

1 ***Butyrivibrio hungatei* MB2003 competes effectively for soluble sugars released by**
2 ***Butyrivibrio proteoelasticus* B316^T from growth on xylan or pectin.**

3

4 Nikola Palevich^{a,#}, William J. Kelly^{a,*}, Siva Ganesh^a, Jasna Rakonjac^b and Graeme T. Attwood^a.

5

6 ^aAgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.

7 ^bInstitute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.

8

9 Running Head: *Butyrivibrio* pasodoble on xylan and pectin.

10

11 [#]Address correspondence to Nikola Palevich, nik.palevich@agresearch.co.nz.

12 *Present address: Donvis Ltd, Palmerston North, New Zealand.

13

14 Word Counts: Abstract: 228, Importance: 130, Article word count: 5,749.

15

16 **ABSTRACT** Rumen bacterial species belonging to the genera *Butyrivibrio* are important
17 degraders of plant polysaccharides, particularly hemicelluloses (arabinoxylans) and pectin.
18 Currently, four distinct species are recognized which have very similar substrate utilization
19 profiles, but little is known about how these microorganisms are able to co-exist in the rumen. To
20 investigate this question, *Butyrivibrio hungatei* (MB2003) and *Butyrivibrio proteoelasticus*
21 (B316^T) were grown alone or in co-culture on the insoluble substrates, xylan or pectin, and their
22 growth, release of sugars, fermentation end products and transcriptomes were examined. In
23 single cultures, B316^T was able to degrade and grow well on xylan and pectin, while *B. hungatei*

24 MB2003 was unable to utilize either of these insoluble substrates to support significant growth.

25 Co-cultures of B316^T grown with MB2003 revealed that MB2003 showed almost equivalent

26 growth to B316^T when either xylan or pectin were supplied as substrates. The effect of co-culture

27 on the transcriptomes of B316^T and MB2003 was very marked; B316^T transcription was largely

28 unaffected by the presence MB2003, but MB2003 expressed a wide range of genes encoding

29 carbohydrate degradation/metabolism and oligosaccharide transport/assimilation in order to

30 compete with B316^T for the released sugars. These results suggest that B316^T has a role as an

31 initiator of the primary solubilization of xylan and pectin, while MB2003 competes effectively as

32 a scavenger for the released soluble sugars to enable its growth and maintenance in the rumen.

33 **IMPORTANCE** Feeding a global population of nine billion people and climate change are

34 the primary challenges facing agriculture today. Determining the roles of rumen microbes

35 involved in plant polysaccharide breakdown is fundamental to understanding digestion and

36 maximizing productivity of ruminant livestock. *Butyrivibrio* are abundant rumen bacteria and are

37 a substantial source of polysaccharide-degrading enzymes with biotechnological applications for

38 the depolymerization of lignocellulosic material. Our findings suggest that closely related species

39 of *Butyrivibrio* have developed unique strategies for the degradation of plant fibre and the subsequent

40 assimilation of carbohydrates in order to coexist in the competitive rumen environment. The

41 identification of genes related to their enzymatic machinery by which these bacteria work in

42 concert to degrade these different forms of polysaccharides contributes to our understanding of

43 carbon flow in the rumen.

44 **KEYWORDS:** Rumen, bacteria, hemicellulose, pectin, *Butyrivibrio*, genome, transcriptome,

45 CAZy, sugar ABC transport system.

46 **INTRODUCTION** The bacterial community responsible for plant fibre degradation within
47 the rumen is diverse (1-3), and interactions between bacterial species facilitate this process (4).
48 Bacterial species belonging to the genus *Butyrivibrio* are metabolically versatile (2), and
49 efficiently utilize the insoluble, complex polysaccharides, xylan and pectin (5-8). At present,
50 there are four recognized *Butyrivibrio* species (9), but knowledge of the interactions between
51 these species, and the consequences of these interactions to fibre degradation in the rumen, are
52 poorly understood.

53 Comparison of the *B. hongatei* MB2003 (10, 11) and *B. proteoelasticus* B316^T (8) genomes, and
54 in particular their CAZyme profiles, show that these *Butyrivibrio* species are functionally similar,
55 and predict important roles for these species in the breakdown of hemicelloses and pectin. B316^T
56 contains 342 predicted CAZymes, and shows strong growth and rapid degradation of both
57 oatspelt xylan and apple pectin (12). However, phenotypic analysis of MB2003 showed it
58 cannot grow on these insoluble substrates (10, 11), even though it encodes 225 CAZymes
59 associated with hemicellulose and pectin degradation. Therefore, it is hypothesized that MB2003
60 does not directly hydrolyze xylan or pectin, but rather relies on other rumen organisms with more
61 developed polysaccharide degrading abilities to initiate the degradation of insoluble substrates,
62 and competes for the released oligosaccharides and sugars to enable its growth. To investigate
63 this hypothesis, MB2003 and B316^T were grown on oatspelt xylan or apple pectin, separately in
64 mono-cultures to compare their individual substrate utilization abilities, and together in co-
65 cultures, to investigate the interactions that occurred. Growth of the strains was followed with
66 strain-specific qPCR and monosaccharides release from these polymers and their subsequent
67 utilization was measured, along with fermentation end products and gene transcript abundances.

68 **RESULTS**

69 ***B. hungatei* MB2003 competes with *B. proteo*clasticus B316^T for xylan and**
70 **pectin.** *Butyrivibrio hungatei* MB2003 and *Butyrivibrio proteo*clasticus B316^T strains were
71 grown as mono- or co-cultures on the insoluble substrates oatspelt xylan and apple pectin, to
72 examine the interaction between the strains. The qPCR analysis of the mono-cultures showed
73 that B316^T was able to utilize well, both xylan and pectin for growth (Fig. 1). MB2003 showed
74 only slight growth on pectin, and very little growth on xylan. In competition, co-cultures of
75 MB2003 and B316^T displayed similar growth until 16 h when either xylan or pectin were
76 supplied as substrates. B316^T grown in co-culture with MB2003 showed greatly reduced growth
77 compared to its growth in mono-culture.

78 Fermentation end-products were used as an additional indicator of growth (Table S2). Formate
79 was the main VFA produced in B316^T mono- and B316^T + MB2003 co-cultures on xylan,
80 followed by butyrate, then acetate. In contrast, acetate was the main VFA produced by B316^T
81 mono- and B316^T + MB2003 co-cultures grown on pectin, followed by formate, then butyrate.
82 For MB2003 grown on xylan or pectin in mono-culture, only small amounts of VFAs were
83 produced, reflecting the poor growth of this strain alone on either of these insoluble substrates.
84 The total amount of VFAs produced in pectin co-culture samples was less than the combined
85 amounts of VFAs produced by MB2003 and B316^T mono-cultures, while co-cultures grown on
86 xylan produced more total VFAs than the mono-cultures combined.

87 Monosaccharides released from xylan and pectin during growth were measured using ion
88 chromatography (IC; Fig. 1). For B316^T cells grown on xylan, the most abundant sugar detected
89 was xylose. Maximum concentrations of xylose were detected at 12 h and 10 h in mono- and co-
90 culture samples respectively, with small amounts of arabinose and galactose detected from 8 to

91 16 h of growth (Fig. 1A). The xylan-grown MB2003 mono-culture samples showed very little
92 release of monosaccharides (Fig. 1A). The pectin grown cultures showed similar sugar release
93 dynamics in the mono- and co-culture samples (Fig. 1B), but the monosaccharide detected at the
94 highest concentration was galactose, with smaller amounts of arabinose and rhamnose. The
95 B316^T mono-culture produced a rapid release of galactose (0.08 mM) from 6 h to 8 h (Fig. 1B),
96 while MB2003 released smaller amount of galactose (0.03 mM) during the same phase of growth
97 (Fig. 1B). A similar amount of galactose (0.04 mM) was released in the co-cultures (Fig. 1B).
98 The results indicate that B316^T is an efficient primary degrader of both xylan and pectin, and that
99 MB2003 is able to compete with this bacterium by utilizing small monosaccharides, xylo- and
100 pectic- oligosaccharides.

101 **Transcriptional changes and differential gene expression.** Samples of mono- and
102 co-cultures of B316^T and MB2003 grown on xylan or pectin were collected at mid-log growth
103 (12 h) and RNAs were extracted for transcriptome analyses (Data Set S1 and S2). Transcripts
104 from a total of 1,900 genes in B316^T and 3,000 genes in MB2003 were detected, and among
105 these 1,300 and 2,206 genes had functional annotations in B316^T and MB2003, respectively. The
106 total numbers of differentially expressed genes (DEGs; FDR *Q-value* < 0.05, KW adjusted *p*-
107 *values* of < 0.05 and \geq 2-fold log₂-transformed signal intensity difference; see Text S1) were 17
108 and 307 for the xylan growth condition, 56 and 787 for the pectin growth condition in B316^T and
109 MB2003 respectively (Table S4). The most abundant and DEGs (mono- vs co-culture) for B316^T
110 transcripts were those associated with post-translational modifications, carbohydrate metabolism
111 (various CAZymes), sugar ABC transport systems, flagella biosynthesis and some transposases
112 (Data Set S1). In MB2003 the DEGs were associated with acetyl-CoA metabolism, sugar ABC
113 transport system, DNA replication, carbohydrate metabolism (various CAZymes) and flagella

114 biosynthesis (Data Set S1). The full gene annotations, CAZy families, and COG functional
115 assignments of all the DEGs are shown in Data Sets S3 to S6.

