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ABSTRACT 

Timecourses that exhibit identical behaviour at distinct measurement occasions are reliable. Voodoo 
connectivity occurs when connectivity among brain regions exceeds within subject timecourse reliability. Thus, 
timecourse reliability limits the true detectable connectivity. We reproduced a working memory related 
connectome consisting of 561 paths obtained from 67 individuals. We tested >100000 fc-MRI pipelines and 
show that Savitzky Golay (SG) filters maximize true connectivity while conserving cognitively relevant changes 
of signals. This is noteworthy for approaches that focus on rapidly changing aspects of connectomes. 
Furthermore, SG filters detect zombie activity. These “resting state oscillations” are not under human control 
and contaminate working state signals. SPM pipelines exhibit more voodoo connectivity than SG pipelines. With 
the SPM pipeline, we observed a connectivity of r=0.44 and a poor true connectivity of r=0.23, but with the SG 
pipeline we observed a connectivity of r=0.59 and a fair true connectivity of r=0.43. The number of paths 
detected with fair true connectivity (r >0.4) was 4 for the SPM pipeline but 352 for the SG pipeline. However, 
superior statistical properties of SG pipelines may not reflect neural reality. Hence, causal external validation of 
fc-MRI pipelines is crucial. Without such studies, different pipelines produce at best “alternative maps”.  

ERRATTA  

The first author of  this text is a slightly outdated individual without a portable telephone. I stem from a time 
when people enjoyed colourful language. However, I feel somewhat uncomfortable with the fact that small 
fragments of  the abstract are pushed through the internet with breath taking speed without the context. I am 
not sure if  people understand my paper correctly. I painfully realize that a modern paper should be twitter 
compatible, which the first version of  the paper was obviously not. I would like to excuse myself  for my 
shortcomings. The expression 'SPM pipeline' in the abstract must be understood within the context of  the 
method section of  the paper. Maybe it sounds a bit old fashioned and silly but I would appreciate it if  people 
would read the method section. I could be wrong after all. I thank all the twitter people for their interest. Maybe 
it is just an enthusiastic comeback of  the telegram. Albeit, a bit fast for my head.  

To avoid any confusion I will give a new abstract that is hopefully twitter compatible.  

Sincerely,  

  

Jan Willem Koten  

 

Timecourses that exhibit identical behaviour at distinct measurement occasions are reliable. Voodoo connectivity 
occurs when connectivity among brain regions exceeds within subject timecourse reliability. Thus, timecourse 
reliability limits the true detectable connectivity. We reproduced a working memory related connectome 
consisting of  561 paths obtained from 67 individuals. We tested >100000 fc-MRI pipelines and show that 
Savitzky Golay (SG) filters maximize true connectivity while conserving cognitively relevant changes of  signals. 
This is noteworthy for approaches that focus on rapidly changing aspects of  connectomes. Furthermore, SG 
filters detect zombie activity. These resting state oscillations are not under human control and contaminate 
working state signals. SPM filters exhibit more voodoo connectivity than SG filters. With the SPM filter based 
pipeline, we observed a connectivity of  r=0.44 and a poor true connectivity of  r=0.23, but with the SG pipeline 
we observed a connectivity of  r=0.59 and a fair true connectivity of  r=0.43. The number of  paths detected with 
fair true connectivity (r >0.4) was 4 for the pipeline that was based on the SPM filter but 352 for the SG based 
pipeline. However, superior statistical properties of  SG pipelines may not reflect neural reality. Hence, causal 
external validation of  fc-MRI pipelines is crucial. Without such studies, different pipelines produce at best 
“alternative maps”. 
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BACKGROUND 

One of  the most read papers in science is entitled “Why most published research findings are false” (1). Empirical 
investigations indeed show that science is plagued by a reproducibility crisis that may cost US$28.000.000.000 in 
the US alone (2-4). The reproducibility crisis is partly caused by measurement error, misuse of  significance tests, 
poor research methods and by “senior people who impose perverse incentives on scientists “(5-14). Scientists such as 
Cohen, Meehl and Carver have argued that statistical significance is not equivalent with scientific significance (6-
8). Cohen was concerned particularly with the problems that may arise from statistical hypothesis testing and 
quoted Meehl in his seminal paper entitled the “The Earth Is Round (P-Less-Than.05)”. Meehl described 
significance testing as: “a potent but sterile intellectual rake who leaves in his merry path a long train of  ravished maidens but 
no viable scientific offspring”(6). The low level of  “scientific offspring” is partly related to the misconception that 
statistical significance is synonymous with reproducibility. Carver described this “replicability or reliability fantasy” in 
his classic paper “the case against significance testing”(8). Recently, Colquhoun argued that the terms 'significant' and 
'non-significant' should never be used (9). This is reasonable given that most reported studies in the medical field are 
statistically significant while reproducibility rates are low (10). Cohen, Carver and other researchers have argued 
that reproducibility, point estimation and confidence intervals are at the core of  science (6-9).   
 Currently, functional connectivity MRI studies follow the scientific main stream. The emphasis is on 
significance testing while true point estimates of  connectivity strength are remarkably absent from the literature. 
In this study we try to obtain true estimates of  connectivity strength. This is challenging because true 
connectivity strength depends on timecourse reliability that in turn depends on signal processing methods. Thus, 
true connectivity strength, timecourse reliability and signal processing methods are mutually depended 
phenomena that are hard to separate from each other. So far, numerous studies assessed the reliability of  brain 
activity and connectivity on group- and single subject level with a rich arsenal of  methods (15-30). Recent 
research shows that reliability of  resting connectivity metrics is sensitive to preprocessing techniques (15, 16, 
26). But established methods are not suitable to study the effects of  signal processing on true connectivity. True 
connectivity is closely related to the voodoo correlation phenomenon that was described in the paper “Voodoo 
Correlations in Social Neuroscience”. The title of  this paper led to considerable uproar in the community and the 
authors were politely requested to rephrase their paper in politically acceptable terms (31). Currently the phrase 
voodoo correlation has established itself  as scientific nomenclature despite attempts to censor it (32-35). To 
refresh the mind of  the reader we present the original statistic arguments of  Nunnally.  

 “It is a statistical fact (first noted by researchers in the field of  classical psychometric test theory) that 
the strength of  the correlation observed between Measures A and B (rObservedA,ObservedB) reflects 
not only the strength of  the relationship between the traits underlying A and B (rA,B), but also the 
reliability of  the measures of  A and B (reliability A and reliability B, respectively). 

In general, rObservedA, ObservedB = rA,B * √(reliabilityA * reliabilityB) 

Thus, the reliabilities of  two measures provide an upper bound on the possible correlation that can be 
observed between the two measures. This is the case because the correlation coefficient is defined as 
the ratio between the covariance of  two measures and the product of  their standard deviations: rx,y = σxy 

/σx*σy. Real-world measurements will be corrupted by (independent) noise, thus the standard 
deviations of  the measured distributions will be increased by the additional noise (with a magnitude 
assessed by the measure’s reliability). This will make the measured correlation lower than the true 
underlying correlation by a factor equal to the geometric mean of  reliabilities. Thus, the reliabilities of  
two measures provide an upper bound on the possible correlation that can be observed between the 
two measures “(36) 

