To validate the performance of ENIGMA on discovering clusters of micribial com-
munities and associations between microbes and a specific disease, we applied
ENIGMA to the real metagenomic sequencing data from Scheperjans et al. [16],
Hill-Burns et al. [17], Heintz-Buschart et al. [18] and Hopfner et al. [19]. The data
is analized by sequencing the bacterial 16S ribosomal RNA genes sampled from
patients of Parkinson’s disease (PD) and control in Finland, USA, and Germany.
Table 1 shows the summary statistics of the data. The OTUs are mapped to the
SILVA taxonomic reference, version 132 (https://www.arb-silva.de/) and the
abundances of family-level taxa are calculated. Following the evidence of Arumugam
et al. [3], the number of latent classes in ENIGMA is chosen to be L = 3. We set
the hyperparameters of Dirichlet prior a = (1,1,1)T, which is equivalent to a non-
informative prior.

We evaluated whether the model where bacteria have the associations to the PD
patients is better than the model without the associations in terms of marginal
likelihood. We note that the marginal likelihood represents the model evidence
which expresses the preference of the data for different models. Let M; be the
model which is described Eq. 1 and Mg be the model setting all 5, = 0 in Eq. 1.
Table 3 shows that the marginal likelihood of M; is greater than M. It is better
to explain the data by considering the association between the microbiota and PD.

Figure 4 shows the estimated probabilities of the occurrences of bacteria for the
three latent classes, pj, (I = 1,2, 3). Bacteria detected in less than three countries
were removed. Arumugam et al. [3] showed that enterotype is characterized by the
differences in the abundance of Bacteroides, Prevotella, and Ruminococcus. The
result of ENIGMA shows the same tendency as previous survey. According to the
results of ENIGMA, the abundance of Enterobacteriaceae and Lachnospiraceae also
differ greatly among clusters. Bacterial abundance differs between countries. In USA
there is a large abundance of Verrucomicrobiaceae, but in Finland there are few.
Conversely, in Finland there is more Prevotellaceae, but in USA it is less.

Table 5 shows the coefficients whose 95% credible intervals do not contain zero
in more than two countries. The microbes with these coefficients indicates that
the corresponding microbial composition patterns are significantly related to PD.
We found that, in family levels, Clostridiaceae, Comamonadaceae, Pasteurellacea,
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Prevotellaceae, Actinomycetaceae, Bifidobacteriaceae, Enterococcaceae, Lactobacil-
laceae, Synergistaceae, Verrucomicrobiaceae and Victivallaceae, the signs of these
coefficients matched in all countries. These results are consistent with previous stud-
ies. Hill-Burns et al. [17] reported PD patients contained high levels of Bifidobacte-
riaceae and Verrucomicrobiaceae and low levels of Pasteurellaceae. Scheperjans et
al. [16] reported PD patients contained high levels of Lactobacillaceae, Verrucomi-
crobiaceae and low levels of Prevotellaceae. Hopfner et al reported PD patients have
high levels of Lactobacillaceae and Enterococcaceae.

We compared ENIGMA to the Wilcoxon rank sum test, one of the classical meth-
ods for identifying bacteria related with a environmental factor of interest [18]. Table
4 shows bacteria significantly related with the PD patients with p-value < 0.05 in
more than two countries. We observed that the bacteria detected by the Wilcoxon
test were almost included in those of ENIGMA (Table 5). We note that all of the
corrected p-values in Table 4 are larger than 0.05. This result shows that ENIGMA
is superior to the Wilcoxon rank sum test in terms of identifying more associations
between microbiota and the PD patients.

The analyses with real data thus show that ENIGMA can identify enterotype-like
clusters and the associations between the gut microbiota and the PD patients, and
some of the results are strongly supported by the previous researches.