116 During growth on xylan, B316^T had 10 genes up-regulated in the mono-culture conditions and 7
117 genes up-regulated in the co-culture conditions (Data Set S2). In contrast, MB2003 cells grown
118 in mono-cultures on xylan had 215 genes up-regulated while 92 genes were up-regulated in the
119 co-culture condition (Data Set S2). MB2003 also had 14 genes significantly up-regulated in the
120 xylan mono-culture that were not expressed at all in the co-culture situation, and 4 genes in the
121 co-culture conditions that were not expressed at all when grown in mono-culture. During growth
122 on pectin, B316^T up-regulated 49 genes in mono-culture while only 7 in co-culture conditions
123 (Data Set S3). There were 26 genes that were only expressed in the mono-culture and there were
124 no genes induced only in the co-culture. MB2003 grown on pectin was very different in terms of
125 DEGs; 725 genes were up-regulated in the mono-cultures and 62 were up-regulated under co-
126 culture growth (Data Set S3). MB2003 had 107 genes up-regulated in the mono-culture that were
127 not expressed at all in the co-culture, and no genes were expressed exclusively in the co-culture.

128 COG classifications were assigned to 56% and 66% of B316^T DEGs from cells grown on xylan
129 and pectin, respectively, while 75% and 63% of MB2003 DEGs from cells grown on xylan and
130 pectin, respectively were assigned to COGs. For MB2003 grown on xylan, the number of co-
131 culture DEGs assigned to the carbohydrate metabolism category (G) was similar to the mono-
132 culture, while the number of co-culture DEGs assigned to the cell motility COG category (N)
133 was three times higher than the mono-culture (Fig. 2). This suggests that MB2003 up-regulates
134 its motility functions when co-cultured with B316^T on xylan. For the pectin grown cultures of
135 MB2003, DEGs belonging to every COG category analyzed were up-regulated in the mono-
136 culture to a significant extent compared to the co-culture (Fig. 3).

137 **Differentially expressed genes for CAZymes predicted to be secreted to**
138 **initiate xylan and pectin degradation.** RNA sequencing (RNA-Seq) transcriptional
139 analysis of CAZyme assignments for DEGs indicated differences in carbohydrate metabolism of
140 mono- and co-cultures of B316^T and MB2003 grown on xylan (predominantly GAX) or pectin
141 (predominantly XGA and RG-I) (Data Sets S3 to S6). The presence of a predicted signal peptide
142 signal sequence on the CAZyme genes indicated that they were membrane bound. Strikingly, for
143 B316^T only *xsa43A* (xylosidase/arabinofuranosidase) from xylan-containing mono-cultures was
144 highly up-regulated at 3.36 log₂-fold change (Fig. 4A). The observed up-regulation of *xsa43A*
145 (bpr_I0302) in B316^T mono-cultures grown on xylan (Fig. 4A), signifies that this is an important
146 enzyme for xylan degradation. Previous functional characterization of the *xsa43E* from B316^T
147 found this enzyme has dual β -xylosidase and α -L-arabinofuranosidase activities (13), and also
148 encodes an N-terminal GH43 (Pfam04616) catalytic domain, and a C-terminal CBM6
149 (Pfam03422) non-catalytic module that has been shown to bind xylan in other organisms (14).
150 CBM6 domains are able to recognize xylose either as a monosaccharide, at the non-reducing end
151 of xylo-oligosaccharides, or within the side chain components of xyloglucan (15). Several CBM6
152 modules also recognize (1,3)- β -D-linkages at the non-reducing end of β -glucans (16, 17), and
153 appear to have co-evolved with their associated catalytic domains to acquire the same substrate
154 specificity (18). α -L-arabinofuranosidases cleave arabinose side chains from substituted xylo-
155 oligosaccharides derived from xylan (19). It is hypothesized that *xsa43A* is secreted into the
156 extracellular environment and has a role in disrupting the complex inter- and intra-polymer
157 networks within the plant cell wall.
158 Furthermore, high arabinofuranosidase activity has previously been observed with *B. fibrisolvens*
159 grown on xylan suggesting arabinofuranosidase activity may be regulated by the availability of

160 arabinose (20-23). It was surprising that B316^T did not significantly up-regulate any genes
161 encoding secreted CAZymes when grown in mono- or co-culture on pectin, however it displayed
162 better growth in mono-culture on pectin than on xylan (Fig. 1B).

163 In comparison, MB2003 expressed 6 CAZyme DEGs predicted to be presented on the surface in
164 the xylan-containing cultures and 8 in the pectin-containing cultures (Fig. 4B, C and 5B, C).
165 MB2003 xylan transcriptomes significantly expressed secreted enzymes containing CE1 and CE4, as
166 well as GH53, GH10 and GH5 CAZy domain containing genes (Fig. 4B and C). The extracellular
167 feruloyl esterase *est1A* (bhn_III78) and polysaccharide deacetylase *est4C* (bhn_I0856) predicted
168 to target the acetyl side groups of xylan, were significantly up-regulated in MB2003 xylan mono-
169 cultures (Fig. 4B and Data Set S1). Furthermore, in MB2003 xylan mono-cultures, *cel9A* (endo-
170 1, 4- β -glucanase, GH9/Pfam00759) was the most up-regulated CAZyme gene with 5.36 log₂-fold
171 change (Fig. 4B). In addition to the secreted enzymes containing the various GH and CE CAZy
172 domains for degradation of GAX and its constituent side groups, the GH13 and PL1 domains
173 that target (1,4)- β -D-linkages within the galacturonic acid backbones are also necessary for the
174 extracellular degradation of XGA and RG-I.

175 The 8 genes encoding secreted CAZymes involved in pectin breakdown up-regulated in MB2003
176 mono-culture transcriptomes varied greatly in their predicted enzymatic capability (Fig. 5B).
177 MB2003 significantly expressed secreted enzymes containing GHs 53, 30, 13 as well as 43 and
178 10 CAZy domain containing genes (Fig. 5B). Among these were genes with additional non-
179 catalytic domains including *lyc25B* lysozyme (GH25 and two SH3 domains) and *xsa43A*,
180 xylosidase/arabinofuranosidase (GH43 and CBM6 domains). The *xsa43A* gene of MB2003 is
181 homologous to the *xsa43A* of B316^T (Fig. 4A), and is proposed to possess dual β -xylosidase and
182 α -L-arabinofuranosidase activities. It is hypothesized that *xsa43A* is secreted where extracellular

183 debranching of pectin results in release of arabinose and xylose side groups prior to pectic-
184 oligosaccharide assimilation.

185 The *gh30A* (bhn_I2771) was significantly up-regulated only in MB2003 mono-cultures grown on
186 pectin (Fig. 5B). This enzyme has a GH30 (Pfam02055) catalytic domain that is predicted to
187 have activities in debranching of pectin to release *D*-xylose and to hydrolyse (1,4)- β -D-linkages
188 in xylans (24). However, the functional role of GH30 enzymes, and their contribution to xylan
189 and pectin degradation, will require further biochemical investigation. The β -1,4-galactanases
190 containing GH53 catalytic domains are predicted to degrade galactan and arabinogalactan side
191 chains in the hairy regions of pectin, by attacking the 1,4- β -D-galactosidic linkages in Type I
192 arabinogalactans (25). In MB2003 *agn53A* (bhn_I0681) was significantly expressed in mono-
193 culture pectin-grown cells and was the most up-regulated gene in co-culture xylan-grown
194 MB2003 cells (Fig. 5B and 4C). This suggests that *agn53A* encodes an important xylan- and
195 pectin-degrading enzyme in MB2003. MB2003 encodes one secreted CBP (bhn_I1873, 984 aa),
196 and this protein was significantly up-regulated only in pectin-grown mono-culture cells (Fig.
197 5B). The domain structure of MB2003 bhn_I1873 is unique, containing six CBM6 domains
198 towards the N-terminus and a single C-terminal CBM2a domain. We propose that the
199 significantly up-regulated and above mentioned enzymes contribute to the surface trimming and
200 depolymerization of complex xylans (predominantly GAX) or pectin (predominantly XGA and
201 RG-I).

