

1 **Mindfulness meditators show altered distributions of early and late neural activity markers of**
2 **attention in a response inhibition task**

3

4

5 NW Bailey^{*1}, G Freedman¹, K Raj¹, CM Sullivan¹, NC Rogasch², SW Chung¹, KE Hoy¹, R Chambers³, C

6 Hassed⁴, NT Van Dam^{5, 6}, PB Fitzgerald^{1, 7}

7

8

9

10 ¹ Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial
11 Rd, Melbourne, Victoria, Australia.

12 ² Brain and Mental Health Research Hub, School of Psychological Sciences, Monash Institute of
13 Cognitive and Clinical Neurosciences, and Monash Biomedical Imaging, Monash University, Clayton,
14 3168 VIC, Australia.

15 ³ Campus Community Division, Monash University, Melbourne, Victoria, Australia

16 ⁴ Department of General Practice, Monash University, Melbourne, Victoria, Australia

17 ⁵ School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia

18 ⁶ Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

19 ⁷ Epworth Healthcare, The Epworth Clinic, Camberwell, Victoria, Australia, 3004.

20 * Corresponding author: NW Bailey, neil.bailey@monash.edu, Monash Alfred Psychiatry Research
21 Centre, Level 4, 607 St Kilda Road, Prahran, VIC, Australia, 3004.

22 Abstract

23 Attention is a vital executive function, since other executive functions are largely dependent on it.

24 Mindfulness meditation has been shown to enhance attention. However, the components of

25 attention altered by meditation and the related neural activities are underexplored. In particular, the

26 contributions of inhibitory processes and sustained attention are not well understood. Additionally,

27 it is not clear whether improvements in attention are related to increases in the strength of typically

28 activated brain areas, or the recruitment of additional or alternative brain areas. To address these

29 points, 34 meditators were compared to 28 age and gender matched controls during

30 electroencephalography (EEG) recordings of neural activity during a Go/Nogo response inhibition

31 task. This task generates a P3 event related potential, which is related to response inhibition

32 processes in Nogo trials, and attention processes across both trial types. Compared with controls,

33 meditators were more accurate at responding to Go and Nogo trials. Meditators showed a more

34 frontally distributed P3 to both Go and Nogo trials, suggesting more frontal involvement in sustained

35 attention rather than activity specific to response inhibition. Unexpectedly, meditators also showed

36 increased positivity over the right parietal cortex prior to visual information reaching the occipital

37 cortex. Both results were positively related to increased accuracy across both groups. The results

38 suggest that meditators have an increased capacity to modulate a range of neural processes in order

39 to meet task requirements, including higher order processes, and sensory anticipation processes.

40 This increased capacity may underlie the improved attentional function observed in mindfulness

41 meditators.

42

43 Keywords: Mindfulness Meditation, Electroencephalography, EEG, P3, C1, Go/Nogo, Response

44 Inhibition, Attention.

45

46 Introduction [1,104 words]

47 Attention is vital in selecting and maintaining processes most relevant for optimal behaviour (1).
48 Attentional mechanisms have limited capacity and thus are most effective when allocated to
49 processes that ensure behaviour consistent with the goals of the organism. In particular, attentional
50 resources are most likely to enable optimal goal-oriented responses when the neural processes most
51 at risk of failure are enhanced. In other words, attention improves goal-oriented behaviour by
52 strengthening the weak links in the chain of neural processing that goes from stimulus detection to
53 behavioural response (2, 3).

54

55 One method that enhances attention - mindfulness meditation - is conceptualised as a practice of
56 training attention (or awareness) with an attitude of openness and non-judgement towards
57 experiences (4, 5). Enhanced attention is a key mechanism of action in the improvements associated
58 with mindfulness meditation (1, 5-9). Notably, meditators demonstrate improvements in sustained
59 attention (10-12), distribution of scarce attentional resources in time (13, 14) and space (15), and
60 attentional control including inhibition of prepotent behaviour (11, 16, 17). However, although
61 eight-week standardized mindfulness programs improve aspects of cognition such as working
62 memory and cognitive flexibility, they may not improve neuropsychological measures of attention
63 (18). As such, individual components of attentional processes need further examination to
64 determine the exact parameters of attentional function improvements result from mindfulness
65 meditation.

66

67 Reviews suggest that mindfulness meditation most likely has its impact on attentional functions via
68 changes to the structure and function of numerous regions in the prefrontal cortex, the anterior
69 cingulate cortex, the insular cortex, and the hippocampus and amygdala (19, 20). As suggested
70 above, sustained attention and inhibition are among the key mechanistic features from both an

71 empirical and theoretical perspective (20). One task designed to test both inhibition and sustained
72 attention is the Go/Nogo task. The Go/Nogo task presents stimuli to which participants are
73 instructed to respond (Go trials), setting up a prepotent response tendency, and stimuli to which
74 participants are instructed to withhold their response (Nogo trials). This task engages conflict
75 monitoring to allocate neural resources between the two competing processes (response and non-
76 response), keeping track of the alignment between behaviour (or potential behaviour) and the goals
77 held by participants (21). Nogo trials also engage response inhibition to actively prevent a habitual or
78 prepotent response (22). The Go/Nogo task also requires successful sustained attention, in order to
79 keep track of stimuli, potential conflicts, and engage response inhibition processes (23). Improved
80 behavioural performance on the Go/Nogo task has been shown after mindfulness meditation
81 practice and was sustained for up to five months, reliably predicting improved socioemotional
82 function (24).

83

84 At a neural level, sustained attention and inhibition are reflected by variations in the amplitude and
85 synchronisation of neural oscillations, the average effect of which can be measured using event
86 related potentials (ERPs) (25). Two ERPs are elicited by the Go/Nogo task: the N2, which is related to
87 conflict monitoring and response inhibition, and significantly larger during Nogo trials (26-29) and
88 the P3, which is thought to reflect attentional resource allocation, related to sustained attention on
89 all trials (30, 31). Six studies have used the Go/Nogo task to examine the effect of trait mindfulness
90 or mindfulness meditation on ERPs related to conflict monitoring, response inhibition, and sustained
91 attention (see Table S1 for a summary). Each has studied a different population or intervention, and
92 results between studies are inconsistent (32-37).

93

94 The inconsistencies make it difficult to draw meaningful conclusions about the effect of mindfulness
95 meditation on attention. As the potential of meditation is likely to be most noticeable in those
96 individuals who have engaged in extensive practice, work with this population is crucial to

97 identifying likely benefits of mindfulness meditation. No such research to-date has examined neural
98 response to the Go/Nogo task in long term meditators. Prior studies all used single electrode
99 measures, further limiting potential conclusions. If meditation alters the P3 distribution, increasing
100 prefrontal engagement (related to attention enhancements), single electrode analyses cannot
101 differentiate these distribution differences from amplitude differences. The inconsistencies in prior
102 studies may also be related to differences in windows and electrodes selected for analysis, and may
103 have missed early processing changes that have been found in meditators in other tasks (15). An
104 analysis technique encompassing all time windows and electrodes without a priori assumptions may
105 be beneficial, in order to obtain a better understanding of the effect of meditation on neural activity.
106 In particular, previous research has indicated that both voluntary and involuntary attention affects
107 “evoked” sensory processing ERPs such as the C1, P1, N1, and P2 (38-41). Differences between
108 meditators and controls in these windows are not detectable with research that focuses on typical
109 Go/Nogo a priori windows of interest.

110
111 Recently developed EEG analytic techniques (42) enable comparison of neural activity across entire
112 EEG epochs while simultaneously controlling family-wise error. Additionally, this analysis technique
113 enables discrimination of differences reflecting altered overall neural response strength from
114 changes in the distribution of neural activity across regions. This could elucidate whether meditation
115 enhances the amplitude of typical neural responses related to sustained attention or inhibitory
116 processes or trains a completely different pattern of brain region engagement, a question that has
117 not been examined before in studies of meditation.

118 Aims and Hypotheses

119 The aim of the current study was to assess whether individuals with extensive experience in
120 mindfulness meditation showed differences in neural activity related to inhibition and sustained
121 attention compared to demographically-matched individuals without meditation experience. We

122 had hypotheses regarding both the amplitude and distribution of neural activity. Regarding
123 amplitude, we hypothesized that: 1) neural activity related to conflict monitoring and response
124 inhibition (the Nogo N2 and Nogo P3) would be larger in meditators, reflecting increased
125 engagement of these neural processes as a result of the attention enhancing effect of meditation
126 practice, and 2) neural activity related to attention would be larger in meditators (both Go and Nogo
127 P3) reflecting increased engagement of these neural processes. Previous EEG research has not
128 examined the distribution of neural activity independently of the amplitude of neural activity in
129 meditators. However, research has suggested better attention and inhibition function are related to
130 frontal activity (43, 44). As such, we hypothesised that the meditators would show more frontal
131 activity in these ERPs, reflecting increased ability to engage the prefrontal cortex to maintain
132 attention and inhibition processes. We also planned: 1) exploratory source analyses to assess which
133 brain areas were activated during any topographical differences between groups and 2) microstate
134 analysis to further characterise topographical differences between groups. Although simplified
135 emotional faces were used as stimuli to replicate previous research using this task, no interaction
136 between group and emotion was expected, as our previous research suggested the simplified faces
137 were not sufficiently emotionally evocative to generate between group differences (45).
138

139 Methods

140 Participants and Self-Report Data

141 Thirty-six controls and 34 meditators were recruited through community advertising. Inclusion
142 criteria for meditators involved a current meditation practice, with at least six months of meditation
143 for at least two hours per week. All meditators except one had more than two years of meditation
144 experience. Phone screening and in-person interviews were administered by experienced
145 mindfulness researchers (GF, KR, NWB) to ensure meditation practices were mindfulness-based,
146 using Kabat-Zinn's definition - "paying attention in a particular way: on purpose, in the present
147 moment, and nonjudgmentally" (46). Further screening ensured meditation practices were
148 consistent with either focused attention on the breath or body-scan. Any screening uncertainties
149 were resolved by between two researchers including the principal researcher (NWB). Control group
150 participants did not have experience with meditation of any kind.

151

152 Exclusion criteria involved self-report of current or historical mental or neurological illness, or
153 current psychoactive medication or recreational drug use. Participants were additionally interviewed
154 with the MINI International Neuropsychiatric Interview for DSM-IV (47) and excluded if they met
155 criteria for any DSM-IV psychiatric illness. Participants who scored in the mild above range or above
156 in the Beck Anxiety Inventory (BAI) (48) or Beck Depression Inventory II (BDI-II) (49) were also
157 excluded. All participants had normal or corrected to normal vision and were between 19 and 62
158 years of age.

159

160 Prior to completing the EEG task, participants reported their age, gender, years of education,
161 handedness, and an estimate of the number of years spent meditating and the number of minutes
162 per week spent meditating. Participants also completed the Freiburg Mindfulness Inventory (FMI)

163 (50), Five Facet Mindfulness Questionnaire (FFMQ) (51), BAI, and BDI-II (see Table 1). All participants
164 provided informed consent prior to participation. The study was approved by the Ethics Committee
165 of the Alfred Hospital and Monash University (approval number 194/14).

166

167 Select data was excluded from analysis - four controls were excluded due to scoring in the mild
168 depression range on the BDI, two due to misunderstanding task instructions, and one due to non-
169 task completion. One additional control was excluded from neural analysis due to equipment fault.
170 Two additional controls and three meditators were excluded from the behavioural analysis, due to
171 an intermittent button fault during those sessions (enough correct response epochs were left for
172 neural analysis, but accuracy calculations were insufficiently reliable). This left 28 controls for neural
173 analysis (17 female, all right handed) and 27 controls for behavioural analysis. No exclusions were
174 made for the meditators' neural data, leaving 34 meditators (21 female, 3 left handed), and 31 for
175 behavioural analysis.

176 Task and Stimuli

177 Participants performed a Go/Nogo task with simplified emotional faces as stimuli while 64-channel
178 EEG was recorded (see Figure 1). Task details were the same as Bailey et al. (45), with two blocks
179 (instead of the four in the original design). The two blocks each included 75 happy and 75 sad faces.
180 The equal trial type frequency was selected to limit between group comparisons to processes
181 related to response inhibition (rather than also including processes related to probability of trial
182 type, as would be the case if Nogo trials were less frequent than Go trials, since factors such as
183 novelty modulate the Nogo N2 amplitude (52). Participants were instructed to respond by using
184 both index fingers to press separate buttons simultaneously when they saw one emotion, and
185 withhold responses to the other emotion. Stimulus-response pairings were reversed in the second
186 block - participants who responded to happy faces in the first block responded to sad faces in the
187 second block, and vice versa. Button press responses by the dominant hand were recorded.

188 Stimulus-instruction pairing was counterbalanced across participants and groups. Stimuli were
189 presented for 250 ms, with an inter-trial interval of 900 ms (with a random jitter of 50 ms to avoid
190 entrainment of EEG activity). Stimuli presentation was pseudo-random so that no more than four of
191 each trial type was presented consecutively. Prior to beginning the task and again before the second
192 block, participants were presented with a short practice block. The second practice was included to
193 prevent extra errors and switching effects on the N2 amplitude (52). Percentage accuracy and
194 reaction time (RT) for each trial type were extracted offline.

195

196 Figure 1. Go/Nogo task design. Go:Nogo ratio was 50:50, with stimulus response pairings switched in
197 the second block so all participants responded to an equal number of happy and sad faces, and
198 stimulus response pairings counter-balanced within each group.

199 Electrophysiological Recording and Pre-Processing

200 A Neuroscan 64-channel Ag/AgCl Quick-Cap was used to acquire EEG through NeuroScan Acquire
201 software and a SynAmps 2 amplifier (Compumedics, Melbourne, Australia). Electrodes were
202 referenced to an electrode between Cz and CPz. Eye movements were recorded with vertical and
203 horizontal EOG electrodes. Electrode impedances were kept below 5kΩ. The EEG was recorded at
204 1000Hz, with an online bandpass filter of 0.1 to 100Hz.

205

206 Data were analysed offline in MATLAB (The Mathworks, Natick, MA, 2016a) using EEGLAB for pre-
207 processing (sccn.ucsd.edu/eeglab) (53). Second order Butterworth filtering was applied to the data
208 with a bandpass from 1–80 Hz and also a band stop filter between 47–53 Hz. Correct response trials
209 were re-coded, and data were epoched from -500 to 1500 ms surrounding the onset of the stimulus
210 presentation for each trial; only correct responses were analysed. Epochs were visually inspected by
211 an experimenter experienced with EEG analysis and blinded to the group of each participant, and
212 periods containing muscle artefact or excessive noise were excluded, as were channels showing poor

213 signal. Thirty-five or more accepted epochs were obtained from each participant for each condition,
214 and no significant differences were detected between groups in the number of accepted epochs ($p >$
215 0.10).

216

217 Data were combined with epoched data from another cognitive task (results of which will be
218 presented in a separate publication) for Independent Component Analysis (ICA). AMICA (54) was
219 used to manually select and remove eye movements and remaining muscle activity artefacts. Once
220 artefactual ICA components were rejected, raw data were re-filtered from 0.1-80 Hz, all previous
221 channel and epoch rejections were applied, and rejected ICA components were applied to this 0.1-
222 80 Hz filtered data to avoid rejecting low frequency brain activity around 1 Hz (prior to ICA rejection,
223 data below 1 Hz was filtered out as it adversely impacts the ICA process). Rejected electrodes were
224 re-constructed using spherical interpolation (55). Data were then visually inspected again by a
225 separate researcher (who was also blind to the group of the data inspected at that time) to ensure
226 the artefact rejection process was successful. Recordings were re-referenced offline to an averaged
227 reference and baseline corrected to the -100 to -10 ms period, and epochs from each condition and
228 participant were averaged for ERP analyses.

