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Abstract

Large-scale annotated image datasets like ImageNet and CIFAR-10 have been essential in developing
and testing sophisticated new machine learning algorithms for natural vision tasks. Such datasets allow
the development of neural networks to make visual discriminations that are done by humans in everyday
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activities, e.g. discriminating classes of vehicles. In computational pathology, such machine learning
algorithms are applied to the highly specialized vision task of diagnosing cancer or other diseases from
pathology images. Importantly, labeling pathology images requires pathologists who have had decades of
training, but due to the demands on pathologists’ time (e.g. clinical service) obtaining a large annotated
dataset of pathology images for supervised learning is difficult. To facilitate advances in computational
pathology, on a scale similar to advances obtained in natural vision tasks using ImageNet, we leverage
the power of social media. Pathologists worldwide share annotated pathology images on Twitter, which
together provide thousands of diverse pathology images spanning many sub-disciplines. From Twitter,
we assembled a dataset of 2,750 images from 1,576 Tweets from 13 pathologists from 8 countries; each
message includes both images and text commentary. To demonstrate the utility of these data for compu-
tational pathology, we apply machine learning to our new dataset to test whether we can (i) accurately
identify different stains, (ii) discriminate between five tissue types, and (iii) differentiate nontumoral,
benign/low grade malignant potential [low grade], and malignant diseases. Using a Random Forest, we
report (i) 0.960 ± 0.012 Area Under Receiver Operating Characteristic [AUROC] when differentiating
between human hematoxylin and eosin [H&E] stained microscopy images from all other types of images
e.g. natural scenes, and (ii) 0.996 ± 0.003 AUROC when distinguishing H&E from immunohistochem-
istry [IHC] stained microscopy images. Though a Support Vector Machine found color features to be
important, a Random Forest surprisingly found texture features to be important, for these stain tasks.
Additionally, we distinguish all pairs of breast, dermatological, gastrointestinal, genitourinary, and gy-
necological pathology tissue types, with mean AUROC for any pairwise comparison ranging from 0.783
to 0.873. We report 0.803± 0.059 AUROC when all five tissue types are considered in a single multiclass
classification task. Finally, for our most difficult and clinically relevant task of distinguishing low grade
from malignant tumors, we report 0.703±0.058 AUROC, which marginally drops to 0.683±0.056 for the
3-class classification task of distinguishing nontumoral diseases, low grade tumors, and malignant tumors.
We hope this inspires other groups to use our dataset, to (i) improve performance, (ii) build upon our
definition of nontumoral, low grade, and malignant in terms of diagnosis text keywords, or (iii) use our
data as an independent test set for nontumoral, low grade, and malignant disease classification tasks.
We provide a tool, called the Interactive Pathology Annotator, for pathologists and data scientists to
browse, search, and validate the dataset. Our goal is to make this large-scale annotated dataset publicly
available for researchers worldwide to develop, test, and compare their machine learning methods, an
important step to advancing the field of computational pathology.

1 Introduction

Figure 1: Thirteen pathologists over 8 countries donated
cases for our study. They also answered questions that
arose during manual case annotation procedures (Table 1).

Supervised learning requires annotated data. Im-
ageNet [6] has millions of human-labeled images;
CIFAR-10 [13] [Canadian Institute for Advanced
Research] has thousands. Machine learning meth-
ods for natural vision tasks routinely use datasets
like these to benchmark performance, and trans-
fer learned representations to other tasks, such as
pathology [2, 16, 25]. However, computational pathology [7] datasets that are annotated for supervised
learning are often much smaller, because obtaining annotations from a pathologist is difficult. For example,
there are only 32 cases in the training data for a MICCAI challenge for distinguishing brain cancer subtypes,
and this includes both pathology and radiology images1. Other studies are larger, such as the TUPAC16
[TUmor Proliferation Assessment Challenge] dataset of 821 cases [28] – all 821 cases being whole slide images
from The Cancer Genome Atlas [TCGA]2. TCGA has tens of thousands of whole slide images available in
total, but these images are only hematoxylin and eosin [H&E] stained slides.

To overcome the main limitation of developing a pathology dataset on the scale of ImageNet or CIFAR-10
– the availability of pathologists to annotate images – we leverage the power of social media. Pathologists
worldwide voluntarily use social medial platforms (e.g., Twitter) to share annotated cases [5, 8, 18]. These
cases constitute a diverse, large-scale pathology dataset, which, if curated, can be used by computational
pathologists all over the world to develop their machine learning techniques. We have developed such a

1This MICCAI [Medical Image Computing and Computer Assisted Intervention] challenge is http://miccai.cloudapp.net/
competitions/82

2TCGA available at http://cancergenome.nih.gov/
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Figure 2: At left : Pathologist (author S.R.A.) discusses a case. Without mentioning the diagnosis himself, he
confirms the diagnosis suggested by a second pathologist, i.e. cystadenofibroma, which we explicitly annotate. At
right : Our Interactive Pathology Annotation [IPA] tool displays an image from this case, in the context of the Tweet
overall. IPA is a portal for pathologists to (i) browse Tweets and images in the dataset; (ii) validate our data
annotations; (iii) check our tissue type categorization algorithm results, (iv) check our nontumor, low grade, and
malignant categorization algorithm results; (v) search Tweets for specific keywords or diagnoses; (vi) filter out all
cases except those from a specific pathologist; and (vii) click the link to the original Tweet on Twitter for context.

Step Purpose Description
1. Find pathologist We find pathologists who share many or under-represented pathology cases.
2. Obtain consent Pathologist consents to have their images included in a public database.
3. Download data We use custom bots and scripts to obtain the pathologist’s cases.
4. Annotate data We write a text file to describe each case’s social media post, per Sec 2.1.1.1.
4.1. Online question We ask pathologists to clarify social media post (if needed), e.g. stain used.
4.2. Local question If the pathologist does not respond, we ask a local pathologist for help.
5. Analyze all data We aggregate data, perform machine learning, and measure performance.

Table 1: Details of each step of our pipeline.

dataset, which includes a variety of sections and techniques, ranging from immunohistochemistry [IHC] to
fluorescence in situ hybridization [FISH], and a range of tissues, with linked annotations by pathologists.

Figure 3: Examples of images that are rejected, because they
are not pathology images that a pathologist would see in clin-
ical practice. Panel A (top M.P.P., bottom B.D.S): “art” re-
jects. Panel B (top B.S.P., bottom S.Y.): “non-pathology”
rejects. Panel C (top B.X., bottom A.M.): “overdrawn” re-
jects. Panel D (top S.R.A., bottom L.G.P.): “panel” rejects.
Panel G (top and bottom S.R.A.): top is acceptable H&E (see
Sec 2.1.1 for definition), bottom is “dup” [duplicate] rejection.

This initial dataset includes images donated by
13 pathologists, from 13 institutions in 8 coun-
tries (Fig 1). We annotated 2,750 images from
1,576 Tweets from 13 pathologists, with con-
sent and help from pathologists. The message
text and hashtags posted along with the im-
ages were treated as image annotations.

Our current work makes two novel contri-
butions to the field of computational pathol-
ogy: (1) we present the first study of pathology
images and annotations shared on social media
by pathologists, and (2) we demonstrate the
utility of these data with a variety of machine
learning analyses. These analyses include (i)
predicting if an image is an acceptable H&E-
stained human microscopy image or not, (ii)
predicting if a microscopy image is H&E-stained or IHC-stained, (iii) predicting the histopathology tissue
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Figure 4: Our dataset includes diverse techniques. Initials indicate image ownership. Panel A (R.S.S.): Papanico-
laou stain, i.e. pap smear. Panel B (L.G.P.): Periodic acid-Schiff [PAS] stain, glycogen in pink. Panel C (L.G.P.):
PAS stain at lower magnification. Panel D (L.G.P.): Hematoxylin and eosin [H&E] stain, for comparison to Panel C.
Panel E (L.G.P.): H&E stain of human appendix, including a parasite, Enterobius vermicularis. Panel F (L.G.P.):
Higher magnification of Enterobius vermicularis in Panel E. Panel G (L.G.P.): Gömöri trichrome, collagen in green.
Panel H (L.G.P.): Diff-quik stain. Panel I (R.S.S.): GMS stain (see also Sec S1.2.1), fungi in black. Panel J (M.P.P.):
Giemsa stain. Panel K (A.M.): Immunohistochemistry [IHC] stain, positive result. Panel L (A.M.): IHC stain,
negative result. Panel M (R.S.S.): Congo red under polarized light, with plaques showing green birefringence.
Panel N (M.P.P.): Fluorescence in situ hybridization [FISH] indicating Her2 heterogeneity in breast cancer.
Panel O (S.Y.): Head CT scan. Panel P (L.G.P.): Esophageal endoscopy.

type of an image, and (iv) predicting if an image shows nontumoral, benign/low grade malignant potential
[low grade], or malignant disease. A B C D E F G

Figure 5: Our dataset includes diverse parasitology samples.
Panel A (B.S.P.): Strongyloides stercoralis, light microscopy.
Panel B (B.S.P.): Dirofilaria immitis, in human, H&E stain.
Panel C (B.S.P.): Plasmodium falciparum, in human, Giemsa stain.
Panel D (B.S.P.): Incidental finding of unspecified mite in human stool,
light microscopy. Panel E (B.S.P.): Dermatobia hominis, live gross
specimen. Panel F (B.S.P.): Acanthamoeba, in human, H&E of corrective
contact lenses. Panel G (B.S.P.): Trichuris trichiura, gross specimen.

We also provide a tool, called
IPA, for pathologists and data sci-
entists to browse, search, and vali-
date the dataset (Figs 2 and S13).
Our goal is to make this large-scale
annotated dataset publicly avail-
able for researchers worldwide to
develop, test, and compare their
machine learning methods, an im-
portant step for advancing compu-
tational pathology.

2 Materials and Methods

A B C D E F G

Figure 6: Our dataset includes diverse H&E-stained slide microscopy
images. Panel A (S.R.A): Acute villitis due to septic Escherichia coli.
Panel B (R.S.S.): Garlic. Panel C (R.S.S.): “Accellular” leiomyoma
after ulipristal acetate treatment. Panel D (R.S.S.): Brownish appear-
ance from dark lighting. Panel E (K.R.O.): Sarcina in duodenum.
Panel F (B.D.S.): Mature teratoma of ovary, pigmented epithelium.
Panel G (K.A.J.): Central core myopathy.

We follow the procedure outlined in Ta-
ble 1 to obtain and analyze pathology
data. In step 1, we find pathologists on
social media (Twitter) who share many
pathology cases, or share infrequently
shares tissues, e.g. neuropathology. In
step 2, we contact the pathologist via
social media and ask for permission to
use their cases. In step 3, we use a so-
cial media bot and our custom scripts to
download the pathologist’s posted cases.
In step 4, we manually annotate these
posted cases for acceptability (if overdrawn, corrupt, duplicate, multi-panel, art, or non-pathology reject-
ing per Fig 3 and Sec 2.1.1), technique (Fig 4), species (Fig 5 and Fig 6A,B,E), and private status (e.g.
personally identifiable pictures of adults or pictures of children). For more information, e.g. our defini-
tion of “overdrawn” or what is [not] pathology, see Sections 2.1 and 2.1.1.1. Moreover, in step 4, if the
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nontumor/low-grade/malignant status in a Tweet is not clear, we read the Twitter discussion thread for this
case and manually annotate the case appropriately if possible. Step 4 involves clarifying cases that we have
trouble annotating, e.g. if it is not clear what stain was used for the image. We first ask the pathologist
who posted this case to social media (step 4.1). If we do not obtain an answer from that pathologist, we ask
a pathologist at our local institution (i.e. author S.J.S.) for an opinion (step 4.2).

A B C D E F

Figure 7: Gross sections are represented in our dataset, putting
the slide images in context. Panel A (M.P.P): Urothelial carcinoma.
Panel B (M.P.P.): Lung adenocarcinoma. Panel C (S.R.A.): Barth
syndrome. Panel D (N.Z.): Enlarged spleen. Panel E (S.R.A.): Arteri-
ovenous malformation. Panel F (L.G.P.): Kidney adrenal heterotopia.

IPA (Figs 2 and S13) is an important
part of step 4, where pathologists vali-
date tissue and disease categorization.
In step 5, we aggregate all data from all
pathologists and apply machine learning
to make predictions. These steps were
repeated as more pathologist collabora-
tors were identified (Fig 1). We aimed
to have thousands of images for a large-
scale machine learning task, and with 13
pathologists we have over 2,000 images.

2.1 Image data overview
A B C D E F

Figure 8: Our dataset includes artifacts and foreign bodies which
machine learning should not consider prognostic. All panels hu-
man H&E. Panel A (B.X.): Colloid. Panel B (L.G.P.): Barium.
Panel C (L.G.P.): Oxidized regenerated cellulose, a.k.a. gauze, granu-
loma may mimic mass lesion [27]. Panel D (R.S.S.): Hemostatic gelatin
sponge, a.k.a. SpongostanTM, may mimic necrosis. Panel E (S.Y.):
Sutures, may mimic granuloma or adipocytes. Panel F (L.G.P.): Crys-
tallized kayexelate, may mimic mass lesion or parasite.

The goal of obtaining images from prac-
ticing pathologists worldwide is to cre-
ate a dataset with a diverse and re-
alistic distribution of cases. A world-
wide distribution (Fig 1) may be ap-
propriate to overcome potential biases
inherent at any single institution, such
as stain chemistries or protocols. Our
dataset includes a wide variety of stains
and techniques (Fig 4) – even variety for
a single stain, e.g. H&E stains3 (Fig 6). Section S1.2.1 discusses intra-stain variability. Our dataset includes
gross sections (Fig 7) that pathologists share alongside images of stained slides. In addition to variation in
the signal of interest (i.e., stain, tissue, or disease), we find variability in the noise (i.e. pathology artifacts,
Fig 8). Such noise may initially seem undesirable, but is likely important for machine learning techniques to
robustly predict which image motifs are relatively unimportant rather than prognostic. Finally, our dataset
includes a variety of parasites and other [micro]organisms (Fig 5, and Fig 6A,E).