202 **Preferential upregulation of genes encoding surface binding proteins that**
203 **facilitate uptake of monosaccharides, xylo- and pectic- oligosaccharides via**
204 **ABC transport systems in response to growth on xylan and pectin.** Functional

205 annotations of DEGs assigned to the “Carbohydrate transport and metabolism” COG category
206 [G] were investigated in order to determine which carbohydrates are taken up by B316^T and
207 MB2003 cultures grown on xylan and pectin. The transcriptional analysis revealed a substantial
208 number of ABC transporters up-regulated in MB2003 grown on xylan or pectin in both co- and
209 mono-cultures. DEGs associated with ABC system carbohydrate transport and their organization
210 in relation to the surrounding genes encoding polysaccharide-degrading enzymes in the xylan
211 and pectin transcriptomes of B316^T and MB2003, are shown in Fig. 7. Strikingly, the most up-
212 regulated genes in both the xylan and pectin transcriptomes encode solute-binding proteins
213 (SBPs) and permease proteins (PPs) of the sugar ABC transport systems that contained a
214 carbohydrate uptake transporter type 1 (CUT1) or a CUT2 domain. The CUT1 domains were
215 represented by COG1653 (SBPs), and COG0395, COG1175 and COG4209 (PPs). The CUT2
216 domains were represented by COG1879 and COG4213 (SBPs), as well as COG1175 and
217 COG4214 (PPs). The most prevalent belonging to the Carbohydrate Uptake Transporter 1
218 (CUT1) family that mediate di- and oligo-saccharide uptake (26). The CUT1 and CUT2 family
219 SBPs are represented by the COG1653 and COG4213 domains (27).
220 Overall, the transcriptomic analysis identified up-regulation of 45 and 38 genes when grown on
221 xylan, with 10 and 78 genes when grown on pectin, encoding membrane proteins (predicted to
222 function as carbohydrate transporters) in B316^T and MB2003 respectively (Data Set S1 and S2).
223 Among the 38 and 78 ABC transporter proteins expressed in MB2003, significant up-regulation
224 of three and four genes encoding proteins with predicted functions as xylose ABC transporters
225 were detected in xylan and pectin transcriptomes respectively. In addition, MB2003 also
226 displayed significant expression of 13 and 46 genes associated with many different transport
227 systems and target substrates in the xylan and pectin transcriptomes, respectively. For the B316^T

228 transcriptomes, no genes encoding xylose ABC transporter systems were differentially expressed
229 and the only genes with predicted functions as sugar ABC transporters were found.
230 While numerous DEGs (\log_2 fold change >2) associated with ABC system carbohydrate
231 transport were found in MB2003 xylan or pectin transcriptomes (Fig. 7A, B, E and F), SBPs and
232 PPs were identified in the B316^T pectin transcriptomes only. In total, five DEGs with predicted
233 functions as sugar ABC transporters were found for B316^T grown on pectin; three genes in the
234 mono-culture, and two genes in the co-culture condition (Fig. 7C and D). Signal peptides were
235 predicted for the majority of sugar ABC transporter SBPs and PPs identified to be significantly
236 upregulated, and in MB2003 for the xylose transporter SBPs. Detection of a large number of
237 significantly, differentially expressed ABC transporter SBP-encoding genes in B316^T and
238 MB2003 signifies the importance of SBP-dependent ATP-driven active transport of oligo- and
239 mono-saccharides for growth. The preference of SBPs associated with oligo- and
240 monosaccharide-specific ABC transporters correlates with the concentrations of xylose and
241 galactose in B316^T and MB2003 co-cultures detected using IC (Fig. 1), suggesting an efficient
242 uptake of oligomers produced by the initial breakdown of complex xylan and pectin.

243 **Co-localization of CAZymes with highly expressed ABC transporter binding**
244 **proteins reveals interplay between polysaccharide utilization machinery.** The
245 polysaccharide-degrading enzymes found adjacent to these SBPs include a number of
246 xylosidases/arabinofuranosidases (GH43), endo-1,4- β -xylanase (GH10), and a β -mannosidase
247 (GH2). MB2003 cells grown on xylan and pectin up-regulated 9 and 17 genes respectively,
248 associated with sugar ABC transport systems and target substrates (Fig. 7). Examples of the
249 surrounding polysaccharide-degrading enzymes found in MB2003 xylan grown cells include: α -

250 L-arabinofuranosidase (GH51), xylosidases/arabinofuranosidases (GH120, GH30 and GH43), α -
251 and β -galactosidases (GH35 and GH36), sucrose phosphorylase (GH13), and glycosidases
252 (GH31) (Fig. 7A and B). MB2003 grown in co-culture on xylan and mono-culture on pectin up-
253 regulated bhn_I0972 and bhn_I0973, and bhn_I0971 genes respectively, associated with xylose
254 transport (Fig. 7B and E). All of the SBPs represented by the COG1653 domain in both B316^T
255 and MB2003 were found co-localized with other genes predicted to be involved in xylan
256 degradation and metabolism, including various genes encoding GH43, GH10, GH51, GH53 and
257 CE12 CAZy domains (Fig. 7A and B). This includes two SBP-encoding genes identified in
258 xylan-grown B316^T mono- and co-cultures, bpr_I0182 and bpr_I0313, which were previously
259 reported in B316^T xylan-grown cells as being part of a polysaccharide utilization loci or PULs
260 (8), predicted to be involved in hemicellulose degradation. The PULs representative of these
261 SBPs contain genes encoding β -xylosidases, α -glucuronidases, acetyl-xylan esterases, ferulic
262 acid esterases and secreted endo-1, 4- β -xylanases (24), and are thought to be important for
263 efficient hemicellulose metabolism by B316^T.

264 A variety of polysaccharide-degrading enzymes have been identified proximal to the genes up-
265 regulated in MB2003 pectin transcriptomes and examples include: xylosidases/
266 arabinofuranosidases (GH43, GH51), endo-1,4- β -xylanase (GH10), acetyl-xylan esterase, endo-
267 1,4- β -glucanase/xylanase (GH5), β -glucosidase (GH31), α -D-glucuronidase (GH67), α -
268 glucuronidase (GH115), β -xylosidase (GH30), pectin eterase (CE12) and rhamnogalacturonan
269 lyases (PL11) (Fig. 7E). Also, a total of nine GT2 genes were also identified proximal to the
270 SBPs (Fig. 6B). The CAZymes surrounding the various SBPs were highly up-regulated and
271 many of these were only expressed in the mono-culture MB2003 transcriptomes (Data Set S3).
272 In contrast, only one gene (bhn_I2222) was significantly up-regulated in co-culture, in proximity
273 to a glucosidase (GH31) and cellobiose phosphorylase (GH94) (Fig. 7F). Overall, SBPs and PPs

274 with the COG1653 were the most abundant domains identified in MB2003 pectin grown cells.
275 These findings are consistent with the extracellular breakdown of xylan and pectin followed by
276 capture and uptake of monosaccharides, xylo- and pectic- oligosaccharides by the ABC
277 transporter.

278 **Cytosolic enzymatic debranching of xylo- and pectic-oligosaccharides.** The
279 polysaccharide degrading machinery of both MB2003 and B316^T appear to be optimized to
280 maximize intracellular breakdown, leading us to hypothesize that *Butyrivibrio* may adopt a
281 ‘selfish’ strategy for hemicellulose and pectin breakdown in the rumen. The xylan- and pectin-
282 derived xylo- and pectic-oligosaccharides entering the cytoplasm are degraded in concert by a
283 large suite of exo-acting enzymes. The highly expressed genes predicted to encode
284 oligosaccharide debranching enzymes (and their catalytic domains) are: *xyl120A, B* (GH120),
285 *est1B, D, E* (CE1), *xsa43B-I* (GH43), *xyn8A* (GH8), *xyl3A* (GH3), *agu67A* (GH67), *arf51A-C*
286 (GH51), *gh115A* (GH115), *gh31B, C* (GH31), *est2A* (CE2), *est4A-E* (CE4), and an unclassified
287 acetyl-xylan esterase (AXE) (Figure 6.2C). The strong up-regulation of debranching enzymes
288 and sugar SBP-dependent ABC transporter systems, indicates that extracellular degradation of
289 xylan does not result in complete removal of side chain groups and that the xylo-
290 oligosaccharides are assimilated into the cytoplasm for further degradation by intracellular
291 enzymes.

292 Surprisingly, B316^T significantly up-regulated only *gh31D* (a possible α -glucosidase (EC
293 3.2.1.20) or α -xylosidase (EC 3.2.1.-)) with a log₂-fold change of 3.64, when grown in co-
294 cultures on pectin (Fig. 5A). The two most up-regulated cytosolic CAZyme genes in MB2003
295 xylan transcriptomes were *xyn8A* (reducing end xylose-releasing exo-oligoxylanase,
296 GH8/Pfam01270) and *est4C* (polysaccharide deacetylase; CE4/Pfam01522), each with > 3.0

297 log₂-fold change (Fig. 4B). The 36 CAZyme genes up-regulated in MB2003 pectin-grown mono-
298 culture varied greatly in their predicted enzymatic capability (Fig. 5B) and included genes with
299 multiple domains (acetyl-xylan esterase containing a GH2 sugar-binding domain and domain of
300 unknown function DUF303 (Pfam03629)), genes containing two identical catalytic domains
301 within the same gene, (β -glucosidase *bgl3D* with two GH3 domains (Pfam00933)) and the two
302 β -galactosidases *bga2A* and *bga2C* which each contain two GH2 (Pfam00703) domains. The
303 polysaccharide lyase, *pl11A* (PL11/COG14111 domains), also known as rhamnogalacturonan
304 lyase (EC 4.2.2.-) or exo-unsaturated rhamnogalacturonan lyase (EC 4.2.2.-), was highly up-
305 regulated in the MB2003 pectin-grown mono-culture with a log₂-fold change of 5.51.
306 Examples of genes with additional non-catalytic domains include *lyc25B* lysozyme (GH25 and
307 two SH3 domains) and *xsa43A*, xylosidase/arabinofuranosidase (GH43 and CBM6 domains).
308 DEGs encoding GT CAZy functions were only found in the pectin-grown mono-cultures for both
309 B316^T and MB2003 (Fig. 6). Two GT domain-containing genes were found for B316^T (Fig. 6A),
310 compared to 28 in MB2003 (Fig. 6B). The two GT genes found in B316^T both possess a single
311 GT2 (Pfam00535) domain, approximately 400 aa in length. The GTs of MB2003 consist of ten
312 GT2, thirteen GT4, and single genes containing GTs 8, 26, 51, 36 and both GT2 and GT4
313 domains. To summarize, using the expression and biochemical data presented in this work, Fig. 8
314 shows the proposed models for the primary degradation, transport and cytosolic breakdown by *B.*
315 *proteoclasticus* B316^T and *B. hongaei* MB2003 of the different classes of xylan (GAX) and
316 pectin (XGA and RG-I) presented to the rumen microbiota.
317