 The original “voodoo correlation” paper criticized fMRI group studies that correlate the bold response 
with external measures of  behaviour. But the very same critique holds true for functional connectivity studies at 
the single subject level. I.E. the height of  a functional connectivity correlation between two regions A and B 
cannot exceed the test retest reliability correlation of  underlying timecourses. It is inherently impossible to 
estimate test retest reliability of  resting state timecourses because the latter are not synchronized by an external 
stimulus. Consequently, we will not further discuss resting state studies since they present incommensurable 
problems regarding signal reliability.          
 Currently, more than 40.000 fMRI paper have been reported but studies that report reliability of  task 
driven timecourses on the within subject level remain very rare (11, 22). It is likely that functional connectivity at 
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the single path single subject level is voodoo given that within subject test retest reliability of  timecourses is 
slightly disappointing. Mean voxel wise timecourse reliability estimated from the full brain is around r = 0.1 (22). 
At best correlations of  0.25 have been reported in motor areas that were activated during a motor task (22). This 
suggests that true connectivity among region A and B cannot exceed 0.25. The poor timecourse reliability is 
most likely related to the poor signal to noise ratios of  MRI scanners (37). The latter obscures timecourse 
reliability. Over the years, several preprocessing pipelines have been developed to reduce noise. In classic 
versions of  the SPM package discrete cosine transforms were used to remove slow trends form the signal 
(128seconds) while HRF or Gaussian smoothing kernels (around 2.4sec) were used to remove high frequency 
noise (38). But in particularly low pass filters may boost auto correlations of  timecourses and therefore destroy 
the temporal resolution of  a timecourse (39-41). This is in particular problematic for event related designs that 
ideally rely on timecourses that exhibit higher temporal resolution. Consequently, low pass filters have been 
removed from current versions of  SPM.          
 The following question arises: Is it possible to develop low pass filters that do justice to the “natural” 
autocorrelation structure of  a timecourse, and if  yes, what is the true auto correlation of  an fMRI timecourse? 
Originally, the so called HRF function was derived by averaging the BOLD responses of  events induced 
experimentally. This event related average is a denoised approximation of  what the ideal BOLD response for a 
given brain region and individual might look like. Empirical predictors created from slow event related designs 
are obtained by concatenating event related averages in agreement with the number of  times that a psychological 
event took place. Empirical predictors might reflect the true auto correlation estimate of  a timecourse.  
 It has been shown that Savitzky-Golay (SG) filters conserve much of  the original signal contour(42). 
Hence SG filters may preserve much of  the true auto correlation structures of  fMRI signals (42). Although SG 
filters are used in many branches of  science - such as chemistry, medicine, ecology etc. - they have rarely been 
used in the context of  fMRI. One fMRI study used an SG filter to estimate the contrast to noise ratio of  a 
timecourse (43). The second study used SG filters to reconstruct changes in the phase of  MRI signals obtained 
at 7T. These “phase timecourses” can be used to suppress spurious BOLD activations stemming from vessels 
and draining veins while conserving signal changes from microvascular effects (44).    
 The SG algorithm consists of  three components: (i) a sliding window of  size m is selected; (ii) a 
polynomial function is fitted to the observed data within the window. Finally, (iii) the data point observed 
experimentally at the centre of  the window is replaced by the predicted polynomial value. Next, the window is 
moved by one sampling interval. Subsequently, procedures i-iii, are applied to the observed data of  the shifted 
window. The number of  time points of  the window m must be uneven because it should have a clearly defined 
centre i.e. the number of  points at the left and right side of  the centre should be identical. It is obvious that the 
order of  the fitted polynomial can never exceed the number of  degrees of  freedom, which are given by the size 
of  the window -1. Thus, the highest possible polynomial order is m-1. It is also clear that sliding windows cause 
problems at the beginning and the end of  timecourses. An accepted solution is to artificially extended data by 
adding, in reverse order, copies of  the first (m − 1)/2 points at the beginning and copies of  the last (m − 1)/2 
points at the end (42). We have followed this procedure it the present study. The main problem of  the SG filter 
is to find the optimal combination of  window size and polynomial order. In principle, two methods are 
available: brute force search in empirical data or computer simulations in synthetic data. Computer simulations 
are usually based on a synthetic signal that is contaminated with synthetic noise. This method is powerful 
because it specifically tests if  a filter can identify the “known” synthetic noise correctly. The elegant computer 
simulation method assumes that synthetic noise is a realistic reflection of  the noise as it occurs in real fMRI 
data. But the latter is most likely not the case because distinct sources of  noise exhibit complex behaviour that 
may also vary between subjects and brain regions(45). For this reason, it has been suggested that optimal SG 
filters may be obtained through brute force methods in empirical data (44).      
 Here, we investigate if  SG filters minimize voodoo connectivity and spurious auto correlations. In a first 
step we determined optimal SG parameters in a verbal working memory task through brute force methods. We 
assume that a good detrending and low-pass filtering system should maximize the correlation between an 
observed timecourse and a predicted timecourse. In this study, the predicted timecourse was estimated with the 
same psychological experiment measured at a different session. This avoids problems of  circularity. In second 
step we validated our SG pipeline in a spatial working memory task and compared the result with classic fMRI 
pipelines. The stimuli of  the cognitive tasks that were used for SG filter optimization differed from those of  the 
validation study to avoid circularity. Finally, we investigated how task driven connectomes react when resting 
baseline conditions are removed from timecourses.         
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METHODS 

Scanner parameters 

MRI scans were performed on a 3T Siemens Magnetom Skyra (Siemens Medical Systems, Erlangen, Germany) 
equipped with a 32-channel head coil. We used a 3D-MPRAGE sequence (176 slices per slab, FOV = 256 mm, 
TR = 2530 ms, TE = 2.07 ms, TI = 900 ms, Flip angle = 9°, voxel size = 1mm isotropic). Functional imaging 
data were obtained using a Siemens Grappa parallel acquisition scheme with pat factor 2; using following 
parameters Flip Angle 72 degrees, TR = 1240 ms, TE = 30 ms. Volume dimensions were 64*64*23, with voxel 
resolution 4*4*4 mm with a gap of  10% For the working state analysis in total 487 volumes were obtained per 
task per run. 

 

 

Figure 1: This figure illustrates details of the spatial and verbal working memory tasks that were used for the optimization 
and validation experiment respectively. The exact duration of the stimulus is depicted on the left side. Mark that the resting 
baseline depicted with a red fixation cross was jittered. It varied roughly between 11.16 sec. and 14.88 sec. Left side, 
individuals had to memorize the spatial position of two “O’s” subsequently they had to identify the larger numerosity of 
two Arabic numbers that were different in physical size and press a button with the left or right index finger according to 
the side were the larger numerosity was found. Finally participants had to verify whether the spatial position of a newly 
presented “O” was in agreement with the previously memorized “O” set. If this was the case participants pressed the right 
button if not the left. Right side, the verbal memory task followed the same regime. But in this case participants had to 
verify the identity of the letter but not the spatial position of the letter. 
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Participants, working memory task, Coregistration and Timecourse extraction  

The 67 individuals studied, varied in age and academic attainment and are representative of  the Austrian 
population. Participants performed two tasks: A verbal working memory task that incorporated a numerical 
distractor task and a spatial working memory task that incorporated a numerical distractor task. We used a 
slightly larger jitter as usually advised. The main reason is to demonstrate that SG filters can cope with highly 
jittered timecourses. Details of  the task are found in the Supporting Material (SM) and Figure 1. We obtained 
test and retest data from both tasks. Test and retest sessions were interrupted by a pause of  at least one hour 
outside the scanner. Nuisance timecourses were obtained using standard FreeSurfer options 
(https://surfer.nmr.mgh.harvard.edu/). Grey matter timecourses were brought into FS_average space using 
spherical alignment methods. Subsequently, 34 working memory related regions of  interest stemming from a 
meta-analysis were projected onto FS_average mesh space (46). Timecourses were extracted from 34 patches of  
interest on the surface and subjected to further analysis. Next, we visualized the resulting connectomes with 
connectome viewer software package (http://nica.net.cn/achievements/t20120530_1132.htm). We used the 
coordinates of  meta-analysis for this purpose. It is important to state that for visualisation purposes 
connectomes where shown in 3d space. However data were in reality in 2d spherical aligned space. Further 
details are given in the Supporting materials.  

 

General overview of  the experiment and MATLAB ® packages 

In this experiment, SG filtering was applied to remove slow signal drifts (detrending), and high frequency noise 
from fMRI data. The method was developed on the basis of  in house MATLAB® scripts - that comprise 1000 
lines of  novel code - and several toolboxes of  the MATLAB® family. The aim of  the distinct scripts was to 
investigate the different aspects of  the filter. The first script “find_filter.m” was used to optimize filter 
parameters for detrending and low pass filters; we will refer to this as optimization experiment. The script was 
applied to a data set containing a verbal working memory experiment that consisted of  a test and a retest phase. 
The second script “test_filter.m” was used to evaluate the effects of  signal processing methods on test retest 
reliability, connectivity, true connectivity and auto correlation of  timecourses. Again, this spatial working 
memory experiment consisted of  a test and a retest phase. We will refer to this as validation experiment. The 
rationale behind this design was the following. Optimization and validation of  the filter parameters need to be 
executed with two distinct experiments to avoid circularity (verbal and spatial working memory). However, the 
temporal structure at which the psychological events are presented need to be similar for the two distinct 
experiments. Otherwise, the filter parameters obtained during the optimization experiment might not work for 
the validation experiment. 

 