2.1.1 Defining an acceptable pathology image

To create our database, we first identified pathology images, and second, narrowed down the set of pathology
images into those that were of sufficient quality to be used and could be shared publicly. By “pathology im-
age”, we mean images that a pathologist may see in clinical practice, e.g., gross sections, microscopy images,
endoscopy images, CT scans, or X-rays. An image designated as a “pathology image” is not necessarily an
image of diseased tissue. After we identified pathology images, we screened them for inclusion in our dataset.
“Acceptable images” are those that do not meet rejection or discard criteria defined in the next section. If
an acceptable image is personally identifiable or otherwise private (see criteria below), we retain the image
for some machine learning analyses, but do not distribute the image publicly [for legal reasons].

2.1.1.1 Criteria for rejected, discarded, private, or acceptable images

For our manual data curation process, we defined several rejection criteria (Fig 3), detailed in Section S2.1.
Figure 3A shows examples of images rejected as “art”, because they are artistically manipulated H&E pathol-
ogy microscopy images. Figure 3B shows examples of images rejected as “non-pathology”, e.g. parasitology-

3H&E stain composition may vary by country – e.g. in France, H&E typically includes saffron, which stains collagen fibers.
This helps differentiate between connective tissue and muscle, or to see cell cytoplasm better against a fibrous background.
This stain may be referred to as “HES”, and we consider it H&E.
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inspired cupcakes (top) and a natural scene image (bottom). Non-pathology images are relatively common on
pathologists’ social media accounts, though we tried to minimize their frequency by searching for pathologists
who primarily used their accounts for sharing and discussing pathology. Figure 3C shows examples of im-
ages rejected as “overdrawn”. Overdrawn images are those that have hand-drawn marks from a pathologist
(which pathologists refer to as “annotations”), which prevent us from placing a sufficiently large bound-
ing box around regions of interest while still excluding the hand-drawn marks. Section S2.2 discusses our
“overdrawn” criterion in detail. Figure 3D shows examples of images rejected as “panel”, because they
consist of small panels (top) or have small insets (bottom); splitting multi-panel images into their constituent
single-panel images would substantially increase our manual curation burden. Figure 3 Panel E top is an
acceptable H&E-stained pathology image. Figure 3 Panel E bottom is rejected as a duplicate of the Panel E
top image, though the colors have been slightly modified, and the original image is a different size.

2.1.2 Image features for machine learning

Figure 9: We use a variety of color, tex-
ture, and edge features for baseline ma-
chine learning analyses. Some features,
such as color histograms, detect only color.
Other features, such as Color Correlo-
grams, detect both colors and textures.
Pyramid features are scale-invariant.

To perform baseline machine learning analyses on the images from
social media, we first derive a feature representation for each image
in the following manner. If a posted image is rectangular, we crop
it to the center square and resize it to 512x512 pixels [px]. See
Sec S2.3 for more discussion of the 512x512px image size and how
it relates to the 256x256px image size for the “overdrawn” crite-
rion. This 512x512px image is then converted to a feature vector
of 2,412 dimensions. The features we use (Fig 9) are available in
Apache LiRE [17]. These features, and their dimension counts,
are as follows: CEDD (144) [3], Color Correlogram (256) [11],
Color Histogram (64) [17], FCTH (192) [4], Gabor (60) [17], Lo-
cal Binary Patterns (256) [19], Local Binary Patterns Pyramid
(756) [20], PHOG (630) [1], Rotation Invariant Local Binary Pat-
terns (36) [20], and Tamura (18) [26].

2.2 Text data overview

For supervised learning, we analyze a Tweet’s text with keyword-based matching, to determine the proper
labels for the Tweet’s images. The text and included hashtags may indicate (i) tissue type, or (ii) nontumor,
low grade, or malignant disease.

2.2.1 Tissue type categories from text

Prior work has discussed pathology-related hashtags as a way to make pathology more accessible on social
media4 [21]. Pathologists use hashtags to indicate histopathology tissue types, such as “#gynpath” to
indicate gynecological pathology (Fig 10). Sometimes alternative spellings are used, such as “#ginpath”.
Abbreviations are also common, e.g. “#breastpath” and “#brstpath” all mean the same thing: breast
pathology. Because a Tweet can have more than one hashtag, we took the first tissue type hashtag to be
the “primary” tissue type of the Tweet, and ignored the others. Section S2.4 discusses a special case. As
detailed in Section S2.5, we used hashtags and keywords for all Tweets in a message thread to identify the
five most common tissue types, finding 57 breast Tweets, 78 dermatological Tweets, 172 gastrointestinal
Tweets, 58 genitourinary Tweets, 108 gynecological Tweets.

2.2.2 Nontumor, low grade, and malignant categories from text

We define three broad disease state categories (Fig S28) to use as labels for supervised learning. Our “nontu-
mor” category includes normal tissue, injuries, and nontumoral diseases, e.g. Crohn’s disease, herpes simplex
infection, and myocardial infarction. Our “malignant” category includes all malignant disease, including car-
cinoma, blastoma, sarcoma, lymphoma, and metastases. Our definition of malignancy in epithelial cancers is

4A pathology hashtag ontology is available here or alternatively here.
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A B C D E

H I J K L M

F G

Figure 10: We use machine learning to distinguish five histopathological tissue types: dermatological, breast, geni-
tourinary, gastrointestinal, and gynecological. Panels A,B (R.S.S.): IHC- and H&E-stained dermatological pathol-
ogy at low magnification, showing hallmark layering of epidermis, dermis, subcutaneous fat, and stroma. Pan-
els C,D,E (K.H.): H&E-stained breast needle biopsy pathology, showing hallmark adipocytes as small clear circles,
because slide processing clears away the fat. Panels F,G (R.S.S.): H&E- and IHC-stained prostate needle biopsy gen-
itourinary pathology, showing atypical adenomatous hyperplasia, a departure from normal “feathery” gland structure
in prostate. Panels H,I,J (L.G.P.): H&E-stained gastrointestinal pathology with two different IHC stains, showing
hallmark rosettes, circular regions that are cross sections of intestinal crypts. Panels K,L,M (M.P.P.): H&E-stained
gynecological pathology, here an endocervical polyp, though we did not notice clear hallmark patterns across the
variety of organs studied in gynecological pathology.

the ability to breach the basement membrane, i.e. a malignant tumor escapes containment and is therefore
no longer treatable with surgical resection. Our “benign/low grade malignant potential” [low grade] category
is then all tumors or pre-cancer/neoplastic lesions that are not yet invasive/malignant, e.g. hamartomas,
carcinoid tumors, adenomas, and carcinoma in situ. These three categories naturally split the data into
three portions of similar size, i.e 309-385 images per portion (Table 2). Details in Sec S4.

For the nontumoral vs low grade vs malignant task (Sec 3.4), text processing was more complicated
because (i) of a heavy reliance on diagnosis keyword matching (flowchart in Fig S29), and (ii) additional
per-Tweet and per-image annotations to clarify nontumor/low-grade/malignant state, which may involve
feedback from a pathologist. Details in Sec S4.

2.3 Machine learning methods

We used a variety of baseline machine learning methods (Fig S14), to test whether more complex machine
learning methods perform significantly better than simpler machine learning methods. These methods are
discussed in Section S2.7. Results are detailed below, but in general, Random Forest [RF] performed the
best in our tasks. As expected, ZeroR [ZR] performed the worst. Also as expected, K-nearest neighbors
[KNN], Näıve Bayes [NB], and Support Vector Machine [SVM] performed somewhere in between RF and
ZR. It remains to be seen if neural networks will outperform RF.

We use Weka version 3.8.1 [9] on an ASUS Intel 4-CPU laptop with 16 GB RAM. Section S2.8 discusses.

3 Results

To conduct preliminary tests of our dataset, we ran several baseline machine learning methods in Weka.
Results are reported in Table 2. Our first question was the most basic: can machine learning distinguish
pathology images from non-pathology images? In Section 3.1.1, we show acceptable H&E-stained human
pathology images can be distinguished from other images – e.g. natural scenes or different histochemistry
stains. Section S3.1.1 goes further with a pathologist-balanced and class-balanced analysis, sampling without
replacement an equal number of acceptable images and non-acceptable images from each pathologist, to
overcome possible biases from any pathologists. A classifier on this task may partially automate one of our
manual data curation tasks, i.e. identifying acceptable images on social media. This task also serves as
a positive control that machine learning works in our dataset. This learning task may be a “bridge” for
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Task ntotal n- n+ ZR acc. % RF accuracy % ZR AUROC RF AUROC
Acceptable H&E 2325 1153 1172 50.409± 0.151 91.380± 1.687 0.5 0.960± 0.012
Accept H&E (bal) 1506 753 753 49.801± 0.163 89.502± 2.293 0.5 0.954± 0.014

H&E vs IHC 1351 1174 177 86.899± 0.336 97.173± 1.209 0.5 0.996± 0.003
Breast vs Gyn 381 135 246 64.946± 0.848 71.871± 6.292 0.5 0.783± 0.082
Derm vs Breast 303 168 135 55.452± 1.329 74.088± 6.994 0.5 0.832± 0.069
Derm vs Gyn 414 168 246 59.814± 0.584 75.986± 5.158 0.5 0.847± 0.062
GI vs Breast 483 348 135 72.054± 0.892 77.978± 3.974 0.5 0.873± 0.050
GI vs Derm 516 348 168 67.443± 0.645 76.198± 5.639 0.5 0.854± 0.059
GI vs Gyn 594 348 246 58.192± 0.284 73.338± 5.495 0.5 0.815± 0.053

Breast vs GU 252 135 117 53.569± 1.746 74.791± 7.968 0.5 0.822± 0.081
Derm vs GU 285 168 117 58.953± 1.288 77.273± 7.203 0.5 0.871± 0.070
GI vs GU 465 348 117 74.843± 0.845 78.930± 2.670 0.5 0.830± 0.071
Gyn vs GU 363 246 117 68.131± 0.864 76.462± 4.066 0.5 0.795± 0.078

LowGrade vs Malignant 732 347 385 52.595± 0.599 65.055± 5.159 0.5 0.703± 0.058
Nontumor vs Malignant 694 309 385 55.474± 0.464 65.744± 5.131 0.5 0.700± 0.066
Nontumor vs LowGrade 656 309 347 52.895± 0.455 64.493± 5.536 0.5 0.704± 0.059
Nontumor vs Low+Mal 1041 309 732 70.317± 0.293 73.046± 2.188 0.5 0.683± 0.062
Nontum+Low vs Malig 1041 656 385 63.016± 0.459 66.551± 3.255 0.5 0.687± 0.052

Table 2: Random Forest [RF] machine learning analysis results for various binary classification tasks. Results
compared to chance, i.e. ZeroR [ZR]. Accuracy [acc] and AUROC reported as mean ± stdev over 10 iterations of
10-fold cross validation. For accuracy reporting, prediction is positive class when majority of RF trees vote positive,
i.e. accuracy is not calibrated/optimized. Results are detailed in Sections S3 and S4.

transfer learning, when adapting a deep neural network trained on natural images to be used for pathology
purposes. This task would allow the deep neural network to learn what pathology “looks like” before being
re-trained on different data to learn a more specific pathology concept.

Second, can machine learning distinguish histochemistry stains, such as H&E and IHC? Section 3.1.2
shows strong performance when distinguishing these two stains of different coloration, though IHC colorations
may vary (Section S1.2.1). H&E and IHC stain types were the most common in our dataset and are common
in practice. Our classifier may be useful with large digital slide archives having a mix of H&E and IHC slides
lacking explicit labels for staining information. Our classifier can distinguish these stains so downstream
pipelines may process each stain type in a distinct way. This task serves as another positive control.

Third, can machine learning distinguish histopathology tissue types? In Sec 3.2 and 3.3, we show statis-
tically significant performance, with room for improvement. We consider five tissue types: breast, dermato-
logical [derm], gastrointestinal [GI], genitourinary [GU], and gynecological (Fig 10). In Sec 3.2, we consider
all ten pairs of the five tissue types, using machine learning in a binary classification task for each pair. For
example, the first task is to distinguish between breast and derm pathology. The differentiating histological
intuition here is that breast tissue typically has many adipocytes throughout, which show as small clear
circles in the image – while derm tissue is layered, from thin epidermis, to thicker dermis, to subcutaneous
adipose tissue that also includes adipocytes (Fig 10). Moreover, one visual motif to distinguish GI tissue
is “rosettes”, circular lumen surrounded by endothelial cells (Fig 10), although we did not recognize clear
identifying motifs in GU or gynecological tissues (Sec S1.2.2). In Sec 3.3, we consider all five tissue types
simultaneously, rather than pairwise. This is a more realistic setting because we typically cannot assume
an image will be one of two tissue types. Moreover, ImageNet and CIFAR-10 are also multi-class classifi-
cation tasks. Learning to distinguish tissue types has implications from determining tumor site of origin,
e.g. whether a tumor originated in the GI or the breast. This has implications for metastasis prediction,
e.g. a microscopy slide image of the GI may show morphology that appears similar to lobular breast cancer.
Lobular breast cancer can metastasize to the GI5.

Fourth, can machine learning distinguish nontumoral, low grade, and malignant disease – in acceptable
H&E human tissue microscopy images (Sec 3.4)? Pathologists routinely answer this clinically important
question. This is our most difficult question, and our Random Forest baseline’s low though statistically

5A case of this from K.H. is https://twitter.com/Ho_Khanh_MD/status/999989201734197250 (Fig S13)
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significant performance (Table 2) is an open invitation to the field for improved methods on this task, such
as deep learning. Section S4 discusses the keywords we use on the Tweet text to determine if an image is
labeled nontumoral, low grade, or malignant.

3.1 Stain-related tasks

Because stain-related tasks had strong performance, i.e. ˜0.9 AUROC or more, we additionally interpreted
what the machine learning models learned (Sec S3.1.2). Surprisingly, texture features were most important
to a Random Forest. Intuitively, color features were most important to a Support Vector Machine.

3.1.1 Acceptable H&E human tissue vs others task
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Figure 11: Predicting if an image is acceptable H&E human tissue or not. Plots show
accuracy (left) and AUROC (middle) for the classifiers shown in (Fig S14). The ROC
curve for the highest AUROC classifier [RF] is shown at right, showing AUROC=0.9600
here for n=2325 per Table 2.