318 **DISCUSSION** Xylan and pectin are the most abundant plant structural polysaccharides after
319 cellulose, and are major sources of energy for microbial fermentation within ruminants. The

320 xylan derived from oat-spelts used in this experiment, is largely composed of GAX which is
321 comprised of a xylose monomer backbone (28). The pectin used for this experiment was derived
322 from apple and is largely comprised of RG-I and XGA, with backbones composed of
323 galacturonic acid and rhamnose monomers (29). Rumen bacteria degrade xylans to xylose and
324 arabinose and pectins are degraded to predominantly, rhamnose and galactose, and a variety of
325 higher oligosaccharides are produced from both substrates (30-32). The qPCR analysis of mono-
326 culture samples confirmed *B. proteoelasticus* B316^T as a strong degrader of xylan and pectin,
327 while *B. hongatei* MB2003 was unable to utilize either substrate to support growth (Fig. 1).
328 MB2003 was only able to grow in co-cultures with B316^T, utilizing the sugars released by B316^T
329 from xylan or pectin. The relationship between MB2003 and B316^T is not simple commensalism,
330 as the growth of B316^T cells in co-cultures with MB2003 was compromised compared to their
331 mono-culture growth. The relationship appears to be a kind of competitive parasitism in which
332 B316^T acts as a primary degrader providing soluble sugars, allowing MB2003 to compete for the
333 soluble sugars in a parasitic manner.

334 Analyses of the soluble sugars released during growth showed that fermentation in the B316^T
335 mono- and co-culture samples was complete by 12 h, after which the levels of xylose decreased
336 dramatically (Fig. 1A). The complete absence of released monosaccharides in MB2003 samples
337 supports the VFA and pH experimental evidence for its inability to utilize xylan in mono-culture
338 (Fig. 1A). The total pool of xylose detected in the B316^T + MB2003 co-cultures on xylan and the
339 reduced xylose concentration at 12 h post-inoculation, was not as dramatic as in the B316^T
340 mono-culture (Fig. 1A), apparently due to the presence of MB2003 cross-feeding on the released
341 xylose. It is possible that the other sugars analyzed (or not detected) could have been released
342 and used immediately (or at time points not analyzed) such that their concentrations in the
343 samples did not appear to increase. However, this seems unlikely given that xylan extracted from

344 oatspelts is typically >70% xylose and <10% arabinose and <15% glucose (CAS Number 9014-
345 63-5, X0627, Sigma-Aldrich).

346 In pectin-grown mono- and co-cultures, galactose was the predominant monosaccharide
347 detected. B316^T grown in mono-culture contained the highest concentrations (Fig. 1B) which is
348 consistent with B316^T being more efficient at breaking down pectin. This is in contrast to the
349 very poor, if any, ability of MB2003 to utilize this substrate (11). However, the rate of galactose
350 utilization after the early log phase was similar between the mono-cultures and co-culture,
351 suggesting that MB2003 could compete with B316^T for the released galactose. Also, it is likely
352 that galacturonic acid, not detected in the IC analysis, was released during hydrolysis of pectin
353 and may have been used by B316^T, while not by MB2003. In a previous study on B316^T grown
354 on pectin (33), an increase in, rhamnose, arabinose and other mono- and disaccharides was
355 observed, but not galacturonic acid or galactose. The galacturonic acid and galactose released
356 from hydrolysis of pectin in the inoculum may have been consumed rapidly and hence not
357 detected.

358 The growth experiments showed that MB2003 entered a state of ‘starvation’ as it was unable to
359 utilize xylan or pectin when grown in mono-culture, but was capable of significant growth on
360 both substrates when co-cultured with B316^T. MB2003 appears to sustain itself in co-culture
361 until primary degradation of xylan and pectin by B316^T is underway, allowing for the uptake of
362 released soluble carbohydrates. The transcriptome analysis showed that in B316^T, only genes
363 required for substrate utilization were significantly up-regulated (Fig. 2 and 3). Genome
364 sequence information (8) and proteome analyses (34, 35) indicate that B316^T primarily attacks
365 the xylan backbone and main substituent groups of hemicellulose outside the cell via secreted
366 enzymes. The variable length substituted or un-substituted xylo-oligosaccharides are then
367 thought to be transported into the cell where the final degradation occurs. B316^T applies a similar

368 approach for the degradation of pectin, but the pectin backbone is composed of galacturonic acid.
369 The comprehensive enzymatic machinery of these rumen bacteria allow for the highly efficient
370 utilization of internalized xylo- and pectic-oligomers in the cytoplasm, without loss to competing
371 rumen species.
372 *B. hongatei* MB2003 does not initiate the breakdown of the backbones of either xylan or pectin,
373 but appears to act as a competitor for sugars released from the insoluble substrates through the
374 primary degradation activity of B316^T. MB2003 mono-cultures in xylan or pectin-containing
375 media, appear to enter a state of ‘starvation’ as there was no significant growth, but its cells
376 strongly up-regulated genes involved in almost every biological process to scavenge substrates in
377 an attempt to initiate growth. MB2003 grown in co-culture with B316^T on xylan or pectin also
378 shows up-regulation of many genes, but to a lesser extent than in the monocultures. These
379 upregulated genes include those encoding the enzymatic machinery required to utilize the
380 oligosaccharides released from the initial degradation of xylan and pectin by B316^T. The initial
381 degradation of xylans and pectins by B316^T will also effect the rumen microbial ecosystem by
382 promoting the growth of secondary degraders, *Butyrivibrio* and *Pseudobutyrivibrio*, which will
383 lead to butyrate production, a key animal health promoting fermentation end-product.
384 The B316^T and MB2003 gene compliments suggest they cannot completely degrade complex
385 GAX, XGA and RG-I to monosaccharides on the outside of their cells, and implies that they
386 must transport a variety of substituted xylan and pectin oligomers across their bacterial cell
387 walls. The degradation of these oligomers into their constituent monomers is achieved through
388 the activity of several classes of cytosolic enzymes, including β -xylosidases, α -galactosidases
389 and α -glucuronidases that contain GH3, GH27, GH115 and GH67 CAZy domains. The starved
390 MB2003 cells inoculated in mono-cultures on pectin, significantly expressed intracellular genes
391 encoding enzymes containing GH3, GH27, GH115 and GH67 CAZy domains (Fig. 5B).

392 In order to make use of oligo- and monosaccharides derived from extracellular digestion of
393 lignocellulosic material, it is necessary for the released soluble sugars to be transported into the
394 cell. *Butyrivibrio* have Gram-positive cell wall structures (10-12), and monosaccharide transport
395 across the bacterial cell wall is mediated by a variety of extracellular SBPs linked to dedicated
396 sugar ABC transporter systems. Recent data on the B316^T secretome (34, 36) and carbohydrate
397 transport-associated membrane proteins (35), as well as genome sequence analysis of MB2003
398 (10, 11), identified a large number of sugar-specific ABC transporter SBPs.
399 MB2003 was able to compete with B316^T for both xylan and pectin during the log-phase (Fig.
400 1). Overall, analysis of up-regulated SBPs and their functional domains, along with surrounding
401 genes encoding polysaccharide-degrading enzymes, revealed that the most prevalent functional
402 category was the COG1653 domain that is known to be associated with oligosaccharide transport
403 (35). In B316^T and MB2003 pectin transcriptomes, up-regulation of the genes predicted to
404 encode sugar ABC transporter PPs (COG1172) and SBPs (COG1879) respectively, have
405 functional roles as ribose, xylose, arabinose and galactose ABC transporters, suggesting a
406 preference for these substrates. The substantial up-regulation by MB2003 of sugar ABC transport
407 system genes and a large variety of co-localized genes encoding polysaccharide-degrading
408 enzymes (Fig. 7), supports the findings that MB2003 is able to grow only in co-culture on xylan
409 and pectin through cross-feeding on the released oligosaccharides and monosaccharides such as
410 xylose, arabinose and rhamnose (Fig. 8). In addition to the SBPs represented by the COG1653
411 domain in both B316^T and MB2003 found co-localized with other genes involved in xylan
412 degradation and metabolism, genes containing GH13 and PL11 (only in MB2003) CAZy
413 domains (Fig. 7C to F), were expressed in pectin-grown cells. This implies that the availability of
414 a particular carbon source causes activation of a wider network of genes that enable these rumen
415 bacteria to breakdown, transport and metabolize such substrates for growth.

