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Abstract

Background: Establishing the relationship between microbiota and specific
disease is important but requires appropriate statistical methodology. A
specialized feature of microbiome count data is the presence of a large number of
zeros, which makes it difficult to analyze in case-control studies. Most existing
approaches either add a small number called a pseudo-count or use probability
models such as the multinomial and Dirichlet-multinomial distributions to explain
the excess zero counts, which may produce unnecessary biases and impose a
correlation structure taht is unsuitable for microbiome data.

Results: The purpose of this article is to develop a new probabilistic model,
called BERMUDA (BERnoulli and MUltinomial Distribution-based latent
Allocation), to address these problems. BERMUDA enables us to describe the
differences in bacteria composition and a certain disease among samples. We also
provide a simple and efficient learning procedure for the proposed model using an
annealing EM algorithm.

Conclusion: We illustrate the performance of the proposed method both through
both the simulation and real data analysis. BERMUDA is implemented with R
and is available from GitHub (https://github.com/abikoushi/Bermuda).
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Background
Low-cost metagenomic and amplicon-based sequencing has provided a snapshots

of microbial communities and their surrounding environments. One of the goals for

case-control studies with microbiome data is to investigate whether cases differ from

controls in the microbiome composition of a particular body ecosystems (e.g., the

gut) and which taxa are responsible for any differences observed [1]. (Here, we use

the generic term “taxa” to denote a particular phylogenetic classification.) These

studies present microbiome data are represented as count data using operational

taxonomic units (OTUs). The number of occurrences of each OTU is measured for

each sample drawn from an ecosystem, and the resulting OTU counts are summa-

rized at any level of the bacterial phylogeny, e.g., species, genes, family, order, etc.

An important feature of these microbiome count data is that it is highly sparse—

i.e., a very high proportion of the data entries are zero—which makes analyzing

these data difficult.

A common strategy to handle these excess zeros is to add a small number called a

pseudo-count [2]. Although adding a pseudo-count is simple and widely used, it can

give the data an unnecessary bias to the data. Other strategies include modeling
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excess zeros using probability models [3, 4]. However, such models make an implicit

assumption that all zeros can be explained by common probability models of micro-

bial composition. Thus, such models cannot capture the important characteristic of

individual differences in microbial composition.

Contributions. This article propose a new probabilistic model, called BERnoulli

and MUltinomial Distribution-based latent Allocation (BERMUDA), to address

these problems. Our method can be regarded as a form of unsupervised learning.

The contributions of our work are summarized below:

1 BERMUDA is a generative statistical model that allows a set of taxa to be

explained by unobserved groups and can be used to find the inherent relation-

ship between taxa and a specific disease and to generate microbiome count

data through the model.

2 In BERMUDA, the abundance of each taxon can be viewed as a mixture

of various groups, which enables us to describe the differences in bacteria

composition between samples.

3 We provide a simple and efficient learning procedure for the proposed model

using an annealing EM algorithm that reduces the local maxima problem

inherent to the traditional EM algorithm. The software package that imple-

ments the proposed method in the R environment is available from GitHub

(https://github.com/abikoushi/Bermuda).

We describe our proposed model and algorithm in “Methods” section. We also

provide the efficiency of BERMUDA using synthetic and real data in “A Simulation

Study” section and “Result for Real Data” section, respectively.

Methods
Proposed Model

Suppose that we observe a microbial count dataset with disease labels, {(wnk, yn);n =

1, . . . , N, k = 1, . . . ,K)}, where wnk is the abundance of the k-th taxon and yn is a

binary outcome such that yn = 1 if the n-th sample has a certain disease and yn = 0

otherwise. Let wn be the k-th row of matrix W = (wnk) and Mn =
∑K
k=1 wnk be

the total reads count of the n-th sample.

We extract the associations between microbial composition and a specific disease

by also supposing that there exist L latent clusters that vary with microbial com-

position and the disease risk. Let zn = (zn1, . . . , znL)T be an indicator vector such

that znl = 1 if the n-th sample is in the l-th class and znl = 0 otherwise. We then

consider the following generative model:
yn|zn,ρ ∼ Bernoulli(ρzn1

1 · · · ρznL

L )

wn|Mn, zn,P ∼ Multinomial(Mn, z
T
nP )

zn|φ ∼ Multinomial(1,φ),

pl|α ∼ Dirichlet(α),

(1)

where ρ = (ρ1, . . . , ρL)T is the probability of developing a certain disease, P = (plk)

(l = 1, . . . L) is an L × K matrix of the appearance probability of taxa, pl is the
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l-th row vector of matrix P , φ = (φ1 . . . , φL)T is a vector of each component’s

mixing ratios, and α = (α1, . . . , αK)T is a vector of the hyperparameters of the

Dirichlet prior distribution. Fig. 1 displays the plate notation for the proposed

model. The gray node represents an observed variable and the white node represents

an unobserved variable; the latent variable zn affects both yn and wn.