Methods for Optimization experiment 

Prior to the optimization procedures we performed slice scan time correction and motion correction. 
Subsequently, we constructed predictor timecourses, which were based on event related averages from a test run. 
Next, we correlated the SG filtered timecourse obtained from a retest run with the predictor timecourse. We 
performed a correlation procedure for the whole window and polynomial space of  the SG filter and determined 
the iteration at which maximal correlations between predicted and observed timecourses was obtained. Usually, 
the correlation between phenomena A and phenomena B is identical with its inverse. However, in this study the 
event related average of  the test run is not identical with the event related average of  the retest run. While the 
same logic holds true for the observed (filtered) data of  the respective runs. Hence, the predictor timecourse 
was estimated from test run and correlated with retest run and vice versa. This resulted in 2 runs*34 
nodes*67participants=4556 correlation for every iteration step. Subsequently, we averaged the correlations 
observed per iteration. The filter parameters that maximized the correlation between observed and predicted 
timecourse were taken to be the optimal parameters which were tested for their effects in a distinct cognitive 
experiment. We used SG filters to remove slow trends and high frequency noise. For this reason, an incremental 
strategy was used. In a first phase we developed the optimal SG filter parameters for detrending purposes (high 
pass filter). In a second phase, the optimal detrending parameters were used to create the optimal low pass filter 
parameters.              
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Phase 1: The predicted timecourses were obtained from denoised data, while observed timecourses were 
obtained from denoised and SG detrended data. The pipeline is depicted in Figure 2. The predicted timecourse 
was constructed by averaging 24 task related timecourse sections. The resulting event related average, which is 
the idealized hemodynamic response for a given node in a given person, was repeated 24 times. As described in 
the previous method section, this experiment was jittered. Hence, the length of  resting pauses between working 
memory tasks were irregular. Consequently, we extracted 24 events of  identical length from the test and retest 
signal and omitted parts of  the timecourse that were not shared. In Figure 3, we show how the event related 
average was constructed. For the detrending optimization procedure, the whole window space from 3 to 487 
TR’s was investigated in steps of  2. For each window size, the whole polynomial order space from one to 
window size -1 was investigated. Finally, we estimated the autocorrelations of  the predictor timecourses that 
were denoised and detrended with optimal SG filters within a GLM framework. Autocorrelations included lags 1 
to 4. 
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Figure 2: This figure shows the pipeline for the first phase of the optimization experiment 
that aimed at finding the optimal SG filter parameters for detrending. Red text refers to SG 
parameters that were changed at every iteration step. This means that the whole window 
space from 3 to 487 TR’s was investigated in steps of 2. For each window size [i] the whole 
polynomial order space [j] from one to window size -1 was investigated. Blue parts of the 
graph refer to operations that were executed using the FreeSurfer package while the yellow 
parts refer to in house MATLAB routines. 
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raw timecourse test run  raw timecourse retest run  
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Figure 3: This figure shows the effects of preprocessing on the timecourse as executed in the first phase of the optimization 
experiment depicted in Figure2 that aimed at finding optimal detrending parameters. 
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Phase 2, the predicted timecourse were obtained from denoised and optimal SG detrended data, while 
observed timecourses were obtained from denoised, SG detrended data and SG low pass filtered data. For this 
purpose we selected a quasi-optimal SG filter with a window of  69 TRs and a polynomial order of  6 (69/6) and 
an optimal SG filter with a window of  311 TRs and a polynomial order of  40 (311/40). The rationale behind 
this operation is to show that suboptimal filters that are suitable for timecourses with a small number of  
observations may deliver results that are comparable to optimal filters that require a large number of  
observations. The exact pipeline and its effect on the timecourse are shown in Figure 4 and Figure 5. In short, 
we investigated the whole window space from 3 to 487 TR’s in steps of  2. For each window size the whole 
polynomial order space from one to window size -1 was investigated. However, we did not investigate 
polynomial orders larger than 50 when using the low pass filters. Again, correlations between predicted and 
observed timecourses were estimated. In addition, autocorrelations of  observed timecourses sections were 
estimated in every single iteration step. These included the lag 1-4 autocorrelations.  
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Figure 4: This figure shows the pipeline for the second phase of  the optimization experiment 
that aimed at finding the optimal SG parameters for low pass filtering. Red text refers to SG 
parameters that were changed at every iteration step. This means that the whole window 
space from 3 to 487 TR’s was investigated in steps of  2. For each window size [i] the whole 
polynomial order space [j] from one to window size -1 was investigated. However polynomial 
orders larger 50 were not investigated. Blue parts of  the graph refer to operations that were 
executed using the FreeSurfer package while the yellow parts refer to in house MATLAB 
routines. 
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Figure 5: This figure shows the effects of  preprocessing on the timecourse as executed in the second phase of  the 
optimization experiment depicted in Figure 4 that aimed at finding the optimal low pass filter. 
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Root mean square error of  predicted and observed auto correlations 
As mentioned in the introduction we assume that predicted timecourses that are based on event related averages 
- constructed from timecourses that were denoised and detrended within a GLM frame work - represent the 
true auto correlational structure of  a timecourse. We used a SG (311/40) detrending filter for this purpose. 
Subsequently, the autocorrelations estimated from 34 nodes*67 participants were averaged per session and used 
for root mean square error (RMSE) estimation. We estimated the auto correlations of  observed timecourse 
sections at every single iteration step during the second phase of  the optimization experiment. Subsequently, the 
autocorrelations of  34 nodes*67 participants were averaged per iteration. In a next step, we estimated RMSE per 
iteration from the 4 autocorrelations of  the predicted timecourses and 4 autocorrelations of  observed 
timecourses. Finally, the correlations between the predicted and observed timecourses were masked with 
RMSE<0.1. We assume that the resulting graph reflects filters that maximize the correlation between predicted 
and observed timecourses while autocorrelations of  timecourses are kept at an acceptable level. 
 
Methods for validation experiment 
Contrary to the default FreeSurfer FsFast pipeline, we performed slice scan time correction prior to the motion 
correction. The motion parameters that were created during motion correction underwent a principal 
component analysis. The first two principal components of  the motion parameters were extracted from 
FsFast/mcprextreg file and used as nuisance regressors. The “eroded” white matter and ventricle timecourses 
underwent principal component analysis. We used the FsFast default settings and extracted the top five 
components of  the white matter and ventricles respectively. Next, either a quasi-optimal SG filter with a window 
of  69 TRs and a polynomial order of  6 (69/6) or an optimal SG filter with a window of  311 TRs and a 
polynomial order of  40 (311/40) or a SPM high pass filter (128 secs. > 0.0078 Hz) was run over the 
timecourses. The resulting timecourses were used to remove slow trends from the timecourse (detrending). The 
2 motion components together with the 10 subcortical nuisance timecourses as well as the slow trend of  the 
grey matter timecourse were imported into MATLAB® and used as nuisance regressors. The procedure 
removes unwanted sources of  noise from the raw fMRI timecourse. At this point, the preprocessing pipelines 
were split. In total, three pipelines were investigated, a conventional SPM pipeline, a quasi-optimal SG pipeline 
suitable for shorter timecourses, an optimal SG pipeline suitable for longer timecourses. Data that underwent 
SPM detrending were either treated with a HRF based filter or a Gaussian smoothing kernel width = 2.48 sec 
(38). Data that were detrended with a SG (69/6) filter was subjected to a SG (15/8) low pass filter while data 
that was detrended with a SG (311/40) filter was subjected to a SG (3/1) low pass filter. The whole pipeline is 
depicted in Figure 6. The correct parameters of  the SG filter used for detrending and high frequency noise 
removal were determined in a different working memory experiment described above.  

Our aim was to disclose whether SG filters performed better when compared to unfiltered data or classical SPM 
filters. We estimated all reliability and connectivity measures in a hierarchical ordered series of  preprocessing 
steps. All relevant variables were simultaneously entered into the regression model except for the low pass filters 
that were applied after all other variables were regressed out. We report the preprocessing pipelines that were 
investigated in isolation in the table related to Figure 6. For reasons of  readability we use the following 
nomenclature:  

Raw data that underwent motion and slice time correction are referred to as “raw”.   
“Raw” data that were denoised with motion, ventricle and white matter timecourses are referred to as “denoised”.   
“Denoised” + detrended is referred to as “SG or SPM detrended”.                                                                                 
“SG or SPM Detrended” +low pass filtered (SG or SPM) is referred to as “quasi-optimal or optimal SG filtered” or 
“Gaussian or HRF filtered”. 
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Figure 6: This figure gives the full preprocessing pipeline and a table that reports which components of the pipeline was 
studied in isolation. Red refers to the “raw data” part of the pipeline. Light blue refers to the denoising part of the pipeline. 
Green refers to the detrending part of the pipeline. Yellow refers to the low pass filter part of the pipeline. Purple refers to 
weighted noise removal within a GLM frame work. While dark blue refers to the analysis module. The colours of the letters 
in the table refer to the colours of the preprocessing depicted in the figure. Abbreviations, LPfilt=low pass filter; SG = 
Savitzky Golay. Results for the distinct preprocessing pipelines are given in Table 1-3 

COMPONENTS OF THE  PIPELINE THAT WERE STUDIED IN ISOLATION  

Raw 

glm(raw denoise) 

  

SG pipeline SPM pipeline 

  

Suboptimal parameters  

glm(raw denoise detrend SG (69/6)) glm(raw denoise detrend SPM (128s)) 

glm(raw denoise detrend SG (69/6))+LPfilt SG (15/8) glm(raw denoise detrend SPM (128s))+LPfilt SPM (hrf) 

 glm(raw denoise detrend SPM (128s))+LPfilt SPM (Gauss 2.48 s) 

optimal parameters  

glm(raw denoise detrend SG (311/40))  

glm(raw denoise detrend SG (311/40))+LPfilt SG (3/1)  

Connectivity analysis, reliability estimates, auto correlations 
 

Slice time 

correction 

Motion 

correction 

Motion 
correction 
parameter 

Segmentation conform Free surfers recon all with hand corrections and co 

registration in 3D volume space and 2D mesh space.  

White matter 
timecourse 

in 3D space 

2 principle 
motion 

components 

34 grey matter timecourse NODE’s                    

in 2D spherical aligned space 

5 Principle 
noise 

components 

  

Remove noise motion and trend from grey matter timecourse with GLM 

Ventricle 
timecourse   

in 3D space 

5 Principle 
noise 

components 

SG low pass filter or SPM low pass filters  

 

SG detrending or 
SPM detrending 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2018. ; https://doi.org/10.1101/395285doi: bioRxiv preprint 

https://doi.org/10.1101/395285
http://creativecommons.org/licenses/by-nc/4.0/


Conservative and liberal connectome                                                                                                                                        
In this study every experimental trial was followed by a resting baseline condition. One might argue that the 
resting sections of  the timecourse induce large signal changes that are not related to working memory in the 
narrow sense of  the word. These large signal changes might increase the test retest reliability of  a signal and 
therefore increase true connectivity. It is therefore reasonable to study how true connectivity among brain 
regions is changed when resting baseline sections are omitted from the timecourse. Thus connectomes were 
created with two approaches. First, we correlated the entire timecourse i.e. both the cognitive and resting 
baseline part of  the timecourses. We refer to this as the liberal approach because it is likely to result in a 
relatively high true connectivity. Next, we correlated the section of  the timecourses that were related to subtle 
changes in cognitive behaviour. We will refer to this as the conservative approach because it is likely to result in 
relatively low true connectivity estimates. We illustrate which section of  the timecourse was used for the 
conservative approach on the basis of  an event related average shown in Figure S1.  
 
Estimation of  autocorrelations                                                                                                                                                              
We estimated the auto correlation structure of  predicted and observed timecourses of  every single node of  
every single individual in the spatial working memory experiment. The exact procedure that was used to obtain 
predicted and observed timecourses is described in the section “optimization experiment”. We assumed that the 
predicted timecourse should be based on 24 repetitions of  an event related average that was obtained from a 
detrended fMRI signal because this preprocessing method is more or less standard. The autocorrelation 
structure of  the predicted timecourse was compared with the autocorrelation structure of  the observed 
timecourse sections. The test run served as predictor for the retest run and vice versa. In addition we estimated 
the lag1 autocorrelation of  the high frequency noise as obtained after low pass filtering for all individual nodes 
per subject.                 