229 Source Localisation Pre-processing

230 Estimation of cortical sources during topographical between-group differences was performed using
231 Brainstorm (56) (<http://neuroimage.usc.edu/brainstorm/>). EEG data were co-registered with the
232 template model (ICBM 152) because individual MRIs were not available. The forward model used the
233 Symmetric Boundary Element Method implemented in OpenMEG software (57). The inverse model
234 used the computation of minimum norm estimation, with sLORETA to normalise activity based on
235 the depth of sources (58), with dipole orientations unconstrained to the cortex to minimize the
236 impact of using the MRI template (59). Differences in estimation were calculated using absolute
237 subtraction. We source localised the well-known P100 occipital ERP (averaged across 50 to 150 ms)

238 to the correct location to demonstrate our source analysis was reliable even in the absence of
239 individual MRI templates (see supplementary figure 1) (60). Statistical comparisons of source
240 localisations were not performed, as scalp comparisons already demonstrated significant
241 differences, and without MRI co-registration source statistical comparisons can be unreliable (61).

242 Statistical Comparisons

243 Self-report and behavioural comparisons were made using SPSS version 23. Independent samples t-
244 tests were conducted to ensure groups were matched in age, years of education, BAI, and BDI, and
245 to determine whether groups differed in FMI, FFMQ scores. Chi square tests were used for gender
246 and handedness. Percentage correct was compared with a repeated measures ANOVA involving 2
247 group x 2 Go/Nogo conditions x 2 emotion conditions. RT was compared in Go trials only (as these
248 were the only trials requiring responses) with a repeated measures ANOVA involving 2 group x 2
249 emotion conditions. Fewer than 2 outliers were Winsorised for each percent correct condition. No
250 outliers were present for cumulative percentage correct, and data met assumptions of normality and
251 equality of variances. The Benjamini and Hochberg false discovery rate (FDR) (62) was used to
252 control for multiple comparisons across behavioural performance measures.

253 Primary Comparisons

254 Primary statistical comparisons for EEG data were conducted using the Randomised Graphical User
255 Interface (RAGU) to compare scalp field differences across all electrodes and time points with
256 randomisation statistics without making any a priori assumptions about electrodes or windows for
257 analysis (42). This reference-free method takes advantage of the additive nature of scalp fields to
258 allow comparisons of neural activity between groups and conditions without estimation of active
259 sources by calculating a difference scalp field between groups or conditions. This difference scalp
260 field shows the scalp field of brain sources that differed between the two groups/conditions, while
261 brain sources that did not differ result in zero scalp field difference (42). RAGU controls for multiple

262 comparisons in both time and space using randomisation statistics (see (42)). To control for multiple
263 comparisons in time (which are made at each time point in the epoch), global duration statistics
264 calculate the duration of significant effects that are longer than 95% of the significant periods in the
265 randomised data, ensuring significant durations in the real data last longer than the random
266 comparison data at $p = 0.05$ (42). Additionally, area under the curve statistics of significant time
267 points across the entire epoch confirm sufficient control for multiple comparisons in the time
268 dimension.

269
270 RAGU also allows for independent comparisons of overall neural response strength (with the global
271 field power - GFP test) and distribution of neural activity (with the Topographic Analysis of Variance -
272 TANOVA). Prior to the TANOVA, a Topographical Consistency Test (TCT) was conducted to ensure a
273 consistent distribution of scalp activity within each group / condition. Lastly, Topographical Analysis
274 of Covariance (TANCOVA) performs the same operations as TANOVA except it compares neural data
275 to a linear predictor instead of between-group comparisons (42).

276
277 GFP and TANOVA tests were used to conduct 2 group x 2 Go/Nogo condition condition comparisons
278 for averaged ERP data from -100 to 700 ms surrounding the onset of the stimulus. Five thousand
279 randomisations were conducted with an alpha of $p = 0.05$. Post-hoc GFP and TANOVA tests to
280 explore interactions were only conducted averaged across time periods of significant interaction
281 after global duration controls.

282
283 In order to obtain effect sizes, GFP values were extracted from RAGU and submitted to parametric
284 repeated measures ANOVA in SPSS. It is not feasible to compute traditional parametric effect sizes
285 for topographical differences, the analysis of which includes many electrodes, so a randomisation
286 statistic Cohen's d equivalent was calculated for significant TANOVA differences. This method is
287 reported in the supplementary materials.

288

289 The Benjamini and Hochberg false discovery rate (FDR) (62) was used to control for multiple
290 comparisons for all comparisons testing primary hypotheses separately from comparisons involving
291 behavioural data. FDR corrections were performed on the area under the curve p-values from each
292 main effect or interaction. Area under the curve p-values were measured as the sum of all time
293 points across the epoch in each comparison (across group main effects and group by Go/Nogo
294 condition interaction). Controlling for multiple comparisons across both GFP and TANOVA tests, as
295 well as across main effects and interactions avoided the hidden multiplicity in ANOVA designs (63).
296 Post-hoc t-test designs were similarly controlled for using the FDR method. To enable comparison
297 with other research, both corrected and uncorrected p-values are reported for significant
298 comparisons (labelled 'FDR p' and 'p-uncorrected' respectively).

299 Exploratory Analysis

300 Exploratory analyses were not corrected for multiple comparisons, so should be taken as preliminary
301 findings. In order to assess relationships between behavioural results and neural activity, significant
302 periods from group TANOVA comparisons were averaged and compared using TANCOVA tests with
303 linear predictor values from significant between-group differences at the behavioural level.

304

305 Microstates are temporarily stable topographies of neural activation lasting approximately 80-120
306 ms before very quickly (~5 ms) transitioning to another temporarily stable topography, reflecting
307 difference source activations (64). Identification of microstates, determination of the optimal
308 number of microstates, and statistical analysis was conducted using RAGU (65). Microstates were
309 identified using atomize and agglomerate hierarchical clustering (AAHC) algorithm, which merges
310 ERP topographies into clusters so that the average topography of the clusters explains maximal
311 variance in the ERP (66). The optimal number of microstates was computed using cross-validation
312 with the mean ERP from a learning set containing varied numbers of microstate classes and

313 associated timing, which are then applied to the test set comprised of the remaining data. The
314 optimal number of microstates is the point where the mean variance explained in the test set
315 reaches its maximum (65). Randomisation statistics are then used to compare microstate properties
316 during periods that were significant in the ERP TANOVA and GFP comparisons.
317
318

319 Results

320 Demographic and Behavioural

321 The neural analysis was the main focus of the study, so we only examined demographic and self-
322 report differences for the participants included in the neural analysis. Results are summarised in
323 table 1. For participants included in the neural analysis, no significant differences were present
324 between groups in age, years of education, BAI score, BDI score, gender or handedness (all $p > 0.3$).
325 Meditators showed significantly higher FMI $t(60) = 2.401$, $p = 0.019$ and FFMQ scores $t(60) = 3.741$, p
326 < 0.001 .

327

328 To examine behavioural performance, we compared percentage correct and reaction times.
329 Normality, Box's test, and Levene's test were violated for percentage correct, however no significant
330 interaction involving group was present with repeated measures ANOVA (Go/Nogo x group $F(1,56) =$
331 0.004 , $p = 0.952$. Log10, natural log, and z-score transforms were attempted, but data remained
332 non-normal. As such, corrections to normalise data were not performed. Cumulative percent correct
333 across all conditions was calculated and found to be normally distributed. Meditators showed higher
334 cumulative percentage correct with independent samples t-test $t(56) = 2.511$, p -uncorrected = 0.015
335 partial eta squared = 0.101 , FDR $p = 0.045$.

336

337 No significant difference was found for any condition, group or interaction in the number of
338 accepted epochs (all $p > 0.10$). No significant differences were found in reaction time for group
339 comparisons or interactions involving group (all $p > 0.10$, see Table 2).

340

341 Within the meditation group, no correlations were significant between cumulative percentage
342 correct and meditation experience (years), minutes per week, or FFMQ scores (all $p > 0.10$).

343

344 Table 1. Demographic, self-report, and behavioural data.

	Meditators	Controls	Statistics
	<i>M (SD)</i>	<i>M (SD)</i>	
Age	36.56 (10.88)	35.68 (14.69)	$t(60) = 0.271, p = 0.794$
Gender (F/M)	21/13	17/11	n.s.
Years of Education	16.97 (2.55)	15.87 (2.82)	$t(60) = 1.598, p = 0.115$
Meditation Experience (years)	8.30 (10.28)	0	
Current Time Meditating Per Week (hours)	5.50 (4.15)	0	
BAI score	4.24 (4.68)	4.50 (5.62)	$t(60) = 0.202, p = 0.840$
BDI score	1.06 (1.87)	1.61 (2.69)	$t(60) = 0.944, p = 0.349$
FMI score	45.62 (7.02)	41.12 (7.75)	$t(60) = 2.401, p = 0.019^*$
FFMQ score	152.97 (17.13)	138.39 (12.63)	$t(60) = 3.741, p < 0.001^{**}$

345 * $p < 0.05$, ** $p < 0.001$.

346

347

348

349 Table 2. Behavioural and accepted epoch data.

	Meditators	Controls	Statistics
	<i>M (SD)</i>	<i>M (SD)</i>	
Total Percent Correct	97.13 (2.48)	95.32 (2.99)	$t(56) = 2.511, p = 0.015^*$
Happy Go %	98.19 (3.90)	96.69 (3.52)	
Sad Go %	98.62 (2.11)	96.45 (4.26)	
Happy Nogo %	96.08 (3.44)	94.57 (5.25)	
Sad Nogo %	95.62 (4.16)	93.59 (5.14)	
Total Go RT	389.92 (46.58)	388.47 (55.09)	$F(1,56) = 0.012, p = 0.914$
Happy Go RT	388.31 (47.92)	384.19 (55.77)	
Sad Go RT	391.53 (48.88)	392.75 (57.67)	
Accepted Happy Go	71.12 (7.37)	68.18 (9.90)	$t(60) = 1.339, p = 0.186$
Epochs			
Accepted Sad Go Epochs	70.41 (8.05)	68.89 (7.52)	$t(60) = 0.762, p = 0.449$
Accepted Happy Nogo	70.21 (3.52)	68.79 (5.85)	$t(60) = 1.181, p = 0.242$
Epochs			
Accepted Sad Nogo	69.79 (4.13)	68.21 (5.00)	$t(60) = 1.364, p = 0.178$
Epochs			

350 * $p < 0.05$

351 Neural Data

352 Global Field Potential Test

353 To assess the strength of neural response to Go/Nogo trials, we analysed the data using the GFP
354 test. A significant group by Go/Nogo trial interaction was present between 336 ms to 449 ms (area
355 under the curve statistic p-uncorrected = 0.0198, FDR p = 0.0396), global duration statistic = 33 ms.
356 When activity was averaged across the significant window (336 to 449 ms) to obtain a single value
357 for analysis, the effect was still significant (p = 0.001). Post-hoc comparisons within trial type in
358 RAGU indicated that controls and meditators did not differ in Go trial comparisons (p = 0.298) nor
359 Nogo trial comparisons (p = 0.184). Controls showed a significant difference between Go and Nogo
360 trials - Go trials showed larger amplitude than Nogo trials (p-uncorrected < 0.001, FDR p = 0.004).
361 Meditators did not show a difference between Go and Nogo trial amplitudes (p = 0.743). See figure 2
362 for details. These results suggest that controls generate larger P3 amplitudes during Go trials, and
363 smaller P3 amplitudes during Nogo trials, while meditators showed no differences. No differences
364 were present in the N2 window (thought to reflect inhibition and conflict monitoring).

365

366 In order to obtain effect sizes, GFP values were extracted from RAGU and submitted to a parametric
367 repeated measures ANOVA in SPSS. Partial eta squared from Group x Go/Nogo interaction in
368 parametric repeated measures ANOVA = 0.098. 95% Confidence intervals for controls Go = 2.253 to
369 2.999, Nogo = 1.718 to 2.349, meditators Go = 2.022 to 2.699, Nogo = 2.037 to 2.610. There was no
370 main effect of group (p > 0.1).

371

372 Figure 2. Significant group by Go/Nogo GFP interaction during the P3 window. A - Averaged GFP
373 within the significant 336 ms to 449 ms window (green periods = 46 ms reflect periods that exceed
374 the duration control for multiple comparisons across time = 33 ms). * p-uncorrected < 0.001 (FDR p
375 < 0.004). B - Averaged topography during the significant window for each group. C – p-values of the

376 group by Go/Nogo trial comparison for the real data against 5000 randomly shuffled permutations
377 across the entire epoch.

378 Topographical Consistency Test

379 In order to assess consistency of neural activity within groups and trial types, the TCT test was
380 conducted (42). The TCT showed significant signal indicating consistency of neural activity within all
381 groups / conditions across the entire epoch except prior to the stimulus and during a brief period (<
382 20 ms) at 550 ms in Nogo trials for controls, see figure 3). Consistent neural activity within conditions
383 and groups indicates that TANOVA comparisons between conditions and groups are valid.

384

385

386 Figure 3. Topographical consistency test. The line indicates GFP values and the grey bars indicate p-
387 values, with the red line indicating $p = 0.05$. White sections indicate regions without significantly
388 consistent distribution of activity within the group/condition, while green periods indicate consistent
389 distribution of activity across the group/condition after duration control for multiple comparisons
390 across time (42). Note significant consistency across all conditions for both groups except for prior to
391 stimulus onset, and around 550 ms in the Nogo trials for control participants.

392 TANOVA

393 In order to examine potential differences in the distribution of neural activity in response to the Go
394 and Nogo trials, TANOVAs were conducted. Significant main effects of group that survived duration
395 control for multiple comparisons were present from -1 ms to 62 ms (prior to the C1 period, referred
396 to as pre-C1 henceforth) ($p = 0.003$ averaged across the significant window, Cohen's d equivalent
397 effect size = 0.949), and from 416 ms to 512 ms (during the P3 period) ($p = 0.007$ averaged across
398 the significant window, Cohen's d equivalent effect size = 0.863). The area under the curve statistic
399 for the entire epoch within the group main effect was p-uncorrected = 0.011 (FDR $p = 0.040$), and

400 the global duration control statistic was 46 ms. Figures 4 and 5 depict the topographical differences
401 between groups for the pre-C1 (-1 to 62 ms) and P3 (416 to 512 ms) periods respectively. No
402 significant interaction between group and trial type was present ($p > 0.1$).

403

404 Overall, the differences indicate more fronto-central negativity and right posterior positivity in the
405 meditation group during the pre-C1 (from -1 and 62 ms). Because the C1 is thought to be the first
406 neural processing of visual stimuli (40, 67), the difference in pre-C1 activity is likely to reflect group
407 differences in anticipatory activity.

408

409 Figure 4. TANOVA main group effect from -1 to 62 ms. A - p values of the between-group
410 comparison for the real data against 5000 randomly shuffled permutations across the entire epoch
411 (green periods reflect periods that exceed the duration control for multiple comparisons across time
412 = 46 ms). B - Averaged topographical maps for each group during the significant time window. C - p-
413 map for meditators topography minus control topography during the significant time window ($p =$
414 0.003 averaged across the significant window, effect size = 0.9485).

415

416 The results also reflect more fronto-central positivity during the P3 in the meditation group. Because
417 this difference was present across both Go and Nogo trials, the higher frontal activity in the
418 meditation group may reflect altered attentional function of the P3 rather than altered inhibitory
419 processes. No differences were present in the N2 window (thought to reflect inhibition and conflict
420 monitoring).

421

422 Figure 5. TANOVA main group effect from 416 to 512 ms. A - p values of the between-group
423 comparison for the real data against 5000 randomly shuffled permutations across the entire epoch
424 (green periods reflect periods that exceed the duration control for multiple comparisons across time
425 = 46 ms). B - Averaged topographical maps for each group during the significant time window. C - p-

426 map for meditators topography minus control topography during the significant time window (p =
427 0.007 averaged across the significant window, effect size = 0.863).

428 TANCOVA

429 To assess relationships between the altered distribution of neural activity shown by the TANOVA and
430 behavioural performance, TANCOVAs were conducted between significant periods of activity in the
431 TANOVA and cumulative percentage correct. Since participants performed at ceiling, groups were
432 combined to maximise statistical power. TANCOVA between cumulative percentage correct and
433 topographies averaged across the pre-C1 window (-1 to 62 ms) (p = 0.006) and the P3 window (416
434 to 512 ms) (p = 0.048) were significant, with positive topographies showing activity more similar to
435 meditators, suggesting those topographies were related to better performance (see figure 6).

436 However, this may be confounded by group differences in both topographies and performance.

437 When running this analysis just within the meditation group the same pattern was apparent, but
438 non-significant (p = 0.240 for -1 to 62 ms, and p = 0.766 for 416 to 512 ms), and the same was true
439 for analysis within the control group (p = 0.112 for -1 to 62 ms, and p = 0.182 for 416 to 512 ms).

