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Abstract

Background: Establishing the relationship between microbiota and specific
disease is important but requires appropriate statistical methodology. A
specialized feature of microbiome count data is the presence of a large number of
zeros, which makes it difficult to analyze in case-control studies. Most existing
approaches either add a small number called a pseudo-count or use probability
models such as the multinomial and Dirichlet-multinomial distributions to explain
the excess zero counts, which may produce unnecessary biases and impose a
correlation structure taht is unsuitable for microbiome data.

Results: The purpose of this article is to develop a new probabilistic model,
called BERMUDA (BERnoulli and MUItinomial Distribution-based latent
Allocation), to address these problems. BERMUDA enables us to describe the
differences in bacteria composition and a certain disease among samples. We also
provide a simple and efficient learning procedure for the proposed model using an
annealing EM algorithm.

Conclusion: We illustrate the performance of the proposed method both through
both the simulation and real data analysis. BERMUDA is implemented with R
and is available from GitHub (https://github.com/abikoushi/Bermuda).

Keywords: latent allocation model; mixture distribution; metagenomics

Background
Low-cost metagenomic and amplicon-based sequencing has provided a snapshots
of microbial communities and their surrounding environments. One of the goals for
case-control studies with microbiome data is to investigate whether cases differ from
controls in the microbiome composition of a particular body ecosystems (e.g., the
gut) and which taxa are responsible for any differences observed [1]. (Here, we use
the generic term “taxa” to denote a particular phylogenetic classification.) These
studies present microbiome data are represented as count data using operational
taxonomic units (OTUs). The number of occurrences of each OTU is measured for
each sample drawn from an ecosystem, and the resulting OTU counts are summa-
rized at any level of the bacterial phylogeny, e.g., species, genes, family, order, etc.
An important feature of these microbiome count data is that it is highly sparse—
i.e., a very high proportion of the data entries are zero—which makes analyzing
these data difficult.

A common strategy to handle these excess zeros is to add a small number called a
pseudo-count [2]. Although adding a pseudo-count is simple and widely used, it can

give the data an unnecessary bias to the data. Other strategies include modeling
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excess zeros using probability models [3, 4]. However, such models make an implicit
assumption that all zeros can be explained by common probability models of micro-
bial composition. Thus, such models cannot capture the important characteristic of

individual differences in microbial composition.

Contributions. This article propose a new probabilistic model, called BERnoulli
and MUltinomial Distribution-based latent Allocation (BERMUDA), to address
these problems. Our method can be regarded as a form of unsupervised learning.
The contributions of our work are summarized below:

1 BERMUDA is a generative statistical model that allows a set of taxa to be
explained by unobserved groups and can be used to find the inherent relation-
ship between taxa and a specific disease and to generate microbiome count
data through the model.

2 In BERMUDA, the abundance of each taxon can be viewed as a mixture
of various groups, which enables us to describe the differences in bacteria
composition between samples.

3 We provide a simple and efficient learning procedure for the proposed model
using an annealing EM algorithm that reduces the local maxima problem
inherent to the traditional EM algorithm. The software package that imple-
ments the proposed method in the R environment is available from GitHub
(https://github.com/abikoushi/Bermuda).

We describe our proposed model and algorithm in “Methods” section. We also

provide the efficiency of BERMUDA using synthetic and real data in “A Simulation
Study” section and “Result for Real Data” section, respectively.

Methods

Proposed Model

Suppose that we observe a microbial count dataset with disease labels, { (W, yn);n =
1,...,N,k=1,...,K)}, where wy is the abundance of the k-th taxon and y,, is a
binary outcome such that y,, = 1 if the n-th sample has a certain disease and y,, = 0
otherwise. Let w,, be the k-th row of matrix W = (wy) and M,, = Zszl wpk be
the total reads count of the n-th sample.