Our Random Forest pre-
dicts if an image is
an “acceptable” H&E-
stained microscopy slide
image or not (Fig 11).
There were 2325 im-
ages: 1153 negative im-
ages that were not ac-
ceptable and 1172 posi-
tive images that were ac-
ceptable. Classes were
essentially balanced. Ac-
curacy is 91.380±1.687%
(chance 50.409±0.151%).
AUROC is 0.960± 0.012
(chance 0.5). We believe
this task is a simple positive control that the machine learning works, because H&E images are typically red
and purple, while unacceptable images are typically (i) natural scenes such as outdoor photos or (ii) other
histopathology techniques with different coloration. Performing well on this task is important to partially
automate our otherwise manual annotation efforts on social media images. We are interested to reduce the
manual data curation burden as much as possible. In Section S3.1.1 we explored pathologist-balanced and
class-balanced subsampling, to potentially overcome biases in our data, but encouragingly this balanced
approach did not produce a significantly different result.

3.1.2 H&E vs IHC task

Our Random Forest predicts if a microscopy slide image shows staining of H&E or IHC (Fig S16). There
were 1351 images: 1174 negative images that were H&E and 177 positive images that were IHC (the choice
of which stain is labeled as the positive or negative class is arbitrary, does not impact performance, and does
not necessarily imply any particular disease state). Accuracy is 97.173± 1.209% (chance 86.899± 0.336%).
AUROC is 0.996 ± 0.003 (chance 0.5). Despite the marked class imbalance of ˜6.6:1, the Random Forest
demonstrated statistically above chance accuracy and AUROC, with strong effect sizes. This task is a very
simple positive control, because H&E images are typically red and purple, while IHC images are typically
brown and blue6. This classifier may be useful when processing a digital archive of microscopy images having
a mix of H&E and IHC slides, so that these images may be subsequently analyzed in a stain-specific manner.

3.2 Histopathological tissue type binary classification tasks

Next, we make a variety of histopathology tissue type discriminations (Fig 10), and accept multi-panel
images (Fig 3D) here because the panels describe the same tissue. For dermatological [Derm], breast,
gastrointestinal [GI], genitourinary [GU], and gynecological [Gyn] types, we consider all pairwise comparisons;

6Section S1.2.1 has more discussion on IHC color variability.
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Task ntotal ntype + ... + ntype ZR acc. % RF acc. % ZR AUROC RF AUROC
nbrst +nderm +ngi +ngu +ngyn

5 tissues 1014 135+168+348+117+246 34.320± 0.438 50.827± 4.075 0.5 0.803± 0.059
5 tiss (bal) 585 117+117+117+117+117 18.805± 0.162 48.935± 6.089 0.5 0.786± 0.058

nnontumor +nlow-grade +nmalig

3 diseases 1041 309 + 347 + 385 36.984± 0.459 51.239± 4.781 0.5 0.683± 0.056

Table 3: Random Forest [RF] machine learning analysis results for (i) 5-class tissue classification tasks, to predict if
an image shows Breast, Derm, GI, GU, or Gyn tissue; and (ii) 3-class disease classification task, to predict if an image
shows nontumoral, low grade, or malignant disease. Results compared to chance, i.e. ZeroR [ZR]. Accuracy [acc] and
AUROC reported as mean ± stdev over 10 iterations of 10-fold cross validation. For accuracy reporting, prediction
is a particular class, e.g. the dermatological [derm] class, when majority of RF trees vote derm, i.e. accuracy is not
calibrated/optimized. AUROC is calculated for each class independently – e.g. Breast vs others, or derm vs others –
and then a weighted average of all five independent AUROCs is calculated, based on how many examples were really
of that tissue type. This weighted average AUROC is the default method in Weka to calculate AUROC for these
multiclass classification tasks.

these pairwise comparisons are detailed in Section S3. To determine the type of tissue, we used hashtags in
the accompanying Tweet, e.g. #dermpath indicates Derm, #breastpath indicates Breast, #gipath indicates
GI, #gupath indicates GU, and #gynpath indicates Gyn. We also included common variants of these
hashtags, such as #brstpath and #ginpath. If no hashtags were present, we used regular expressions to
perform a keyword search on the Tweet’s text, e.g. “duodenal” indicates GI and “ovarian” indicates Gyn.
Accurately determining histopathology tissue type has implications for detecting tumor site of origin.

3.3 Histopathological tissue type multiclass classification tasks
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Figure 12: Predicting if an image is Breast, Derm, GI, GU, or Gyn. Plots show accuracy
(left) and AUROC (middle) for the classifiers shown in (Fig S14). The ROC curve
for the highest AUROC classifier [RF] is shown at right. In the ROC plot (right),
Breast is red (AUROC=0.8036, n=135), Derm is blue (AUROC=0.8352, n=168), GI

is black (AUROC=0.7996, n=348), GU is cyan (AUROC=0.8078, n=117), and Gyn is
magenta (AUROC=0.7701, n=246), with performance details in Table 3. For this trial,
the weighted mean of AUROCs is 0.800, which is below the mean of 0.803 (Table 3),
but within a standard deviation (0.059). ROC is calculated as the tissue versus all other
tissues, e.g. in red is Breast vs all other tissues, and in blue is Derm vs all other tissues.

Next, we distinguish all
five histopathology tis-
sue types (Fig 10) simul-
taneously in one learn-
ing task (Fig 12 and
Table 3). This poses
an important test for
our dataset, because Im-
ageNet and CIFAR-10
are multi-way classifi-
cations tasks. Suc-
cess on this discrimina-
tion would be a criti-
cal step towards build-
ing an ImageNet-type
database for computa-
tional pathology. For
this task, an image
could be any one of der-
matological, breast, gas-
trointestinal, genitouri-
nary, or gynecological tissue types, and the learning task was to predict which one of these five types
the image is. While this task benefits from having more data than the other comparisons, it is more difficult
and realistic because there are five possible tissue types to predict rather than two.

3.3.1 5-class tissue classification

Our Random Forest predicts if an image is one of five possible tissue types (Figs 10 and 12). There were 1014
images: 135 breast, 168 dermatological, 348 gastrointestinal [GI], 117 genitourinary, and 246 gynecological.
Classes were imbalanced (roughly one third GI images). Accuracy is 50.827 ± 4.075% (chance 34.320 ±
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0.438%). AUROC is 0.803 ± 0.059 (chance 0.5). However, the confusion matrix (Table S6) suggests that
because so much of the data is GI, many of the predictions are GI. A class-balanced sampling approach, or
class weighting approach, may remedy the GI false positives. We explored this in Section S3.3.1.

3.4 Nontumoral, Low grade, and Malignant tasks

Our Random Forest predicts if a microscopy slide image is nontumor, low grade, or malignant per Sec 2.2.2.
There were 1041 images: 309 images that were normal/nontumoral, 347 images that were low grade, and
385 images that were malignant. Classes were essentially balanced. We were interested in the low grade
vs malignant comparison for its clinical relevance, so for this we ignored nontumoral images. For this
binary classification task, accuracy is 65.055 ± 5.159% (chance 52.595 ± 0.599%) and AUROC is 0.703 ±
0.058 (chance 0.5) (Fig S30, Table 2). Results for all pairwise comparisons of nontumor, low grade, and
malignant detailed in Sections S4.2 and S4.3, including nontumor vs low-grade/malignant. For the 3-class
classification task where nontumor, low grade, and malignant images must be distinguished simultaneously,
accuracy is 51.239± 4.781% (chance 36.984± 0.459%) and AUROC is 0.683± 0.056 (chance 0.5) (Fig S35,
Tables 3 and S8). Though the Random Forest demonstrated statistically above chance accuracy and AUROC,
performance is far too weak for clinical consideration. We provide this task as an open challenge to the
field of computational pathology, and as an independent test set for machine learning researchers. Properly
answering these questions, particularly low grade vs malignant, has applications for clinical decision support.

4 Discussion

We mined social media to obtain pathology images shared by pathologists worldwide, and organized them
into a diverse dataset that can be used to rigorously test computational pathology methods. See Lepe [15]
for social media pathology collaboration. We report 0.954± 0.014 AUROC when using this dataset to train
a Random Forest to identify single-panel human H&E-stained slides that are not overdrawn. We also report
0.996±0.003 AUROC when distinguishing H&E from IHC slides – almost perfect performance on this simple
task. We consider both these tasks to be positive controls for machine learning methods on these data.

We distinguish all pairs of breast, dermatological, gastrointestinal, genitourinary, and gynecological
pathologies, with AUROC ranging from 0.783 to 0.873. Breast vs gynecological is the most difficult dis-
crimination; gastrointestinal vs breast is the easiest. Dermatology is the easiest to discriminate from any
other pathology, with the highest minimum mean AUROC (0.832) across binary classifications. We report
0.803± 0.059 AUROC when all five tissue types are considered in a five-class classification task.

We also distinguish all pairs of nontumoral, low grade, and malignant disease states, with mean AUROC
ranging from 0.700 to 0.704. When we grouped low grade with malignant, or low grade with nontumoral,
mean AUROC was marginally lower at 0.683 and 0.687, respectively. Due to its clinical implications, we
were most interested in distinguishing low grade from malignant, where nontumoral images are ignored,
and we report 0.703 ± 0.058 AUROC for this task. In a three-class classification task to simultaneously
distinguish nontumoral, low grade, and malignant, we report 0.683 ± 0.056 AUROC. Though our findings
are statistically significant, they are far too weak for clinical application, so we leave these tasks as defined,
open, and clinically relevant computational pathology questions for this dataset.

Section S5 discusses future directions of this study. Section S6 discusses caveats of this study.

5 Conclusion

We mined social media to obtain, curate, and perform baseline machine learning analyses on pathology
images shared by pathologists across the world. Our dataset includes a diverse, realistic, and comprehensive
snapshot of pathology, spanning multiple image modalities, stain types, and pathology sub-specialties, along
with text annotations from practicing pathologists. To our knowledge, this is the first study of pathology
text and images shared on social media. Our goal in sharing this dataset is to advance the next generation
of computational pathology machine learning methods.
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S. Hwang, S. Park, Z. Jia, E. Chang, Y. Xu, A. Beck, P. van Diest, and J. Pluim. Predict-
ing breast tumor proliferation from whole-slide images: the TUPAC16 challenge. July 2018. URL
http://arxiv.org/abs/1807.08284.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

http://arxiv.org/abs/1409.4842v1.pdf
http://view.ncbi.nlm.nih.gov/pubmed/26978662
http://view.ncbi.nlm.nih.gov/pubmed/26978662
http://dx.doi.org/10.1109/TSMC.1978.4309999
http://view.ncbi.nlm.nih.gov/pubmed/22472162
http://view.ncbi.nlm.nih.gov/pubmed/22472162
http://arxiv.org/abs/1807.08284
https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S13: At left : Pathologist (author K.H.) discusses case. Without mentioning the diagnosis himself, he confirms
diagnoses suggested by other pathologists, i.e. lobular breast carcinoma metastasized to ileum, which we explicitly
annotate. At right : IPA shows that our tissue type categorization algorithm categorizes this Tweet as breast pathology
rather than gastrointestinal. The primary tumor is in breast. We define the tissue classification task this way to have
applications for tumor site of origin prediction.

Supporting Information

S1 Supplementary discussion

S1.1 Interactive Pathology Annotator discussion

For completeness, we show another example of the use of our Interactive Pathology Annotator [IPA] tool
(Fig S13). This is a case of metastatic disease, from breast to gastrointestinal tissue, showing a diffuse
pattern of lobular carcinoma that is more common in breast.

S1.2 Data diversity discussion

S1.2.1 Intra-stain diversity

There is an art and variability in histochemical stains that we have not discussed in the main text, but for
completeness mention here. We note that in clinical practice we have observed high variability stains, for
instance H&E stains that appear almost neon pink, to GMS stains (discussed below) that had silver (black)
deposition throughout the slide. One reason for this is that there are a number of reagents that may be used
for staining, each with different qualities that can make the stain darker, brighter, pinker, bluer, etc.

IHC stains typically use an antibody conjugated to a brown stain, namely 3,3’-Diaminobenzidine [DAB].
The blue counterstain is typically hematoxylin. However, some laboratories conjugate the antibody to a red
stain instead. As we acquire more data, we expect to have both types of IHC stains. Currently we only see
DAB.

There is counterstain variability in Grocott’s modification of the Gömöri methenamine silver stain [GMS
stain]. Typically the counterstain is green, but a pink counterstain is also available. We may see the pink
variant as we acquire more data. Currently we see only green.

S1.2.2 Intra-tissue-type diversity

The tissue type hashtags we use are very broad, e.g. #gipath encompasses several organs, such as stomach,
small intestine, large intestine, liver, gallbladder, and pancreas. This is also noted in Section S2.6. We
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note, for instance, liver morphology looks nothing like the stomach. Moreover, gynecological pathology, i.e.
#gynpath, includes vulva (which looks just like skin, i.e. dermatological pathology, #dermpath), vagina,
cervix, uterus, fallopian tubes and ovaries. Again, vulva looks nothing like uterus. A number of tissue
features also overlap, such as adipocytes in breast tissue and adipocytes in the subcutaneous fat layer in
skin. The amount and distribution of adipocytes typically differs between these tissues however. However, a
lipoma in any tissue has a great deal of adipocytes and should not strictly be confused with breast tissue. For
all these motivating reasons, we have a future direction to sample every organ within a tissue type hashtag
category, for all hashtag categories we study.

S2 Supplementary materials and methods

S2.1 Criteria details for rejected, discarded, private, or acceptable images

Though criteria are outlined in Section 2.1.1.1 – more formally, we reject the following image types, during
our manual data curation process:

1. Non-pathology images, such as pictures of vacations or food.

2. Multi-panel images, such as a set of 4 images in a 2x2 grid. Images with insets are also rejected. We
only accept single-panel images, and leave for future work the complexities of splitting multi-panel
images into sets of single-panel images. Multi-panel images may have black dividers, white dividers,
no dividers, square insets in a corner, or floating circular insets somewhere in the image. There may
be two or more panels/insets. Per-pixel labels for each panel may be the best solution here, and would
support a machine learning approach to split multi-panel images to reduce this additional manual data
curation burden.

3. Overdrawn images, where a 256x256px region could not bound all regions of interest in an image.
This occurs most frequently if a pathologist draws by hand a tight circle around a region of interest,
preventing image analysis on the region of interest in a way that completely avoids the hand-drawn
marks.