440

441 Figure 6. TANCOVA topographies depicting the relationship between cumulative percentage correct
442 and averaged topography from -1 to 62 ms (left) and 416 to 512 ms (right) across both groups. * p =
443 0.048, ** p = 0.006.

444 Microstates

445 To further explore the differences in ERPs, we used a microstate analysis approach which clusters
446 different time periods into dominant scalp topographies. Microstate analyses were restricted to
447 durations showing significant group main effects in the TANOVA (65). Three microstates differed in
448 meditators – microstate 2, reflecting pre-C1 activity, and microstates 5 and 6, reflecting the P3 (see
449 figure 7 for details). The findings suggested that pre-C1 period neural responses began earlier in

450 meditators compared to controls, and that meditators spend more of the P3 period showing
451 frontally dominant topographies compared to controls. Microstate 2 shows an earlier centre of
452 gravity in meditators (the timepoint reflecting the centre of the GFP area for microstate 2 is earlier in
453 meditators, $p = 0.018$), suggesting earlier processing of the stimuli in this group (the microstate is
454 present from ~ 0 to ~ 100 ms following stimuli, matching TANOVA results in the -1 to 62 ms window).
455 Microstate 5 shows a shorter duration in meditators ($p = 0.003$, meditators 78 ms, controls 217 ms).
456 It also shows a smaller area under the curve in meditators ($p = 0.031$, meditators 105.9 ms x
457 microvolts, controls 252.4 ms x microvolts), and an earlier centre of gravity ($p = 0.028$, meditators
458 318.2 ms, controls 381.9 ms). Microstate 6 shows more area under the curve in meditators ($p =$
459 0.044, 21.1 ms x microvolts in meditators, 0 ms x microvolts in controls). Microstate 5 is replaced by
460 microstate 6 in meditators (indicating a more frontally distributed P3 during this period) but
461 microstate 5 does not change to microstate 6 at all in controls. These results match the 416-512 ms
462 period of significance in the TANOVA.

463

464 Figure 7. Microstate analysis showing overall between-group effects. Meditators differed in
465 microstate 2 (reflecting pre-C1 activity), and microstates 5 and 6 (reflecting P3 activity). * $p < 0.05$
466 indicates an earlier centre of gravity in meditators, ** $p < 0.01$ indicates a longer duration in
467 controls, + $p < 0.05$ indicates a larger area under the curve in controls, ^ $p < 0.05$ indicates larger
468 area under the curve in meditators (6).

469 Source analysis

470 To ascertain which brain regions contribute to the differences in scalp ERPs observed between the
471 groups, we estimated the cortical sources of the signal using sLORETA. Source analysis suggested
472 similar distributions of activity between the groups in both the pre-C1 and P3 time periods.
473 Difference maps indicated that meditators showed more pre-C1 activity in right temporal and

474 parietal regions, and a widespread pattern of more P3 activity in the central frontal and parietal
475 regions. See figures 8 and 9 for details.

476

477 Figure 8. Source reconstruction during the -1 to 62 ms window using sLORETA and minimum norm
478 imaging, unconstrained to cortex (to minimise assumptions). Group averages do not depict positive
479 or negative voltages, only where a region was activated. Difference maps reflect meditator minus
480 control activity (red reflecting more activity in meditators compared to controls, blue reflecting less
481 activity in meditators).

482

483 Figure 9. Source reconstruction during the 416 to 512 ms window using sLORETA and minimum
484 norm imaging, unconstrained to cortex (to minimise assumptions). Group averages do not depict
485 positive or negative voltages, only where a region was activated. Difference maps reflect meditator
486 minus control activity (red reflecting more activity in meditators compared to controls, blue
487 reflecting less activity in meditators).

488

489 Discussion [2,030 words]

490 Our study examined whether experienced mindfulness meditators showed differences in neural
491 activity related to conflict monitoring, response inhibition, and sustained attention. The methods
492 used enabled us to separately examine differences in the distribution of activated brain regions from
493 differences in strength of neural activation, which has not been previously studied in meditators.
494 Meditators showed higher accuracy across both Go and Nogo trials and frontally shifted distribution
495 of neural activity during the P3 in both Go and Nogo trials. The latter finding suggests alterations to
496 global attentional processes rather than inhibition specifically. Additionally, meditators showed less
497 differentiation in the strength of neural activity between response and response inhibition trials
498 during the early P3 window. Meditators showed more right parietal positivity during the pre-C1
499 period, suggesting more anticipatory neural activity for stimulus processing. The distribution of
500 neural activity during both the pre-C1 and P3 significant time periods was correlated with
501 behavioural performance across both groups, with better performing participants displaying the
502 same distribution of activity observed in meditators.

503

504 These results suggest a range of differences in neural activity in mindfulness meditators compared to
505 demographically matched controls. These differences likely reflect enhanced attentional
506 mechanisms from long-term practice engaging attentional processes. The differences may reflect
507 adaptive adjustments to the neural processes responsible for devoting resources to the functions
508 maximally taxed by task requirements.

509 A more frontally distributed P3

510 Meditators showed a more frontally distributed P3 than controls (Cohen's d equivalent = 0.863).
511 Previous research has indicated that engaging response inhibition processes generates a more
512 frontally distributed P3, though no comparable work has explained the function of a more frontal P3

513 across both Go and Nogo trials. The more frontally distributed P3 in meditators across both trial
514 types suggests that the differences were due to general attention effects rather than response
515 inhibition. Additionally, source analysis indicated more activity in meditators across the
516 superior/medial frontal gyrus, particularly the left hemisphere, as well as the bilateral parietal
517 regions, spreading more laterally in the right hemisphere. Previous research has indicated the
518 superior frontal gyrus to be related to executive function (44). Activity in the medial frontal gyrus is
519 more pronounced when top-down control is allocated to Go/Nogo stimuli and is usually more
520 related to attentional control than inhibition (43). Lastly, activity in the parietal cortex is thought to
521 be related to selective and sustained attention, and the right parietal cortex to spatial attention (68,
522 69). These results suggest that the altered P3 distribution in meditators is likely to reflect enhanced
523 attentional control. Further support for this conclusion comes from the finding that a more frontally
524 distributed P3 was related to improved behavioural performance.

525 Smaller P3 Amplitude Difference Between Response and Response

526 Inhibition and No N2 Differences in Meditators

527 The meditation group showed no difference between Go and Nogo trials in overall neural response
528 strength during the P3 window, while the control group showed larger neural response strength to
529 Go trials than Nogo trials. However, no difference was found between groups in post-hoc
530 comparisons of Go and Nogo trials independently, suggesting that trial type only differentiates
531 neural response strength within controls rather than that meditators differ from controls. These
532 results contradicted our expectation that the Nogo P3 would be enhanced in the meditation group,
533 reflecting enhanced response inhibition (70). One potential explanation is that the task was easier
534 for meditators. More difficult Go/Nogo tasks generate larger differences in neural activity between
535 trial types (22). This explanation aligns with the better behavioural performance in the meditation
536 group, who also showed less difference in neural activity between Go and Nogo trials.

537

538 Additionally, research has suggested that Go/Nogo ratios of 50/50 (as used in the current study)
539 reduce response inhibition related neural activity by more than 60% (71). Equal ratio Go/Nogo tasks
540 may simply compare general response-related activity to trials where response-related activity is
541 never initiated (rather than trials that initiate response activity that subsequently must be inhibited
542 (71)). As such, observed differences may merely reflect improved attentional control in meditators
543 rather than improved inhibitory processes. In support of this explanation, studies using harder
544 Go/Nogo tasks with lower frequencies of Nogo trials show enhanced Nogo P3 activity in ADHD
545 patients who have undergone meditation training (33). However, the Go and Nogo P3 is influenced
546 by stimuli frequency (72). Thus, future research examining response inhibition in meditators should
547 attempt to differentiate between frequency and response inhibition effects.

548

549 Additionally, although an interaction between trial type and group was present for P3 amplitudes,
550 no interaction was present in the behavioural data. The lack of behavioural difference likely reflects
551 a ceiling effect – the behavioural results were too consistently high to reveal an interaction, while
552 neural data may be more sensitive. Lastly, we expected the N2 component to be altered in
553 meditators. Previous research with infrequent Nogo trials has demonstrated N2 alterations from
554 meditation (32, 36). As mentioned with the lack of altered Nogo P3 activity in meditators, the N2
555 component may not have differentiated the groups because response inhibition processes were not
556 sufficiently taxed by the equiprobable Go/Nogo task.

557 More Right Posterior Pre-C1 Positivity

558 The meditators showed a topography with more negative fronto-central activity and more right
559 posterior positivity during the pre-C1 window (Cohen's d equivalent = 0.9485). The result reflects
560 differences in neural activity that precedes the earliest point that visual related activity has been
561 shown to reach the occipital cortex (~ 50 ms post stimulus (40, 67)). Meditators showed differences

562 in neural activity *before* stimulus perception. Anticipatory activity is present during periods leading
563 up to stimulus processing, reflecting top-down attentional control to enhance cortical processing of
564 stimuli, ensuring optimal processing (73-76). In other words, the pre-C1 may reflect enhanced
565 endogenous attention, which has been defined as "*the exercising of an intention to selectively*
566 *attend, based on some internal representation of what will be attentionally relevant in the near*
567 *future. This intention interacts with attention deployment systems to reorganize the attentional set*
568 *of the brain in preparation for incoming stimuli—a preparatory attentional state*" (77).

569

570 Such anticipatory activity has been found in the dorsal visual processing stream (in temporo-occipital
571 regions), with top-down influences from lateral parietal attentional gating regions, and frontal
572 control regions (67, 73, 77). These regions overlap with those shown in our source analysis. These
573 areas may exert an excitatory effect on primary visual areas that increase and prolong stimulus
574 processing in those areas (78). Thus, this pre-C1 difference may reflect an improved attentional
575 preparedness among meditators, reflecting a greater readiness for stimulus processing and
576 enhanced focus, as is a goal in many early mindfulness meditation practices (4, 6-8, 11).

577

578 Additionally, the right occipital and temporal regions have been shown to specialise in processing
579 faces as well as for anticipation of general visual processing, suggesting that higher activity in these
580 regions in the meditation group is likely to assist stimuli processing in the current task (77, 79). As
581 such, the results could reflect enhancement of the visual processing pathway so the chain of
582 information from perception to performance is more effective (67). Although unexpected, our pre-
583 C1 results provide further evidence for the suggestion that enhanced attention in meditators reflects
584 a stronger ability to modulate neural activity towards the optimal achievement of goals (2, 80). As
585 such, this difference in anticipatory pre-C1 activity may reflect an altered top-down brain state that
586 prepares meditators' brains for the subsequent perceptual brain states. This may have enabled an

587 increased ability of meditators to sustain attentional focus on the chosen object and by consequence
588 to show enhanced behavioural performance (which in this case are the task stimulus) (7).

589

590 These results have clinical implications - research indicates that aversive stimuli cause altered visual
591 processing within 60-120 ms (81). Individuals with anxiety also show stronger neural responses to
592 negative emotional images within the 80 ms C1 period (82). This early response to aversive stimuli
593 and early over-activation in anxious individuals reflects early sensory processing bias that may be
594 impossible for the higher order functions to later modulate. The clinical benefit of mindfulness may
595 involve alteration to attentional mechanisms that allow modulation of early neural processing,
596 reducing emotional reactivity before emotional reactions are elicited. This may explain why
597 mindfulness has amongst its strongest clinical effects on anxiety (83).

598 Strengths, Limitations and Future Directions

599 Although a strength of the current study is the selection of a well-matched control group, the main
600 limitation is the lack of ability to draw conclusions about causation. It may be that individual
601 differences such as personality factors that predispose that group towards mindfulness meditation
602 are ultimately responsible for the differences. Previous longitudinal research has indicated that
603 mindfulness meditation does alter neural activity (13, 14, 17, 84) partially mitigating such concerns.
604 Nonetheless, it is difficult to control for potential self-selection biases among those who have chosen
605 to meditate versus those who have not (Davidson & Kaszniak, 2015). A parsimonious and robust
606 interpretation of the current conclusions (and those of other cross-sectional studies of experienced
607 meditators) is that differences relate to “leading a life that involves meditation” but the research
608 offers no information as to whether meditation is causal in the differences.

609

610 Another strength of the current study is the confirmation that both the meditation and control
611 groups showed consistent topographical activation patterns prior to performing between-group

612 comparisons. This is important, because it eliminates the possibility that differences in within-group
613 variability could explain between-group differences, despite absence of signal within one of the
614 groups (because the signal was variable in that group and averaged out to zero).

615

616 Future research would do well to examine the commonalities and differences between altered
617 neural activity in mindfulness meditators across different tasks. This is necessary to answer
618 questions about whether the neural effects of mindfulness meditation are process-driven or
619 domain-specific (9). Our suggestion is that the changes that result from meditation reflect
620 enhancement not of one specific neural process, but of the modulation of a range of oscillatory
621 activity, in order to strengthen the weakest link in the chain of neural processes. As such, we would
622 expect that the process most pressured by a specific task may demonstrate enhanced function in
623 meditators who have improved attentional function. We recommend including easy and hard
624 conditions for research comparing meditators to controls. This would enable identification of neural
625 processes that are upregulated to enable performance in the hard condition, allowing determination
626 of whether that process is specifically affected by enhanced attention in mindfulness meditators.

627 A Propositional Integrative Interpretation

628 Overall, the results show differences in both anticipation of sensory processing and top down
629 attention related differences in neural activity in mindfulness meditators, in alignment with previous
630 research (13, 14, 17, 84). The altered topographies suggest that different neural assemblies are
631 recruited in meditators to perform the same task but with increased accuracy, rather than the same
632 neural assemblies being more strongly activated.

633

634 We suggest that the differences in meditators reflect improved attentional function, and this
635 improved attentional function provides enhancements to neural processes that are the 'weakest
636 link' in achieving task-oriented goals (2, 80, 85). Attention supports the processes most likely to fail

637 in the chain from stimulus processing to response, reducing the chance of failure at those most
638 vulnerable points and enhancing the probability of successful task performance.

639

640 In this context, differences between meditators and controls are likely to be task-specific rather than
641 neural activity or region-specific. Other tasks are likely to demonstrate different effects from
642 meditation depending on the neural processes most taxed by the task, for example alpha
643 modulation enhancements to reduce somatosensory distraction (86), or theta synchronisation to
644 stimulus in attentional blink tasks (14). Indeed, the current sample of meditators showed an
645 alternative profile of differences compared to controls than the differences found in the current
646 study when they performed both a colour and emotional Stroop task (Raj et al. in preparation) and
647 an N-back task with a tactile distractor (Freedman et al. in preparation). This interpretation may
648 provide an explanation for the variation in findings between studies comparing meditators to
649 controls, as different neural processes are engaged by different tasks and varied task parameters.

650 We hope that the results of the current study can be interpreted and contextualised within this
651 framework, in combination with future research, to provide a more sophisticated understanding of
652 how neural activity differs in meditators.

653

654 Acknowledgements

655 PBF has received equipment for research from MagVenture A/S, Medtronic Ltd, Cervel Neurotech
656 and Brainsway Ltd and funding for research from Neuronetics and Cervel Neurotech. PBF is on the
657 scientific advisory board for Bionomics Ltd. All other authors have no conflicts to report. PBF is
658 supported by a National Health and Medical Research Council of Australia Practitioner Fellowship
659 (6069070). KEH is supported by a National Health and Medical Research Council of
660 Australia Career Development Fellowship (1082894). NCR is supported by a National Health and
661 Medical Research Council of Australia Fellowship (1072057).

662 References

663 1. Posner MI, Rothbart MK, Tang Y-Y. Enhancing attention through training. *Current
664 Opinion in Behavioral Sciences*. 2015;4:1-5.

665 2. Lavie N. Perceptual load as a necessary condition for selective attention. *Journal of
666 Experimental Psychology: Human perception and performance*. 1995;21(3):451.

667 3. Lubbe RHVd, Vogel RO, Postma A. Different effects of exogenous cues in a visual
668 detection and discrimination task: delayed attention withdrawal and/or speeded motor
669 inhibition? *Journal of Cognitive Neuroscience*. 2005;17(12):1829-40.