Conclusion

We proposed a novel hierarchical Bayesian model, ENIGMA, to discover the un-
derlying microbial community structures and associations between microbiota and
their environmental factors from microbial metagenome data. ENIGMA is based on
a probabilistic model of a microbial community structures and supplied with labels
for one or more environmental factors of interest for each sample. The structures
of each sample is modeled by a multinomial distribution whose parameters are rep-
resented independently by group and environmental effects of each sample, which
prevent mixing of individual differences and effects of interest. This framework en-
ables the model to learn (i) how microbes contribute to an underlying community
structures (cluster) and (i7) how microbial compositional patterns are explained en-
vironmental factors of interest, simultaneously. The effectiveness of ENIGMA was
evaluated on the bases of experiments involving both synthetic and read datasets.
We believe that these newly discovered clusters and associations estimated from
ENIGMA would provide more insight in the the mechanisms of a microbial com-
munity.

There is one major limitation of ENIGMA is its scalability and efficiency, since
the number of the parameters in the model grow proportional to the number of
taxa when the number of environmental factors of interest is large. Further works
should focus on developing a scalable probabilistic model of microbial compositions
to analyze underlying microbial structures with a large number of these effects
by using sparse parameter estimation [20]. We are also interested in developing a
dynamic probabilistic model similar to reproted by Blei and Lafferty [21] to analyze
time-varying bacteria compositions during the progression of a disease.
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Figures

Table 1 The data summary

PD CO

Finland 74 74
German 55 64
USA 207 139
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Figure 1 Plate diagram of the model for ENIGMA. y,, is affected from environmental factors
@, and latent variables z,,.

estimates.
i‘
s

1]
true

Figure 2 Simulation result of B. The comparison true B and the mean of B. The error bars
indicates SE.
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Figure 3 Coverage probability of B. The histogram of coverage probability of B.

family
Figure 4 Heatmap showing ($/).This quantities corresponds to the probabilities of the

occurrences of bacteria for the three latent classes.
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Table 2 Coverage probability (CP), bias, standard error (SW) and RMSE of B