416 Gene expression in B316^T was mostly unaffected by the presence of MB2003, but the transcription
417 level of many CAZymes, including *xyn10D* (bpr_I1083), *xyn10E* (bpr_I1740), and *cel5D*
418 (bpr_I0728) genes that encode endo-1,4- β -xylanase and endo-1,4- β -glucanase activities, respectively,
419 as well as sugar ABC transport system genes, were elevated in B316^T (Data Set S1). Xylan
420 polymers are cross-linked via ester linkages with the phenolic acids, ferulic and *p*-coumaric acids
421 (Fig. 8A), which are esterified to the arabinose side chains (37). These linkages have been
422 proposed to account for much of the steric hindrance to plant fibre degradation in the rumen (38),
423 and there is significant interest in rumen microorganisms that possess feruloyl and *p*-coumaroyl
424 esterases that belong to the CE1 (Pfam00756) CAZy family. These esterases function to remove
425 the ferulic acid, methyl and acetyl groups from the xylan polymers and/or oligomers, thus
426 making arabinose and xylose available for growth. The cell-associated β -xylosidases and α -L-
427 arabinofuranosidases are then likely to target the arabinoxylan oligomers from GAX that are
428 subsequently assimilated into the cell. A previous study has shown that high levels of
429 extracellular cinnamoyl esterases are characteristic of a selection of fibre-degrading ruminal
430 bacteria and in particular are common amongst the xylanolytic *B. fibrisolvans* (39). It has been
431 argued that the well-developed xylanolytic and cinnamoyl esterase systems of ruminal fungi give
432 them a distinct advantage over fibrolytic bacteria in the rumen (40). The feruloyl and *p*-
433 coumaroyl esterase activities of *Butyrivibrio* thus warrants further investigation in future work.
434 Recent studies have shown that in discrete regions of plant cell walls, initial enzymatic attack of
435 pectin increases the access of CBMs to cellulose (41), effectively loosening the polysaccharide
436 interactions to reveal the xylan and xyloglucan substrates (42, 43). This initial stage in enzymatic
437 saccharification of plant cell walls termed amorphogenesis (44), is a possible role of such CBPs
438 containing multiple non-catalytic domains. In the rumen, B316^T and MB2003 may thus secrete
439 these non-catalytic CBPs along with polysaccharide-active enzymes as a mechanism to enhance

440 the rate and extent of plant cell wall degradation by disrupting the interface between other
441 polysaccharides. The diversity and variability of CBMs appear to be a signature of extracellular
442 enzymes and non-catalytic CBPs from rumen *Butyrivibrio* (45), and therefore are of interest and
443 future *in vitro* experimentation aimed at investigating the function of CBMs is justified.

444 The transcriptome analyses have highlighted the differences in the relative amounts of up-
445 regulated genes in *B. proteo**lasticus* B316^T and *B. hungatei* MB2003 grown in mono- and co-
446 culture that support the observed commensal interactions between the two rumen bacteria in the
447 co-culture growth experiments. These gene expression profiles indicate that B316^T grown on
448 either xylan or pectin, showed relatively little change in gene expression when co-cultured with
449 MB2003. In contrast, MB2003 showed poor utilization of either xylan or pectin for growth.
450 These analyses also confirmed the expression of the diverse repertoire of genes that MB2003 and
451 B316^T possess which encode polysaccharide-degrading enzymes and sugar ABC transport
452 systems during xylan and pectin degradation. The SBP-mediated ABC-assimilation of
453 polysaccharide-derived soluble sugars, such as xylo- and pectic-oligosaccharides, has been
454 shown to be an essential component for xylan and pectin degradation and utilization by B316^T
455 and MB2003. These findings suggest that liberation of GAX, XGA and RG-I from the
456 surrounding polymers also requires numerous non-polysaccharidases, identified in the co-culture
457 experiment. For future work, biochemical characterization of the precise substrate specificities of
458 the SBPs for the various xylo- and pectic-oligosaccharides and characterization of the carbon
459 catabolite repression mechanisms will be essential to defining the sugar transporting systems of
460 B316^T and MB2003.

461 **MATERIALS AND METHODS** *B. hungatei* MB2003 and *B. proteo**lasticus* B316T (46)
462 were isolated from the rumen contents of fistulated Friesian dairy cattle as described by S. Noel

463 (47) and sequenced as described by N. Palevich (10, 11) and Kelly *et al.*, (8), respectively.

464 Mono- and co-cultures of *Butyrivibrio* strains were grown in media containing 0.5% (v/v)

465 inoculum and supplemented with either 0.5% (w/v) of xylan from oat spelt (Sigma-Aldrich) or

466 pectin isolated from apple (Sigma-Aldrich) as the main carbohydrate source. An overview of the

467 MB2003 and B316^T co-culture growth experiment, is presented in Fig. S1. On collection of each

468 sample, 2 mL of each culture was removed and stored at -85 °C for downstream qPCR, HPIC

469 and VFA analyses. The remainder of cultures was snap-frozen and total RNA was extracted

470 using a modified version of a liquid N₂ and grinding method (48). A comparison of the complete

471 MB2003 and B316^T genomes to identify target genes for the real time qPCR assays was

472 conducted using Differential BLAST analysis (DBA) (49). The specificity of each primer/probe

473 assay was demonstrated by qPCR using primers in Table S3. VFA production profiles of

474 *Butyrivibrio* strains grown on insoluble substrates were determined using gas chromatography

475 for the quantification of acetic, butyric and propionic acids and the branched chain acids

476 (BCVFAs) isobutyric and isovaleric acids (50). An additional down-scaled method (51) was used

477 to derivatize formic, lactic and succinic acids. The monosaccharides released during *Butyrivibrio*

478 mono-culture and co-culture growth were determined using a high-pressure ion chromatography

479 (HPIC) method (45). Paired-end libraries of total RNA samples were sequenced with a 200-bp

480 read length on an Illumina HiSeq2000 instrument at the Beijing Genomics Institute (BGI,

481 China). Sequence data was filtered using DynamicTrim (52) and sequence quality was assessed

482 using FastQC (53). Bowtie 2 (54) was used with default parameters, to remove any sequence

483 reads aligning to ribosomal RNA, transfer RNA and non-coding RNA sequences. Reference-

484 based transcriptome assembly (55, 56) was performed because high-quality genome sequences

485 were available for both *B. hongatei* MB2003 (11) and *B. proteoclasticus* B316^T (8). Rockhopper

486 (57, 58) was used on the remaining reads to identify differential expression between mono- and

487 co-culture growth of MB2003 and B316^T on xylan and pectin conditions separately. An
488 overview of the RNA-seq *in silico* analysis, is presented in Fig. 9. Standard univariate and
489 multivariate statistical tests were performed using R software to analyze the RNA-seq datasets
490 (Table S4, Fig. 9, Data Set S1). Accession numbers for all sequences used in this study and
491 detailed methods are available in the supplemental material (Text S1).

492 **SUPPLEMENTAL MATERIAL**

493 Supplemental material for this article may be found at TBA.

494 TEXT S1, DOCX file, 0.03 MB.

495 FIG S1, TIF file, 1.1 MB.

496 FIG S2, TIF file, 0.6 MB.

497 TABLE S1, DOCX file, 0.03 MB.

498 TABLE S2, DOCX file, 0.01 MB.

499 TABLE S3, DOCX file, 0.01 MB.

500 TABLE S4, DOCX file, 0.02 MB.

501 DATA SET S1, XLSX file, 0.04 MB.

502 DATA SET S2, XLSX file, 0.03 MB.

503 DATA SET S3, XLSX file, 0.06 MB.

504 **Accession number(s).** Annotated *B. hongaei* MB2003 and *B. proteoelasticus* B316^T
505 genomes were submitted to GenBank under GenBank accession numbers CP017831, CP017830,
506 CP017832, CP017833, and CP001810, CP001811, CP001812, CP001813.

507 **ACKNOWLEDGEMENTS**

508 We thank Sarah Lewis for assistance with the fermentation end-product analysis, Don Otter for
509 the high-pressure ion chromatography analysis and Eric Altermann for the FGD analysis.

510 **FUNDING INFORMATION**

511 The MB2003 genome sequencing project was funded by the New Zealand Ministry of Business,
512 Innovation and Employment New Economy Research Fund programme: Accessing the
513 uncultured rumen microbiome, contract number C10X0803. The funders had no role in study
514 design, data collection and analysis, decision to publish, or preparation of the manuscript.

515 **REFERENCES**

- 516 1. **Koike S, Yoshitani S, Kobayashi Y, Tanaka K.** 2003. Phylogenetic analysis of fiber-
517 associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS
518 microbiology letters **229**:23-30. doi:10.1016/S0378-1097(03)00760-2.
- 519 2. **Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, Janssen
520 PH.** 2015. Rumen microbial community composition varies with diet and host, but a core
521 microbiome is found across a wide geographical range. Scientific reports **5**.
522 doi:10.1038/srep14567.
- 523 3. **Cheng K, Forsberg C, Minato H, Costerton J.** 1991. Microbial ecology and physiology
524 of feed degradation within the rumen, p 595-624. In Tsuda T, Sasaki Y, Kawashima R
525 (ed), Physiological aspects of digestion and metabolism in ruminants: Proceedings of the
526 seventh international symposium on ruminant physiology, vol 7. Academic Press,
527 London, UK.
- 528 4. **McAllister T, Bae H, Jones G, Cheng K.** 1994. Microbial attachment and feed digestion
529 in the rumen. Journal of animal science **72**:3004-3018. doi:10.2527/1994.72113004x.
- 530 5. **Bryant MP, Small N.** 1956. The anaerobic monotrichous butyric acid-producing curved
531 rod-shaped bacteria of the rumen. Journal of Bacteriology **72**:16.
- 532 6. **Van Gylswyk N, Hippe H, Rainey F.** 1996. Pseudobutyribrio ruminis gen. nov., sp.
533 nov., a butyrate-producing bacterium from the rumen that closely resembles Butyribrio
534 fibrisolvans in phenotype. International Journal of Systematic and Evolutionary
535 Microbiology **46**:559-563. doi:10.1099/00207713-46-2-559.
- 536 7. **Hungate RE.** 1966. The rumen and its microbes. Academic Press, New York, USA.
- 537 8. **Kelly WJ, Leahy SC, Altermann E, Yeoman CJ, Dunne JC, Kong Z, Pacheco DM,
538 Li D, Noel SJ, Moon CD, Cookson AL, Attwood GT.** 2010. The glycobiome of the
539 rumen bacterium *Butyribrio proteoclasticus* B316^T highlights adaptation to a

- 540 polysaccharide-rich environment. PLoS One 5:e11942.
 541 doi:10.1371/journal.pone.0011942.