670 4. Crane RS, Brewer J, Feldman C, Kabat-Zinn J, Santorelli S, Williams JMG, et al.
671 What defines mindfulness-based programs? The warp and the weft. *Psychological medicine*.
672 2017;47(6):990-9.

673 5. Malinowski P. Neural mechanisms of attentional control in mindfulness meditation.
674 *Frontiers in neuroscience*. 2013;7:8.

675 6. Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, Ott U. How does
676 mindfulness meditation work? Proposing mechanisms of action from a conceptual and
677 neural perspective. *Perspectives on psychological science*. 2011;6(6):537-59.

678 7. Lutz A, Slagter HA, Dunne JD, Davidson RJ. Attention regulation and monitoring in
679 meditation. *Trends in cognitive sciences*. 2008;12(4):163-9.

680 8. Shapiro SL, Carlson LE, Astin JA, Freedman B. Mechanisms of mindfulness. *Journal
681 of clinical psychology*. 2006;62(3):373-86.

682 9. Slagter HA, Davidson RJ, Lutz A. Mental training as a tool in the neuroscientific study
683 of brain and cognitive plasticity. *Frontiers in human neuroscience*. 2011;5:17.

684 10. Chambers R, Lo BCY, Allen NB. The impact of intensive mindfulness training on
685 attentional control, cognitive style, and affect. *Cognitive Therapy and Research*.
686 2008;32(3):303-22.

687 11. Moore A, Malinowski P. Meditation, mindfulness and cognitive flexibility.
688 *Consciousness and cognition*. 2009;18(1):176-86.

689 12. Valentine ER, Sweet PL. Meditation and attention: A comparison of the effects of
690 concentrative and mindfulness meditation on sustained attention. *Mental Health, Religion &*
691 *Culture*. 1999;2(1):59-70.

692 13. Slagter HA, Lutz A, Greischar LL, Francis AD, Nieuwenhuis S, Davis JM, et al.
693 Mental training affects distribution of limited brain resources. *PLoS biology*. 2007;5(6):e138.

694 14. Slagter HA, Lutz A, Greischar LL, Nieuwenhuis S, Davidson RJ. Theta phase
695 synchrony and conscious target perception: impact of intensive mental training. *Journal of*
696 *cognitive neuroscience*. 2009;21(8):1536-49.

697 15. Van Leeuwen S, Singer W, Melloni L. Meditation increases the depth of information
698 processing and improves the allocation of attention in space. *Frontiers in human*
699 *neuroscience*. 2012;6:133.

700 16. Manna A, Raffone A, Perrucci MG, Nardo D, Ferretti A, Tartaro A, et al. Neural
701 correlates of focused attention and cognitive monitoring in meditation. *Brain research*
702 *bulletin*. 2010;82(1-2):46-56.

703 17. Moore AW, Gruber T, Derose J, Malinowski P. Regular, brief mindfulness meditation
704 practice improves electrophysiological markers of attentional control. *Frontiers in human*
705 *neuroscience*. 2012;6:18.

706 18. Lao S-A, Kissane D, Meadows G. Cognitive effects of MBSR/MBCT: a systematic
707 review of neuropsychological outcomes. *Consciousness and cognition*. 2016;45:109-23.

708 19. Fox KC, Nijeboer S, Dixon ML, Floman JL, Ellamil M, Rumak SP, et al. Is meditation
709 associated with altered brain structure? A systematic review and meta-analysis of
710 morphometric neuroimaging in meditation practitioners. *Neuroscience & Biobehavioral*
711 *Reviews*. 2014;43:48-73.

712 20. Tang Y-Y, Hölzel BK, Posner MI. The neuroscience of mindfulness meditation.
713 *Nature Reviews Neuroscience*. 2015;16(4):213.

714 21. Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate
715 cortex: an update. *Trends in cognitive sciences*. 2004;8(12):539-46.

716 22. Benikos N, Johnstone SJ, Roodenrys SJ. Varying task difficulty in the Go/Nogo task:
717 the effects of inhibitory control, arousal, and perceived effort on ERP components.
718 International Journal of Psychophysiology. 2013;87(3):262-72.

719 23. Barkley RA. Behavioral inhibition, sustained attention, and executive functions:
720 constructing a unifying theory of ADHD. Psychological bulletin. 1997;121(1):65.

721 24. Sahdra BK, MacLean KA, Ferrer E, Shaver PR, Rosenberg EL, Jacobs TL, et al.
722 Enhanced response inhibition during intensive meditation training predicts improvements in
723 self-reported adaptive socioemotional functioning. Emotion. 2011;11(2):299.

724 25. Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-related
725 phase reorganization may explain evoked neural dynamics. Neuroscience & Biobehavioral
726 Reviews. 2007;31(7):1003-16.

727 26. Donkers FC, Van Boxtel GJ. The N2 in go/no-go tasks reflects conflict monitoring not
728 response inhibition. Brain and cognition. 2004;56(2):165-76.

729 27. Falkenstein M. Inhibition, conflict and the Nogo-N2. Clinical Neurophysiology.
730 2006;117(8):1638-40.

731 28. Falkenstein M, Hoormann J, Hohnsbein J. ERP components in Go/Nogo tasks and
732 their relation to inhibition. Acta psychologica. 1999;101(2-3):267-91.

733 29. Nieuwenhuis S, Yeung N, Cohen JD. Stimulus modality, perceptual overlap, and the
734 go/no-go N2. Psychophysiology. 2004;41(1):157-60.

735 30. Datta A, Cusack R, Hawkins K, Heutink J, Rorden C, Robertson IH, et al. The P300
736 as a marker of waning attention and error propensity. Computational intelligence and
737 neuroscience. 2007;2007.

738 31. Wickens C, Kramer A, Vanasse L, Donchin E. Performance of concurrent tasks: a
739 psychophysiological analysis of the reciprocity of information-processing resources. Science.
740 1983;221(4615):1080-2.

741 32. Cheng KS, Chang YF, Han RP, Lee PF. Enhanced conflict monitoring via a short-
742 duration, video-assisted deep breathing in healthy young adults: an event-related potential
743 approach through the Go/NoGo paradigm. PeerJ. 2017;5:e3857.

744 33. Schoenberg PL, Hepark S, Kan CC, Barendregt HP, Buitelaar JK, Speckens AE.
745 Effects of mindfulness-based cognitive therapy on neurophysiological correlates of
746 performance monitoring in adult attention-deficit/hyperactivity disorder. *Clinical*
747 *Neurophysiology*. 2014;125(7):1407-16.

748 34. Schoenberg PL, Speckens AE. Modulation of induced frontocentral theta (Fm-θ)
749 event-related (de-) synchronisation dynamics following mindfulness-based cognitive therapy
750 in major depressive disorder. *Cognitive neurodynamics*. 2014;8(5):373-88.

751 35. Schoenberg PL, Speckens AE. Multi-dimensional modulations of α and γ cortical
752 dynamics following mindfulness-based cognitive therapy in Major Depressive Disorder.
753 *Cognitive neurodynamics*. 2015;9(1):13-29.

754 36. Sanger KL, Dorjee D. Mindfulness training with adolescents enhances metacognition
755 and the inhibition of irrelevant stimuli: Evidence from event-related brain potentials. *Trends in*
756 *Neuroscience and Education*. 2016;5(1):1-11.

757 37. Quaglia JT, Goodman RJ, Brown KW. Trait mindfulness predicts efficient top-down
758 attention to and discrimination of facial expressions. *Journal of personality*. 2016;84(3):393-
759 404.

760 38. Di Russo F, Martínez A, Hillyard SA. Source analysis of event-related cortical activity
761 during visuo-spatial attention. *Cerebral cortex*. 2003;13(5):486-99.

762 39. Fu S, Caggiano DM, Greenwood PM, Parasuraman R. Event-related potentials
763 reveal dissociable mechanisms for orienting and focusing visuospatial attention. *Cognitive*
764 *Brain Research*. 2005;23(2-3):341-53.

765 40. Kelly SP, Gomez-Ramirez M, Foxe JJ. Spatial attention modulates initial afferent
766 activity in human primary visual cortex. *Cerebral cortex*. 2008;18(11):2629-36.

767 41. Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz D, et al.
768 Involvement of striate and extrastriate visual cortical areas in spatial attention. *Nature*
769 *neuroscience*. 1999;2(4):364.

770 42. Koenig T, Kottlow M, Stein M, Melie-García L. Ragu: a free tool for the analysis of
771 EEG and MEG event-related scalp field data using global randomization statistics.
772 Computational Intelligence and Neuroscience. 2011;2011:4.

773 43. Hong X, Wang Y, Sun J, Li C, Tong S. Segregating Top-Down Selective Attention
774 from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source
775 Localization Study. Scientific reports. 2017;7(1):9662.

776 44. Boisguezeneuc Fd, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehus S, et al.
777 Functions of the left superior frontal gyrus in humans: a lesion study. Brain.
778 2006;129(12):3315-28.

779 45. Bailey NW, Hoy KE, Maller JJ, Segrave RA, Thomson R, Williams N, et al. An
780 exploratory analysis of go/nogo event-related potentials in major depression and depression
781 following traumatic brain injury. Psychiatry Research: Neuroimaging. 2014;224(3):324-34.

782 46. Kabat-Zinn J. Wherever you go. There you are: mindfulness meditation in everyday
783 life. 1994.

784 47. Hergueta T, Baker R, Dunbar GC. The Mini-International Neuropsychiatric Interview
785 (MINI): the development and validation of a structured diagnostic psychiatric interview for
786 DSM-IV and ICD-10. J clin psychiatry. 1998;59(Suppl 20):2233.

787 48. Steer RA, Beck AT. Beck Anxiety Inventory. 1997.

788 49. Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio.
789 1996;78(2):490-8.

790 50. Walach H, Buchheld N, Buttenmüller V, Kleinknecht N, Schmidt S. Measuring
791 mindfulness—the Freiburg mindfulness inventory (FMI). Personality and individual
792 differences. 2006;40(8):1543-55.

793 51. Baer RA, Smith GT, Hopkins J, Krietemeyer J, Toney L. Using self-report
794 assessment methods to explore facets of mindfulness. Assessment. 2006;13(1):27-45.

795 52. Krompinger JW, Simons RF. Electrophysiological indicators of emotion processing
796 biases in depressed undergraduates. Biological Psychology. 2009;81(3):153-63.

797 53. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial
798 EEG dynamics including independent component analysis. *Journal of neuroscience*
799 methods. 2004;134(1):9-21.

800 54. Palmer JA, Makeig S, Kreutz-Delgado K, Rao BD, editors. Newton method for the
801 ICA mixture model. *Acoustics, Speech and Signal Processing, 2008 ICASSP 2008 IEEE*
802 International Conference on; 2008: IEEE.

803 55. Perrin F, Pernier J, Bertrand O, Echallier J. Spherical splines for scalp potential and
804 current density mapping. *Electroencephalography and clinical neurophysiology*.
805 1989;72(2):184-7.

806 56. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly
807 application for MEG/EEG analysis. *Computational intelligence and neuroscience*.
808 2011;2011:8.

809 57. Gramfort A, Papadopoulou T, Olivi E, Clerc M. OpenMEEG: opensource software for
810 quasistatic bioelectromagnetics. *Biomedical engineering online*. 2010;9(1):45.

811 58. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography
812 (sLORETA): technical details. *Methods Find Exp Clin Pharmacol*. 2002;24(Suppl D):5-12.

813 59. Lin F-H, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS.
814 Assessing and improving the spatial accuracy in MEG source localization by depth-weighted
815 minimum-norm estimates. *Neuroimage*. 2006;31(1):160-71.

816 60. Malinowski P, Moore AW, Mead BR, Gruber T. Mindful aging: the effects of regular
817 brief mindfulness practice on electrophysiological markers of cognitive and affective
818 processing in older adults. *Mindfulness*. 2017;8(1):78-94.

819 61. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, de Peralta RG. EEG source
820 imaging. *Clinical neurophysiology*. 2004;115(10):2195-222.

821 62. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
822 powerful approach to multiple testing. *Journal of the royal statistical society Series B*
823 (Methodological). 1995:289-300.

824 63. Cramer AO, van Ravenzwaaij D, Matzke D, Steingroever H, Wetzels R, Grasman
825 RP, et al. Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies.
826 Psychonomic Bulletin & Review. 2016;23(2):640-7.

827 64. Lehmann D, Ozaki H, Pal I. EEG alpha map series: brain micro-states by space-
828 oriented adaptive segmentation. *Electroencephalography and clinical neurophysiology*.
829 1987;67(3):271-88.

830 65. Koenig T, Stein M, Grieder M, Kottlow M. A tutorial on data-driven methods for
831 statistically assessing ERP topographies. *Brain topography*. 2014;27(1):72-83.

832 66. Murray MM, Brunet D, Michel CM. Topographic ERP analyses: a step-by-step tutorial
833 review. *Brain topography*. 2008;20(4):249-64.

834 67. Foxe JJ, Simpson GV. Flow of activation from V1 to frontal cortex in humans.
835 *Experimental brain research*. 2002;142(1):139-50.

836 68. Behrmann M, Geng JJ, Shomstein S. Parietal cortex and attention. *Current opinion in*
837 *neurobiology*. 2004;14(2):212-7.

838 69. Malhotra P, Coulthard EJ, Husain M. Role of right posterior parietal cortex in
839 maintaining attention to spatial locations over time. *Brain*. 2009;132(3):645-60.

840 70. Hartmann L, Sallard E, Spierer L. Enhancing frontal top-down inhibitory control with
841 Go/NoGo training. *Brain Structure and Function*. 2016;221(7):3835-42.

842 71. Wessel JR. Prepotent motor activity and inhibitory control demands in different
843 variants of the go/no-go paradigm. *Psychophysiology*. 2018;55(3):e12871.

844 72. Bruin K, Wijers A. Inhibition, response mode, and stimulus probability: a comparative
845 event-related potential study. *Clinical Neurophysiology*. 2002;113(7):1172-82.

846 73. Foxe JJ, Simpson GV, Ahlfors SP. Parieto-occipital~ 1 0Hz activity reflects
847 anticipatory state of visual attention mechanisms. *Neuroreport*. 1998;9(17):3929-33.

848 74. Fu K-MG, Foxe JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE. Attention-
849 dependent suppression of distracter visual input can be cross-modally cued as indexed by
850 anticipatory parieto-occipital alpha-band oscillations. *Cognitive Brain Research*.
851 2001;12(1):145-52.

852 75. Hopf J-M, Mangun G. Shifting visual attention in space: an electrophysiological
853 analysis using high spatial resolution mapping. *Clinical neurophysiology*. 2000;111(7):1241-
854 57.

855 76. Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory biasing of visuospatial
856 attention indexed by retinotopically specific-band electroencephalography increases over
857 occipital cortex. *J Neurosci*. 2000;20(RC63):1-6.

858 77. Foxe JJ, Simpson GV, Ahlfors SP, Saron CD. Biasing the brain's attentional set: I.
859 Cue driven deployments of intersensory selective attention. *Experimental Brain Research*.
860 2005;166(3-4):370-92.

861 78. Schroeder CE, Mehta AD, Foxe JJ. Determinants and mechanisms of attentional
862 modulation of neural processing. *Front Biosci*. 2001;6:D672-D84.

863 79. Júnior RdM, Marinho de Sousa B, Fukushima S. Hemispheric specialization in face
864 recognition: From spatial frequencies to holistic/analytic cognitive processing. *Psychology &*
865 *Neuroscience*. 2014;7(4):503.

866 80. Vogel EK, Woodman GF, Luck SJ. Pushing around the locus of selection: Evidence
867 for the flexible-selection hypothesis. *Journal of cognitive neuroscience*. 2005;17(12):1907-
868 22.

869 81. Keil A, Stolarova M, Moratti S, Ray WJ. Adaptation in human visual cortex as a
870 mechanism for rapid discrimination of aversive stimuli. *Neuroimage*. 2007;36(2):472-9.

871 82. Eldar S, Yankelevitch R, Lamy D, Bar-Haim Y. Enhanced neural reactivity and
872 selective attention to threat in anxiety. *Biological Psychology*. 2010;85(2):252-7.