B CP bias SE  RMSE B CP bias SE  RMSE
-3.40 0.97 0.08 0.15 0.17 | -0.04 1.00 0.01 0.05 0.05
-2.65 0.97 0.06 0.15 0.16 | -0.04 1.00 0.01  0.05 0.05
-2.34  0.99 0.04 0.12 0.13 | -0.01 1.00 0.01 0.05 0.05
-2.32 0.99 0.03 0.12 0.12 0.01 1.00 0.01 0.04 0.04
-1.83  0.98 0.03 0.14 0.15 0.02 1.00 0.01 0.06 0.06
-1.59  0.99 0.02 0.13 0.13 0.02 1.00 0.01 0.04 0.05
-1.58 0.99 0.03 0.13 0.13 0.03 1.00 0.01 0.04 0.04
-1.51  0.99 0.02 0.14 0.14 0.10 1.00 -0.00 0.08 0.08
-1.51  0.99 0.02 0.13 0.13 0.13 1.00 0.01 0.03 0.03
-1.29  0.99 0.02 0.11 0.11 0.14 1.00 0.01 0.03 0.03
-1.14  0.99 0.01 0.11 0.11 0.21 1.00 0.01 0.06 0.06
-0.95 1.00 0.01 0.09 0.09 0.23 1.00 0.00 0.08 0.08
-0.95 0.99 0.01 0.12 0.12 0.29 1.00 0.01 0.04 0.04
-0.92  1.00 0.01 0.09 0.09 0.31 1.00 0.01 0.05 0.05
-0.88 0.99 0.01 0.12 0.12 0.32 1.00 0.00 0.08 0.08
-0.84 1.00 0.01 0.05 0.05 0.33 1.00 0.01 0.04 0.04
-0.82 1.00 0.01 0.08 0.08 0.44 099 -0.02 0.10 0.10
-0.78 0.99 0.01 0.13 0.13 0.46 1.00 0.01 0.05 0.05
-0.78 1.00 0.01 0.07 0.07 050 1.00 -0.01 0.08 0.08
-0.76  1.00 0.01 0.08 0.08 0.53 1.00 0.00 0.06 0.06
-0.72  0.99 0.00 0.12 0.12 0.54 1.00 -0.00 0.08 0.08
-0.68 1.00 0.01 0.10 0.10 0.55 1.00 0.01 0.04 0.04
-0.65 0.99 0.01 0.11 0.11 0.55 1.00 0.01 0.03 0.03
-0.65 0.99 0.01 0.11 0.11 0.56 1.00 0.01  0.05 0.05
-0.65 1.00 0.01 0.06 0.06 0.76 1.00 -0.00 0.07 0.07
-0.61 1.00 0.01 0.06 0.06 0.79 1.00 0.00 0.06 0.06
-0.58 1.00 0.01  0.06 0.06 0.84 1.00 0.00 0.05 0.05
-0.58 1.00 0.01 0.07 0.07 0.90 1.00 0.01 0.04 0.04
-0.56 1.00 0.01 0.05 0.05 0.93 1.00 0.00 0.05 0.05
-0.52  1.00 0.01  0.06 0.06 096 1.00 -0.01 0.08 0.08
-0.52  1.00 0.01 0.07 0.07 0.98 1.00 0.01 0.04 0.04
-0.51 1.00 0.01 0.04 0.05 1.01 1.00 -0.01 0.08 0.08
-0.50 1.00 0.01 0.05 0.05 1.08 1.00 0.00 0.05 0.06
-0.50 1.00 0.01 0.04 0.04 1.10 1.00 0.00 0.05 0.05
-0.49 0.99 0.00 0.11 0.11 1.13  1.00 0.01 0.04 0.04
-0.47  1.00 0.01 0.05 0.05 1.14 1.00 0.01 0.04 0.04
-0.45 1.00 0.01 0.09 0.09 1.16 1.00 -0.01 0.07 0.07
-0.42 099 -0.01 0.13 0.13 1.22 1.00 0.01 0.04 0.04
-0.33  1.00 0.01 0.07 0.07 1.23 1.00 -0.02 0.09 0.09
-0.28 1.00 0.00 0.09 0.09 1.43 1.00 0.00 0.04 0.04
-0.27  1.00 0.01 0.07 0.07 1.45 1.00 0.01 0.04 0.04
-0.23  1.00 0.00 0.09 0.09 1.47 1.00 0.00 0.04 0.04
-0.21 1.00 0.01 0.07 0.07 1.55 1.00 -0.01 0.07 0.08
-0.18 1.00 0.00 0.10 0.10 1.60 1.00 0.01 0.03 0.03
-0.15 0.99 -0.01 0.11 0.11 1.61 1.00 0.00 0.05 0.05
-0.15 0.99 -0.00 0.11 0.11 1.62 1.00 0.00 0.05 0.05
-0.11  1.00 0.01 0.06 0.06 1.89 1.00 0.01 0.03 0.03
-0.09 1.00 0.00 0.09 0.09 1.91 1.00 0.01 0.03 0.03
-0.05 1.00 0.01 0.04 0.04 1.95 1.00 0.01 0.02 0.02
-0.05 1.00 0.01 0.04 0.04 2.25 1.00 0.00 0.04 0.04

Table 3 The comparison marginal likelihood.

Finland German USA
Mo  -442734.62 -5913441.14 -3010279.35
My -355079.50 -3807297.76 -2063932.02

Table 4 p-value of Wilcoxon test

Finland German USA

Lachnospiraceae  0.009371  0.719014  0.002839
Lactobacillaceae  0.030404 0.077771  0.000002
Pasteurellaceae  0.006493  0.495315 0.004232
Prevotellaceae  0.001303 0.030892  0.194592
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Table 5 The bacteria which significant associated with PD in more than two countries. The “-" notation indicates the bacteria undetected in that country. %g
Finland German USA g E