4. Images that manipulate pathology slides into artistic motifs, such as smiley faces or trees. In contrast,
a picture of a painting would be a non-pathology image.

Moreover, we completely discard from analysis certain types of images:
1. Duplicate images, according to identical SHA1 checksums or by a preponderance of similar pixels.

2. Corrupt images, which either could not be completely downloaded or employed unusual JPEG com-
pression schemes that Java’s ImageIO7 library could not open for reading.

3. Pathology images that are owned by pathologists who have not given us explicit written permission to
use their images. Consider the following example. When a pathlogist gives us permission to download
data, our software bot downloads thousands of that pathologists’s social media posts regardless if
some of the images in those posts are actually owned by a different pathologist who did not give us
permission. We detect these cases when we manually curate the pathologist’s data, and discard these
images belonging to pathologists who have not given us permission. To elaborate, pathology images
that are taken by pathologists and shared on social media are treated the same way as pathology
images taken from case reports or copyrighted manuscripts, i.e. if the pathologist or publisher has not
provided us explicit written permission to use the image, we discard the pathology image and do not
use it.

Images that are not rejected or discarded are deemed “acceptable” pathology images. However, for legal
reasons, we cannot distribute all of the images we have from social media, namely:

1. Pathology images obtained from children (including fetuses), which may be identifiable. The data
shared on social media are anonymized; thus, we do not have contact information for the child’s parent
and therefore cannot obtain consent to distribute a picture of e.g., a child’s X-rays or gross specimens.
Although unlikely to be identified by the parent if these images were made public, we prefer to err
on the side of caution. However, microscopy slide images are not personally identifiable, so we may
distribute these.

7ImageIO documentation available here: https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
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2. Personally identifiable pictures involving adults, because they have the right to consent or not to their
likeness being distributed. We consider faces, body profiles, automobile license plates, etc to all be
personally identifiable pictures involving adults, especially because these data may be cross-referenced
against timestamp, location, clinician, institution, medical condition, other people in the picture, etc.

3. Copyrighted content, which includes images of copyrighted manuscripts, pictures of slideshow presen-
tations, and pictures of any brand or logo. A lab picture that includes boxes bearing logos would be a
non-pathology image that we cannot distribute, because we do not have permission to distribute any
images with the protected logos. A picture of a powerpoint slide at a conference that shows some text
outlining a new way to make a clinical decision would also be a non-pathology image that we hold
privately and do not distribute. We similarly hold privately an image of text taken from a copyrighted
manuscript because it may not be possible to identify the original source to provide a proper cita-
tion, and even if we could, this poses an additional data curation burden that we would rather avoid.
Moreover, we prefer to err on the side of caution and not distribute these images, rather than rely on
“fair use” or similar law that may expose us to legal challenges and costs8. By retaining these images
privately, we can train a machine learning classifier to detect these types of images and potentially
reduce our manual data curation burden.

S2.2 Overdrawn rejection criterion

Here we discuss the details of rejecting images as “overdrawn”. Figure 3 Panel C top is rejected as “over-
drawn”, because the regions of interest [ROIs] in the H&E image that the pathologist refers to in the social
media post’s text have hand-drawn circles and arrows such that it is not possible to place a 256x256px
square over all ROIs without including these circle and arrow marks. We chose 256x256px because deep
convolutional neural networks in computational pathology [16] typically require 227x227px (i.e. AlexNet [14]
or CaffeNet [12]) or 224x224px (i.e. ResNet [10]) images, and we have used these sizes in the past [22, 23].
We note the Inception [24] family of deep convolutional neural networks takes a 299x299px image input,
which is larger than 256x256px and is also frequently used in computational pathology [16]. Ideally, each
image would have ROIs and hand-drawn arrows/circles annotated at the pixel level, so each image could be
annotated as “overdrawn” to arbitrary bounding box sizes, whether 256x256px or 299x299px, and we leave
this to future work. Smaller “overdrawn” bounding boxes may allow more images to pass as acceptable,
rather than be rejected. A 256x256px image size allows minor rotations and crops for deep learning data
augmentation using 224x224px input image sizes. Minor upsampling and/or image reflection at the image’s
outer boundaries may allow a 256x256px image to work for 299x299px input image sizes. Figure 3 Panel C
bottom is rejected as “overdrawn”, because this image was originally 783x720px and the arrow marks prevent
us from capturing each of the two indicated regions of interest in their own 256x256px square.

S2.3 Uniform cropping and scaling of original images

Images shared on social media may be any rectangular shape. However, machine learning methods typically
require all images be the same size. To accommodate this, we use the following procedure:

1. Take the minimum of two numbers: the original image’s height and width.

2. Crop from the center of the original image a square with a side whose length is the minimum from the
prior step.

3. Scale this square to 512x512px.

This square is intended to be large enough to represent small details, such as arrows and circles drawn one
pixel wide by the pathologist. Such arrows and circles may then be used to predict if an image is “overdrawn”
or not. Ideally, the Tweet’s text would be available alongside the image to give the machine learning the
fullest information possible about potential ROIs in the image, for “overdrawn” prediction, but for simplicity
here we perform only image-based machine learning.

8Courts in the United States have ruled that images posted to social media are still owned by their authors and are not
public domain. Indeed, in Morel v. AFP , AFP was ordered to pay Morel $1.2 million for copyright infringement because AFP
used images that Morel posted to social media.
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The motivation for the 256x256px image for the “overdrawn” criteria In Sec S2.2 is that there may
be an attention layer that scans the original image for 256x256px squares that have no marks from the
pathologist. Such marks including circles or arrows for ROI indication or the pathologist’s name to indicate
copyright/ownership. Such mark-free 256x256px images may then be used for machine learning on only
patient pathology pixels.

S2.4 Hashtag special case

A hashtag special case is “#bstpath”, bone and soft tissue pathology, which we include in our breast
pathology category only when the social media post’s text also includes the word “breast” or other breast-
related keywords. Such keywords are listed further below in this subsection. Examples of such Tweets are
“Pleomorphic lobular carcinoma of the breast: Beautiful cells but nasty tumour #pathology #pathologists
#BSTPath” and “Now at my desk, W(47y-o) breast nodule...Could be it siliconoma?? But it isn’t noted
giant cells #pathology #pathologists #BSTpath”.

S2.5 Tissue hashtags and keywords

We found a large number of pathology-related hashtags. We opted to use the 5 most common hashtags and
their alternative spellings for our analyses, to maximize the amount of data per histopathology subtype. Here,
we list all the hashtags for completeness, and highlight in bold/color those that we used for histopathology
tissue analyses: 146 gipath, 77 dermpath, 72 gynpath, 43 breastpath, 42 gupath, 37 pedipath,
34 hemepath, 26 neuropath, 20 entpath, 20 endopath, 18 pulmpath, 16 bstpath, 14 grosspath, 14 cytopath,
8 surgpath, 8 ihcpath, 6 ginpath, 5 liverpath, 4 paz path, 4 lungpath, 3 molpath, 2 oralpath, 2 idpath,
2 eroticpath, 1 turkpath, 1 sarcomapath, 1 musclepath, 1 headneckpath, 1 fnapath, 1 eyepath, 1 cardiacpath,
1 brstpath, 1 autopsypath, 1 artpath.

We therefore had 146 gastrointestinal Tweets, 77 dermatological Tweets, 78 (72+6) gynecological
Tweets, 44 (43+1) breast Tweets, and 42 genitourinary Tweets. To expand the per-tissue Tweet counts,
we moved beyond the hashtags and next searched for keywords in the Tweet using Perl regular expressions,
which we detail in Section S2.6. Further, if a Tweet’s tissue type could not be determined by hashtags and
keywords, we assigned the tissue type of any other Tweet in the message thread of Tweets. For example, if
a Tweet of unknown tissue type were a reply to a Tweet of known genitourinary type, then we considered
both Tweets to be genitourinary. After keyword-based and message-thread-based expansion, there were 172
gastrointestinal Tweets, 78 dermatological Tweets, 108 gynecological Tweets, 57 breast Tweets,
and 58 genitourinary Tweets. We do not count Tweets that have zero images usable for the tissue type
discrimination task.

S2.6 Regular-expression-based tissue type keywords

Expanding our text processing discussion in Section 2.2.1, the regular expressions used for each tissue type
were:
• Breast: /breast/i or /nipple/i or /mastectomy/i or /phyllod/i

– These regular expressions match breast, nipple, mastectomy, and phyllodes mentions in a social
media post’s text. Phyllodes tumor is a type of breast cancer. Nipple pathology may have some
overlap with dermatological pathology, but for our purposes we consider it breast pathology.

• Dermatological: /skin/i or /epiderm(?:oid|is|al)/i or /derma(?:l|to)/i or /melanoma/i or
/keratosis/i or /bcc/i

– This matches “skin” and other dermatological keywords in a social media post’s text, in a case-
insensitive manner. BCC is a type of skin cancer.

• Gastrointestinal: /colon/i or /duoden(?:um|al)/i or /appendix/i or /rectal/i or /gastric/i

or /stomach/ior /intestin(?:e|al)/i or /\banal\b/i or /perianal/ior /perine(?:um|al)/i

or /esophag(?:us|eal|itis)/i or /ileum/i or /gall\s?(?:bladder|stone)/i or /liver/i or
/ascaris/i or /pancrea(?:s|tic)/ or /colitis/i or /hepat[ieo]c/i or /cholecystitis/i or
/crohn/i or /ca?ec(?:um|al) or /jejunum/i
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Figure S14: Machine learning methods for baseline analyses included ZeroR (Panel A), K-nearest neighbors
(Panel B), Näıve Bayes (Panel C), an SMO-based support vector machine (Panel D), and Random Forest (Panel E).
Visual schematics of each method shown. Weka provided all methods.

– This matches colon, duodenum, duodenal, anal, rectal, cecum, and other GI-related keywords.

• Genitourinary: /urotheli(?:um|al)/i or /seminal/i or /prostate/i or /kidney/i or /renal/i or
/mtscc/i or /rcc/i or /bladder/i or /test(?:[ei]s|icular)/i or /sperm/i.

– This matches urothelium, urothelial, seminal, renal, bladder, and other GU-related keywords.

• Gynecological: /cervix/i or /uteri(?:us|ine|o)/i or /ovar(?:y|ian)/i or /fallopi/i or
/adenomyosis/i or /fo?et(?:al|us)/i or /trophoblast/i or /embryo/i or /placenta/i or
/villitis/i or /umbilical/i or /amniotic/i or /anhydramnios/i or /chorioamnionitis/i or
/h[yi]sterectomy/i or /endocervical/i or /endometriosis/i or /(?:myo|endo)metri(?:al|um|oid)/i.

– This matches uterine, ovarian, fallopian, endometrial, and other gynecological-related keywords.

Section S4 discusses text matching for nontumoral, low grade, and malignant discrimination.

S2.7 Machine learning methods discussion

Expanding on our discussion of machine learning methods in Section 2.3, ZeroR is the simplest method
(Fig S14), which always predicts the majority class, i.e. if there are more gynecological data than breast
data, every prediction will be gynecological. ZeroR [ZR] is our model of statistical “chance”, i.e. if a machine
learning method does not outperform ZeroR, then the machine learning’s predictions may be due to chance
alone rather than a learned concept. K-nearest neighbors [KNN] is slightly more complex, which calculates
the feature vector of a given example and finds the single closest neighbor in the training data, predicting
the class label that this closest neighbor has. KNN is our crude test for a preponderance of duplicates,
e.g. if there were many duplicates in the data, and these duplicates were spread between cross validation
folds, then KNN would have strong performance, because KNN would find the duplicates and make the
correct predictions. Näıve Bayes [NB] is a simple probabilistic model that assumes independence between
all the features, fits a Gaussian distribution over each feature, and predicts the most likely class. Despite its
simplicity, NB may show unexpectedly strong performance on some tasks. A support vector machine [SVM]
is more complex than NB in that SVM allows nonlinear interactions between the features, and for this we
use a polynomial kernel. SVM finds the maximum margin hyperplane that divides the data space, and its
predictions depend on which side of this hyperplane an example is. Finally, Random Forest [RF] random
samples both the data and features to construct an ensemble of 1000 fully-grown decision trees. These trees
vote to make an overall prediction, i.e. the prediction from a RF is the majority vote of its constituent
decision trees. Both SVM and RF performed well on stain tasks, and in Sec S3.1.2 we interpreted the
concepts they learned.

S2.8 Computational hardware and software discussion

We use Weka version 3.8.1 [9] on a ASUS Intel core i7-6700HQ 2.6GHz 4-CPU laptop with 16GB RAM for
baseline analyses and comparison of several machine learning methods (Fig S14) on each of our prediction
tasks. This laptop was also used for software development and automatically downloading Twitter data
from participating pathologists. This laptop ran the Windows 10 operating system, which in turn ran the
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Figure S15: Predicting if an image is acceptable H&E human tissue or not, in a pathologist-balanced and class-
balanced manner, for comparison to Fig 11. Here, AUROC=0.9545 for n=1506 per Table 2.
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Figure S16: Predicting if an image is H&E or IHC. Plots show accuracy (left) and AUROC (middle) for the classifiers
shown in (Fig S14). The ROC curve for the highest AUROC classifier [RF] is shown at right, showing AUROC=0.9960
here for n=1351 per Table 2.

Oracle VirtualBox virtual machine manager, which in turn ran Debian Jessie 3.16.7-ckt20-1+deb8u3 and
Linux kernel 3.16.0-4-amd64. Weka and our other pipeline components ran within Debian.

S3 Supplementary results

S3.1 Pairwise stain comparisons

S3.1.1 Acceptable H&E human tissue vs others task (balanced)

Our Random Forest predicts if an image is an “acceptable” H&E-stained microscopy slide image or not
(Fig S15), but in a pathologist-balanced and class-balanced manner. For example, it could be a pathologist
uses a low-resolution camera and a large number of mostly natural scene pictures, in which case the machine
learning may learn that low-resolution pictures predict that an image is not acceptable, rather than learning
an intended concept that an image is not acceptable if it does not show H&E-stained human morphology.