873 83. Goyal M, Singh S, Sibinga EM, Gould NF, Rowland-Seymour A, Sharma R, et al.
874 Meditation programs for psychological stress and well-being: a systematic review and meta-
875 analysis. *JAMA internal medicine*. 2014;174(3):357-68.

876 84. Lutz A, Slagter HA, Rawlings NB, Francis AD, Greischar LL, Davidson RJ. Mental
877 training enhances attentional stability: neural and behavioral evidence. *Journal of*
878 *Neuroscience*. 2009;29(42):13418-27.

879 85. Rauss KS, Pourtois G, Vuilleumier P, Schwartz S. Attentional load modifies early
880 activity in human primary visual cortex. *Human brain mapping*. 2009;30(5):1723-33.

881 86. Kerr CE, Jones SR, Wan Q, Pritchett DL, Wasserman RH, Wexler A, et al. Effects of
882 mindfulness meditation training on anticipatory alpha modulation in primary somatosensory
883 cortex. *Brain research bulletin*. 2011;85(3-4):96-103.

884 87. Koenig T, Melie-García L. A method to determine the presence of averaged event-
885 related fields using randomization tests. *Brain topography*. 2010;23(3):233-42.

886 88. Sibalis A, Milligan K, Pun C, McKeough T, Schmidt LA, Segalowitz SJ. An EEG
887 Investigation of the Attention-Related Impact of Mindfulness Training in Youth With ADHD:
888 Outcomes and Methodological Considerations. *Journal of attention disorders*.
889 2017:1087054717719535.

890 89. Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ. Frontal-midline theta from the
891 perspective of hippocampal “theta”. *Progress in neurobiology*. 2008;86(3):156-85.

892

893

894 **Supplementary Materials**

895

896 The following is a summary of previous research examining mindfulness with EEG activity during the
897 Go/Nogo task. Six studies have used the Go/Nogo task to examine the effect of trait mindfulness or
898 mindfulness meditation on ERPs related to conflict monitoring, response inhibition, and sustained
899 attention (see Table 1 for a summary). Each has studied a different population or intervention, and
900 results between studies are inconsistent (32-37). Studies have included healthy university students
901 trained in one week of mindful deep breathing (32), adult ADHD and depression provided with MBCT
902 for twelve weeks (33-35), healthy adolescents trained in eight weeks of the .b foundations
903 mindfulness program (36), and healthy university students measuring the relationship between trait
904 mindfulness and neural activity (37). All studies showed larger N2 amplitudes in the mindful
905 participants, suggesting conflict monitoring or response inhibition processes. However, each study
906 showed N2 alterations to different trial types, with (32) showing the increase in infrequent Nogo
907 trials (and only in the 5 minutes / day condition), (36) to frequent Nogo trials, and (33) to frequent
908 Go trials (but not Nogo trials), and (37) to both trial types (in individuals showing higher trait
909 mindfulness). This suggests inconsistency in the relationship between neural changes resulting from
910 mindfulness and conflict monitoring (low frequency trials) and response inhibition processes (Nogo
911 trials). In addition to the inconsistency regarding N2 changes, only Schoenberg et al and Quaglia et al
912 (33, 37) showed increased Nogo P3, suggesting enhanced response inhibition closure in more
913 mindful participants. No study showed overall P3 changes (related to sustained attention), which we
914 would expect from mindfulness meditation (which effects sustained attention).

915

Table S1. Previous mindfulness research using the Go/Nogo task

Authors	Participants	Task design	Measures	Results
Schoenberg and Spekens (2014a, b)	51 adults with Depression, 26 undergoing 8 week MBCT, 25 WL control	20% Nogo	FCz, Pz Alpha, gamma and FMT activity 0-400 ms and 400-800 ms, and coherence between wide range of electrode pairs	MBCT reduced alpha power, which related to depression reduction. Alpha reduced particularly in response to negative material, and increased left fronto-parietal alpha coherence. Also enhanced induced FMT post MBCT, correlated to reduced depressive and rumination symptoms.
Schoenberg et al (2014)	26 ADHD adults, 24 waitlist control ADHD adults trained in twelve weeks of MBCT	20% Nogo	Fz, FCz, Cz, Pz P3, N2 (in both go and nogo trials)	Increased Nogo P3 at Pz (related to reduced impulsivity and inattention). Trend towards increased Nogo N2 in control group, but not in meditation group, who showed increased Go N2 at FCz.
Cheng et al. (2017)	Healthy control university students trained in five (N = 12), seven (N = 13), or nine (N = 13) minutes of deep breathing meditation, compared to controls (N = 13)	20% Nogo	Fz, Cz, and Pz P3, N2 (in both go and nogo trials)	Increased Nogo N2 amplitudes at all electrodes in 5 min group, which were larger than controls at endpoint. No changes to P3 in the five minute group, or the N2 in the seven and nine minute groups.

Quaglia et al (2015)	62 healthy control university students measured in trait mindfulness	30% Nogo, happy, neutral and fearful faces used as stimuli	N2 at FCz, P3 at Pz, and N1 at Cz	Trait mindfulness predicted larger N1 and N2 amplitudes in both Go and Nogo trials, as well as a more positive Nogo P3 (but not Go). 5-10% of variance in ERPs predicted by trait mindfulness.
Sanger et al. (2016)	19 adolescents in eight weeks of mindfulness compared to 16 waitlist controls.	Oddball task design, 70% frequent Nogos, 10% target responses, and two infrequent Nogo conditions (10% each, one similar to the target but in a different colour, one different in shape to elicit P3a).	N2: AFz, Fz, F3 and F4, P3a: Cz, C4, CPz, CP2, and CP4, P3b: CP1, CP2, Cz, and CPz	Mindfulness group showed larger N2 to frequent Nogo trials, and trend towards larger N2 amplitudes to infrequency colour deviant Nogo at F4, which correlated with certain aspects of meta-cognitive awareness, as well as correlating with a decrease in perceived mental uncontrollability and improved cognitive confidence.
Sibalis et al. (2017)	34 ADHD adolescents trained in 20 weeks of a "Mindfulness Martial Arts™" (similar to MBCT) and 22 waitlist controls	33% Nogo trials	Theta:Beta ratios at Cz	Mindfulness group showed a reduction in the excessive theta and low beta ratios typical to ADHD, while control participants showed an increase in these ratios.

916 Supplementary Methods

917 *Statistical methods*

918 RAGU's GFP test uses the spatial standard deviation of the electric field to compare the global
919 strength of cortical activation (42). The TANOVA assesses the percentage of randomly shuffled data
920 sets that show larger scalp field differences between groups / conditions than the real data to
921 determine whether to accept / reject the null hypothesis at a predetermined alpha level (42). Prior
922 to the TANOVA, a Topographical Consistency Test (TCT) was conducted, comparing global field
923 power within each group / condition to randomly shuffled data to ensure a consistent distribution of
924 scalp activity within each group / condition. A significant TCT test confirms that any potential
925 differences in the TANOVA are due to actual group / condition differences, rather than simply high
926 variation within one of the groups (87). Because each of these tests only use a single value for
927 comparison between groups / conditions at each time point (the spatial standard deviation for the
928 GFP test, and the scalp field difference for the TANOVA and TCT test), no controls for multiple
929 comparisons in the spatial dimension are needed even though all electrodes are included. To control
930 for multiple comparisons in time (which are made at each time point in the epoch), global duration
931 statistics calculate the duration of significant effects that are longer than 95% of the significant
932 periods in the randomised data, ensuring significant durations in the real data last longer than the
933 random comparison data at $p = 0.05$ (42). Additionally, global count statistics and area under the
934 curve statistics of significant time points were checked to confirm sufficient control for multiple
935 comparisons in the time dimension. The recommended L2 normalisation of scalp field variance
936 across sensors was administered to remove scale differences, so that significant results in the
937 TANOVA reflect a different distribution of neural activity without being affected by amplitude (42).
938
939 Because the measure that TANOVA compared to the random permutations in order to calculate
940 statistical comparisons was the overall difference between groups in the summed standard

941 deviation of the GFP from each electrode, traditional effect size calculations (which require
942 measures from each individual) were not feasible. In consultation with the author of RAGU, TANOVA
943 effect sizes were calculated using an analogue of Cohen's d from z-scores of the topography
944 differences between groups (Koenig, personal communication, 2017). Firstly, the real data difference
945 between groups in topographical distribution of activity was extracted for each time point during the
946 significant period, then averaged across the period (RDm). Secondly, the mean difference score from
947 each time point across all permutations were calculated, and the mean (PDm) and SD (PDsd) of this
948 across time permutation mean were calculated. The permutation mean was then subtracted from
949 the real data mean, and this value was divided by the SD to obtain a z-score. This z-score was then
950 divided by the square root of (the proportion of the total number of participants from the first group
951 (P1) multiplied the proportion of the total number of participants from the second group (P2),
952 multiplied by the total number of participants (N) minus 2). This final value is an analogue of Cohen's
953 d.

954

955 $Z = (RDm - PDm) / PDsd$

956

957
$$\text{Analogue Cohen's } d = \frac{Z}{\sqrt{P1 \times P2 \times (N - 2)}}$$

958

959

960 **Supplementary Results**

961

962 Supplementary figure 1. Source reconstruction during the well-known P100 occipital ERP, averaged
963 across the 50 to 150 ms window across both groups using sLORETA and minimum norm imaging,
964 unconstrained to cortex (to minimise assumptions). This was performed to demonstrate our source
965 analysis was reliable even in the absence of individual MRI templates (60). Note that the average
966 does not depict positive or negative voltages, just whether a region was activated.

967

968 **Supplementary Discussion Points**

969

970 Anticipatory activity has been found in the dorsal visual processing stream (in temporo-occipital
971 regions), with top-down influences from lateral parietal attentional gating regions, and frontal
972 control regions (67, 73, 77). These regions are similar to those shown in our source analysis.
973 Additionally, attentional manipulations have been found from 0 to 50 ms time locked to stimuli
974 presentation (85). Previous research examining these anticipatory brain responses and our current
975 results cumulatively indicate that differences were not present in the primary visual cortex,
976 suggesting attentional mechanisms modulating sensory processing, rather than altered initial
977 sensory processing (77). These areas may exert an excitatory effect on primary visual areas that
978 increase and prolong stimulus processing in those areas (78).

979

980 Additionally, the right occipital and temporal regions have been shown to specialise in processing
981 faces as well as for anticipation of general visual processing, suggesting that higher activity in these
982 regions in the meditation group is likely to assist stimuli processing in the current task (77, 79). As
983 such, the results could reflect enhancement of the visual processing pathway so the chain of

984 information from perception to performance is more effective (67). However, if the enhanced
985 anticipation explanations for the altered pre-C1 topography are accurate, it is not clear why the
986 difference detected in the pre-C1 period did not lead to alterations during the C1 and later sensory
987 processing ERPs (despite being related to improved behavioural performance and enhanced theta
988 synchronization to stimuli during the P3). We suspect neural activity for the time spanning the pre-
989 C1 period to the P3 (including the C1, P1, N1, P2, and N2) must differ between meditators and
990 controls, but in a manner too subtle to detect using ERP analyses (perhaps reflected by frequency or
991 connectivity changes, or in action potentials too small to be detected at the scalp level). Future
992 research may able to offer further insights.

993

994 The pre-C1 differences also raise a question. If the pre-C1 differences reflect altered anticipatory
995 activity in meditators, do the results conflict with the conception of mindfulness as “being in the
996 present moment”? Anticipatory activity necessitates processing ahead of the present moment. It
997 may be that the concept of “being in the present moment” is a higher order neuropsychological
998 processes, while automatic processes such as the C1 may still be engaged to anticipate stimuli, even
999 as a result of the higher order processes resting “in the present moment”. In this explanation, non-
1000 judgemental awareness may apply not to discrete moments as measured with the millisecond
1001 precision of ERPs, but across the second or so that we feel subjectively aware, such that expectation
1002 for a stimuli within that second is “seeing reality as it is”. In which case, the conflict is between
1003 conceptual levels of processing, and essentially reflects a technical conflict. An alternative
1004 explanation is that the altered pre-C1 reflects lack of expectation, allowing neural processes during
1005 the pre-C1 window to be more available for processing the stimuli. Or one last alternative - activity
1006 in this region is simply strengthened in general in meditators, and as such the pre-C1 differences do
1007 not reflect anticipation or reaction to the stimuli, but just that the area is more prone to being
1008 active. However, the area was not activated more during other periods of the epoch, so the initial
1009 explanations seem more sensible to us.

1010

1011 An interesting and potentially useful feature of C1 activity is that, due to the anatomical structure of
1012 the primary visual cortex, the C1 polarity reverses depending on whether visual stimuli are
1013 presented in the upper or lower visual field (40). Future research could determine whether the
1014 altered pre-C1 in meditators reflects anticipation by presenting a visual processing task to
1015 meditators frequently in the lower visual field, and unexpectedly and infrequently in the upper visual
1016 field. If the effect of meditation on the pre-C1 reflects increased anticipation, unexpected stimuli
1017 may show a disruption of stimulus processing reflected by a reduced C1 compared to controls. In
1018 contrast, if the effect is a result of lack of expectation, the unexpected change in stimulus location
1019 will engage the C1 more quickly or strongly in meditators than controls (similar to the task tested by
1020 Kelly et al (40)).

1021 Comparisons with previous research

1022 Our results were different to previous research using the Go/Nogo task. Previous research has
1023 shown increased amplitude of Nogo P3 (33) and increased Nogo N2 (32, 36), or decreased Nogo N2
1024 (33). The current research showed less differentiation between P3 amplitudes to Go and Nogo trials
1025 in the meditation group, and a more frontal P3 topography. However, as mentioned, previous
1026 research used a lower proportion of Nogo trials, setting up an increased prepotent response
1027 tendency, likely exerting different task demands and different neural weak points for attentional
1028 improvements in the meditation group to focus upon. Additionally, while the current research found
1029 topographical differences during the pre-C1 and P3 period, previous research performed analyses
1030 using single electrode analyses, so could not discriminate between topography and amplitude
1031 changes, and during specified windows not including the pre-C1 period. Lastly, previous research
1032 examined less experienced meditators as participants, and included ADHD (33, 88), depressed (34,
1033 35), and adolescent participants (36), so would have obtained smaller, perhaps less consistent and
1034 stable differences between groups, perhaps reflecting more short term changes to brain activity

1035 rather than permanent trait-like changes, and differences reflecting different preceding neural
1036 profiles of clinical and younger populations (for example reversal of the typical excess theta reduced
1037 beta ratio in ADHD (88)). Also, as mentioned in the introduction, the previous research is
1038 inconsistent.

1039
1040 More broadly, the current results align with a plethora of research indicating enhanced attention in
1041 mindfulness meditators. These studies have also shown that multiple aspects of attentional function
1042 are improved, including sustained attention (10-12), distribution of scarce attentional resources in
1043 time (13, 14) and space (15), and attentional control including inhibition of prepotent behaviour (11,
1044 16, 17).

1045
1046 Lastly, as well as discriminating differences in strength of neural response from distribution, no
1047 previous research has examined the consistency of neural activity within meditation groups. Given
1048 the variability in practice, individuals, and other unknown factors, differences between meditation
1049 and control groups may in fact reflect simply differences in the degree of variability between groups.
1050 Traditional parametric statistics cannot account for within-group consistency (42). Demonstrating
1051 consistent within-group activity for meditators is an important step in ensuring the neural changes
1052 are practice-induced, and that the changes are common across the group. While not feasible to
1053 study longitudinally, prolonged meditation practice over many years is likely to result in the most
1054 consistent, durable and significant effects, and studying these individuals is likely to provide stronger
1055 conclusions about the effects of mindfulness meditation (9). As such, the consistent neural activity
1056 within groups in the current research is a strength of the study.