family B lower bound  upper bound B lower bound  upper bound B lower bound  upper bound g g-
Anaeroplasmataceae -0.87 -1.28 -0.45 | -1.69 -2.03 -1.35 - - - S3
Bacteroidales S24-7 group | -0.52 -0.93 -0.11 0.22 -0.12 0.56 | -0.69 -1.04 -0.33 5»3
Bradyrhizobiaceae - - - | -0.82 -1.17 -0.47 | -1.51 -2.29 -0.74 = S
Brevibacteriaceae - - - | -1.02 -1.38 -0.66 | -0.58 -0.97 -0.19 25
Brucellaceae - - - | -1.69 -2.50 -0.87 | -1.35 -1.76 -0.94 [P~
Clostridiaceae 1 -0.54 -0.96 -0.13 | -0.08 -0.42 0.26 | -0.43 -0.79 -0.08 AE §
Comamonadaceae -0.85 -1.35 -0.35 | -1.27 -1.61 -0.93 | -0.20 -0.55 0.16 c——;g
Elusimicrobiaceae -4.17 -5.60 -2.74 | -2.11 -2.54 -1.68 2.36 1.04 3.67 =
Intrasporangiaceae - - - | -3.47 -4.86 -2.07 | -3.03 -4.77 -1.28 2 7] =
Leuconostocaceae -2.66 -4.30 -1.02 0.50 0.13 0.86 | -1.63 -2.11 -1.15 le-k2
Moraxellaceae - - - | -1.58 -1.92 -1.24 | -0.91 -1.26 -0.56 CER
Pasteurellaceae -1.62 -2.07 -1.17 0.30 -0.04 0.64 | -1.80 -2.16 -1.44 ;8 g.
Prevotellaceae -2.46 -2.87 -2.05 | -0.03 -0.37 0.30 | -0.45 -0.80 -0.09 [Si=i=]
Rhodocyclaceae - - - | -3.53 -4.93 -2.13 | -0.70 -1.13 -0.27 S %'8
Actinomycetaceae 0.11 -0.78 1.01 0.42 0.07 0.78 1.07 0.70 1.43 © E %
Bacillaceae 1.72 0.34 3.11 | -2.35 -2.72 -1.99 0.86 0.50 1.22 % [SR=2
Bdellovibrionaceae - - - | 1.43 0.40 2.46 | 2.87 1.69 4.05 552
Bifidobacteriaceae 1.34 0.82 1.86 0.54 0.20 0.88 0.09 -0.26 0.45 28g
Campylobacteraceae 0.36 -0.31 1.03 4.90 4.48 5.33 1.04 0.67 1.41 sga
Cytophagaceae - - - 2.45 1.56 3.34 1.50 0.20 2.81 9:’ s
Enterococcaceae 3.87 2.70 5.05 0.74 0.40 1.08 0.16 -0.20 0.52 Q%I\J
Lactobacillaceae 3.00 2.56 3.43 | -0.51 -0.85 -0.18 1.80 1.44 2.16 28 2
Leptotrichiaceae -0.90 -1.89 0.09 2.57 1.88 3.26 0.92 0.46 1.37 og®
Methanobacteriaceae - - - 0.93 0.59 1.27 0.76 0.39 1.12 5 5'
Mitochondria 0.60 -1.27 2.46 0.73 0.11 1.36 1.60 0.98 2.21 g 2
Paenibacillaceae - - - 2.19 1.28 3.10 1.73 1.32 2.13 -3
Planococcaceae - - - 1.06 0.72 1.41 3.26 2.69 3.84 gg
Rhizobiaceae - - - 0.64 0.24 1.03 1.52 1.09 1.94 3%
Streptococcaceae 0.44 0.03 0.86 | 0.84 0.50 1.17 | 0.34 -0.02 0.69 53
Succinivibrionaceae -0.32 -0.76 0.11 0.74 0.40 1.08 4.29 3.76 4.82 B %
Synergistaceae 1.26 0.80 1.71 0.25 -0.10 0.61 1.51 1.14 1.89 '(5; @
Verrucomicrobiaceae 1.71 1.23 2.19 1.62 1.29 1.96 0.03 -0.32 0.39 i)
Victivallaceae 0.42 -0.00 0.85 0.68 0.34 1.02 1.02 0.63 1.40 < ;
=%
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