Statistical policies                                                                                                                                                                    
The purpose of  this section is to describe how preprocessing strategies might affect the truly detectable 
connectivity between areas at the level of  the individual which is closely related to the connectivity upper bound 
defined as:   

Connectivity upper bound rA,B=√(reliability of  node A * reliability of  node B). (1) 

In the introduction it was shown that Formula 1 implies that reliability is estimated with Pearson correlations. In 
addition, it is common practice to estimate the connectivity between nodes with Pearson correlations and we 
will follow this tradition because connectivity can be anti-correlated. Treatment of  timecourses within the GLM 
framework established yields inherently standardized timecourses. We z-transformed raw timecourses to ensure 
comparability of  all preprocessing conditions. Discussions whether timecourse reliability should be obtained 
with ICC or Pearson correlations become superfluous (47) because ICC(1,1), ICC(2,1), ICC(3,1), and Pearson 
correlations performed over standardized timecourses yield practically identical point estimates. The very small 
differences observed are certainly not significant given the rather unreliable aspects of  the measurements as 
such. It is thus safe to say that results reported generalize to all the mentioned correlation types. Fishers’ z-
transforms were performed whenever a correlation was subjected to some kind of  statistical analysis such as 
averaging etc. We will use critical reliability thresholds as formulated by Cicchetti and count the number of  
individuals or brain connections that reach these critical thresholds (48). Cicchetti classified levels of  ICC, in 
terms of  practical or clinical significance, as follows: < 0.40 = Poor; 0.40 - 0.59 = Fair; 0.60 - 0.74 = Good; and 
> 0.75 = Excellent.                                                                                    

Reliability and connectivity analysis of  timecourses on the level of  the path                                            
Reliability: For every individual, test-retest reliability of  34 timecourses of  interest was estimated per node leading 
to 34reliabilities*67participants = 2278 correlations.  The grand mean reliability correlation and the related confidence 
interval were estimated (Tables 3-4). Such correlations are difficult to interpret without reference. According to 
Cicchetti, correlations > 0.4 are at least fair; correlations > 0.6 are at least good; correlations > 0.75 are 
excellent. Using this logic, we estimated the following measures: First, we estimated the percentage of  nodes that 
reached the critical reliability threshold per subject. Subsequently, we averaged this estimate over the whole 
sample and refer to this as „Mean percentage of  nodes within-subjects”. Second, we calculated the average 
reliability per node leading to 34 correlations and estimated the percentage of  nodes that reached the critical 
threshold and refer to this as „Percentage of  mean nodes”. Third, we estimated the mean reliability of  the 34 
nodes per subject leading to 67 mean node correlations. We estimated the percentage of  individuals whose mean 
node reliability reached the critical threshold and refer to this as “Percentage of  participants with mean node 
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reliability”. In addition we estimated the test retest reliability of  the high frequency noise as obtained after low 
pass filtering for every node of  every subject. Again grand mean reliability is reported.  

Connectivity: The connectivities for test and retest run were computed for every single individual. In total 
561connections are possible with 34 nodes leading to 561connectivities*67participants*2measurements occasions = 75174 
correlations. Subsequently, the grand mean connectivity coefficient was estimated from the 75174 correlations 
(Tables 3-4). 

Detectable connectivity maximum: The detectable connectivity maximum was estimated for every single path for 
every subject on the basis of  the 34 available reliability estimates according to Formula 1. Detectable 
connectivity maximum was considered a missing value when at least one reliability measure was negative. In 
total, 561maxima*67participants = 37587 were estimated and subsequently averaged using the nanmean matlab command 
(see Tables 3-4). The latter command excludes nan values from the data  

True connectivity: We averaged the connectivity correlations of  the test and retest run per individual and refer to 
this as observed connectivity. We calculated true connectivity from the observed connectivity using following 
procedure.  

We set observed connectivity to nan when one or two nodes exhibit negative or zero test-retest  
 reliability. We refer to this as corrupt connectivity. 

 Otherwise if  the observed connectivity is a positive correlation: In this case, we compared the observed 
  and detectable upper bound correlations and took the smaller one.    
 Else the observed connectivity is negative: In this case, we compared the absolute observed and  
  absolute detectable upper bound correlations and took the smaller of  the two and made the sign 
of  the result negative. 

We averaged true connectivity of  every single path which represents the group average connectome consisting 
of  561 paths using nanmean command. The resulting mean true connectivity map was threshold at a fair r > 0.4 
or good r > 0.6. We call this fair or good because the true connectivity map takes the underlying test-retest 
reliability of  the path in question into account. Maps are shown in Figure 11-Figure 12. Finally, we estimated the 
grand mean true connectivity over paths and participants and report the result in Tables 2-3. 
 
Absolute overestimation: The difference between the observed connectivity and the detectable maximum was 
estimated for every single path per subject when the observed connectivity was larger than the detectable 
maximum. Absolute overestimation was set at nan when et least one reliability measure was negative. The 
absolute overestimation was averaged over individuals and paths using the nanmean matlab command. In 
addition, we estimated the average percentage of  overestimated paths per subject. Results are reported in tables 
2-3. 
Relative overestimation: We related the grand mean overestimation to the true grand mean detectable connectivity 
using the following formula:   

Relative over estimation = ((rabsolute over estimation)/(rtrue connectivity))*100 (2) 
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RESULTS 

Behavioural data 

Test-retest reliability of  raw response time was excellent and in line with similar behavioural experiments 
executed during a stay in the scanner (49). Number Stroop task in spatial memory context ICC (2,1) = 0.75; 
Number Stroop task in verbal memory context ICC (2,1) = 0.83; spatial memory task ICC (2,1) = 0.77; verbal 
memory task ICC (2,1) = 0.78. 

 

Results of  the Optimization experiment 

Optimal detrending parameters 

The optimization of  detrending filter parameters was performed in the verbal working memory task. First, we 
wanted to know the extent to which correlation strength between predicted and observed timecourses is 
affected by SG parameters. Results of  the exhaustive parameter search presented in Figure S2 reveals that data 
show irrational behaviour when polynomial orders larger than 42 are used. Hence, we zoomed in on the rational 
aspects of  the data. The lines depicted in Figure 7 indicate an optimal family of  SG parameters that is identified 
along a diagonal. Left of  the diagonal a quasi-optimal SG parameter family is observed; right of  the diagonal a 
disruptive SG parameter family is observed. Hence, the margin between optimal and poor SG parameter sets is 
very narrow. Differences in correlation strength of  the parameter sets that belong to the quasi-optimal SG filter 
family are very small (Figure S3). Furthermore, SG parameters that belong to the quasi-optimal filter family 
exhibit linear scaling properties (figure S3). In our data, detrending was optimal with (311/40) SG filter. 
However, this filter calls for rather long experiments. We wanted to know if  SG detrending is potentially 
effective in shorter experiment as well. Hence, for further analysis we also selected a quasi-optimal SG filter 
(69/6) that can be applied in experiments that are shorter in duration. 

Optimal low pass filter parameters 

The optimization of  low pass filter parameters was performed in a verbal working memory task. First, we 
wanted to determine how auto correlations of  observed timecourse sections are affected by SG filters. Results 
of  the exhaustive parameter search are depicted in Figure 8. It is clear that the curvature of  lag 1 
autocorrelations is far steeper when compared to curvatures of  lag 2-4 autocorrelations. 

In a next step, we estimated the lag 1-4 autocorrelations of  the predicted timecourse. Ideally the auto correlation 
structure of  the predicted timecourse should be similar to the autocorrelation structure of  the observed 
timecourse. We estimated the root mean square error (RMSE) from the 4 autocorrelations of  the predicted and 
observed timecourses for every single filter combination. An RMSE approaching zero reflects that observed 
timecourses that were treated with a particular SG parameter set exhibit similar autocorrelations as the predicted 
timecourse. Figure 9 depicts a family of  SG filter parameters that approach the true auto correlational structure 
of  the timecourses under study. This is indicated by the “valley” which approach RMSE values of  0. 
Subsequently, we wanted to know how the height of  the correlation between predicted and observed 
timecourses is affected by SG parameters. The results depicted in Figure 7 complement results that are 
visualized for “detrending parameters”. In the case of  low pass filters the margin between success and failure is 
even more dramatic and ranges from roughly 0.6 for effective filters down to -0.4 for ineffective filters. The 
mesh exhibits a triangular shaped plateau of  maxima (Figure 9). We selected the correct family of  low pass 
filters by masking the correlation mesh with the RMSE auto correlation mask. We only accepted RMSE < 0.1. 
The masking procedure led to a very well defined family of  SG low pass parameters (Figure 9). Again, 
parameters that belong to the quasi-optimal filter family exhibit linear scaling behaviour (Figure S4). In simple 
words,  

Optimal polynomial = (window size ± 1)/2    

In our data, a low pass filter of  SG (3/1) was optimal when it was combined with a detrending SG (311/40) 
filter. We also investigated a quasi-optimal low pass SG (15/8) filter that was combined with a quasi-optimal 
detrending SG (69/6) filter. 
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Figure 7: This figure depicts the average correlation between a predictor and observed timecourse for a given SG filter as 
obtained from 34nodes*67participants*2runs. The z axis represents the height of the correlation the left axis the size of the 
window (only uneven numbers) the right axis represents polynomial order. Mark that some filter parameters exhibit very 
small or even negative correlations 
Top: this graphs show results for a detrending filter that was developed in concert with denoising. 
Bottom: this graphs show the results for a low pas filter obtained after denoising and SG detrending (311/40). 
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Figure 8: This figure depicts the average autocorrelation of observed timecourses for a given SG filter as obtained from 34 
nodes*67participants*2runs. From top to bottom the lag 1 to lag 4 auto correlations are represented. The z axis represents 
the height of the autocorrelation the left axis the size of the window (only uneven numbers) the right axis represents 
polynomial order. Mark wrong filters yield auto correlations that approach 1. 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2018. ; https://doi.org/10.1101/395285doi: bioRxiv preprint 

https://doi.org/10.1101/395285
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 
 
Figure 9: This figure depicts the effect of SG high pass filter parameters on the correlation between predicted and observed 
timecourses; and the effect of SG parameters on RMSE obtained from predicted and observed autocorrelations. All data 
were obtained from 34 nodes *67participants*2runs. Predicted and observed timecourses underwent optimal SG 
detrending (311/40) 
 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2018. ; https://doi.org/10.1101/395285doi: bioRxiv preprint 

https://doi.org/10.1101/395285
http://creativecommons.org/licenses/by-nc/4.0/


Top: This figure is equivalent with Figure 7 (bottom panel). The z axis represents correlation height, the left axis the size 
of the window (only uneven numbers) the right axis represents polynomial order. 
 