1057

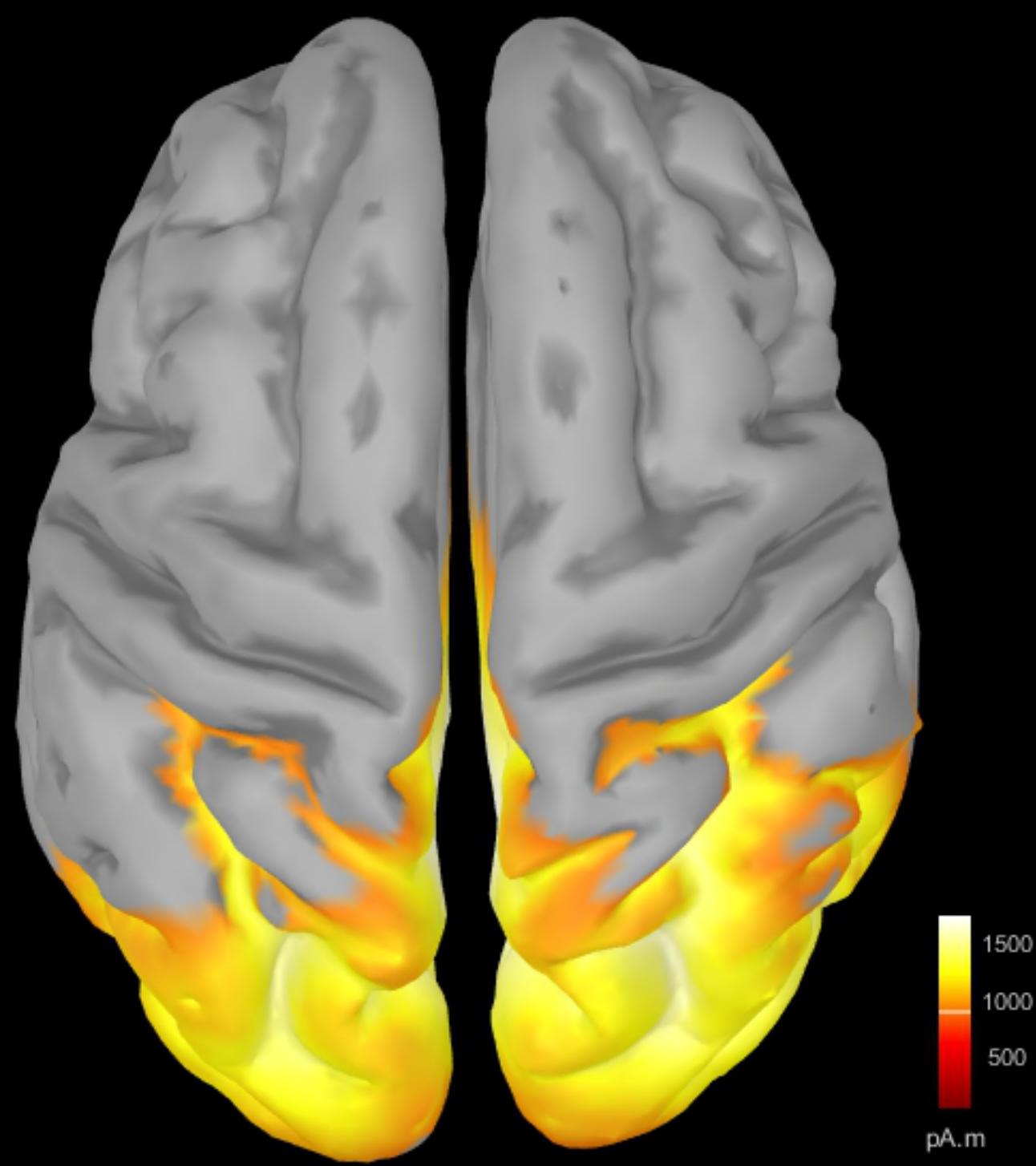
1058 Additional Potential Limitations

1059 It is important to note that potential explanations for the function of the altered mechanisms in
1060 meditators are based on correlational research. As such, we cannot be certain that the mechanism

1061 performs the suggested function, simply that it is related to it. A demonstrative example is that
1062 although the strongest correlation with hippocampal theta in rats is walking behaviour, complete
1063 lesioning of the hippocampus does not alter walking behaviour (89).

1064

1065 Because the pre-C1 effect was unexpected and has not been shown by prior research, we are less
1066 confident that it reflects a real difference between groups. However, it did show a large effect size
1067 and was highly significantly related to performance. The result should be replicated and explored
1068 further by future research, in order to confirm and explain the finding in more detail.


1069

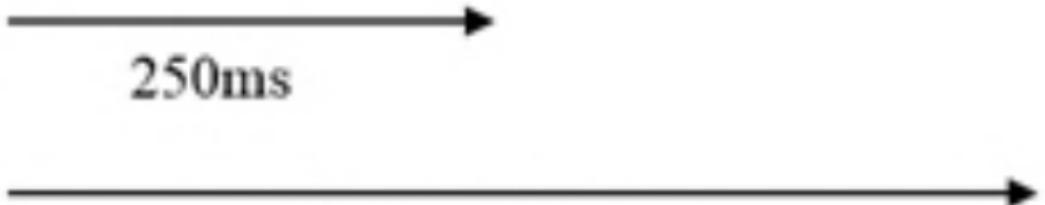
1070 Another limitation is that our results may not generalise to clinical populations in which mindfulness
1071 is most commonly used - the mechanism of action in treatment interventions may be different.
1072 While mindfulness meditation is likely to alter attentional mechanisms in clinical groups, it may be
1073 that the practice does not alter the same mechanisms in those individuals as it does in healthy
1074 controls. As per our integrated interpretation of our results, attentional training is likely to alter
1075 neural activity where alterations are most necessary to improve function. These may be different in
1076 clinical and healthy populations. For example, depressed participants show altered Go/Nogo N2
1077 activity compared to controls (45), so it may show activity in the N2 window that is altered in
1078 depressed individuals who practice mindfulness meditation.

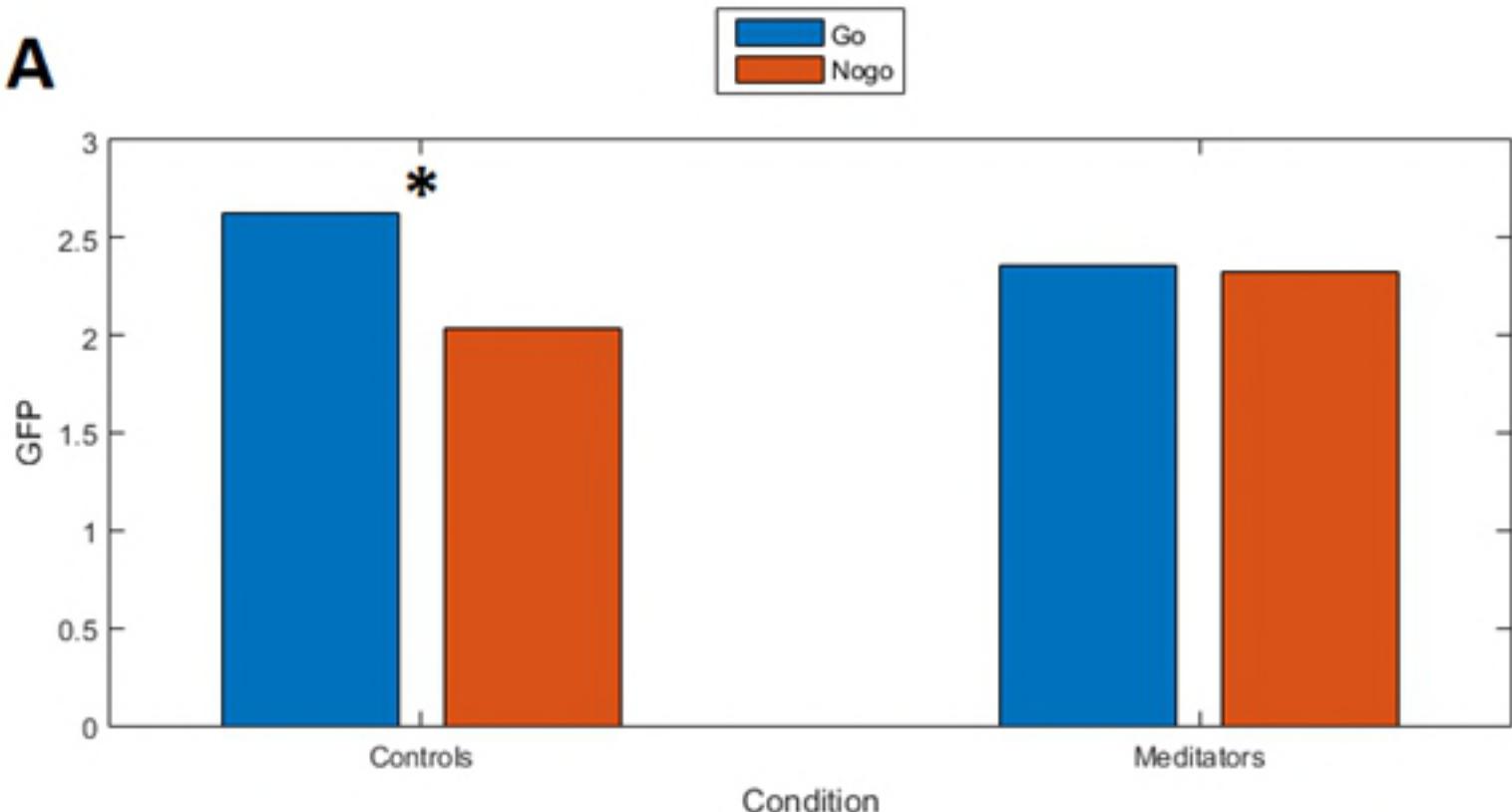
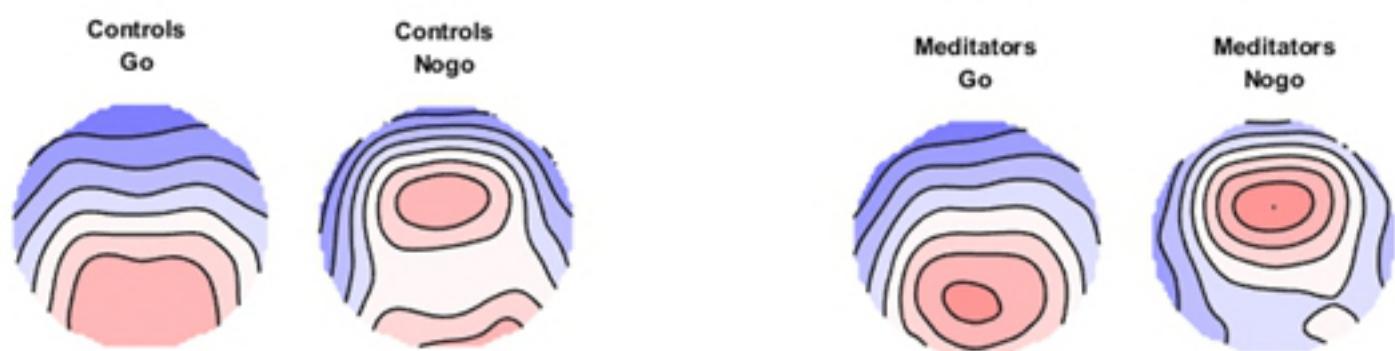
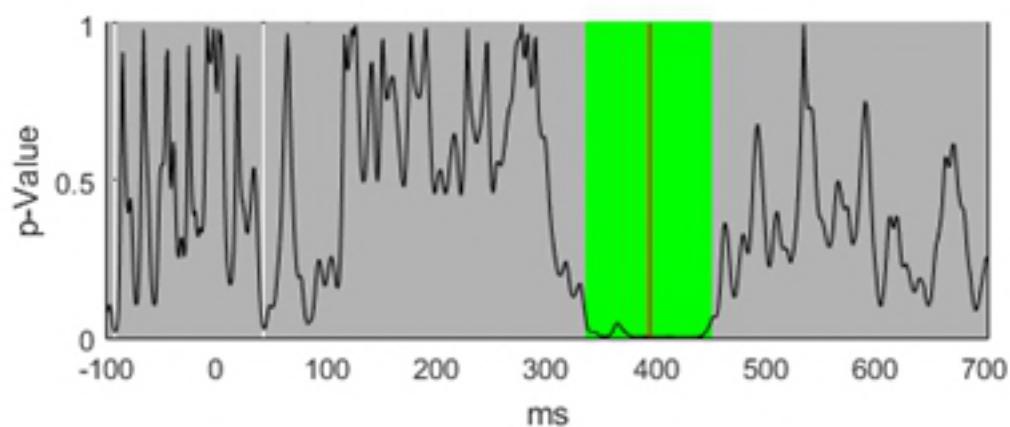
1079

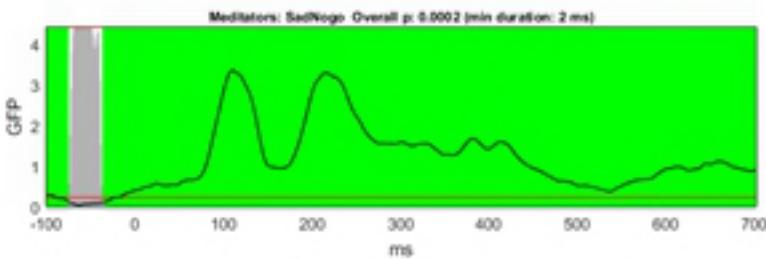
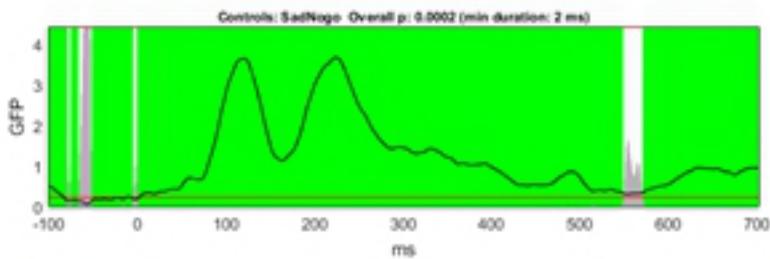
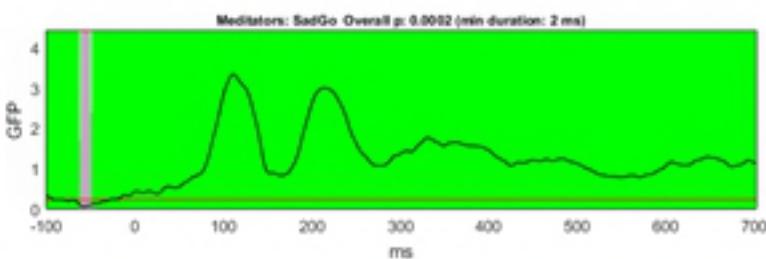
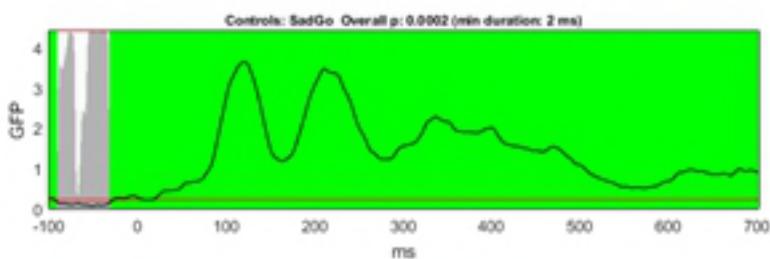
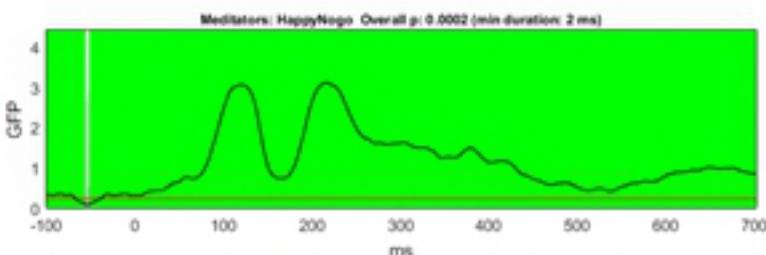
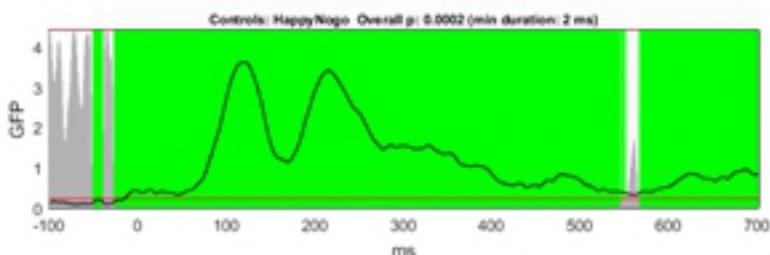
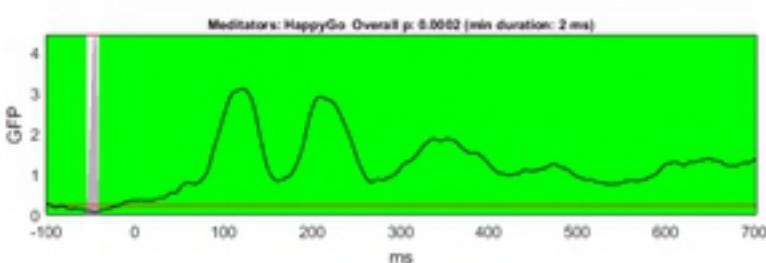
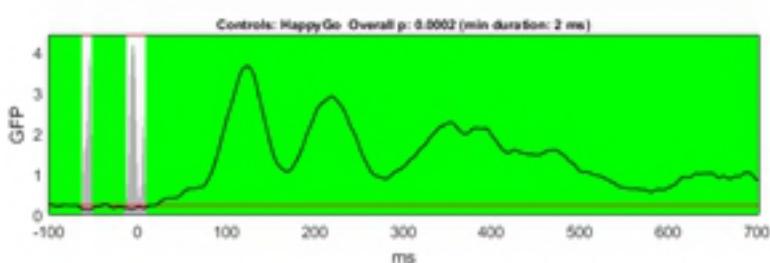
1080 Lastly, it should also be noted that although the language used in this study may suggest an agency
1081 behind attentional function, attention is not a homunculus guiding neural activation to achieve the
1082 goals it has set. The psychological concept of attention *is* the action of the neural activity, and other
1083 neural processes self-organising to achieve “goals”, which are themselves also simply behavioural
1084 reflections of neural processes. The origins of consciousness have not yet been explained.