542 9. **Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D, Kopecný J, Attwood GT.** 2008.
 543 Reclassification of *Clostridium proteoclasticum* as *Butyrivibrio proteoclasticus* comb.
 544 nov., a butyrate-producing ruminal bacterium. International Journal of Systematic and
 545 Evolutionary Microbiology **58**:2041-2045. doi:10.1099/ijss.0.65845-0.

546 10. **Palevich N.** 2011. Genome sequencing of rumen bacteria involved in lignocellulose
 547 digestion. Master of Science in Genetics and Microbiology. Massey University,
 548 Palmerston North, New Zealand.

549 11. **Palevich N, Kelly WJ, Leahy SC, Altermann E, Rakonjac J, Attwood GT.** 2017. The
 550 complete genome sequence of the rumen bacterium *Butyrivibrio hungatei* MB2003.
 551 Standards in Genomic Sciences **12**:72. doi:10.1186/s40793-017-0285-8.

552 12. **Attwood GT, Reilly K, Patel BKC.** 1996. *Clostridium proteoclasticum* sp. nov., a novel
 553 proteolytic bacterium from the bovine rumen. International Journal of Systematic
 554 Bacteriology **46**:753-758. doi:10.1099/00207713-46-3-753.

555 13. **Till M, Goldstone D, Card G, Attwood GT, Moon CD, Arcus VL.** 2014. Structural
 556 analysis of the GH43 enzyme Xsa43E from *Butyrivibrio proteoclasticus*. Acta
 557 Crystallographica F: Structural Biology Communications **70**:1193-1198.
 558 doi:10.1107/S2053230X14014745.

559 14. **Gilbert HJ, Knox JP, Boraston AB.** 2013. Advances in understanding the molecular
 560 basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules.
 561 Current Opinion in Structural Biology **23**:669-677. doi:10.1016/j.sbi.2013.05.005.

562 15. **Abbott DW, Ficko-Blean E, van Bueren AL, Rogowski A, Cartmell A, Coutinho
 563 PM, Henrissat B, Gilbert HJ, Boraston AB.** 2009. Analysis of the structural and
 564 functional diversity of plant cell wall specific family 6 carbohydrate binding modules.
 565 Biochemistry **48**:10395-10404. doi:10.1021/bi9013424.

566 16. **van Bueren AL, Morland C, Gilbert HJ, Boraston AB.** 2005. Family 6 carbohydrate
 567 binding modules recognize the non-reducing end of β -1, 3-linked glucans by presenting a
 568 unique ligand binding surface. Journal of Biological Chemistry **280**:530-537.
 569 doi:10.1074/jbc.M410113200.

570 17. **Correia MA, Pires VM, Gilbert HJ, Bolam DN, Fernandes VO, Alves VD, Prates
 571 JA, Ferreira LM, Fontes CM.** 2009. Family 6 carbohydrate-binding modules display
 572 multiple β 1, 3-linked glucan-specific binding interfaces. FEMS Microbiology Letters
 573 **300**:48-57. doi:10.1111/j.1574-6968.2009.01764.x.

574 18. **Michel G, Barbeyron T, Kloareg B, Czjzek M.** 2009. The family 6 carbohydrate
 575 binding modules have co-evolved with their appended catalytic modules towards similar
 576 substrate specificity. Glycobiology **19**:615-623. doi:10.1093/glycob/cwp028.

577 19. **Grabber JH, Ralph J, Hatfield RD.** 2000. Cross-linking of maize walls by ferulate
 578 dimerization and incorporation into lignin. Journal of Agricultural and Food Chemistry
 579 **48**:6106-6113. doi:10.1021/jf0006978.

580 20. **Hespell R, Whitehead T.** 1990. Physiology and genetics of xylan degradation by
 581 gastrointestinal tract bacteria. Journal of Dairy Science **73**:3013-3022.
 582 doi:10.3168/jds.S0022-0302(90)78988-6.

583 21. **Hespell R, Wolf R, Bothast R.** 1987. Fermentation of xylans by *Butyrivibrio
 584 fibrisolvans* and other ruminal bacteria. Applied and Environmental Microbiology
 585 **53**:2849-2853.

- 586 22. **Hespell RB.** 1992. Fermentation of xylans by *Butyrivibrio fibrisolvans* and
587 *Thermoanaerobacter* strain B6A: Utilization of uronic acids and xylanolytic activites.
588 Current Microbiology **25**:189-195. doi:10.1007/BF01570718.
- 589 23. **Sewell G, Aldrich H, Williams D, Mannarelli B, Wilkie A, Hespell R, Smith P, Ingram L.** 1988. Isolation and characterization of xylan-degrading strains of *Butyrivibrio fibrisolvans* from a Napier grass-fed anaerobic digester. Applied and Environmental Microbiology **54**:1085-1090.
- 590 24. **Dunne JC.** 2010. A proteomic analysis of fibre degradation and assimilation by *Butyrivibrio proteoclasticus*. Doctor of Philosophy in Cell and Molecular Biosciences. Victoria University of Wellington, Wellington, NZ.
- 591 25. **Le Nours J, De Maria L, Welner D, Jørgensen CT, Christensen LL, Borchert TV, Larsen S, Lo Leggio L.** 2009. Investigating the binding of β -1, 4-galactan to *Bacillus licheniformis* β -1, 4-galactanase by crystallography and computational modeling. Proteins: Structure, Function, and Bioinformatics **75**:977-989. doi:10.1002/prot.22310.
- 592 26. **Fukami-Kobayashi K, Tateno Y, Nishikawa K.** 1999. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. Journal of Molecular Biology **286**:279-290. doi:10.1006/jmbi.1998.2454.
- 593 27. **Berntsson RP-A, Smits SH, Schmitt L, Slotboom D-J, Poolman B.** 2010. A structural classification of substrate-binding proteins. FEBS Letters **584**:2606-2617. doi:10.1016/j.febslet.2010.04.043
- 594 28. **Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl LG.** 1990. Feruloyl and *p*-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Applied Microbiology and Biotechnology **33**:345-351. doi:10.1007/BF00164534.
- 595 29. **Cosgrove DJ.** 2005. Growth of the plant cell wall. Nature reviews Molecular cell biology **6**:850. doi:10.1038/nrm1746.
- 596 30. **Dehority B.** 1973. Hemicellulose degradation by rumen bacteria. Federation Proceedings **32**:1819-1825.
- 597 31. **Howard B.** 1957. Hydrolysis of the soluble pentosans of wheat flour and *Rhodymenia palmata* by ruminal micro-organisms. Biochemical Journal **67**:643.
- 598 32. **Chesson A, Forsberg C.** 1997. Polysaccharide degradation by rumen microorganisms., p 329-381. In Hobson PN, Stewart CS (ed), The rumen microbial ecosystem, 2nd ed. Chapman and Hall, London, UK.
- 599 33. **Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A.** 2006. Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Analytical Biochemistry **349**:297-305. doi:10.1016/j.ab.2005.11.019.
- 600 34. **Dunne JC, Li D, Kelly WJ, Leahy SC, Bond JJ, Attwood GT, Jordan TW.** 2011. Extracellular polysaccharide-degrading proteome of *Butyrivibrio proteoclasticus*. Journal of Proteome Research **11**:131-142. doi:10.1021/pr200864j.
- 601 35. **Bond JJ, Dunne JC, Kwan FY, Li D, Zhang K, Leahy SC, Kelly WJ, Attwood GT, Jordan TW.** 2012. Carbohydrate transporting membrane proteins of the rumen bacterium, *Butyrivibrio proteoclasticus*. Journal of Proteomics **75**:3138-3144. doi:10.1016/j.jprot.2011.12.013.
- 602 36. **Dunne JC, Kelly WJ, Leahy SC, Li D, Bond JJ, Peng L, Attwood GT, Jordan TW.** 2015. The cytosolic oligosaccharide-degrading proteome of *Butyrivibrio proteoclasticus*. Proteomes **3**:347-368. doi:10.3390/proteomes3040347.
- 603 37. **Hatfield RD.** 1993. Cell wall polysaccharide interactions and degradability, p 285-313. In Jung HG, Yung HE, Buxton DR, Hatfield RD, Ralph J (ed), Forage Cell Wall

- 633 Structure and Digestibility. American Society of Agronomy-Crop Science Society of
 634 America-Soil Science Society of America (ASA-CSSA-SSSA), Madison, WI, USA.