If the latent variable zn is given, the complete likelihood of this model is repre-

sented by the following formula:

N∏
n=1

f(yn,wn, zn|P ,ρ,φ)

=
N∏
n=1

L∏
l=1

φznl

l {ρ
yn
l (1− ρl)1−yn}znl

( ∑K
k=1 wnk

wn1! · · ·wnK !

K∏
k=1

(pwnk

lk )znl

)
. (2)

The posterior distribution is then proportional to:

exp

(
N∑
n=1

log f(yn,wn, zn|P ,ρ,φ) +

L∑
l=1

K∑
k=1

(αk − 1) log plk

)
. (3)

Parameter Estimation

We find the maximum a posteriori probability (MAP) estimators, using an annealing

EM (AEM) algorithm [5]. One advantage of using an AEM algorithm is that it

reduces the local maxima problem from which the traditional EM algorithm suffers.

In the E-step, using the inverse temperature 0 < β ≤ 1, we calculate

z
(i+1)
nl =

f(yn,wn, znl|P (i),ρ(i),φ(i))β∑
znl

f(yn,wn, znl|P (i),ρ(i),φ(i))β
. (4)

To simplify the explanation, we set γ = αk − 1. From the logarithm of (3), in the

M-step, we update the parameters using:

φ
(i+1)
l =

1

N

N∑
n=1

z
(i+1)
nl (5)

ρ
(i+1)
l =

∑N
n=1 z

(i+1)
nl yn∑N

n=1 z
(i+1)
nl

(6)

p
(i+1)
lk =

∑N
n=1 z

(i+1)
nl wnk + γ∑N

n=1 z
(i+1)
nl Mn +Kγ

. (7)

If γ = 0, MAP estimators are equivalent to MLEs.

A procedure of BERMUDA is then summarized as follows:

1 Set β.

2 Arbitrarily choose an initial estimate P (0), φ(0) and ρ(0). Set i← 0.

3 Iterate the following two steps until convergence:

(a) E-step: Compute z
(i+1)
nl from (4).

(b) M-step: Compute P (i+1), φ(i+1) and ρ(i+1) from (5), (6) and (7). Set

i← i = i+ 1.
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4 Increase β.

5 If β < 1, repeat from step 3; otherwise stop.

Let φ̂, ρ̂ and P̂ be MAP estimators of φ, ρ and P . If given wn and the estimators,

we can evaluate the probability that the n-th sample has the target disease. The

conditional probability is given by

ρ̃n = Pr(yn = 1|wn, P̂ , ρ̂, φ̂)

=
Pr(yn = 1,wn|P̂ , ρ̂, φ̂)

Pr(wn|P̂ , ρ̂, φ̂)

=

∑
znl

f(yn = 1,wn, znl|P̂ , ρ̂, φ̂)∑
znl

∑
yn
f(yn,wn, znl|P̂ , ρ̂, φ̂)

. (8)

The advantage of using the Dirichlet prior distribution is that we can evaluate the

abundance of the taxa whose abundance is exactly zero.

The n-th sample is then classified into the l-th class that maximizizes the condi-

tional probability given by

ẑnl =
f(yn,wn, znl|P (i),ρ(i),φ(i))∑
znl

f(yn,wn, znl|P (i),ρ(i),φ(i))
. (9)

In fitting the model, it is important to choose an appropriate number for L. In

this article, we use cross-validation to choose L. From (8), we can evaluate the

probability that the n-th sample has the target disease. We can then evaluate the

log-loss function represented by:

LL = −
J∑
j=1

(yj log(ρ̃j) + (1− yj) log(1− ρ̃j)), (10)

where J is an arbitrarily chosen subsample size for the validation data. We then

select an L which minimizes (10) in this analysis.

A Simulation Study
In this section, we generated synthetic data and evaluated the performance of our

method in order to gain insights into the accuracy of the parameters estimated

by the proposed method. A simulation study was conducted as follows. An i.i.d.

sample is generated by (1) where we set N = 700, Mn = 10000, L = 7, γ =

10−9, φ = (1/7, . . . , 1/7)T , and ρ = (0, 3, 0.4, . . . , 0.9)T . P is chosen by a standard

Dirichlet random number. We estimated the parameters from 10,000 replicates of

the experiment.