Middle: The z axis represents RMSE the left axis the size of the window (only uneven numbers) the right axis represents 
polynomial order. 
 
Bottom: This figure shows what remains of the height of the correlation between predicted and observed data (top panel) 
when data are masked for RMSE<0.1 (middle panel). 

 

Results of  the validation experiment   

Auto correlational structure of  observed and predicted timecourses  

In Table 1 we report the observed auto-correlation structures for the spatial working memory experiments as 
obtained with the various preprocessing methods and the autocorrelation structure of  the predicted timecourse 
obtained from denoised data. The RMSE estimated from predicted and observed autocorrelations reveals that 
the closest match between predicted and observed auto-correlations is found when data underwent denoising, 
SG detrending, and SG low pass filtering. Results reported in Table 1 show that RMSE of  the latter 
preprocessing types is very distinct from any other preprocessing type. This table also reveals that the 
autocorrelations of  raw, denoised, and SG and SPM detrended timecourse sections are too low, while HRF and 
Gaussian filters yield autocorrelations that are much too high. One might criticize the use of  denoised and 
detrended data as a gold standard because it is to a certain extent arbitrary in nature. Predicted timecourses that 
are based on other preprossessing methods show rather similar autocorrelation structures as long as SPM low 
pass filtering is not applied (Table S1). This is by no means surprising because the predicted timecourses were 
based on an event related average, which is in fact an effective way to denoise data. The latter is particularly true 
when event related averages have been obtained from jittered timecourses where systematic sources of  noise are 
cancelled out. For instance, raw observed timecourses might suffer from high frequency noise, but the event 
related average of  the raw timecourse does not suffer from high frequency noise because it is levelled out 
through the averaging procedure. Thus, while autocorrelations of  observed timecourses react sensitively to 
differences in preprocessing, predicted timecourses do not because they are denoised through the averaging 
process and thus yield rather similar results irrespective of  the preprocessing in use. The latter is however only 
true for timecourses that where not treated with aggressive low pass filters, as we will show in the next section. 
As an additional check we assessed the lag 1 autocorrelation of  high frequency noise and its test retest reliability. 
Ideally the autocorrelation of  noise timecourses should approach zero. Furthermore a test retest reliability of  
zeros suggests that the noise signal does not contain reliable cognitive information. Test retest reliability of  high 
frequency noise as obtained by optimal and quasi optimal SG filters was on average 0.02 and 0.03 respectively. 
For HRF and Gaussian filters autocorrelation values of  0.06 and 0.08 were observed. Auto correlations of  high 
frequency noise was -0.03 and -0.05 for the test and retest runs of  the optimal SG filter while for the quasi 
optimal SG filter autocorrelations of  -0.01 and -0.01 were observed. In analogy we observed values of  -0.06 and 
-0.07 for the HRF filter and values of  -0.10 and -0.11 for the Gaussian filter. 
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  observed auto correlation RMSE observed auto correlation RMSE 

test run re test run 

  lag 1 lag 2 lag 3 lag 4   lag 1 lag 2 lag 3 lag 4   

Raw 
0.66 0.48 0.36 0.24 0.22 0.66 0.48 0.37 0.24 0.22 

Denoised (5 wm+5 ventricle+2 motion components) 
0.56 0.34 0.21 0.09 0.24 0.58 0.37 0.24 0.12 0.24 

Denoised 
Detrend SG (311/40) 

0.51 0.25 0.09 -0.05 0.28 0.51 0.24 0.08 -0.06 0.30 

Denoised 
Detrend SG (69/6) 

0.51 0.25 0.10 -0.04 0.28 0.52 0.25 0.09 -0.05 0.30 

Denoised 
Detrend SG (311/40) 
Filtered SG (3/1) 

0.81 0.49 0.16 -0.05 0.04 0.81 0.48 0.15 -0.07 0.04 

Denoised 
Detrend SG (69/6) 
Filtered SG (15/8) 

0.79 0.40 0.08 -0.08 0.08 0.79 0.40 0.07 -0.10 0.10 

Denoised 
Detrend SPM (128 s.) 

0.54 0.31 0.17 0.05 0.25 0.56 0.33 0.20 0.07 0.25 

Denoised  
Detrend SPM (128 s.)  
Filter SPM (HRF) 

0.92 0.73 0.49 0.24 0.38 0.92 0.74 0.51 0.27 0.38 

Denoised 
Detrend SPM (128 s.)  
Filter SPM Gaussian (2.48 s.) 

0.93 0.76 0.54 0.31 0.44 0.93 0.77 0.57 0.35 0.44 

           

  predicted auto correlation   predicted auto correlation   

re test run test run 

  lag 1 lag 2 lag 3 lag 4   lag 1 lag 2 lag 3 lag 4   

Denoised Detrended 0.81 0.54 0.24 -0.01   0.82 0.54 0.25 0.00   

 
Table 1: This table reports observed and predicted grand mean autocorrelations of a test and retest run. The grand average was 

obtained by averaging the auto correlations of 34 nodes* 67 individuals. Observed autocorrelations were estimated from relevant 

timecourse sections for the various preprocessing methods mentioned in column 1 while predicted auto correlations were 

obtained from the constructed predictor timecourse that were based on denoised and SG (311/40) detrended data. RMSE = the 

root mean square error between predicted auto correlations and observed auto correlations. 

 

Properties of  filtered timecourses 

In this section we will show the effects of  preprocessing procedure on power spectra of  timecourses and the 
timecourses themselves. In a first step, we created the grand mean power spectra of  the working memory 
network. Power spectra were obtained per node per subject. Power spectra of  all individuals were subsequently 
averaged. This leads to a representative spectrum for the entire sample under study (Figure S5). As expected, all 
preprocessing methods show highest power at task frequency. Raw timecourses exhibit a peak in the lowest 
frequency range. In fact, the low frequency peak exhibits a density comparable with the task peak. The low 
frequency noise is effectively removed when timecourses are denoised with the timecourses of  the white matter, 
ventricles, and head motion. The SPM high pass filter (128 secs. > 0.0078 Hz) shows almost no effect when it is 
combined with denoising methods. By contrast, SG detrending removes frequencies below task frequency. The 
lower frequencies that are removed through SG filtering are not slow trends that are in fact removed through the 
denoising operation. But they are possibly resting state signals that leak into the cognitive experiment. However, 
these unwanted zombie oscillations are certainly not related to the task of  interest that is performed at higher 
speed.  
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We conclude that SG detrending methods effectively remove zombie oscillations - which are not related to our 
working memory task - from the timecourse while the latter is less the case for conventional SPM filter (128 
seconds > 0.0078 Hz). The question arises if  the observed effects of  preprocessing on power spectra can be 
observed in the timecourses themselves. A closer look on a fraction of  the timecourse of  the working memory 
task reveals that denoising removes slow trends from the grey matter timecourse (see Figure S6). The benefit of  
a conventional SPM high pass filter is very little when it is combined with denoising methods (Figure S6). SG 
based high pass filtering has a slightly bigger effect on the timecourse (Figure 10 and S7). Figures 10 and S6-S7 
might explain why SG filtering is more effective when compared to SPM filters. The conventional SPM filter 
only follows very rough trends, while SG filters capture oscillations that take place at much higher speed. 
Confirming the idea that SG based high pass filters act on a larger range of  non-task related oscillations that 
may stem from resting state power spectra (Figure S5).  

In Figure 10 (see also S7) we compared quasi-optimal and optimal SG detrending on another timecourse 
fraction. It is obvious that the quasi-optimal SG (69/6) filter removes more fine grained trends when compared 
to the optimal SG (311/40) filter. It is possible that quasi-optimal detrending parameters result in a slightly 
overdetailed behaviour. The question arises whether SG low pass filters are also better as their SPM 
counterparts. The effects of  SG and SPM low pass filters on detrended working memory data was gradual but 
substantial in nature as can be viewed from the power spectra depicted in Figure S5. The effects of  HRF and 
Gaussian filters that were applied to the SPM detrended data were rather similar in nature and both reached their 
minimum at 0.15 hz. By contrast, SG high pass filters that were applied to SG detrended data reached their 
minimum around 0.25 hz. SG filters capture dynamic aspects of  cognition that are obviously induced by our 
complex working memory task. A closer look on a fraction of  the timecourse reveals that HRF and Gaussian 
filters destroy timecourse details while this is less the case for both SG low pass filters. (Figure 10 and S8). While 
SG high pass filters are sensitive to dynamics of  signal as revealed by the shape of  its timecourse, this is not at 
all the case for HRF and Gaussian filters. However, this figure also shows that there are limits to amount of  
detail that can be captured by SG filters. The effects of  aggressive low pass filters is to a lesser extent observed 
in event related averages. Figure S1 illustrates that event related averages estimated from distinct preprocessing 
methods are rather similar in shape as long as low pass filtering is used in a conservative fashion. Aggressive low 
pass filters have a disruptive effect on the true shape of  the event related average and abolish cognitively 
relevant information (Figure S1).  
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Figure 10: This figure depicts the effect of  SPM and SG filters on an exemplary timecourse section. Top: conventional SPM 
filter detects very slow fluctuations while SG filters trace faster zombie oscillations. Middle: The effects of  denoising and 
detrending executed within a GLM framework. Bottom effects of  SPM and SG low pass filters Legends are given in the 
panel of  interest. 
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Reliability and true connectivity  