The only difference from the unbalanced task is that here, from each pathologist independently we
randomly sample without replacement an equal number of acceptable and not acceptable images. This
addresses a potential confound in the analysis, where certain pathologists may share images with particular
biases, such as low-lighting in microscopy images or low resolution images. If such confounds were prominent
in the data, the machine learning would overfit to these confounds rather than learn the intended task of
distinguishing acceptable H&E human tissue from other images. So, if performance in terms of accuracy
or AUROC are significantly worse in this pathologist-balanced and class-balanced analysis, then there is
evidence to suggest such confounds exist and such overfitting is occurring. In this pathologist-balanced and

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


class-balanced analysis, there were 1506 images (64.8% of the 2325 images total for the unbalanced case,
per Table 2): 753 negative images that were not acceptable and 753 positive images that were acceptable.
The choice of whether or not acceptable images are labeled as the positive or negative class is arbitrary,
does not impact performance, and does not necessarily imply any particular disease state. Classes were
exactly balanced. However, we find accuracy is 89.502 ± 2.293% (chance 49.801 ± 0.163%) and is not
significantly worse than the prior non-balanced analysis accuracy of 91.380 ± 1.687%. Moreover, AUROC
here is 0.954±0.014 (chance 0.5), which again is not significantly worse that the prior non-balanced analysis
AUROC of 0.960 ± 0.012. So, we find that performance differences may be due to chance alone, rather
than due to overfitting pathologist-specific imaging confounds. We did not perform this type of pathologist-
balanced and class-balanced analysis for the other tasks, because there was an order of magnitude fewer
data in the minority class on the other tasks, so performance drops may be due to insufficient data being
available for machine learning. Additional balanced analyses may be more appropriate after have more data
available for these tasks.

S3.1.2 Feature importance for stain comparisons

One way to interpret what a Random Forest has learned is to compute the Mean Decrease in Gini Impurity
[MDI] of each feature used by the Random Forest9 [RF]. Highly important features have higher MDI. MDI
for various learning tasks shown in Table S4. Because the RF demonstrates such strong performance for
these stain tasks (˜0.9 AUROC or more), these MDI feature importances may be especially meaningful –
more meaningful that feature importance interpretations for tasks with weaker performance. To measure
these importances, Weka trains a RF over the entire dataset, then for each feature computes the mean Gini
Impurity decrease from decision tree splits on that feature, averaged over all decision trees in the RF.

We find texture features are important to the Random Forest [RF], namely Local Binary Patterns and
Local Binary Patterns Pyramid (Table S4). The latter is scale-invariant. We interpret this to mean that for
stain-related tasks, the RF will incorrectly classify an example if texture features change. This surprised us,
because intuitively color distinguishes H&E from IHC stains. However, we note Fig 6D shows a case of an
H&E image being poorly lit such that the image appears brown, not completely unlike the brown from DAB
in IHC (Figs 4K and 10I), though the texture of the image suggests H&E staining rather than IHC, because
the poorly lit H&E is brown throughout the image, whereas IHC has brown foci where the DAB-conjugated
antibody binds to a molecular target. In this way the texture of dark/brown pixels suggests IHC staining
or not, and a change in texture may lead the RF to classify an image incorrectly. However, in the future we
may investigate RF performance when using only Local Binary Pattern Pyramid [LBPP] features, versus
performance using only Color Correlograms, to test whether or not important features predict strong RF
performance empirically. We note that, over all 1000 decision trees in the RF where each tree may be grown
to an arbitrary depth of decision tree nodes, Weka reports only 1-2 decision tree nodes using these most
important LBPP features – which may by chance give splits for label-pure leaves in a decision tree, artificially
inflating MDI measurements. The intuition here is that an average over only 1-2 measurements gives a poor
estimate of a true value. To further investigate whether or not color may be important for stain prediction
tasks, we additionally interpreted feature importance for a Support Vector Machine.

A Support Vector Machine [SVM] learns a weight vector from the data for classification. The weight on
each feature may be interpreted. Features are more important as the absolute value of the weight on the
feature is greater. The top ten weights are shown for the three stain tasks in Table S5. The SVM performed
significantly worse than the Random Forest, but much better than random chance (Table 2, Fig 11, Fig S15,
and Fig S16). For feature importance interpretation, we trained and tested an SVM with one iteration of
ten-fold cross validation. On the Acceptable H&E task, the SVM had accuracy of 88.8602% and AUROC
of 0.889 (also Fig 11). On the Acceptable H&E class-balanced task, the SVM had accuracy 88.9774% and
AUROC of 0.890 (also Fig S15). On the H&E vs IHC task, the SVM had accuracy of 98.1495 and AUROC
of 0.951 (also Fig S16).

For the H&E vs IHC task, we find color features are important to the SVM, namely Color Correlogram
and Color Histogram, and both of these are rotation invariant features (Table S5). We interpret this to mean

9The other way, mean decrease in accuracy, permutes feature values and measures the impact on accuracy of permutation,
which is more computationally intense than MDI. When the value of an increasingly important feature is permuted, the Random
Forest’s accuracy is more greatly reduced.
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Task Top feature 2nd 3rd 4th 5th
6th 7th 8th 9th 10th

Acceptable H&E 0.9183 LBPP631 0.9183 CEDD11 0.9183 LBPP642 0.8372 LBP43 0.8113 FCTH107

0.8097 LBPP419 0.7307 LBPP487 0.6733 LBPP393 0.6448 FCTH83 0.6359 LBPP743

Accept H&E (bal) 1 LBP69 0.9183 CEDD41 0.9183 FCTH74 0.9183 LBPP91 0.9183 LBPP455

0.8976 LBPP161 0.8648 LBPP119 0.8201 LBPP449 0.7542 LBPP661 0.7334 LBP41

H&E vs IHC 1 LBP86 1 LBPP89 1 LBP21 1 LBP174 1 LBPP452

1 LBPP138 0.971 LBPP209 0.971 LBPP125 0.9183 LBPP30 0.9183 LBP101

Table S4: Random Forest feature importance interpretations as measured by Mean Decrease in Gini Impurity [MDI],
for stain tasks in Table 2. Important features have higher MDI, with max MDI of 1.0 an minimum MDI of 0.0. The
top ten features with highest MDI are shown, for each of the three stain tasks. An entry such as “0.9183 LBPP631”
means Local Binary Patterns Pyramid feature 631 has Gini Impurity of 0.9183, which is close to 1.0, so this feature
is important. Other feature abbreviations include CEDD for Color and Edge Directivity Descriptor, LBP for Local
Binary Patterns, and FCTH for Fuzzy Color and Texture Histogram. Features outlined in Sec 2.1.2. Surprisingly,
rather than color features being most important, texture features Local Binary Patterns and Local Binary Patterns
Pyramid features are most important to a Random Forest to distinguish acceptable H&E images from all other
images, and to distinguish H&E from IHC stains.

Task Top feature 2nd 3rd 4th 5th
6th 7th 8th 9th 10th

Acceptable H&E 1.0887 FCTH162 1.0559 FCTH27 -0.9778 CEDD72 -0.9658 FCTH22 0.9498 FCTH12

0.8989 FCTH97 0.8904 PHOG159 0.8748 PHOG338 0.8691 CEDD24 -0.8385 PHOG506

Accept H&E (bal) -0.6667 LBP250 0.6322 FCTH12 0.6313 FCTH27 -0.6271 CC164 -0.6253 CH38

0.6208 LBPP296 0.618 PHOG269 0.6004 FCTH162 0.5977 CEDD24 -0.5828 FCTH101

H&E vs IHC -0.4263 CC236 -0.3785 CC204 -0.3534 CC238 -0.3478 CC237 0.3211 CC140

-0.2816 CC205 0.2815 CH63 -0.2815 CC239 0.2622 FCTH0 0.2575 FCTH1

Table S5: Support Vector Machine [SVM] feature importance interpretations as measured by the absolute value of
the feature weight, for stain tasks in Table 2. Important features have higher absolute weight, with max weight of
infinity, and minimum weight of negative infinity, where a weight of zero means the feature has no influence on the
SVM’s predictions. The top ten features with highest absolute weight are shown, for each of the three stain tasks. An
entry such as “-0.4263 CC236” means Color Correlogram feature 236 has a weight of -0.4236 (so this feature predicts
the negative class), which is far from zero, so this feature is important. Other feature abbreviations include CEDD
for Color and Edge Directivity Descriptor, CH for Color Histogram, FCTH for Fuzzy Color and Texture Histogram,
LBP for Local Binary Patterns, LBPP for Local Binary Patterns Pyramid, and PHOG for Pyramid Histogram of
Oriented Gradients. Features outlined in Sec 2.1.2. Intuitively, color features are most important for an SVM to
distinguish H&E from IHC images, in contrast to texture features being important to a Random Forest.

that for the H&E vs IHC task, the Support Vector machine’s predictions are influenced the most by color
feature changes. We found this to be an intuitive result, because we notice H&E images are typically red
(from eosin) and purple (from hematoxylin), while IHC images are typically brown (from DAB) and blue
(from hematoxylin).

S3.2 Pairwise tissue comparisons

S3.2.1 Breast vs Gyn task

Our Random Forest predicts if an image is breast pathology, or alternatively, gynecological pathology
(Fig S17). There were 381 images: 135 negative images (from 57 Tweets) that were breast pathology
and 246 positive images (from 108 Tweets) that were gynecological pathology. The choice of which tissue is
labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. Classes were essentially balanced at a ratio of of ˜1.8:1. Accuracy is
71.871± 6.292% (chance 64.946± 0.848%). AUROC is 0.783± 0.082 (chance 0.5). Of all tissue type binary
comparisons, this was the most challenging pair to compare, in terms of mean AUROC. Though perfor-
mance is statistically significant, performance is not strong (mean AUROC < 0.8). We do not notice clear
hallmarks of gynecological pathology, which may include a variety of tissues, including ovary and cervix, so
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Figure S17: Predicting if an image is Breast or Gyn. RF classifier had greatest AUROC. RF ROC curve at right.
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Figure S18: Predicting if an image is Derm or Breast. RF classifier had greatest AUROC. RF ROC curve at right.

performance may improve with more data. In contrast, adipocytes may be a hallmark of breast tissue.

S3.2.2 Derm vs Breast task

Our Random Forest predicts if an image is dermatological pathology, or alternatively, breast pathology
(Fig S18). There were 303 images: 168 negative images (from 78 Tweets) that were dermatological pathology
and 135 positive images (from 57 Tweets) that were breast pathology. The choice of which tissue is labeled
as the positive or negative class is arbitrary, does not impact performance, and does not necessarily imply
any particular disease state. Classes were essentially balanced. Accuracy is 74.088±6.994% (chance 55.452±
1.329%). AUROC is 0.832 ± 0.069 (chance 0.5). There is room to improve performance in this task. The
layered structure of dermis, subcutaneous fat, and stromal tissue may be a hallmark of dermatological
pathology. In addition, adipocytes may be a hallmark of breast tissue. More advanced methods, such
as deep learning, may be better able to recognize differences between these tissue types, beyond intuitive
hallmarks and the Random Forest.

S3.2.3 Derm vs Gyn task

Our Random Forest predicts if an image is dermatological pathology, or alternatively, gynecological pathology
(Fig S19). There were 414 images: 168 negative images (from 78 Tweets) that were dermatological pathology
and 246 positive images (from 108 Tweets) that were gynecological pathology. The choice of which tissue is
labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. Classes were essentially balanced. Accuracy is 75.986± 5.158% (chance
59.814 ± 0.584%). AUROC is 0.847 ± 0.062 (chance 0.5). There is room to improve performance in this
task. Of all the pairwise comparisons involving gynecological pathology, this comparison to dermatological
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Figure S19: Predicting if an image is Derm or Gyn. RF classifier had greatest AUROC. RF ROC curve at right.
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Figure S20: Predicting if an image is GI or Breast. RF classifier had greatest AUROC. RF ROC curve at right.

pathology had the highest accuracy and AUROC.

S3.2.4 GI vs Breast task

Our Random Forest predicts if an image is gastrointestinal pathology, or alternatively, breast pathology
(Fig S20). There were 483 images: 348 negative images (from 172 Tweets) that were gastrointestinal
pathology and 135 positive images (from 57 Tweets) that were breast pathology. The choice of which tissue
is labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. There was mild class imbalance of ˜2.6:1. Accuracy is 77.978 ± 3.974%
(chance 72.054±0.892%). AUROC is 0.873±0.050 (chance 0.5). Of all six tissue pairs (Table 2), our Random
Forest performed best on this pair, GI vs Breast, though there still is room to improve on this task. Rosette
structures from cross sections of intestinal crypts may be a hallmark of gastrointestinal pathology. Meanwhile
adipocytes may be a hallmark of breast pathology. More advanced methods, such as deep learning, may be
better able to recognize differences between these tissue types, beyond intuitive hallmarks and the Random
Forest.

S3.2.5 GI vs Derm task

Our Random Forest predicts if an image is gastrointestinal pathology, or alternatively, dermatological pathol-
ogy (Fig S21). There were 516 images: 348 negative images (from 172 Tweets) that were gastrointestinal
pathology and 168 positive images (from 57 Tweets) that were breast pathology. The choice of which tissue
is labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. There was mild class imbalance of ˜2.1:1. Accuracy is 76.198 ± 5.639%
(chance 67.443± 0.645%). AUROC is 0.854± 0.059 (chance 0.5).
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Figure S21: Predicting if an image is GI or Derm. RF classifier had greatest AUROC. RF ROC curve at right.
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Figure S22: Predicting if an image is GI or Gyn. RF classifier had greatest AUROC. RF ROC curve at right.

S3.2.6 GI vs Gyn task

Our Random Forest predicts if an image is gastrointestinal pathology, or alternatively, gynecological pathol-
ogy (Fig S22). There were 594 images: 348 negative images (from 180 Tweets) that were gastrointestinal
pathology and 246 positive images (from 115 Tweets) that were gynecological pathology. The choice of which
tissue is labeled as the positive or negative class is arbitrary, does not impact performance, and does not
necessarily imply any particular disease state. Classes were essentially balanced. Accuracy is 73.338±5.495%
(chance 58.192± 0.284%). AUROC is 0.815± 0.053 (chance 0.5).