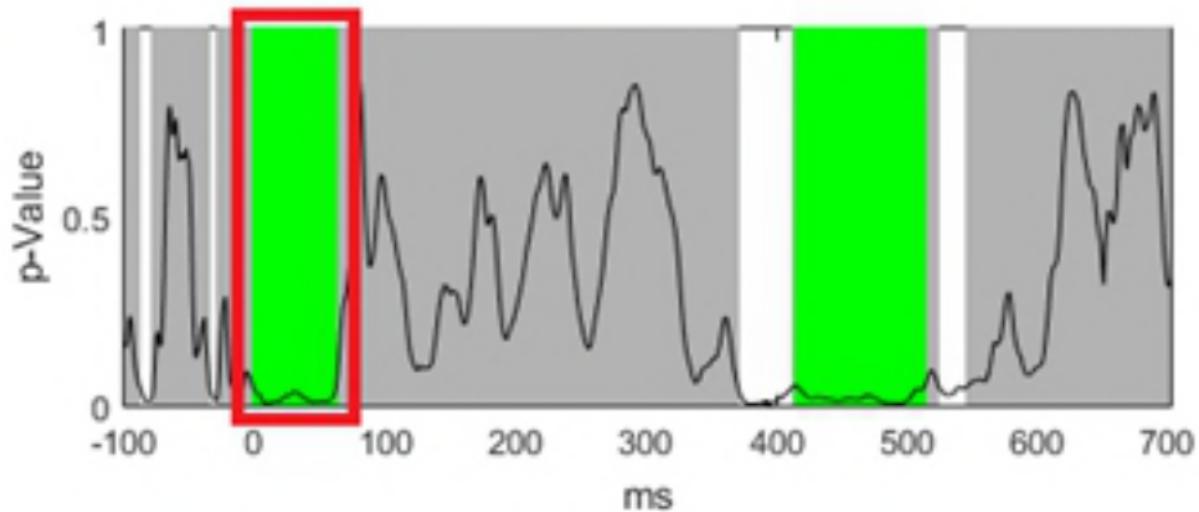
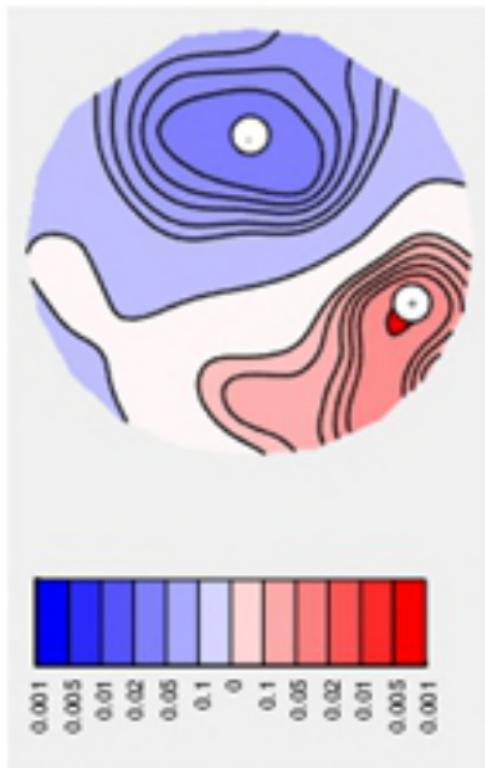
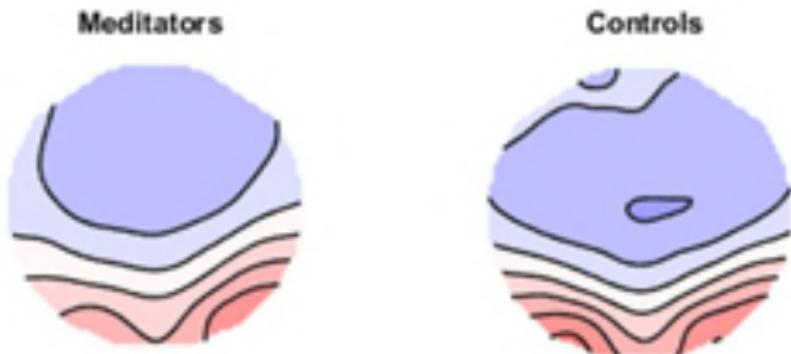
1085

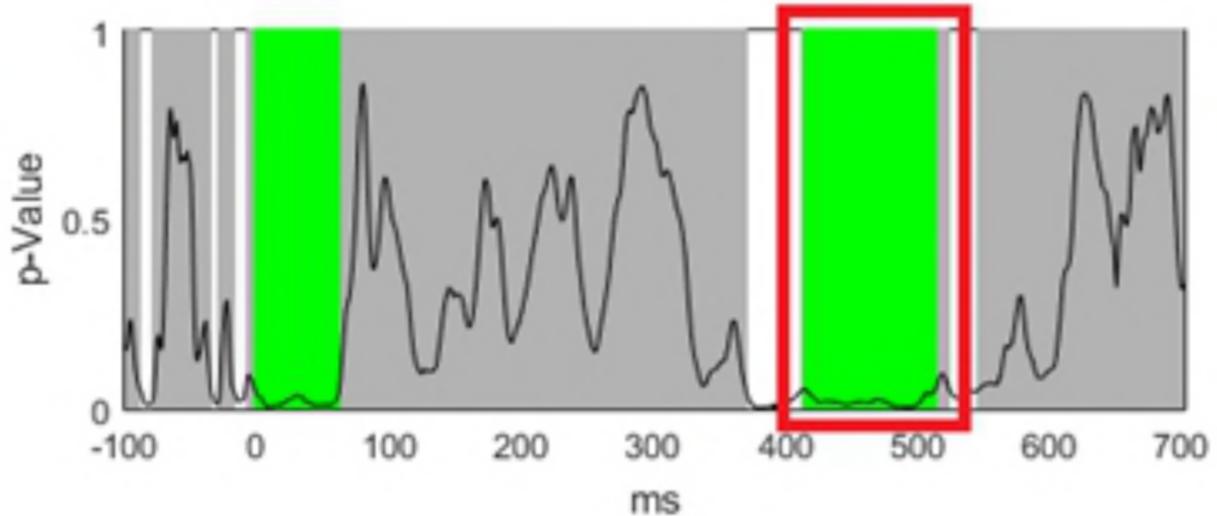
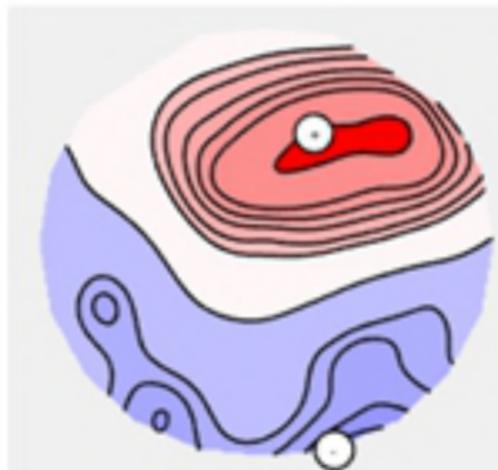
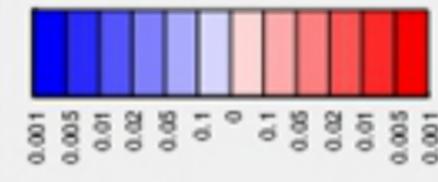
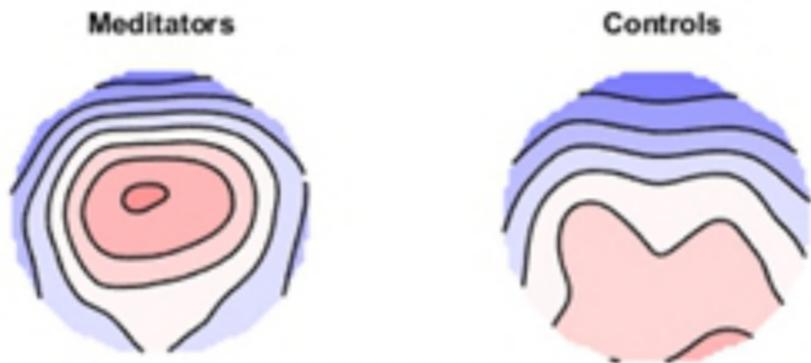
Go