635 38. **Bacic A, Harris PJ, Stone BA.** 1988. Structure and function of plant cell walls, p 297-
 636 371. *In* Preiss J (ed), Biochemistry of Plants, vol 14. Academic Press, New York, USA.

637 39. **McSweeney C, Dulieu A, Bunch R.** 1998. *Butyrivibrio* spp. and other xylanolytic
 638 microorganisms from the rumen have cinnamoyl esterase activity. *Anaerobe* **4**:57-65.
 639 doi:10.1006/anae.1997.0130.

640 40. **Christov LP, Prior BA.** 1993. Esterases of xylan-degrading microorganisms:
 641 production, properties, and significance. *Enzyme and Microbial Technology* **15**:460-475.
 642 doi:10.1016/0141-0229(93)90078-G.

643 41. **Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP.**
 644 2006. Understanding the biological rationale for the diversity of cellulose-directed
 645 carbohydrate-binding modules in prokaryotic enzymes. *Journal of Biological Chemistry*
 646 **281**:29321-29329. doi:10.1074/jbc.M605903200.

647 42. **Hervé C, Rogowski A, Gilbert HJ, Paul Knox J.** 2009. Enzymatic treatments reveal
 648 differential capacities for xylan recognition and degradation in primary and secondary
 649 plant cell walls. *The Plant Journal* **58**:413-422. doi:10.1111/j.1365-313X.2009.03785.x

650 43. **Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL,**
 651 **Willats WG, Knox JP.** 2008. Pectic homogalacturonan masks abundant sets of
 652 xyloglucan epitopes in plant cell walls. *BMC Plant Biology* **8**:1-12. doi:10.1186/1471-
 653 2229-8-60.

654 44. **Coughlan MP.** 1985. The properties of fungal and bacterial cellulases with comment on
 655 their production and application. *Biotechnology and Genetic Engineering Reviews* **3**:39-
 656 110. doi:10.1080/02648725.1985.10647809.

657 45. **Palevich N.** 2016. Comparative genomics of *Butyrivibrio* and *Pseudobutyrivibrio* from
 658 the rumen. Doctor of Philosophy in Microbiology and Genetics. Massey University,
 659 Palmerston North, New Zealand.

660 46. **Attwood GT, Reilly K.** 1996. Characterization of proteolytic activities of rumen
 661 bacterial isolates from forage-fed cattle. *Journal of Applied Bacteriology* **81**:545-552.
 662 doi:10.1111/j.1365-2672.1996.tb03545.x.

663 47. **Noel S.** 2013. Cultivation and community composition analysis of plant-adherent rumen
 664 bacteria. Doctor of Philosophy in Microbiology and Genetics. Massey University,
 665 Palmerston North, New Zealand.

666 48. **Lueders T, Manefield M, Friedrich MW.** 2004. Enhanced sensitivity of DNA-and
 667 rRNA-based stable isotope probing by fractionation and quantitative analysis of
 668 isopycnic centrifugation gradients. *Environmental Microbiology* **6**:73-78.
 669 doi:10.1046/j.1462-2920.2003.00536.x.

670 49. **Altermann E.** 2012. Tracing lifestyle adaptation in prokaryotic genomes. *Frontiers in*
 671 *Microbiology* **3**:1-17. doi:10.3389/fmicb.2012.00048.

672 50. **Attwood GT, Klieve AV, Ouwerkerk D, Patel BKC.** 1998. Ammonia-hyperproducing
 673 bacteria from New Zealand ruminants. *Applied and Environmental Microbiology*
 674 **64**:1796-1804.

675 51. **Richardson A, Calder A, Stewart C, Smith A.** 1989. Simultaneous determination of
 676 volatile and non-volatile acidic fermentation products of anaerobes by capillary gas
 677 chromatography. *Letters in Applied Microbiology* **9**:5-8. doi:10.1111/j.1472-
 678 765X.1989.tb00278.x.

- 679 52. **Cox MP, Peterson DA, Biggs PJ.** 2010. SolexaQA: At-a-glance quality assessment of
680 Illumina second-generation sequencing data. *BMC Bioinformatics* **11**:485.
681 doi:10.1186/1471-2105-11-485.
- 682 53. **Andrews S.** 2010. FastQC: A quality control tool for high throughput sequence data.
683 Babraham Bioinformatics. Available online at:
684 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.
- 685 54. **Langmead B, Salzberg SL.** 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods* **9**:357-359. doi:10.1038/nmeth.1923.
- 687 55. **Flicek P, Birney E.** 2009. Sense from sequence reads: methods for alignment and
688 assembly. *Nature Methods* **6**:S6-S12. doi:10.1038/NMETH.1376.
- 689 56. **Martin JA, Wang Z.** 2011. Next-generation transcriptome assembly. *Nature Reviews Genetics* **12**:671-682. doi:10.1038/nrg3068.
- 691 57. **McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK, Tjaden B.** 2013. Computational analysis of bacterial RNA-Seq data. *Nucleic Acids Research* **41**:e140. doi:10.1093/nar/gkt444.
- 694 58. **Tjaden B.** 2015. *De novo* assembly of bacterial transcriptomes from RNA-seq data. *Genome Biology* **16**:1-10. doi:10.1186/s13059-014-0572-2.

696 **FIGURE LEGENDS**

697 **Figure. 1.** Mono- and co-culture growth of *B. hungatei* MB2003 and *B. proteo-clasticus* B316^T
698 grown on xylan and pectin as determined by qPCR. A, xylan-grown cultures and xylose released
699 by MB2003 (blue bar) and B316^T (green bar) in mono- and co-cultures (red bar). B, pectin-
700 grown cultures and galactose released by MB2003 (blue bar) and B316^T (green bar) in mono-
701 and co-cultures (red bar). Error bars represent ± 1 standard deviation of the mean.

702 **Figure. 2.** COG classifications of DEGs from *B. proteo-clasticus* B316^T and *B. hungatei* MB2003
703 grown in mono- and co-culture on xylan. Analysis includes all DEGs with COG classifications.

704 **Figure. 3.** COG classifications of DEGs from *B. proteo-clasticus* B316^T and *B. hungatei* MB2003
705 grown in mono- and co-culture on pectin. Analysis includes all DEGs with COG classifications.

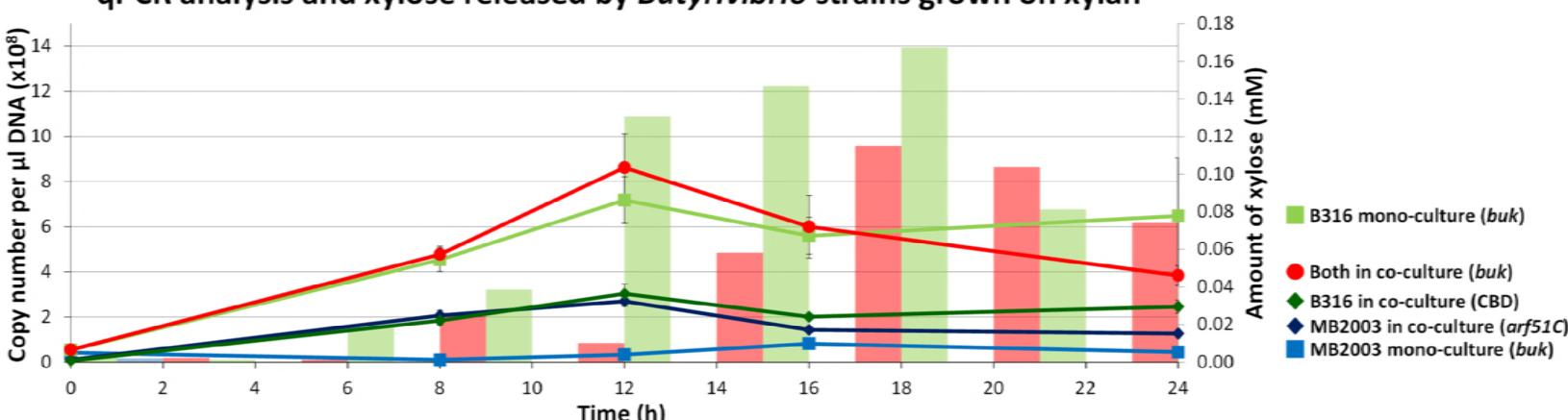
706 **Figure. 4.** CAZyme encoding DEGs up-regulated in xylan-grown cultures. A, B316^T grown in
707 mono-culture; B, MB2003 in mono-culture; C, MB2003 grown in co-culture. □, signal peptide
708 sequences.

709 **Figure. 5.** CAZyme encoding DEGs up-regulated in pectin-grown cultures. A, B316^T grown in
710 co-culture; B, MB2003 in mono-culture; C, MB2003 grown in co-culture. □, signal peptide
711 sequences.

712 **Figure. 6.** GTs up-regulated during mono-culture growth on pectin. A, B316^T grown in mono-
713 culture; B, MB2003 in mono-culture. *, Domains for cellobiose phosphorylase were initially
714 designated as GT36, these have recently been reclassified as GH94 hence the designation in the
715 *cbp94A* gene name. □, signal peptide sequences.