S3.2.7 Breast vs GU task

Our Random Forest predicts if an image is breast pathology, or alternatively, genitourinary pathology
(Fig S23). There were 252 images: 135 negative images (from 56 Tweets) that were breast pathology
and 117 positive images (from 58 Tweets) that were genitourinary pathology. The choice of which tissue is
labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. Classes were essentially balanced. Accuracy is 74.791± 7.968% (chance
53.569± 1.746%). AUROC is 0.822± 0.081 (chance 0.5).

S3.2.8 Derm vs GU task

Our Random Forest predicts if an image is dermatological pathology, or alternatively, genitourinary pathology
(Fig S24). There were 285images: 168 negative images (from 57 Tweets) that were breast pathology and
117 positive images (from 58 Tweets) that were genitourinary pathology. The choice of which tissue is
labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. Classes were essentially balanced. Accuracy is 77.273± 7.203% (chance

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
c
c
u
ra

c
y

0
.5

0
.7

0
.9

Z
R

K
N

N
S

V
M

N
B

R
F

A
U

R
O

C
0
.5

0
.7

0
.9

Z
R

K
N

N
S

V
M

N
B

R
F

Breast vs Genitourinary

Classifier

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.4

0
.8

T
ru

e
 P

o
s
 R

a
te

Pathology

False Positive Rate
Figure S23: Predicting if an image is Breast or GU. RF classifier had greatest AUROC. RF ROC curve at right.
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Figure S24: Predicting if an image is Derm or GU. RF classifier had greatest AUROC. RF ROC curve at right.

58.953± 1.288%). AUROC is 0.871± 0.070 (chance 0.5).

S3.2.9 GI vs GU task

Our Random Forest predicts if an image is gastrointestinal pathology, or alternatively, genitourinary pathol-
ogy (Fig S25). There were 465 images: 348 negative images (from 57 Tweets) that were breast pathology
and 117 positive images (from 58 Tweets) that were genitourinary pathology. The choice of which tissue is
labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. There was mild class imbalance of ˜3.0:1. Accuracy is 78.930 ± 2.670%
(chance 74.843± 0.845%). AUROC is 0.830± 0.071 (chance 0.5).

S3.2.10 Gyn vs GU task

Our Random Forest predicts if an image is gastrointestinal pathology, or alternatively, genitourinary pathol-
ogy (Fig S26). There were 363images: 246negative images (from 57 Tweets) that were breast pathology
and 117positive images (from 58 Tweets) that were genitourinary pathology. The choice of which tissue is
labeled as the positive or negative class is arbitrary, does not impact performance, and does not necessarily
imply any particular disease state. There was mild class imbalance of ˜2.1:1. Accuracy is 76.462 ± 4.066%
(chance 68.131± 0.864%). AUROC is 0.795± 0.078 (chance 0.5).

S3.3 5-way comparison details

The confusion matrix for Breast vs Derm vs GI vs GU vs Gyn is in Table S6, and Table S7 shows a similar
confusion matrix but for class-balanced sampling.
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Figure S25: Predicting if an image is GI or GU. RF classifier had greatest AUROC. RF ROC curve at right.
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Figure S26: Predicting if an image is Gyn or GU. RF classifier had greatest AUROC. RF ROC curve at right.

S3.3.1 5-way tissue classification (balanced)

Our Random Forest predicts if an image is one of five possible tissue types (Figs 10 and S27) after sampling
tissues in a balanced manner. There were 585 images, with 117 images from each of the five tissue types:
breast, dermatological, gastrointestinal, genitourinary, and gynecological. Classes were exactly balanced. At
585 images, this was 57.7% of the amount of data we used for unbalanced sampling in the prior task, namely
1014 images. Accuracy is 48.935± 6.089% (chance 18.805± 0.162%). AUROC is 0.786± 0.058 (chance 0.5).

Moreover, the confusion matrix (Table S7) suggests this class balanced sampling reduces the enrichment
of GI false positives. However, this class-balanced subsampling comes at a cost of slightly reduced AUROC,
to the the extend that AUROC is now below 0.8 (Table 3).

a b c d e ←− classified as
29 12 56 1 37 — a = breast
4 72 66 0 26 — b = derm
3 22 278 0 45 — c = gi
3 6 64 16 28 — d = gu
4 15 98 1 128 — e = gyn

Table S6: RF confusion matrix for Breast vs Derm vs GI vs GU vs Gyn comparison, showing many tissue types are
predicted as GI. About one third of the data are GI.
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Figure S27: Predicting if an image is Breast, Derm GI, GU, or Gyn. RF classifier had greatest AUROC. RF ROC
curve at right. In the ROC plots, Breast is red, Derm is blue, GI is black, GU is cyan, and Gyn is magenta. ROC
is calculated as the tissue versus all other tissues, e.g. in red is Breast vs all other tissues, and in blue is Derm vs all
other tissues.

a b c d e ←− classified as
57 25 5 14 16 — a = breast
18 63 17 8 11 — b = derm
21 20 52 12 12 — c = gi
16 12 14 58 17 — d = gu
25 17 10 16 49 — e = gyn

Table S7: RF confusion matrix for Breast vs Derm vs GI vs GU vs Gyn comparison under class-balanced subsampling,
showing the enrichment of GI false positives has been reduced.

S4 Nontumoral, Low grade, and Malignant task details

Tasks involving distinguishing nontumoral disease, low grade tumors, and malignant tumors (Fig S28) are
our most difficult tasks. The acknowledged definition of “malignant” in epithelial cancers is the ability to
breach the basement membrane, i.e. a malignant tumor escapes containment and is therefore no longer
“treatable with surgical resection”. A malignant tumor can invade into the adjacent tissue, lymphatics, and
blood vessels. For machine learning, we define a three categories of disease: (a) normal tissue and nontumoral
disease; (b) benign, low grade, and oncovirus-driven tumoral disease; and (c) malignant tumors – but there
are number of caveats with this, because:

1. there is a spectrum of pathology rather than an oversimplified 3-class nontumoral/low-grade/malignant
system.

2. a two-class dichotomy is simpler, e.g. “malignant vs everything else”, but in practice we find a 3-class
nontumoral/low-grade/malignant classification problem does not perform significantly differently, so
we believe this finer-grained 3-class model is preferable. We are most interested in “low grade vs
malignant”, and nontumoral is discarded for this.

3. the benign/malignant dichotomy may be more vague in certain tissues e.g. central nervous system
[CNS] primary tumors such as chordomas.

4. vague terms like adenoma are typically benign but may be malignant, and likewise vague terms like
anaplasia are more often associated with malignancy but not always.

5. vague terms like anaplasia and neoplasia make no real reference to the malignancy of lesions i.e. there
are benign anaplastic lesions, while neoplasia is almost synonymous with tumor.

6. terms like tumor do not provide information about benign or malignant state, though normal/nontu-
moral can be ruled out.

7. there may be some disagreement if some terms, e.g. “carcinoma in situ”, are more appropriate to
include as low grade, or if instead should be considered malignant due to their malignant potential or
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Figure S28: We use machine learning to distinguish nontumoral disease, benign/low grade malignant potential
[low grade] tumor, and malignant tumor. Panels A,B,C (M.P.P.): Nontumoral disease, i.e. herpes esophagitis
with diagnostic Cowdry A inclusions. Panels D,E (K.H.): Nontumoral disease, i.e. collagenous colitis showing
thickened irregular subepithelial collagen table with entrapped fibroblasts, vessels and inflammatory cells. Pan-
els F,G,H,I (A.M.): Low grade tumor, i.e. pulmonary hamartoma showing entrapped clefts lined by respiratory
epithelium. Panels J,K,L (R.S.S.): Low grade tumor, i.e. leiomyoma showing nuclear palisading. Panel L is IHC
rather than H&E, so Panel L is shown here for completeness but not included in this machine learning analysis.
Panels M,N,O,P (B.D.S.): Malignant tumor, i.e. breast cancer with apocrine differentiation. Panel P is IHC and not
included in analysis here, but is shown for completeness. Panels Q,R,S,T (L.G.P.): Malignant tumor, i.e. relapsed
gastric adenocarcinoma with diffuse growth throughout the anastomosis and colon. Panels Q,R are gross not H&E
so they are not included in the analysis here, but shown for completeness.

treatment implications. For instance, ductal carcinoma in situ [DCIS] typically needs to be removed
with surgery or radiotherapy, whereas lobular carcinoma in situ [LCIS] typically does not. DCIS’s
lower grade counterpart, atypical ductal hyperplasia, may get surgery or not. We believe treatment
implications are a separate task. Typically, Tweets do not include a decision to perform surgery or not,
so additional annotations may be needed for the surgery task. We assign all pre-cancer and tumoral
disease with malignant potential to the “low grade”’ category, in light of these benign/malignant
ambiguities and data limitations.

8. the diagnosis should be known before deciding benign/malignant, but it is very difficult to know the
full diagnosis from the brief, generic, descriptive terms in the Tweet.

S4.1 Text processing for Nontumoral, Low grade, and Malignant tasks

To determine if an acceptable H&E human microscopy image is nontumoral, low grade, or malignant – like in
Sec S2.6 we relied on regular-expression-based keyword matching in Tweet text. However, keywords differed
and we considered all Tweets in a message thread per Sec 2.2.1. To infer these message threads of Tweets,
we downloaded from Twitter each Tweet’s metadata (in JavaScript Object Notation [JSON] format), which
describes the parent Tweet for each Tweet. If Tweet A is a reply to Tweet B, then Tweet A is the parent
of Tweet B, and both Tweets are in the same message thread. In a message thread from a consenting
pathologist, we only considered that pathologist’s Tweets, not other users.

Our heirarchical algorithm for nontumor/low-grade/malignant keyword-matching shown in Fig S29, and
details for each step follow. First, to determine if a single Tweet indicated nontumoral, low grade, or
malignant, we looked for specific hashtags in a Tweet’s text that indicated malignancy, tumoral status, or
nontumoral status.

1. Malignant: /#[a-z]*cancer/i or /#metastas[ei]s/i

• The first regular expression in this set matches #ANYcancer, where ANY can be any non-
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Tweet text including hashtags Process Tweet hashtags

#crohn, #pathbug, or
#neurodegeneration ?

#ANYcancer or
#metastasis ?

Process Tweet text

Tumor/-oma in Tweet,
low grade/malignant likely,

nontumor unlikely

Phyllodes, grade, tumor,
or -oma (not Schistosoma)?

Conflicting diagnoses?

Tweet is nontumorTweet is low gradeTweet is malignant Tweet is skipped

Was tumor/-oma detected?

yes 

no #ANYtumor or
#ANYoma ?

yes/no
regardless

no 

yes 

Carcinoma, blastoma, sarcoma,
met, anaplasia, myeloma, HL, CLL,
NSCC, MTSCC, RCC, BCC, etc?

-oma in situ, or
chondroblastoma?

yes/no 
regardless 

yes 

Congenital, cholecystitis, hydatid cyst,
chorangiomatosis, diverticulosis,

mycobacterial spindle cell pseudotumor,
intravenous leiomyomatosis, etc?

no 

yes 

no 

yes 

no 

yes 

Benign, cyst, polyp, angioma, wart,
hamartoma, leiomyoma, HPV, EBV, GIST,
DCIS, LCIS, hydatidiform mole, carcinoid,
dys-/hyper-/meta-/neo-plasia, adenoma, etc?

no 

yes 

Normal, ulcer, injury, infarct, infect, tauopathy,
endometriosis, HSV, CMV, GVHD, Crohn, etc?

no 

yes 

no 

yes #ANYpath, cerebellum, or nodule?

no 

yes no 

yes
yes

Figure S29: Flowchart of algorithm that processes a single Tweet’s text to categorize it as nontumor (309 images),
benign/low grade malignant potential [low grade] (347 images), or malignant (385 images). A Tweet may be skipped
(132 images, i.e. 11.3% of images) when the pathologist discusses multiple possible diagnoses for this case or when
no pathology keywords are found. Dashed line indicates early steps where tumor/-oma detected, and a later step
where detected tumor/-oma considered for possible low grade categorization. Nontumor, low grade, and malignant
are defined in Sec S4. Flowchart steps are detailed in Sec S4.1. The algorithm has many steps in order to parse
overlapping words that have different diagnoses. For instance, if “Lobular carcinoma in situ of the breast” (which
is a low grade disease) was the Tweet text, the algorithm has an early step to categorize ”carcinoma in situ” as
low grade (which is correct here) because a later step categorizes “carcinoma” as malignant (which is not correct
here). Indeed, Tweet text “Carcinoma of the breast” describes a malignant disease and the algorithm categorizes it
malignant because “in situ” is absent. Besides “carcinoma in situ” (low grade) and “carcinoma” (malignant), the
algorithm distinguishes “chorangiomatosis” (nontumor) from “angioma” (low grade), “hydatidiform mole” (low grade)
from “hydatid cyst” (nontumor) from “ovarian cyst” (low grade) from “cholecystitis” (nontumor), and “intravenous
leiomyomatosis” (nontumor) from “leiomyoma” (low grade).
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whitespace characters, e.g. “#bladdercancer” and “#breastcancer” both match, as well as “#can-
cer”.

• Metastasis is a sign of malignant cancer, so Tweets with #metastasis or #metastases hashtags
are malignant.

• If any matching keyword is detected, no further keyword processing is performed. The Tweet is
malignant.

2. Nontumoral: /#crohn/i or /#neurodegeneration/i or /#pathbug/i

• Crohn’s disease and neurodegeneration are not tumoral diseases, so this Tweet is in the non-
tumoral/normal category. This /#crohn/i regular expression is case-insensitive, so it matches
“#crohn”, “#Crohn”, and “#CROHN”. The #pathbug hashtag indicates a parasite or other
microorganism is in the image, which is also nontumoral.

• If any matching keyword is detected, no further keyword processing is performed. The Tweet is
nontumoral.

3. Tumoral status (ambiguously low grade or malignant): /#[a-z]*tumou?r/i or /#[a-z]*oma/i

• The first regular expression in this set matches #ANYtumor or #ANYtumour, where ANY can
be any non-whitespace characters, e.g. “#BrainTumor” and “#phyllodestumour” both match,
as well as “#tumor”.

• The second regular expression matches #ANYoma, e.g. #Lymphoma and #leiomyoma both
match.

• Because “tumor” and “-oma” do not necessarily mean a tumor is low grade or malignant, further
keyword matching is performed. It is unlikely that the Tweet is nontumoral. If no other specific
information is found after all further keyword matching is performed, the tumor is presumed to
be low grade.