Go




Nogo




250ms

$900\text{ms} \pm 50\text{ms}$

A**B****C**

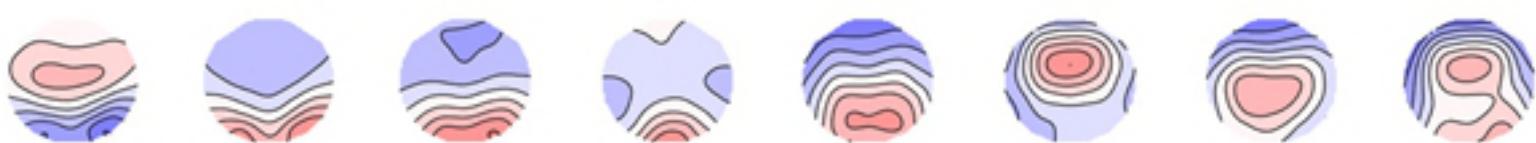
A**C****B**

A**C****B**

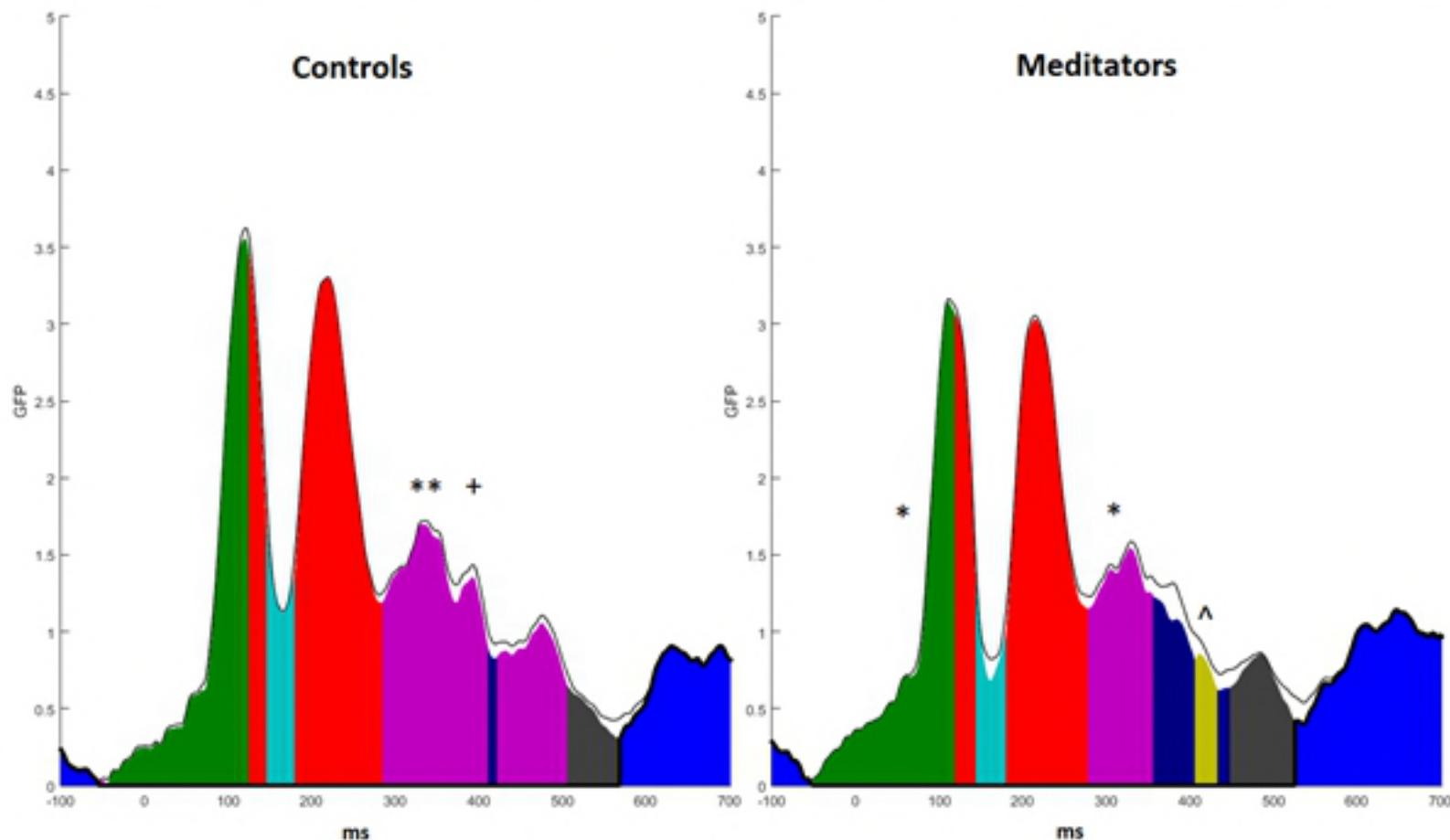
-1 to 62 ms

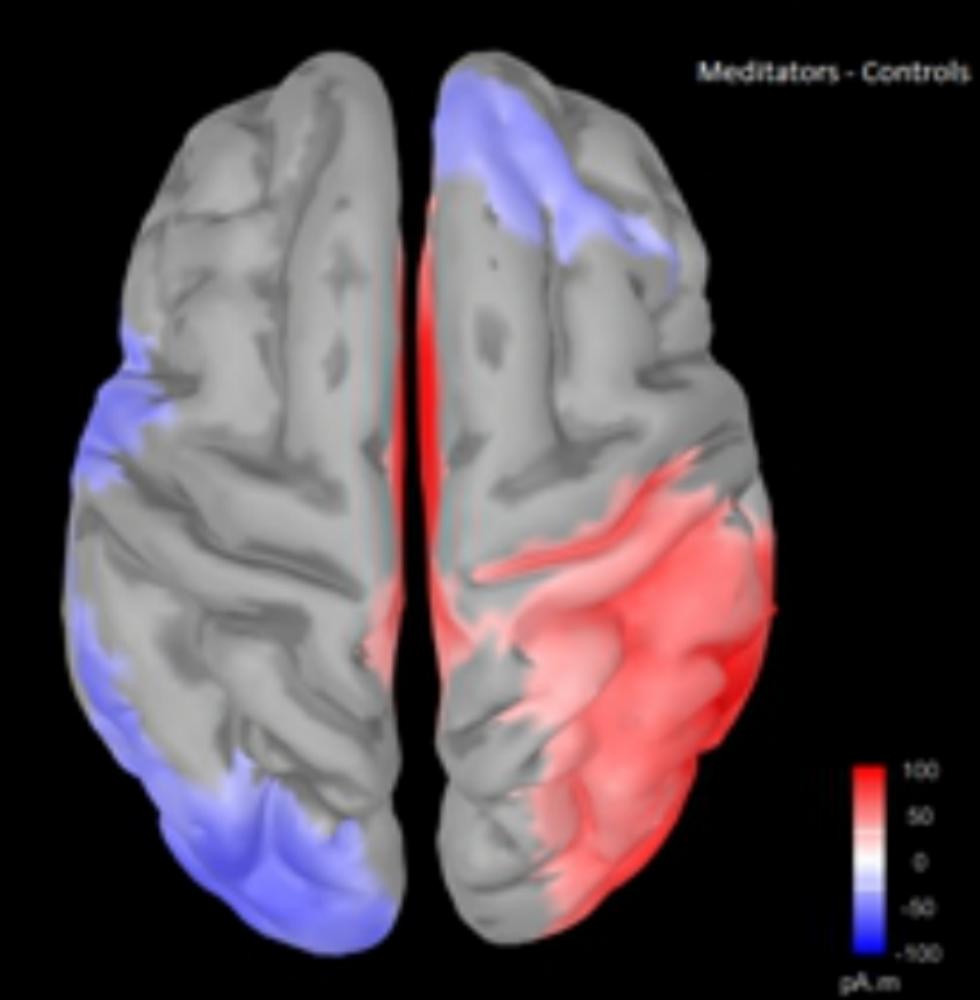
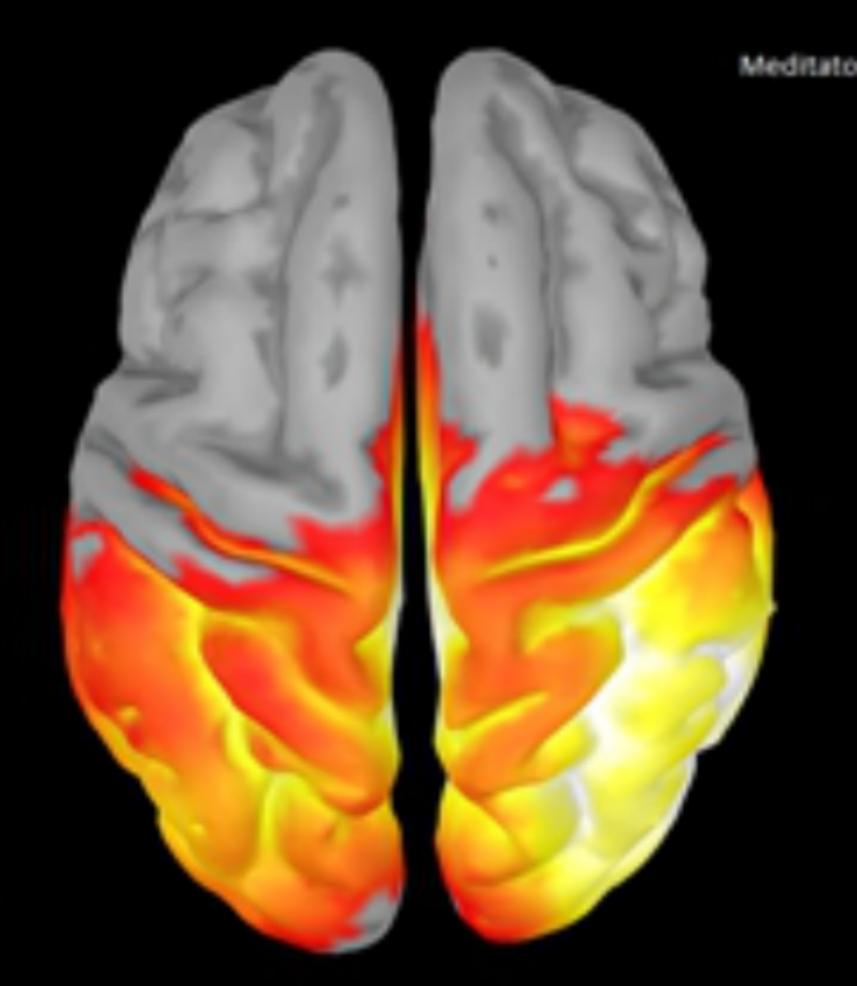
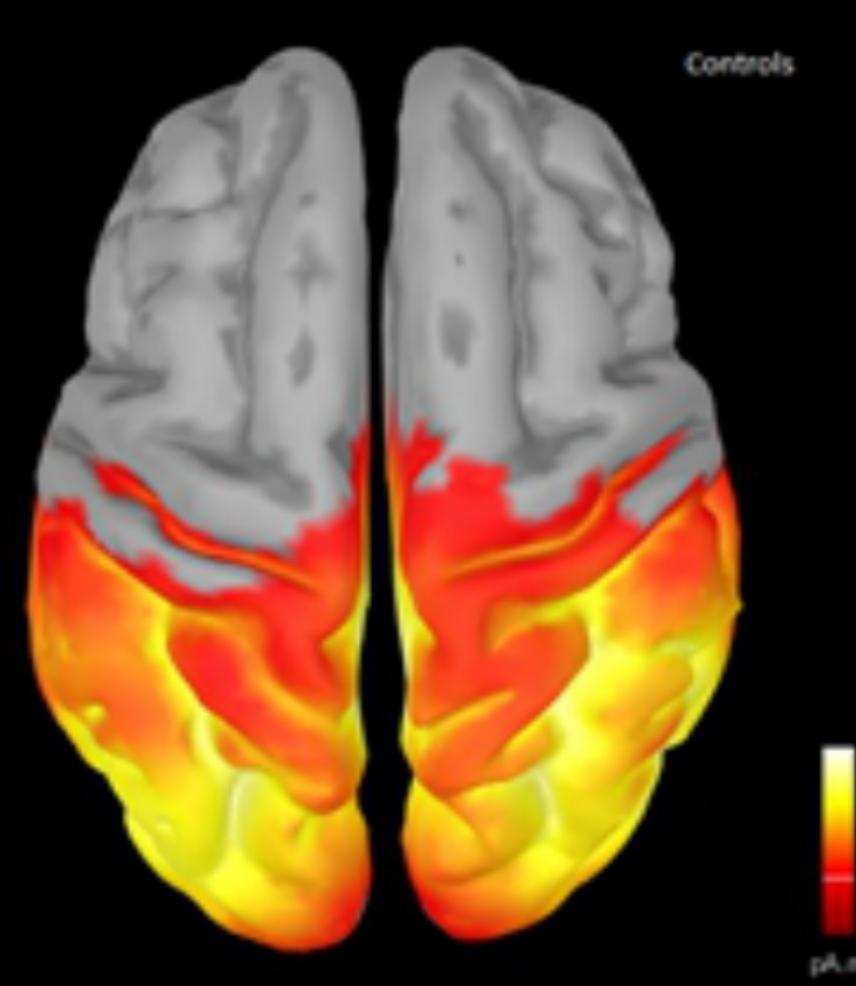
**

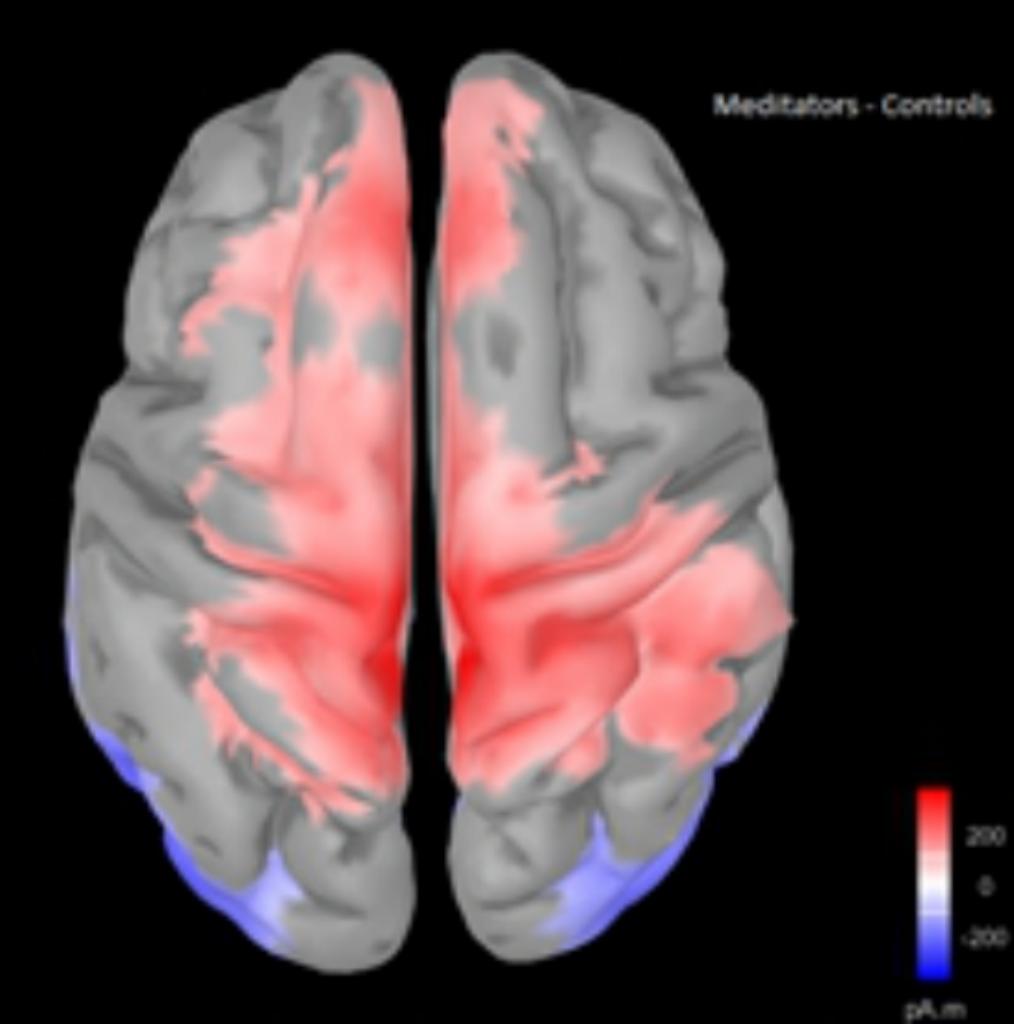
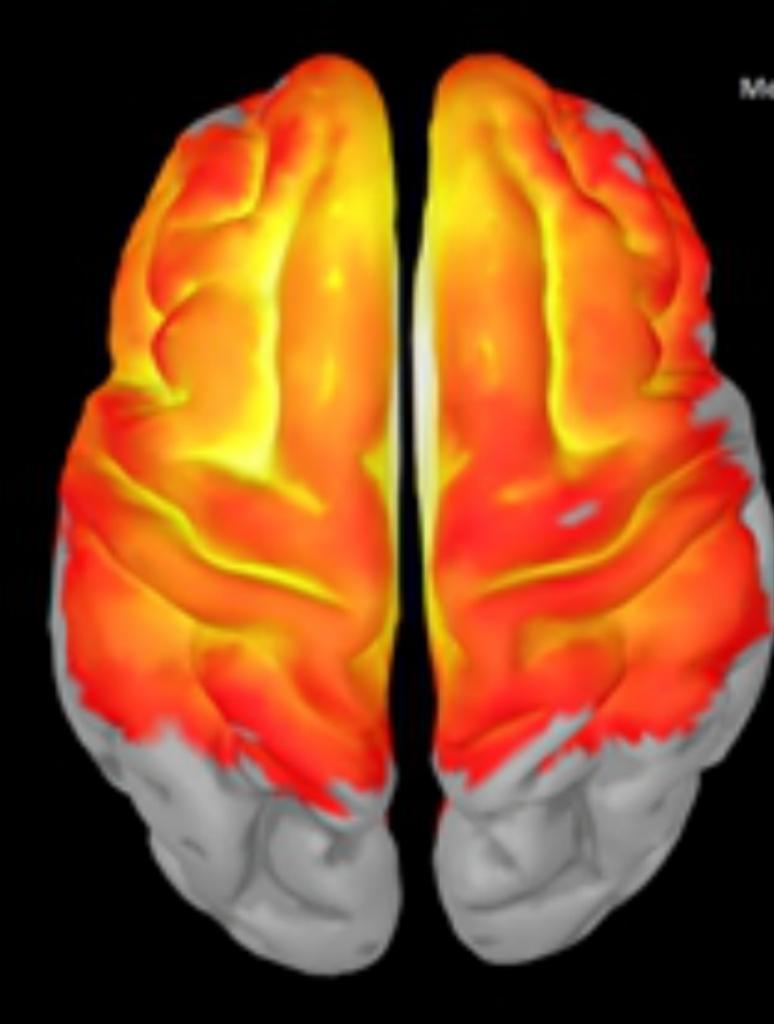
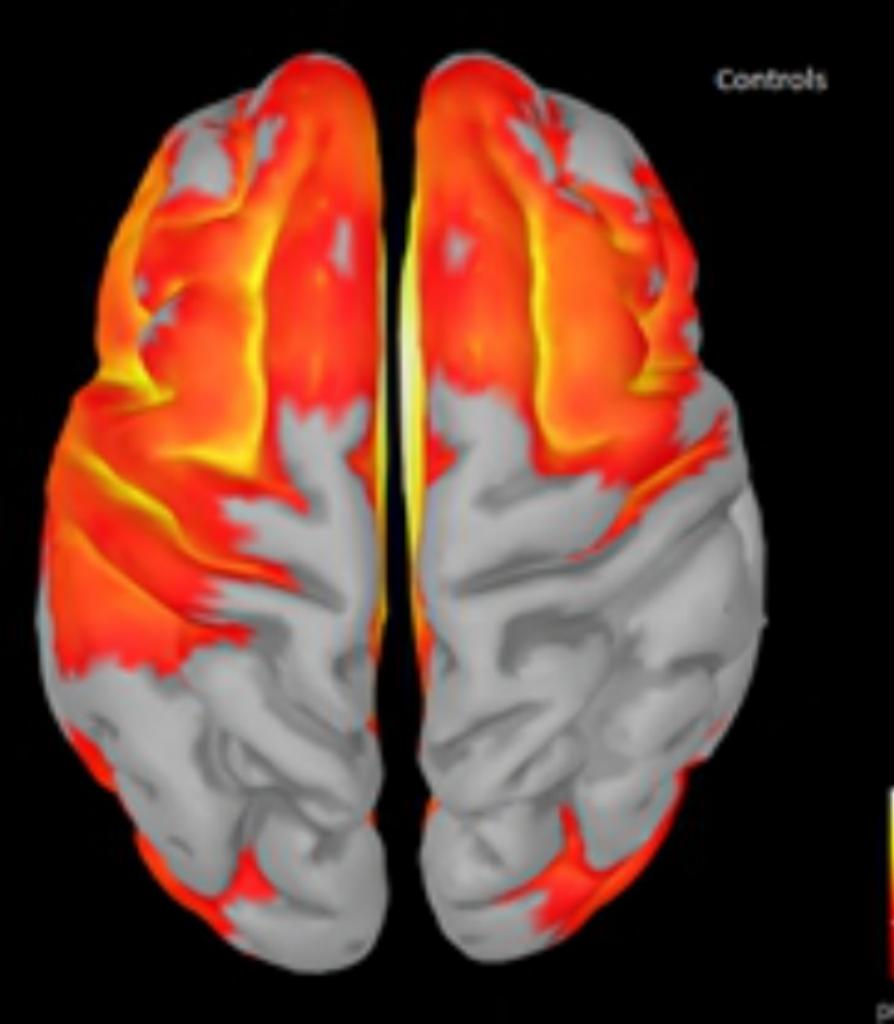
416 to 512 ms


*

Topography related to higher performance






Topography related to lower performance

1 2 3 4 5 6 7 8