We extract the associations between microbial composition and a specific disease
by also supposing that there exist L latent clusters that vary with microbial com-
position and the disease risk. Let z,, = (21, ..., an)T be an indicator vector such
that z,; = 1 if the n-th sample is in the [-th class and z,,; = 0 otherwise. We then
consider the following generative model:

Yn|Zn, P ~ Bernoulli(pi™* - - - p7"*)

wy| M, zp, P~ Multinomial(M,,, zI P) 1)
Zn|® ~ Multinomial(1, ¢),

il ~ Dirichlet(ea),

where p = (p1,...,pr)7T is the probability of developing a certain disease, P = (p;)

(I =1,...L)is an L x K matrix of the appearance probability of taxa, p; is the
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I-th row vector of matrix P, ¢ = (¢1...,¢r)7 is a vector of each component’s

T is a vector of the hyperparameters of the

mixing ratios, and @ = (aq,...,ak)
Dirichlet prior distribution. Fig. 1 displays the plate notation for the proposed
model. The gray node represents an observed variable and the white node represents
an unobserved variable; the latent variable z,, affects both 4, and w,,.

If the latent variable z,, is given, the complete likelihood of this model is repre-

sented by the following formula:
N
H f(yﬂa Wn, Zn|P, pv ¢)

1

N N Z w K
po un ( —Yn\2n nk ok )2
a1 R e e (o) BT

wnl C =1

th

The posterior distribution is then proportional to:

N L K
exp <Z 108 f (Yn, W, 20| P, p, @) + Y > (o — 1) 10gplk> (3)

n=1 =1 k=1

Parameter Estimation

We find the maximum a posteriori probability (MAP) estimators, using an annealing
M (AEM) algorithm [5]. One advantage of using an AEM algorithm is that it

reduces the local maxima problem from which the traditional EM algorithm suffers.

In the E-step, using the inverse temperature 0 < 8 < 1, we calculate

Z(i+1) _ f(yna Wn, an‘P( 7p( d)(l)) (4)
! Zznl f(Yns Wi, 2| P @, p(0), o) )P

To simplify the explanation, we set v = ay — 1. From the logarithm of (3), in the

M-step, we update the parameters using:

(1) _ 1 S _(is)

o) - N 2 Znl (5)

pl(i-i-l) _ ZnNNl Sz:r)gn (6)
2 n=1%ni

i) = S lfz(’ﬁ)w”’“” (7)
Yot 2y My + Ky

If v = 0, MAP estimators are equivalent to MLEs.
A procedure of BERMUDA is then summarized as follows:
1 Set S3.
2 Arbitrarily choose an initial estimate P, ¢ and p(©). Set i + 0.
3 Iterate the following two steps until convergence:
(a) E-step: Compute z( " from (4).
(b) M-step: Compute P +1) ¢+ and pt+D) from (5), (6) and (7). Set
14—1=1+1.
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4 Increase .

5 If B < 1, repeat from step 3; otherwise stop.

Let J), p and P be MAP estimators of ¢, p and P. If given w,, and the estimators,
we can evaluate the probability that the n-th sample has the target disease. The
conditional probability is given by

pn = Pr(y, = ljw,, P, p, @)
Pr(yn =1,w,|P, p, §)
Pr(w,|P, p, )
Y f Y = Lwn, 2| P, p, B)
S S f w2 P p B

(®)

The advantage of using the Dirichlet prior distribution is that we can evaluate the
abundance of the taxa whose abundance is exactly zero.

The n-th sample is then classified into the I-th class that maximizizes the condi-
tional probability given by

f(yna W, an|P(l)7 p(l)a ¢(z))
Zz"l f(yna Wy, an|P(l)a p(l)a (ﬁ(l)) .

9)

Znl =

In fitting the model, it is important to choose an appropriate number for L. In
this article, we use cross-validation to choose L. From (8), we can evaluate the
probability that the n-th sample has the target disease. We can then evaluate the
log-loss function represented by:

J
LL=- Z (4 log(p;) + (1 — y;) log(1 = p;)), (10)

where J is an arbitrarily chosen subsample size for the validation data. We then
select an L which minimizes (10) in this analysis.

A Simulation Study

In this section, we generated synthetic data and evaluated the performance of our
method in order to gain insights into the accuracy of the parameters estimated
by the proposed method. A simulation study was conducted as follows. An i.i.d.
sample is generated by (1) where we set N = 700, M, = 10000, L = 7, v =
107% ¢ =(1/7,...,1/7)T, and p = (0,3,0.4,...,0.9)T. P is chosen by a standard
Dirichlet random number. We estimated the parameters from 10,000 replicates of
the experiment.