Second, if no hashtags matched, we then analyzed keywords in the Tweet text.

1. Skip: /mistake/i or /misinterpret/i or /confuse/i or /suspect/i or /worry/i or /surprise/i
or /mimic/i or /simulate/i or /lesson/i or /\bhelp\b/i or /usually/i or /difficult/i or
/pathart/i or /pathchallenge/i or /pathquiz/i or /pathgame/i or /^http/

• We skip Tweets where (i) the pathologist discusses points of the case which may be easily mistaken
– instead of providing a single diagnosis, (ii) the pathologist provides a diagnosis but may suspect
an alternative diagnosis, or (iii) the Tweet is simply a link to another Tweet. No further keyword
matching is performed for this Tweet.

2. Tumoral status (ambiguously low grade or malignant): /phyllod/i or /\bgrade\b/i or /tumou?r/i
or (/[a-z]{3,}oma\b/i and not /schistost?oma/i)

• Phyllodes tumors, mentions of “tumor” or “tumour”, mentions of tumor “grade”, and mentions
of words that end in “oma” but are not “Schistosoma” – are all detected here.

• Loosely speaking, phyllodes tumors are only slightly more likely to be low grade than malignant.
Because “tumor”, “-oma”, and “grade” do not necessarily mean a tumor is low grade or malignant,
further keyword matching is performed. It is unlikely that the Tweet is nontumoral. If no
other specific information is found after all further keyword matching is performed, the tumor is
presumed to be low grade.

• Schistosoma (and its misspelling “Schistostoma”) refers to a genus of parasitic worm, rather than
a tumor, though Schistosoma ends in “oma” like many tumor types.

3. Low grade: /oma in situ/i or /chondroblastoma/i

• If we did not skip this Tweet, but the Tweet does mention “oma in situ’ ’, e.g. “carcinoma in
situ” or “melanoma in situ”, then we consider this Tweet and images to represent low grade
disease. Carcinoma in situ is pre-cancer, and we consider it more low grade than malignant. If a
Tweet contains only “carcinoma” but not “in situ”, subsequent steps will consider the Tweet as
malignant.

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


• If the Tweet includes “chondroblastoma”, this Tweet is low grade. This is not to be confused with
other blastomas, such as glioblastoma or lymphoblastoma, which are malignant and matched in
subsequent steps.

• No further keyword matching is performed if these patterns match. The Tweet is low grade.

4. Malignant: /malignant/i or /malignancy/i or /cancer/i or /\bCA\b/i or /carc?inoma/i or /sarcoma/i
or /blastoma/i or /\bWilms/i or /GBM/i or /anaplas(?:ia|tic)/i or /metastas[ie]s/i or /metastatic/i
or /\bmets?\b/i or /adenoca/i or /melanoma/i or /seminoma/i or /lymphoma/i or /leuka?emia/i
or /mesothelioma/i or /myeloma/i or /hodgkin/i or /\bHL\b/i or /burkitt/i or /plasmoc[yi]toma/i
or (/paget/i and /breast/i) or /\bCLL\b/i or /PCNSL/i or /NSCHL/i or /\bCHL\b/i or /NSCC/i or
/\bI[LD]C\b/i or /\bASPS\b/i or /mtscc/i or /sq?cc/i or /rcc/i or /bcc/i

• Many diagnoses and abbreviations may indicate cancerous malignancy, e.g. carcinoma, sarcoma,
Wilms’ tumor, leukemia, RCC [renal cell carcinoma], NSCC [non-small cell lung carcinoma], or
the stand-alone abbreviation “CA” [cancer].

• We consider “anaplastic/anaplasia” to be more malignant than low grade disease.

• No further keyword matching is performed if these patterns match. The Tweet is malignant.

5. Nontumoral: /congenital/i or /cholecystitis/i or /chorangiomatosis/i or
/mycobacteri(?:um|al)\s*spindle\s*cell\s*pse?udotumor/i or /intravenous\s*leiomyomatosis/i
or /helicobacter/i or /dirofilaria/i or /tuberculo/i or /enterobius/i or /echinococcus/i

or /hydatid\s*cyst/i or /giardia/i or /cryptosporidium/i or /ascaris/i or /sarcina/i or
/worm/i or /spiroquet(?:osis|es)/i or /diverticulosis/i or /villitis/i or /colitis/i or
/gastritis/i or /esophagitis/i or /appendicitis/i or or /xanthoma/i

• Many diagnoses and abbreviations may indicate nontumoral disease, e.g. congenital conditions,
Helicobacter infection, and villitis. Nontumoral disease keywords that contain “cyst”, e.g. “chole-
cystitis” and “hydatid cyst”, are detected here, because subsequent keyword matching steps will
detect “cyst” as a sign of low grade tumoral disease.

• If one of these nontumoral keywords matches, no further keyword matches are attempted, and the
Tweet is considered nontumoral, even if prior steps detected “tumor” or “-oma”. For instance, a
“xanthoma” is a lipid aggregate, not a tumoral disease, even though xanthoma ends in -oma.

6. Low grade: /benign/i or /cyst/i or /polyp/i or /hamartoma/i or /chorangioma/i or /ha?ematoma/i
or /cylindroma/i or /fibroma/i or /luteoma/i or /c[yi]toma/i or /cond[yi]loma/i or
/neoplas(?:ia|tic|m)/i or /LCIS/i or /DCIS/i or /\b[LD]IN\b/i or /lipoma/i or /carcinoid/i
or /neuroma/i or /meningioma/i or /perineurioma/i or /cavernoma/i or /\bLGG\b/i or /\bODG\b/i
or /oligodendroglioma/i or /craniopharyngioma/i or /le[yi]om[iy]oma/i or /schwannoma/i or
/osteochondroma/i or /ependymoma/i or /angioma/i or /syringoma/i or /acanthoma/i or /collagenoma/i
or /hidradenoma/i or /papilloma/i or /pilomatrixoma/i or /hydatidiform\s*mole/i or /wart/i
or /molluscum/i or /\bHPV\b/i or /\bEBV\b/i or /kerat?osis/i or /fibrokeratoma/i or
/melanoc[iy]tosis/i or /brenner/i or /granular\s+cell\s+tumou?r/i or /metaplas(?:ia|tic)/i
or /dysplas(?:ia|tic)/i or /dysembryoplas(?:ia|tic)/i or /hyperplas(?:ia|tic)/i or /\bLFH\b/i
or /\bDNE?T\b/i or /\bNET\b/i or /\bPTC\b/i or /\bGIST\b/i or /\bSTIC\b/i or /\b[LD]ISN\b/i
or /adenoma/i or /adenosis/i

• Many diagnoses may indicate benign tumor, e.g. hamartoma, fibroma, condyloma, papilloma,
lipoma, adenoma, adenosis, or cyst.

• We consider “neoplastic/neoplasia”, “metaplastic/metaplasia”, “hyperplastic/hyperplasia”, and
“dysplastic/dysplasia” to be more indicative of benign/low-grade/non-invasive/pre-malignant dis-
ease than malignant disease, but these terms are vague.

• We broadly consider oncovirus-driven tumors and wart-like growths to be in this low grade cate-
gory also, e.g. HPV [human papilloma virus] warts and Molluscum contagiosum “water warts”.

• We similarly consider abbreviations “LCIS” [lobular carcinoma in situ], “DCIS” [ductal carcinoma
in situ], “LISN” [lobular in situ neoplasia], and “DISN” [ductal in situ neoplasia] to be more
benign than malignant disease, so we categorize them as low grade. Though DCIS may require
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surgical or radiological intervention to be removed while LCIS may not, we consider our “low
grade” and “malignant” categories to be defined by the apparent histopathology rather than
the appropriate medical intervention. Predicting appropriate medical intervention would be a
different machine learning task.
• If one of these keywords match, the Tweet is considered low grade and no further keyword match-
ing is performed.

7. Nontumoral: /normal/i or /ulcer/i or /embolism/i or /thromb/i or /rupture/i or /infarct/i or
/aneurysm/i or /ha?emorrhag/i or /injur(?:y|ed)/i or /inflam/i or /swell/i or
/balloon\s*cell\s*na?ev(?:us|i)/i or /decidua/i or /foreign/i or /lymphadenopath?y/i or
/vasculopathy/i or /vasculitis/i or /synovitis/i or /pulmonary\s*interstitial\s*glycogenosis/i
or /essential\s*thrombocythemia/i or /endometriosis/i or /mastoc[iy]tosis/i or /castleman/i
or /herpe(?:s|tic)/i or /\bHSV\b/i or /\bCMV\b/i or /cytomegalovir/i or /viral/i or
/bacteri(?:a|um)/i or /fung(?:al|us)/i or /mycetoma/i or /myco(?:sis|tic)/i or
/infect(?:ion|ed)/i or /tauopathy/i or /amyloidosis/i or /neurodegen/i or /\brabies\b/i or
/hemosiderosis/i or /polymicrogyria/i or /status\s*verrucosus/i or /\bIUGR\b/i or
/storage\s*dis(?:ease|order)/i or /athero(?:sis|ma)/i or /atherosclero(?:sis|tic)/i or
/gauzoma/i or /colchicine/i or /\bIBD\b/i or /GVHD/i or /crohn/i

• Many diagnoses may indicate normal tissue of nontumoral disease, e.g. normal, embolism, decidua,
tauopathy, foreign body, mycetoma, CMV [cytomegaolovirus] infection, GVHD [graft versus host
disease], and Crohn’s disease.
• If one of these nontumoral keywords matches, no further keyword matches are attempted, and the
Tweet is considered nontumoral, even if prior steps detected “tumor” or “-oma”. For instance, a
mycetoma is not a tumor, even though mycetoma ends with -oma.

8. Nontumoral: (not tumor/oma) and (/#[a-z]*path/i or /cerebell(?:um|ar)/i or /nodul(?:e|arity)/i).
Low grade if tumor/oma.

• If the Tweet does not have tumor or “-oma” keywords detected from prior steps, and if the Tweet
has a #ANYpath hashtag (e.g. “#pulmpath” or “#pathology”), mention of “nodule”/“nodularity”,
or mention of the cerebellum, then we consider the Tweet to be nontumoral. If instead the Tweet
has tumor or -oma keywords, then we consider the Tweet to be low grade. The Tweet is skipped
if no steps identified the Tweet as nontumoral, low grade, or malignant.
• Cerebellum is mentioned in several Tweets, e.g. to depict normal cerebellar tissue10. Currently,

we group normal tissue with tissue having nontumoral disease. We expect more tissue-based
keywords may be used here in the future, as we expand our study to include more pathologists,
tissues, and normal cases.
• In practice, we manually inspect all Tweet message text to minimize the number of cases that are
classified as nontumoral here. We typically write regular expressions to match specific keywords
that indicate if a Tweet represents nontumoral, low grade, or malignant disease.
• Recall that if any Tweets in a message thread are malignant, then all images for all Tweets in
the message thread are considered malignant11. Moreover, if there are no malignant Tweets in a
message thread, the message thread is considered low grade if any Tweets in the message thread
are low grade. Additionally, if any vague tumoral keywords, e.g. tumor and -oma, are detected
in any Tweet in the message thread, then the message thread is either low grade or malignant –
not nontumoral.
• As part of our manual data curation, if on Twitter there was discussion among pathologists, and
a different pathologist mentioned a correct diagnosis, and our consenting contributing pathologist
concurred, then we write an auxiliary annotation file for the Tweet with a summarized diagnosis12.

10Normal cerebellum case by S.Y. at https://twitter.com/Sty_md/status/821840894634565632
11A case of this is from author B.X., the initial Tweet asked a question https://twitter.com/BinXu16/status/

992958513193238528 while providing an acceptable image, then a subsequent Tweet reply provided the NUT midline carcinoma
diagnosis https://twitter.com/BinXu16/status/993075257308205056 which we consider malignant by keyword matching.

12A case of this is from author K.H., where a different pathologist gave the diagnosis, and he agreed. We summarized this
as “metastatic lobular carcinoma” in the auxiliary annotation file for the Tweet https://twitter.com/Ho_Khanh_MD/status/

999989201734197250.
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Figure S30: Predicting if an image is low grade or malignant, with nontumoral images skipped. Plots show accuracy
(left) and AUROC (middle) for the classifiers shown in Fig S14. The ROC curve for the highest AUROC classifier
[RF] is shown at right, showing AUROC=0.7051 here for n=732 per Table 2, which is not significantly different from
the mean AUROC=0.703.

This summary is also used for pattern matching. This is an additional way that we minimize how
many cases are handled at this late step.

• Moreover, if the contributing pathologist wrote diagnostic text directly in the image, we will write
this text in the auxiliary annotation file for text matching also.13

• The way this “default nontumoral or low grade” rule is intended to be used is as a catch-all for
unusual but non-malignant conditions14. Our motivation for this rule is to minimize our manual
data curation burden. We do not wish to write an auxiliary annotation file or make a new regular
expression for each unusual type of case, and we observe many of these cases are not malignant.
It remains important to inspect the cases manually for correctness.

Tweets that do not match any nontumoral, low grade, or malignant rules are skipped in the same manner
that Tweets matching skip rules are skipped. An additional caveat is this keyword matching may need
refinement as we accumulate data, because we expect to encounter terms that are low grade or malignant
in a context-dependent manner, e.g. tissue type or genetic sequencing.

S4.2 Pairwise Nontumoral, Low grade, and Malignant task details

We first considered all pairwise comparisons: low grade vs malignant, nontumoral vs malignant, nontumoral
vs low grade, nontumoral+low grade vs malignant, and nontumoral vs low grade+malignant.

S4.2.1 Low grade vs Malignant task details

Our Random Forest predicts if an image is low grade or malignant (Fig S30). There were 732 images: 347
negative images that were low grade and 385 positive images that were malignant. Classes were essentially
balanced. Accuracy is 65.055 ± 5.159% (chance 52.595 ± 0.599%). AUROC is 0.703 ± 0.058 (chance 0.5).
Performance in AUROC is statistically significant but too weak for clinical consideration. We are most
interested in this task for clinical decision support, because malignancy impacts clinical decisions, and a
clinician may already know that the patient has no nontumoral disease.