Table 1 shows the mean and standard error (se) of the estimates for ρ and φ

using the proposed method. It can be observed that the estimates are unbiased to

the order of 1/100. Fig. 2 shows the relationship between estimates and true P in

this simulation. In this figure, the points are arranged diagonally, which implies the

estimator is unbiased. The overall accuracy of classification by ẑnl (9) is 0.87. Thus,

these results indicates that the proposed method can produce reasonable estimates

and classify samples into true groups in this scenario.
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Results for Real Data
We first seek to identify the gut dysbiosis in relation to development of Parkinson’s

disease (PD), which is thought to be associated with intestinal microbiota. We

analyzed intestinal microbial data in PD and controls in three different countries.

Scheperjans et al.(2015) [6] , Hill-Burns et al.(2017), [7] and Hopfner et al.(2017) [9]

conducted case-control studies by sequencing the bacterial 16S ribosomal RNA gene

in Finland, USA, and Germany, respectively.

The OTUs are then mapped to the SILVA taxonomic reference, version 132

(https://www.arb-silva.de/) and the abundances of genus-level taxa are cal-

culated. We focused on the top 20 genera in terms of sample mean of normalized

abundance wnk/Mn for 336 PD cases and 277 controls.

We set γ = 10−9, which is equivalent to giving a weakly informative prior. The

number of components L = 6 is selected using 10-fold cross-validation (Fig 3). Fig. 3

shows the log-loss functions for different numbers of the components L.

Fig. 4 presents the estimated appearance probabilities of the 20 genera. The clus-

ters are sorted by estimated PD risk ρ̂ (Table 2). As displayed Fig. 4, the distri-

bution of Prevotella is quite distinctive, being concentrated in the low-risk cluster

of PD. Faecalibacterium also tends to be higher in the low-risk cluster. In contrast,

Akkermansia is concentrated in the high-risk cluster.

This result is consistent with the previous studies. Petrov et al. (2016) [10] re-

ported that the gut microbiota of PD patients contained high levels of Chris-

tensenella, Catabacter, Lactobacillus, Oscillospira, and Bifidobacteriumm, and the

control cluster was characterized by increased content of Dorea, Bacteroides, Pre-

votella, and Faecalibacterium. In family level analysis, Hill-Burns et al. (2017) [7]

reported PD patients contained high levels of Bifidobacteriaceae, Lactobacillaceae,

Tissierellaceae, Christensenellaceae and Verrucomicrobiaceae and low levels of

Lachnospiraceae, Pasteurellaceae. Scheperjans et al.(2015) [6] reported PD patients

contained high levels of Lactobacillaceae, Verrucomicrobiaceae, Bradyrhizobiaceae

and Ruminococcaceae and low levels of Prevotellaceae and Clostridiales Incertae

Sedis IV. Akkermansia belongs in Verrucomicrobiaceae. Of the Verrucomicrobi-

aceae, it has been suggested that Akkarmansia may be related to PD.

Thus, the analysis with real data demonstrate that the proposed method can

identify the connection between the gut microbiota and the PD, with the results

are strongly supported by the previous PD research.

Conclusion
We proposed the new probabilistic model, called BERMUDA, for analyzing the

relationship between microbiota and a specific disease. Although the existing ap-

proaches tend to underestimated individual differences in microbial composition,

BERMUDA can take into account these differences and identify combinations of

taxa rather than single taxa in the analysis of association with a specific disease risk.

We demonstrated applicability of BERMUDA to microbial analyses with simulation

and real data. The application of BERMUDA to gut microbiota data in PD and con-

trols revealed that Prevotella, Faecalibacterium, and Akkermansia were associated

with PD, which is consistent with previous studies. We expect that BERMUDA

can be efficiently applieed to studies that seek for a causal association between gut

dysbiosis and specific disease.
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Figure 1 The plate notation for the proposed model
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Figure 3 The behavior of the log-loss functions given by different numbers of components L

Table 1 The mean and se of ρ̂ and φ̂

cluster 1 2 3 4 5 6 7
ρ 0.30 0.40 0.50 0.60 0.70 0.80 0.90

mean 0.30 0.40 0.50 0.60 0.70 0.80 0.90
se 0.05 0.05 0.05 0.05 0.05 0.04 0.03

φ 0.14 0.14 0.14 0.14 0.14 0.14 0.14
mean 0.14 0.14 0.14 0.14 0.14 0.14 0.14

se 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 2 The estimated disease risk (ρ̂l) within each cluster

l 1 2 3 4 5 6 7
ρ̂l 0.31 0.40 0.52 0.59 0.67 0.69 0.78
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Figure 4 The appearance probability of the 20 genera (P̂ )
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