The main purpose of  this paper is to investigate if  SG filters can be used to tackle the dubious charms of  
voodoo correlations on the within subject within path level. Hence, we will focus on true connectivity and the 
extent to which timecourse connectivity is overestimated given the underlying test retest reliability of  
timecourses.             
 Results reported in Table 2 and Table 3 indicates that true connectivity depends on preprocessing 
strategy and length of  the segment of  the timecourse investigated. We first present the results of  the entire 
timecourse and then for the segments of  the timecourses that were not related to rest. Table 2 reveals that 
lowest reliability and connectivity estimates were detected in denoised timecourses (mean connectivity = 0.43; 
mean reliability = 0.25) while optimal SG filtered data yielded the highest values (mean connectivity = 0.59; 
mean reliability = 0.48). This means that it is possible to double the height of  the reliability estimate through 
advanced preprocessing. But although the latter is certainly true, we emphasize that confidence intervals of  
reliability estimates are remarkably alarming given the large number of  time points (487) of  the timecourses 
under study. Lower bounds of  reliability estimate ranged from 0.16 for denoised data to 0.40 for optimally SG 
filtered data. Thus, even optimal preprocessing pipelines just manage to reach the fair reliability criterion when 
conservative lower bound point estimates of  reliability are used      
 The mean percentage of  nodes that could be detected with fair reliability (r > 0.4) within subjects was 
only 15% for denoised data but 65% for optimal SG filtered data. The percentage of  nodes averaged over 
individuals that could be detected with fair reliability ranged from 3% for raw data to 68 % for optimally SG 
filtered data. Finally, the number of  individuals whose average node system could be detected with fair reliability 
ranged from 1% for denoised data to 70% for SG filtered data. Results reported in Table 3 clearly indicate that 
within subject within path reliability reacts sensitive to the type of  preprocessing in use, for true connectivity is 
closely linked to reliability and thus sensitive to differences in preprocessing method. Interestingly, the mean true 
connectivity is not affected by the denoising procedure. A true connectivity of  r = 0.22 was detected in raw and 
denoised timecourses. Detrending within the regression context does not seem to affect true connectivity in a 
negative way. While SPM detrending does not improve true connectivity, SG detrending does (r = 0.29 and 0.31 
for quasi-optimal and optimal SG filters). Not surprisingly, largest improvements in true connectivity were 
obtained when low pass filters were applied. Application of  the HRF and Gaussian filters as available in the 
SPM packages leads to true average connectivities of  r = 0.37 and r = 0.34. While application of  quasi-optimal 
and optimal SG filters lead to true average connectivities of  r = 0.37 and r = 0.43. So it is possible to double the 
true detectable connectivity through advanced preprocessing. The effects of  preprocessing are clearly visible in 
the histograms depicted in Figure S9. The application of  SG low pass filters leads to a substantial boost in 
connectivity and reliability and increases true detectable connectivity. However it should be mentioned that the 
percentage of  overestimated paths at the within-subject within path level was severe. On average, 70-86% of  the 
paths were overestimated depending on the preprocessing method in use. The relative overestimation was lower 
for preprocessing methods that involved some form of  low pass filtering. The effects were rather substantial 
with relative overestimation percentages of  42-64% for SG filtered data as opposed to percentages of  66-100% 
for other preprocessing methods.           
 Next, we show how preprocessing might affect reliability and connectivity if  one concentrates at the 
cognitive section of  the timecourse in Table 3. In S1 we show sections of  cognitive interest for all participants. 
As discussed in the method section, only these timecourse segments were used in the creation of  conservative 
connectomes. Omitting the non- cognitive aspects of  the timecourses has a devastating effect on all the 
measures reported in Table 3. Again, unfavourable reliability and connectivity estimates were detected in 
denoised timecourses (mean connectivity = 0.38; mean reliability = 0.16) while optimal SG filtered data yielded 
the highest values (mean connectivity = 0.46; mean reliability = 0.31). Again, lower bound confidence intervals 
were alarming and ranged from 0.04 for denoised data to 0.2 for optimally SG filtered data. This means that 
reliability of  the conventionally denoised pipeline completely collapsed while reliability of  optimal SG pipelines 
was poor (r<0.4). .            
 True connectivity of  cognitive timecourse sections was much lower when compared to entire 
timecourses. True connectivity of  denoised timecourses dropped from 0.22 to 0.13 while optimal SG filtered 
timecourses dropped from 0.43 to 0.26. Nonetheless, true connectivity of  best preprocessing pipelines remained 
twice as high. Voodoo connectivity values ranged from 74 to 153 percent. 
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  Cognitive + baseline section of timecourse 
Within subject within 
path reliability 

Raw 
(slice time +  
Motion 
correction) 

Denoised  
(5 wm 
5 
ventricle  
2 motion) 

Denoised  
Detrended  
SG 
(311/40) 

Denoised  
Detrended  
SG (69/6) 

Denoised 
DetrendedSG 
(311/40) 
FilteredSG 
(3/1) 

Denoised 
DetrendedSG 
(69/6) 
FilteredSG 
(15/8) 

Denoised 
Detrended 
SPM 
(128s.) 

Denoised 
Detrended 
SPM 
(128s.) 
Filtered 
SPM 
(HRF) 

Denoised  
Detrended 
SPM (128s.) 
Filtered 
SPM(2.48s.) 

Grand mean 
connectivity estimate  

0.44 0.43 0.47 0.46 0.59 0.54 0.44 0.58 0.57 

Grand mean reliability 
estimate  

0.28 0.25 0.35 0.32 0.48 0.41 0.26 0.41 0.38 

Mean reliability  
upper bound 

0.36 0.33 0.42 0.40 0.54 0.48 0.34 0.48 0.45 

Mean reliability  lower 
bound 

0.19 0.16 0.27 0.24 0.40 0.33 0.18 0.33 0.30 

Grand mean 
detectable 
connectivity 
maximum  

0.25 0.22 0.32 0.30 0.45 0.38 0.24 0.38 0.35 

Grand mean true 
connectivity  

0.22 0.22 0.31 0.29 0.43 0.37 0.23 0.37 0.34 

Absolute 
overestimation (r diff.) 

0.17 0.22 0.17 0.18 0.18 0.19 0.22 0.24 0.26 

Relative 

overestimation  77 100 56 64 42 52 93 66 76 

% of corrupt paths 15 8 3 4 4 4 5 5 6 

% of overestimated 
paths  

70 86 85 86 81 83 88 84 84 

Mean % of nodes 
within participants 
with (r>0.4) 

24 15 36 31 65 52 17 50 44 

Mean % of nodes 
within participants 
with (r>0.6) 

4 1 6 5 26 14 1 16 12 

Mean % of nodes 
within participants 
with (r>0.75) 

0 0 0 0 3 1 0 2 1 

% of mean nodes 
(r>0.4) 

3 6 21 18 68 50 9 50 41 

% of mean nodes 
(r>0.6) 

0 0 0 0 9 0 0 0 0 

% of mean nodes 
(r>0.75) 

0 0 0 0 0 0 0 0 0 

% of subj. with mean 
node reliability (r>0.4) 

7 1 15 7 70 52 1 46 40 

% of subj. with mean 
node reliability (r>0.6) 

0 0 0 0 1 0 0 1 0 

% of subj. with mean 
node reliability 
(r>0.75) 

0 0 0 0 0 0 0 0 0 

 
Table 2: This table reports test retest reliability and connectivity statistics of working state data on the within subject level 
as a function of preprocessing method. Figure A reports the section of the timecourse that was used for the liberal 
correlation approach. Data were estimated from a connectome that consisted of 34 nodes obtained from 67 participants 
with a test retest design. 
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Table 3: This table reports test retest reliability and connectivity statistics of working state data on the within subject level 
as a function of preprocessing method. Figure A reports the section of the timecourse that was used for the conservative 
correlation approach. Data were estimated from a connectome that consisted of 34 nodes obtained from 67 participants 
with a test retest design. 

 

 

 

cognitive section of timecourse 

 

Raw 
(slice time   
Motion 
correction) 

Denoised  
(5 wm 
5ventricle  
2 motion) 

Denoised  
Detrended  
SG 
(311/40) 

Denoised  
Detrended  
SG (69/6) 

Denoised 
DetrendedSG 
(311/40) 
FilteredSG 
(3/1) 

Denoised 
DetrendedSG 
(69/6) 
FilteredSG 
(15/8) 

Denoised 
Detrended 
SPM 
(128s.) 

Denoised 
Detrended 
SPM 
(128s.) 
Filtered 
SPM 
(HRF) 

Denoised  
Detrended 
SPM (128s.) 
Filtered 
SPM(2.48s.) 

Grand mean 
connectivity estimate  

0.39 0.38 0.37 0.37 0.46 0.44 0.38 0.50 0.50 

Grand mean reliability 
estimate  

0.20 0.16 0.21 0.20 0.31 0.27 0.17 0.27 0.25 

Mean reliability upper 
bound 

0.31 0.27 0.32 0.31 0.41 0.38 0.28 0.37 0.36 

Mean reliability lower 
bound 

0.08 0.04 0.10 0.09 0.20 0.16 0.06 0.16 0.14 

Grand mean 
detectable 
connectivity 
maximum  

0.17 0.14 0.19 0.18 0.28 0.25 0.15 0.24 0.22 

Grand mean true 
connectivity  

0.14 0.13 0.18 0.17 0.26 0.23 0.15 0.23 0.21 

Absolute 
overestimation (r diff.) 