S4.2.2 Nontumor vs Malignant task details

Our Random Forest predicts if an image is nontumor or malignant (Fig S31). There were 694 images: 309
negative images that were nontumor and 385 positive images that were malignant. Classes were essentially

13A case of this is from author M.P.P., where M.P.P. wrote “IDC DIN LISN” directly on a shared histology image in the
Tweet https://twitter.com/dr_MPrieto/status/890118713155997696 so we wrote this text in the auxiliary annotation file for
the Tweet.

14A case of this is from K.H., observing iron fill lesions in stomach biopsy https://twitter.com/Ho_Khanh_MD/status/

963800933716123648.
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Figure S31: Predicting if an image is nontumor or malignant. Plots show accuracy (left) and AUROC (middle) for
the classifiers shown in Fig S14. The ROC curve for the highest AUROC classifier [RF] is shown at right, showing
AUROC=0.6918 here for n=694 per Table 2, which is not significantly different from the mean AUROC=0.700.
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Figure S32: Predicting if an image is nontumor or low grade. Plots show accuracy (left) and AUROC (middle) for
the classifiers shown in Fig S14. The ROC curve for the highest AUROC classifier [RF] is shown at right, showing
AUROC=0.7012 here for n=656 per Table 2, which is not significantly different from the mean AUROC=0.704.

balanced. Accuracy is 65.744 ± 5.131% (chance 55.474 ± 0.464%). AUROC is 0.700 ± 0.066 (chance 0.5).
Performance in AUROC is statistically significant but too weak for clinical consideration.

S4.2.3 Nontumor vs Low grade task details

Our Random Forest predicts if an image is nontumor or low grade (Fig S32). There were 656images: 309
negative images that were nontumor and 347 positive images that were low grade. Classes were essentially
balanced. Accuracy is 64.493 ± 5.536% (chance 64.493 ± 5.536%). AUROC is 0.704 ± 0.059 (chance 0.5).
Performance in AUROC is statistically significant but too weak for clinical consideration.

S4.2.4 Nontumor vs LowGrade+Malignant task details

Our Random Forest predicts if an image is nontumor or low-grade/malignant (Fig S33). There were 1041
images: 309 negative images that were nontumor, and 732positive images that were low grade or malignant.
There was mild class imbalance of ˜2.4:1. Accuracy is 73.046± 2.188% (chance 70.317± 0.293%). AUROC
is 0.683 ± 0.062 (chance 0.5). Performance in AUROC is statistically significant but too weak for clinical

a b ←− classified as
187 160 — a = 1
99 286 — b = 2

Table S8: RF confusion matrix for low grade vs malignant.

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
c
c
u
ra

c
y

0
.5

0
.7

0
.9

Z
R

K
N

N
S

V
M

N
B

R
F

A
U

R
O

C
0
.5

0
.7

0
.9

Z
R

K
N

N
S

V
M

N
B

R
F

Nontumor vs LowGrd+Malig

Classifier

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.4

0
.8

T
ru

e
 P

o
s
 R

a
te

Pathology

False Positive Rate
Figure S33: Predicting if an image is (i) nontumor, or (ii) low grade or malignant. Plots show accuracy (left) and
AUROC (middle) for the classifiers shown in Fig S14. The ROC curve for the highest AUROC classifier [RF] is
shown at right, showing AUROC=0.6804 here for n=1041 per Table 2, which is not significantly different from the
mean AUROC=0.683.
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Figure S34: Predicting if an image is (i) nontumor or low grade, or (ii) malignant. Plots show accuracy (left) and
AUROC (middle) for the classifiers shown in Fig S14. The ROC curve for the highest AUROC classifier [RF] is
shown at right, showing AUROC=0.6761 here for n=1041 per Table 2, which is not significantly different from the
mean AUROC=0.687.

consideration. This task, to distinguish tumoral from nontumoral disease, did not perform significantly
better than the other nontumor/low-grade/malignant tasks.

S4.2.5 Nontumor+LowGrade vs Malignant task details

Our Random Forest predicts if an image is nontumor/low-grade or malignant (Fig S33). There were 1041im-
ages: 385 negative images that were nontumor or low-grade, and 385 positive images that were malignant.
There was mild class imbalance of ˜1.7:1. Accuracy is 66.551± 3.255% (chance 63.016± 0.459%). AUROC
is 0.687 ± 0.052 (chance 0.5). Performance in AUROC is statistically significant but too weak for clinical
consideration. This task, to distinguish malignancy from everything else, did not perform significantly better
than the other nontumor/low-grade/malignant tasks.

S4.3 3-class Nontumoral, Low grade, and Malignant task details

Our Random Forest predicts if an image is nontumoral, low grade, or malignant (Fig S35). There were
1041 images: 309 images that were nontumor, 347 images that were low grade, and 385 images that were
malignant. Classes were essentially balanced. Accuracy is 51.239±4.781% (chance 36.984±0.459%). AUROC
is 0.683 ± 0.056 (chance 0.5). Performance in AUROC is statistically significant but too weak for clinical
consideration. This may be an interesting task if there is not strong prior information about whether or not
the patient has nontumoral disease, unlike our use case for low grade vs malignant.
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Figure S35: Predicting if an image is nontumor, low grade, or malignant. Plots show accuracy (left) and AUROC
(middle) for the classifiers shown in Fig S14. The ROC curve for the highest AUROC classifier [RF] is shown at right,
showing AUROC=0.6807,0.6892,0.6877 (for nontumor, low grade, and malignant, respectively – with weighted average
AUROC of 0.686) here for n=1041 per Table 3, which is not significantly different from the mean AUROC=0.683.

S5 Future Directions

To increase the granularity and accuracy of tissue type predictions, we first plan to expand the size of this
dataset by recruiting more pathologists via social media, aiming to have representative images for each organ.
Second, we will advocate for data sharing of normal tissue. Third, we will advocate for an expanded, more
precise ontology of Tweet hashtags to more fully describe images in a standard way, which will reduce our
manual annotation burden, and can allow us to complement histology with molecular hashtags. Finally, we
will use advanced techniques, e.g. deep learning, to improve performance. Section S5.1 discusses further.

S5.1 Future direction details

The first step is to expand the size of this dataset by recruiting more pathologists via social media. With
more data, we hope to improve performance on discriminations that were the most difficult (e.g., those
involving gynecological pathology). More data may facilitate machine learning methods that discriminate
between similar but less frequently used stains, such as H&E vs Diff-quik, rather than H&E vs IHC. More
data might also enable us to distinguish particular organs or tissues within a histopathology tissue type,
e.g. distinguish kidney tissue from bladder tissue. With increased sample size and increased tissue of origin
granularity, it may be possible to predict metastatic tissue of origin. Finally, a larger dataset might also
include more rare cases that can be useful for machine learning techniques that can support diagnoses.

A second step is advocacy on social media, for (i) sharing normal tissue data, and (ii) expanded pathology
hashtags. Normal tissue complements our existing “relatively unimportant” artifact and foreign body data,
such as colloids and gauze, which are typically not prognostic of disease. Normal tissue also complements
the description of tissue morphology in our data, if we tend to have only cancerous or diseased tissue.
Separately, more descriptive hashtags may reduce our manual annotation burden, and obviate the need for
us to ask pathologists to clarify what stain was used or what the tissue is. Moreover, molecular hashtags
may complement the histology we see. However, we understand that for pathologists sharing cases on social
media is probably a fun and voluntary activity, rather than a rigorous academic endeavor, so it may not
be appropriate for us to suggest pathologists use terms from synoptic reporting in hashtag format in their
Tweets. Moreover, the size of Tweets is limited to 280 characters, so more than 3-4 hashtags per Tweet is
probably infeasible. Some pathologists are already close to this limit without using additional hashtags.

We encourage the adoption of hashtags that explicitly identify what stains or techniques are used (this
is not an exhaustive list):

1. #he indicates there are one or more H&E-stained images in the Tweet.

2. #ihc indicates there are one or more IHC-stained images in the Tweet.

3. #pas indicates there are one or more periodic acid-Schiff images in the Tweet.
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4. #diffq indicates there are one or more diff-quik images in the Tweet. There is a common misspelling
of diff-quick, so our hashtag avoids this misspelling.

5. #gross indicates one or more gross section images are in the Tweet.

6. #endo indicates one or more endoscopy images are in the Tweet.

7. #ct indicates one or more CT scan images are in the Tweet.

8. #xray indicates one or more X-ray images are in the Tweet.

We encourage the adoption of hashtags that explicitly identify any artifacts, art, or pathologist annota-
tions/marks on the image.

1. #artifact or #artefact indicates there are artifacts or foreign bodies in one or more images, such as
colloids, barium, sutures, SpongostanTM, gauze, etc. We encourage the Tweet message text to identify
what the artifact or foreign body is.

2. #pathart is a hashtag in use today, but unfortunately it is used in two ways: (i) to identify naturally-
occurring and unmodified pathology images that are “pretty” or “interesting” as natural works of art,
and (ii) to identify images that have been modified by the pathologist herself/himself to be “funny” or
“interesting”. The trouble is (i) is “acceptable” pathology for analysis while (ii) is not. We advocate
for the continued use of the #pathart hashtag, but with clarification, below:

3. #drawn or #annotated indicates the pathologist made hand-drawn marks on one or more images, such
as arrows, circles, or artistic manipulations. Artistic manipulations may include drawing exclamation
points, question marks, eyes, mouths, faces, skulls, cartoon bodies, etc on the image. So, “#pathart
#drawn” is likely a pathology image with artistic drawn marks that prevents the image from being an
“acceptable” pathology image for analysis, while “#pathart” without “#drawn” is likely a pathology
image that is a naturally occurring unmodified histology image that is an “acceptable” pathology image
for analysis.

We encourage the adoption of hashtags that give other information about the image.

1. #pathbug is an existing hashtag that indicates a parasite or other co-occurring non-human organism
is depicted in one or more images in the Tweet.

2. #panel indicates one or more multi-panel images are in the Tweet.

We encourage hashtags to describe not only the histological features of a case, but also the molecular
features of a case. Again, this hashtag list is far from exhaustive.

1. #braf indicates the BRAF gene is known to be mutated, perhaps through sequencing.

2. #msi indicates micro-satellite instability, which again may be evident from sequencing.

3. #desmin indicates that the IHC used targets desmin.

A third important future direction is to determine whether our machine learning performance can be
improved, perhaps by use of advanced methods such as deep learning.

S6 Caveats

A number of caveats exist in our dataset, most of which can be remedied. First, a particular patient may be
represented with more than one image, and more than one Tweet. To control for this, we can (a) consider
at most one image per patient, or (b) allocate an entire message thread to a cross validation fold – but these
either reduce statistical power or complicate the baseline analysis by departing from Weka’s default cross
validation scheme. Second, there is a risk of error in our data because many different pathologists share
cases, and they may disagree on the most appropriate hashtags or diagnosis. Third, our nontumor/low-
grade/malignant keyword rules may be incorrect, and explicit nontumor/low-grade/malignant annotations
for cases from a pathologist may help. Fourth, there may be sampling bias if we typically have unusual
cases that pathologists consider worth sharing, and our cases by necessity only come from pathologists on
social media. Fifth, our pipeline crops images, potentially losing important information. Sixth, this is a

38

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


retrospective study, so for improved validation, we could make (a) a prospective study using additional data
from contributing pathologists, or (b) an independent test set from additional pathologists. Finally, our
quality control pipeline does not filter out pathologist markings on these images. Section S6.1 discusses
further.

S6.1 Caveats details

A feature of these data is that a particular patient might be represented in more than one image. Any
given patient might be discussed in multiple Tweets, each of which contain one or more images. So far, our
machine learning analyses have not controlled for the number of images shared for a particular patient. Future
machine learning analyses can take at most one image per patient, to avoid overfitting to the peculiarities of
a particular patient who is the subject of multiple images in a given class discrimination problem. However,
it will be challenging to determine which images belong to which patient, because often other cases are
mentioned alongside a particular patient, to provide context or comparison. Thus a Twitter thread for a
particular case might include more images from that same patient as well as images from different patients.
Sorting images into different patients will therefore be a challenge that will require perhaps hundreds of
hours of manual curation.

There is room for improvement in automated duplicate detection methods. A pathologist may first Tweet
an image that has no hand-drawn marks, but later reply with an image that includes hand-drawn marks
such as circles and arrows to indicate a region of interest. In future work, these near-duplicates should be
automatically detected. Duplicates may artificially inflate performance metrics.

Our dataset is only as good as the accuracy of the hashtags and diagnoses made by the contributing
pathologists. The more pathologists that contribute to the database, the higher the risk for errors and in-
consistencies. Indeed we note some uses of the #bstpath hashtag to describe breast pathology (Section S2.4).
We should remember the fun and voluntary nature of sharing cases on social media.

We crop images to convert rectangular images to be uniformly square for the machine learning. However,
pathologists may include diagnostic information only at the extreme edges of an image that are cropped
out. A case of this from B.X. involves a hydatid cyst in the extreme right of an image, which would be
cropped out15. This hydatid cyst indicates Echinococcus infection, so the case is nontumoral. Learning over
random crops of the image, as is commonly done in deep learning data augmentation, may help attend to
the image’s extreme edges too, rather than systematically ignore them. Another caveat is that our baseline
Random Forest method does not consider all images for a patient together as a “bag” for multiple instance
learning or similar methods. Multiple instance learning may be especially important for this case, because
the “answer” is in only one of the three provided pictures. The other two images provoked discussion about
the “intense necrotizing granulomas” in this case.

Finally, the size of the dataset is both a blessing and a curse. A large and diverse dataset is required
to provide the most benefit to computational pathology. However, quality control for such large datasets is
most feasible if done automatically, and automated quality control cannot deal with all issues. For example,
some pathology images include marks designating a particular pathologist as the contributor of that image.
Other pathology images have been marked by pathologists with arrows and circles. Our automated quality
control pipeline enables us to rapidly discriminate pathology from non-pathology images, but is not able to
address these other challenges. Future steps will need to be taken for more specialized quality control.

15Case at https://twitter.com/BinXu16/status/980404471833313280 “Kudo to @drkennethtang @luishcruzc and
@DrGeeONE The answer of this case can be seen in the right corner of the 3rd picture. Dx: Echinococcus (hydatid cyst)
with necrotizing pneumonia, abscess, and granulomatous inflammation. Additional high power pictures attached.”
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