Table 1 shows the mean and standard error (se) of the estimates for p and ¢
using the proposed method. It can be observed that the estimates are unbiased to
the order of 1/100. Fig. 2 shows the relationship between estimates and true P in
this simulation. In this figure, the points are arranged diagonally, which implies the
estimator is unbiased. The overall accuracy of classification by Z,; (9) is 0.87. Thus,
these results indicates that the proposed method can produce reasonable estimates
and classify samples into true groups in this scenario.
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Results for Real Data

We first seek to identify the gut dysbiosis in relation to development of Parkinson’s
disease (PD), which is thought to be associated with intestinal microbiota. We
analyzed intestinal microbial data in PD and controls in three different countries.
Scheperjans et al.(2015) [6] , Hill-Burns et al.(2017), [7] and Hopfner et al.(2017) [9]
conducted case-control studies by sequencing the bacterial 16S ribosomal RNA gene
in Finland, USA, and Germany, respectively.

The OTUs are then mapped to the SILVA taxonomic reference, version 132
(https://wuw.arb-silva.de/) and the abundances of genus-level taxa are cal-
culated. We focused on the top 20 genera in terms of sample mean of normalized
abundance wy,/M,, for 336 PD cases and 277 controls.

We set v = 1079, which is equivalent to giving a weakly informative prior. The
number of components L = 6 is selected using 10-fold cross-validation (Fig 3). Fig. 3
shows the log-loss functions for different numbers of the components L.

Fig. 4 presents the estimated appearance probabilities of the 20 genera. The clus-
ters are sorted by estimated PD risk p (Table 2). As displayed Fig. 4, the distri-
bution of Prevotella is quite distinctive, being concentrated in the low-risk cluster
of PD. Faecalibacterium also tends to be higher in the low-risk cluster. In contrast,
Akkermansia is concentrated in the high-risk cluster.

This result is consistent with the previous studies. Petrov et al. (2016) [10] re-
ported that the gut microbiota of PD patients contained high levels of Chris-
tensenella, Catabacter, Lactobacillus, Oscillospira, and Bifidobacteriumm, and the
control cluster was characterized by increased content of Dorea, Bacteroides, Pre-
votella, and Faecalibacterium. In family level analysis, Hill-Burns et al. (2017) [7]
reported PD patients contained high levels of Bifidobacteriaceae, Lactobacillaceae,
Tissierellaceae, Christensenellaceae and Verrucomicrobiaceae and low levels of
Lachnospiraceae, Pasteurellaceae. Scheperjans et al.(2015) [6] reported PD patients
contained high levels of Lactobacillaceae, Verrucomicrobiaceae, Bradyrhizobiaceae
and Ruminococcaceae and low levels of Prevotellaceae and Clostridiales Incertae
Sedis IV. Akkermansia belongs in Verrucomicrobiaceae. Of the Verrucomicrobi-
aceae, it has been suggested that Akkarmansia may be related to PD.

Thus, the analysis with real data demonstrate that the proposed method can
identify the connection between the gut microbiota and the PD, with the results
are strongly supported by the previous PD research.

Conclusion

We proposed the new probabilistic model, called BERMUDA, for analyzing the
relationship between microbiota and a specific disease. Although the existing ap-
proaches tend to underestimated individual differences in microbial composition,
BERMUDA can take into account these differences and identify combinations of
taxa rather than single taxa in the analysis of association with a specific disease risk.
We demonstrated applicability of BERMUDA to microbial analyses with simulation
and real data. The application of BERMUDA to gut microbiota data in PD and con-
trols revealed that Prevotella, Faecalibacterium, and Akkermansia were associated
with PD, which is consistent with previous studies. We expect that BERMUDA
can be efficiently applieed to studies that seek for a causal association between gut
dysbiosis and specific disease.
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Figure 1 The plate notation for the proposed model
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Figure 2 The comparison of trueP and mean of P
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Figure 3 The behavior of the log-loss functions given by different numbers of components L

Table 1 The mean and se of p and ¢

cluster 1 2 3 4 5 6 7
p 030 040 050 060 0.70 0.80 0.90
mean 0.30 040 050 060 0.70 0.80 0.90
se 005 0.05 0.05 005 0.05 0.04 0.03
® 014 014 014 014 014 014 014
mean 0.14 0.14 0.14 0.14 0.14 0.14 0.14
se 001 001 001 001 0.01 0.01 0.01
Table 2 The estimated disease risk (p;) within each cluster
l 1 2 3 4 5 6 7
p 031 040 052 059 067 0.69 0.78
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Figure 4 The appearance probability of the 20 genera (P)
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