0.15 0.21 0.18 0.19 0.19 0.19 0.21 0.24 0.25 

Relative 
overestimation  

107 153 100 110 74 85 144 106 120 

% of corrupt paths 26 15 8 8 7 8 11 14 15 

% of overestimated 
paths  

60 78 80 81 78 78 81 76 76 

Mean % of nodes 
within participants 
with (r>0.4) 

14 4 10 8 28 19 5 22 18 

Mean % of nodes 
within participants 
with (r>0.6) 

3 0 0 0 4 2 0 4 2 

Mean % of nodes 
within participants 
with (r>0.75) 

0 0 0 0 0 0 0 0 0 

% of mean nodes 
(r>0.4) 

0 0 0 0 12 0 0 6 0 

% of mean nodes 
(r>0.6) 

0 0 0 0 0 0 0 0 0 

% of mean nodes 
(r>0.75) 

0 0 0 0 0 0 0 0 0 

% of subj. with mean 
node reliability (r>0.4) 

1 0 0 0 15 6 0 9 6 

% of subj. with mean 
node reliability (r>0.6) 

0 0 0 0 0 0 0 0 0 

% of subj. with mean 
node reliability 
(r>0.75) 

0 0 0 0 0 0 0 0 0 
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The increase of  true connectivity with the increase of  preprocessing steps with the liberal correlation approach 
is also visible for the connectome image as depicted in Figure 11. We decided to consider that average true 
connectivity of  a specific path should at least reflect fair reliability (> 0.395). Moreover, given the high 
autocorrelations introduced by the SPM pipeline, we restricted the visualization of  the connectome on non SPM 
preprocessing methods. The raw image shows only one fronto-parietal path. The denoised image shows a 
triangular constellation between the right parietal cortex and two frontal nodes. The detrended image shows the 
previously discussed fronto-parietal triangle with and additional network of  fronto-parietal connections that 
mainly emerged from the right parietal cortex. In addition, frontal connection between the hemispheres 
emerged. The application of  (quasi) optimal SG filtering leads to an enormous increase in overall connectivity 
including left parietal and frontal polar systems. The optimal SG pipeline contained a small connectome that 
exhibited good (r>0.6) true connectivity (Figure 12). According to the conservative correlation approach, only 
the connectome of  the optimal SG filter pipeline reached the critical average true connectivity threshold of  
0.395. The connectome depicted in Figure 12 shows that the middle frontal gyrus (MFG) is the most important 
hub of  the connectome. The MFG is roughly equivalent to the dorso lateral prefrontal cortex. This area is 
believed to be the core neural correlate of  working memory processes (46). Working memory researchers usually 
claim that an area is relevant for working memory when it exhibits sustained brain activity during the course of  
the experiment. The graph depicted in Figure S1 that was based on the optimal SG filtered pipeline suggests 
that the latter is the case for most individuals under study. 

 

Simultaneous filter and nuisance regression 

Previous research on resting state data suggested that noise is reintroduced into the timecourses of  interest 
when filters are applied after denoising (50). Hence, our pipeline can be criticized because we indeed optimized 
and validated low pass filters after denoising and detrending data within a GLM framework. However it should 
be said that bandpass filters as applied in resting state research are not suitable for cognitive research because 
they may corrupt cognitive signal of  interest. We investigated what happens with the signal if  low and high pass 
filters as well as nuisance timecourses are simultaneously introduced into the GLM. We observed that the effects 
were strikingly different for the distinct filter types under study. RMSE values reported in Table S2 suggest that 
autocorrelations of  the SPM pipeline dropped substantially when low pass filters were integrated into the GLM. 
The better temporal resolution led to a slight loss of  true detectable connectivity (Table S3). Altogether, SPM 
filters when applied at all should be integrated into the GLM and not run after preprocessing.  But 
autocorrelations and relative over estimation estimates of  SPM low pass filtered data remain very problematic 
independent of  the pipeline in use. Hence, we did not consider these pipelines in further analysis. Regarding SG 
filters, results where more puzzling. We again optimized a filter in the verbal working memory task using brute 
force methods. But as discussed this time all parameters were entered into the GLM at once. This leads to a SG 
low pass filter with a window size of  105 and a polynomial order of  35. Validation of  the filter in the spatial 
working memory data led to a substantial boost in true detectable connectivity. Non intergraded SG filters 
exhibit an average true connectivity of  0.43 while integrated filters exhibit a true connectivity of  0.48 (Table S3). 
In addition, no less than 94% of  individuals exhibit a mean node reliability of  0.4 when integrated low pass 
filters were used whereas this number was only 70% for non-integrated low pass filters. Superficially integrated 
SG filters seem to do a better job. However the price for this is a substantial increase in temporal autocorrelation 
(Table S2). In this context RMSE of  non-integrated filters was roughly 0.05 whereas integrated approaches 
exhibited an RMSE of  0.15. The potentially destructive effects of  the integrated approach on the timecourse of  
interest can be seen in the power spectra shown in Figure S10.  
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Figure 11: This figure reports how preprocessing affects true connectivity strength between 34 nodes of interest. 
Only connections with an average true connectivity of r>0.4 estimated from 69 individuals are shown. An average 
true connectivity of r>0.4 implies that average within subject timecourse reliability of the underlying nodes is at 
least fair r>0.4 Darker colours refer to lower correlations brighter colours to higher correlations. 
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Figure 12: This figure shows the effects of correlation approach on the connectome of interest using an optimal SG pipeline. 
The liberal approach included cognitive action + rest while the conservative approach included cognitive action only. Top: 
Liberal correlation approach. Only paths with true connectivity > 0.595 are shown. Bottom: Conservative correlation 
approach. Only paths with true connectivity > 0.395 are shown. An average true connectivity of r>0.4 or r>0.6 implies that 
that average within subject timecourse reliability of the underlying nodes is at least fair r>0.4 or good>0.6.  
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DISCUSSION 

SG filters improve true connectivity while conserving realistic auto correlations 

A previous task driven fMRI study reported that within subject reliability of  timecourses may not exceed 0.25 
(22). This suggests that true connectivity among region A and B cannot exceed 0.25. We have investigated if  the 
hypothesized maximum value of  0.25 can be observed in experimental data. We used a similar pipeline as our 
colleagues .i.e. removed noise through regression analysis and high pass filters (128 seconds). Grand mean true 
connectivity of  a working memory related connectome consisting of  34 nodes measured in 67 participants was 
very poor (r = 0.23). This is somewhat puzzling because observed connectivity among the very same regions 
was 0.44 meaning that roughly half  of  the observed connectivity variance is voodoo. We tried to improve the 
reliability of  the timecourses with classic SPM low pass filters. The latter included a Gaussian filter (2.48 
seconds) and a HRF filter. Application of  these filters led to a substantial boost in connectivity. But these classic 
filters also boosted autocorrelations substantially. Observed lag 4 autocorrelations were roughly 0.3 meaning that 
classic SPM low pass filters may obscure temporal information of  timecourses. We conclude that low pass filters 
have been omitted from the classic SPM package for good reasons. Results of  SG low pass filters were more 
favourable. We observed a fair true connectivity of  0.43 and a connectivity of  0.59 in the optimal SG based 
preprocessing pipeline. Generally these findings suggest that roughly one third of  the observed connectivity 
variance is voodoo. The percentage of  nodes that were measured with at least fair (r > 0.4) or at least good 
reliability (r > 0.6) at the within subject level was on average 65% and 26% respectively. Furthermore, 
application of  the SG based pipeline results in grey matter timecourses that approach the auto correlational 
structure of  the idealized bold response. This observation was complemented by an analysis that focused on the 
auto correlation of  high frequency noise. As expected autocorrelation of  SG filtered noise signals was very low. 
Remarkably, autocorrelations of  noise time courses was lower for quasi optimal (r=0.01) than for optimal 
(r=0.04) SG filters. But as discussed in the introduction the assumption that fMRI noise approaches idealized 
noise must not hold true. The temporal resolution of  SG filtered signals is relatively high because bold 
fluctuations reflect dynamic changes in cognitive behaviour. This may be relevant fc-MRI applications that 
investigate rapid changes in connectivity patterns. Dynamic connectivity studies might be feasible because novel 
imaging methods may trace neural effects at a speed of  0.75 Hz (51). In this study timecourses of  a predefined 
patch of  interest were averaged.  But colleagues have shown that it is better to average timecourses of  
neighbouring regions that share common temporal variations (17). Maybe it is best to combine this averaging 
approach with an SG filter.  

SG filters detect zombie oscillations 

SG filters that are designed to detrend MRI signals improve within subject timecourse reliability while this is not 
the case with the classic SPM high pass filter (128 seconds). Our analyses suggest that SG filters detect 
oscillations not related to task, which are substantially faster than oscillations removed through classic SPM high 
pass filters. We can exclude the possibility that zombies are related to scanner drift, physiological noise as 
captured by our regressors or head motions. However, exclusion is in this case not a sufficient method to 
achieve a clear definition of  what zombies are. We can only speculate about the biological meaning of  zombie 
oscillations. Zombie oscillations may contain physiological noise that was not removed by the standard 
denoising method. Furthermore, Figure S5 shows that SG filters suppress oscillations that originate from the 
“resting state frequency band”. Hence, one might speculate that resting state signals contaminate working state 
signals(45). As determined in the analyses, zombie oscillations are too fast for ordinary signal trends. Hence, 
zombie oscillations may reflect brain activity that is not under the voluntary control of  the individual. These 
unreliable forms of  brain activity may interfere with working state signals. We called these oscillations “zombie 
oscillations” in analogy to the undead neural process described in a paper entitled “The zombie within” by the 
late Nobel laureate Crick (52). But whether zombie oscillations in the latter sense of  the word exist is subject of  
future research.  

Reliable detection of  subtle bold changes require refined pipelines  

In the present study, we removed resting baseline sections from the fMRI timecourse. This yielded an analysis that 
focused on subtle task induced oscillations in the 0.05-0.2 Hz range. Average true connectivity of  denoised 
timecourses dropped from 0.22 to 0.13 while true connectivity of  optimal SG filtered timecourses dropped 
from 0.43 to 0.26. None of  the pipelines were able to detect the overall connectome with a grand mean 
timecourse reliability of  r > 0.4. However figure 12 shows that timecourses that were treated with optimal SG 
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filters yielded an interpretable connectome that exhibited sufficient within subject timecourse reliability (r>0.4) 
at the node level. We conclude that experiments that focus on subtle changes in brain activity might require 
refined pipelines. Currently, we lack hard prove that conservative connectivity estimates that exclude the resting 
baseline from the timecourse are indeed better when compared to liberal connectivity estimates that include the 
resting baseline. In fact removing the baseline form the timecourse may introduce “cutting artefacts”. It has 
been suggested that cognitive aspect of  the BOLD response should be removed from the signal trough 
covaraince analysis or low pass filters. Superficially this seems to be a valid method because it induces 
stationarity without artefacts. In our opinion it is rather speculative to assume that the remaining signal indeed 
reflects cognitive behaviour. Moreover our pipeline effectively removes most signals that are not related to the 
cognitive signal of  interest as can be viewed from power spectra presented in Figure S5. Thus removing the 
cognitive aspect from the time course may result in a rather empty timecourse.  

Low pass filter should be used after denoising 

Previous resting state studies claim that overestimation of  connectivity is reduced when Fourier filtered signals 
and nuisance factors are simultaneously regressed out within a GLM framework (50). In this task driven 
connectivity study that focused at BOLD oscillations in higher frequency bands the opposite was true. SG low 
pass filters integrated in a GLM frame work yield slightly higher absolute over estimation values when compared 
to SG filters that were run over timecourses after preprocessing. For this reason, we do not recommend to 
integrate SG filters in a GLM framework although they may boost true connectivity substantially. We conclude 
that it is not possible to generalize the previous observations that have been obtained from Fourier based filters 
to SG filters (50). We suggest that aggressive bandpass filters - that are frequently used in resting state studies - 
should be regarded with scepticism because they may remove cognitive and emotional information from the 
timecourse. 

Limits of  pipeline optimization 

Tables 2 and 3 reveal that improvements made by SG filters are substantial indeed. This is not only true for 
optimal SG pipelines but also true for quasi optimal SG pipelines that can be run over shorter timecourses. But 
we do not know if  the limits of  true connectivity maximization have been reached by our SG pipeline or if  
further improvements are possible. One might argue that within subject within region reliability is a very 
conservative measure because humans inherently exhibit response variability that is reflected in the timecourse. 
Consequently, within region timecourse reliability is not only limited by the scanner or preprocessing method in 
use but also by brain activity itself. Currently it is difficult to distinguish response variability from noise. Thus 
even though psychologically induced timecourse variability might exist, it remains a speculative and hard to 
measure phenomena in the context of  fMRI. 

Are fc-MRI pipelines alternative map machines? 

In the past, function related brain areas that were detected with classic BOLD experiments were discussed 
within the context of  neuropsychological lesion studies. In addition, multi method experiments suggested that 
the BOLD response might have a true neural basis (53). This gave classic bold imaging some credibility. 
However, a comparative investigation of  over 6000 fMRI pipelines shows that classic BOLD imaging is not 
unproblematic (54). Researchers are confronted with a large number of  alternative maps that may or may not 
reflect biological reality (54). The same argument holds of  course true for connectivity studies. In the present 
study, more than 100000 fMRI pipelines were tested to find an optimal SG filter combination. The number of  
alternative pre-processing methods may easily run into the billions when diverse filter methods are combined 
with variable numbers of  noise variables that may have been obtained through various methods. Here, we focus 
on 4 pipelines that survived the filter optimization procedure. We concentrate on the number of  paths that 
exhibited a fair average true connectivity > 0.4 in face of  acceptable autocorrelations. The “raw” pipeline yielded 
only one path, a pipeline that combined noise regression with an SPM high pass filter yielded 4 paths. A pipeline 
that combined noise regression with SG detrending yielded 74 paths. Adding an SG low pass filter to the latter 
pipeline resulted in a true connectome of  352 paths. The differences between the connectomes depicted in 
figure 11 are substantial. The question is which connectome reflects biological reality? Unfortunately, we don’t 
know because we only have statistical arguments pro or contra a pipeline. Hence causal external validation of  fc-
MRI pipelines with methods other than fMRI is required. Currently, we do not have connectivity studies that 
compare the effects of  distinct MRI signal processing pipelines in combination with invasive direct brain 
stimulation and direct brain recoding techniques. This is remarkable because these kind of  experiments are 
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feasible  (55) (56). However, multi method experiments are challenging because distinct imaging modalities may 
leave their traces in the signals of  interest. Alternatively, one might try to improve fMRI pipelines on the basis 
of  computer simulations. The advantage of  the simulation method is that ground truth can be known. But 
computer simulation methods are based on the idea that realistic noise simulation is feasible. However one 
might question if  white, pink or other forms of  synthetic noise are true approximations of  real world noise. In 
fact the autocorrelation of  the noise timecourse was not zero for the optimal SG pipeline. Hence fMRI high 
frequency noise is possibly not equivalent with white noise.  Moreover zombie oscillations are possibly difficult 
to simulate since they might contain psychological variability of  unknown origin. Finally, it is likely that some 
sources of  fMRI noise are still waiting to be discovered (45).       
 Problems around the validity of  fc-MRI draw a sombre light on its clinical relevance. To the best of  our 
knowledge no fc-MRI pipeline has been approved by the US Food and Drug Administration for clinical use 
(https://www.fda.gov/medicaldevices/). This remarkable since the FDA approved several classic BOLD 
imaging software packages as diagnostic instruments for invasive medical purposes. Thus the use of  fc-MRI in 
diagnostic settings remains controversial. In contrast to structural MRI, fc-MRI never reached the status of  a 
standard clinical routine in neurosurgery. Currently, most neurosurgeons still rely on direct brain stimulation 
methods that provide a causal link between a specific brain area and a cognitive function.   

Limitations of  this study.  

This study is possibly the first fc-MRI study that investigates the effects of signal processing on true 
connectivity. We are left with the platitude that one study is no study. In the present study, SG filters were 
developed for slow event related design. It is very unlikely that our pipeline generalizes to other fMRI 
experiments. However, with a few further studies it may be possible to derive a function connecting the timing 
parameters of fMRI experiments, noise sources and the adequate SG filters necessary to deal with them. We 
speculate that optimal fMRI pipelines parameters may differ from experiment to experiment, brain region to 
brain region and individual to individual. However we were unable to show this. Furthermore we did not 
investigate if  different repetition times might affect SG filter parameter optimization. In addition we did not 
study if  behaviour of  classic SPM filters can be improved when parameters are changed for modern purposes. It 
was beyond the reach of  this study to compare SG pipelines with principal- or independent component analysis, 
wavelet analysis or autoregressive integrated moving average methods. In principle these methods although 
complicated may outperform our SG based method. We took the participants out of  the scanner and repeated 
the measurements after some time. Thus, the head position and physiological condition of  the participants were 
changed. But it is possible that reliability of  our study is overestimated because test and retest sessions were 
obtained at the same day (18). The power spectra presented in Figure S5 suggest that SG filters remove noise in 
a very effective way. However, we did not obtain sources of  physiological/psychological noise such as heart rate, 
respiration rate, electrodermal activity, body temperature, or eye motion. We think that it is likely that these 
unwanted sources of  noise were removed by our pipeline but we have no proof  of  this. Finally one could argue 
that SG filters may also improve reliability of  sophisticated methods such as granger causality, structural 
equation modelling or dynamic causal modelling. But this was again not within the reach of  this study. One 
could use reliability estimates to correct connectivity estimates for measurement error (24). In fact we have used 
this kind of  methods in a genetic context in a previous study (30). However we feel that the time is ripe to show 
the unadorned reality of  fMRI.  
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CONCLUSION 

So far, more than 40.000 fMRI papers have been published but very few papers report test retest reliability of 
timecourses at the within subject within region level (11, 22). This is remarkable since timecourse analysis is at 
the core of every fMRI method. We observed that Savitzky Golay (SG) filters simultaneously maximize true 
connectivity among brain regions and minimize spurious auto correlations of timecourses. However the use of 
SG filters is not without risks since ill designed SG filters have an extraordinary destructive effect on the 
reliability of the signal. We used Cicchetti judgment values to interpret our results. In this context, poor 
timecourse reliability estimates (mean reliability under bound r < 0.4) were classified as insufficient for scientific 
purposes. In the present study, only SG based pipelines were on average sufficiently reliable for scientific 
purposes (mean reliability under bound r > 0.4). The road to timecourse reliability of clinical quality (r > 0.75) 
might be long. We observed that roughly one third of the observed connectivity variance remains voodoo 
despite pipeline optimization. Unfortunately, we do not know if the favourable results obtained from SG 
pipelines are generally valid because we lack external validation with a method other than fMRI. It is quite 
possible that other pipelines with poor statistical properties are better suited to display neural reality. Thus, SG 
pipelines may add to the confusing amount of existing pipelines. Timecourse reliability is possibly a very 
conservative reliability measure given the poor signal to noise ratios of fMRI and the inherent response 
variability of participants. In addition time course reliability of resting state data cannot be estimated. In this 
context it may be legitimate to measure reliability of fMRI on a group level that result in substantially higher 
reliability. Whether these relaxed reliability estimates lead to single subject connectomes suitable for invasive 
medical purposes remains to be seen. 

Our study shows that it is fairly easy to manipulate fc-MRI data but fairly difficult to find the truth in fc-MRI 
data. Fc-MRI may suffer from a validity crisis when causal external validation of fc-MRI pipelines is executed at 
current rate. 
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