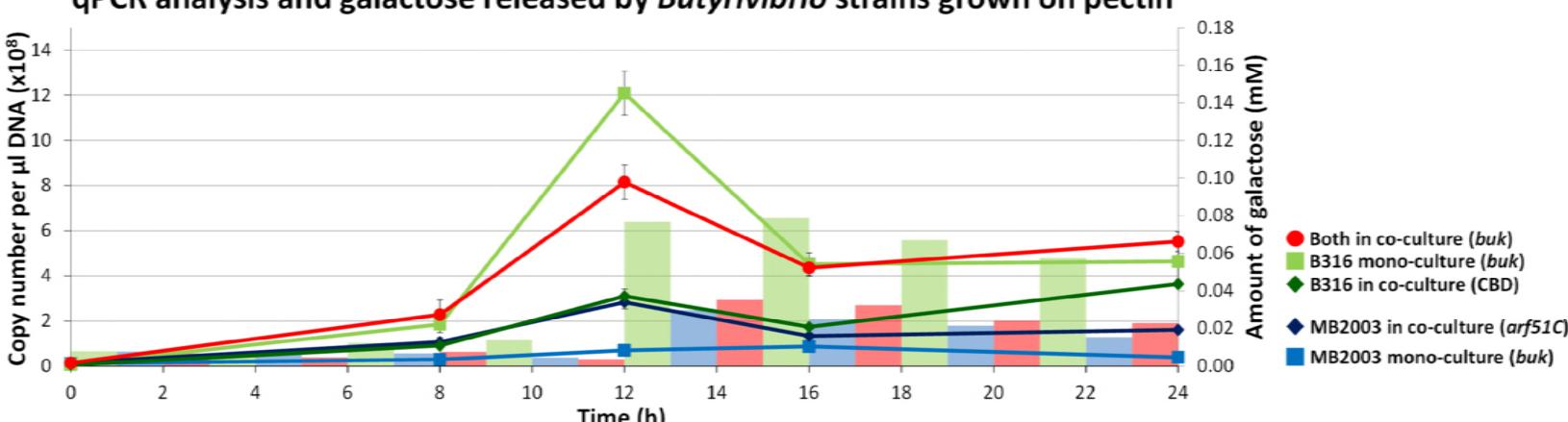
716 **Figure. 7.** Functional domains of DEGs encoding carbohydrate transport proteins and
717 surrounding CAZymes identified in xylan- or pectin-grown cultures. A, MB2003 mono-culture
718 on xylan; B, MB2003 co-culture on xylan; C, B316^T mono-culture on pectin; D, B316^T co-
719 culture on pectin; E, MB2003 mono-culture on pectin; F, MB2003 co-culture on pectin. *,
720 CAZyme families of genes and DEGs (red) encoding polysaccharide-degrading enzymes co-
721 localized with carbohydrate transport genes. Abbreviations: SBP, solute-binding proteins; PP,
722 permease protein; AXE, acetyl-xylan esterase; ABP, ATP-binding protein; EPS,
723 exopolysaccharide; TC system, two component system histidine kinase. COG designations:
724 COG0395, COG1175, COG1653 and COG1879, periplasmic component of ABC-type sugar
725 transport system; COG1682, ABC-type polysaccharide/polyol phosphate export systems;
726 COG2182, maltose-binding periplasmic proteins/domains; COG3833, permease component of
727 ABC-type maltose transport systems; COG2211, Na^+ /melibiose symporter and related
728 transporters; COG4213, periplasmic component of ABC-type xylose transport system; COG1129
729 and COG3839, ATPase component of ABC-type sugar transport systems; COG4209, permease
730 component of ABC-type polysaccharide transport system; COG1172, permease component of
731 ribose/xylose/arabinose/galactoside ABC-type transport systems. □, signal peptide sequences.

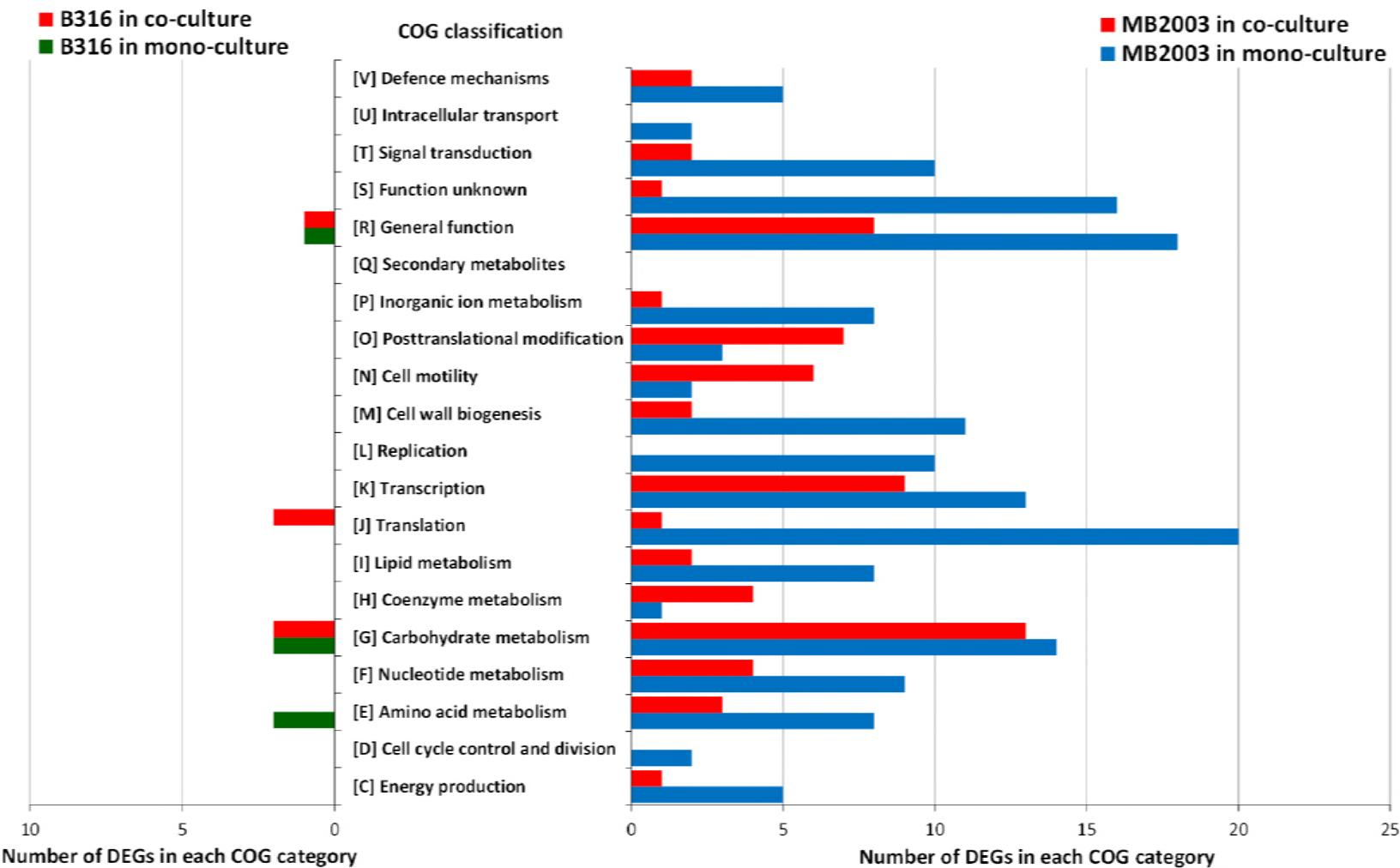
732 **Figure. 8.** Proposed models for the degradation of different forms of xylan and pectin by *B.*
733 *proteoelasticus* B316^T and *B. hongatei* MB2003. In the upper panels the monosaccharides, side
734 groups, and linkages in the main classes of A, xylan (GAX) and B, pectin (XGA and RG-I), are
735 represented. Schematic diagrams of the structures of the main classes of xylan and pectin. The A,
736 xylan (GAX) and B, pectin (XGA and RG-I) structures shown are not quantitatively accurate.
737 The proposed models for degradation of complex GAX (C) along with XGA and RG-I (D)
738 includes the primary attack, assimilation and intracellular processing. The black arrows indicate
739 examples of the linkages cleaved by the enzymes. The significantly up-regulated
740 polysaccharidases are represented by ovals shown in green for B316^T and blue for MB2003.
741 Enzymes are identified based on their CAZy classifications, consisting of GHs, CEs, PLs and
742 CBMs. The red arrow heads indicate xylo- or pectic-oligosaccharide transport between cellular
743 locations. SBPs signify the surface sugar and xylose binding proteins of the ABC transporter
744 systems. Schematic representation of the ATP-driven sugar ABC transport systems likely to
745 mediate the uptake of xylan- or pectin-derived soluble sugars are also included. All
746 polysaccharidases and transport systems shown are based on transcriptional analysis of genes
747 deemed significantly expressed in either mono- or co-culture growth conditions. Symbols: ★, D-
748 xylose; ▲, acetyl group; ○, methyl group; ■, L-arabinose; ●, D-galactose; ▨, D-galacturonic
749 acid; ▨, D-glucuronic acid; ♦, ferulic acid; ♢, L-rhamnose. Abbreviations: AXE, acetyl-xylan
750 esterase; CBD, carbohydrate binding protein. COG designations: COG1653, ABC-type sugar
751 transport system; COG1682, ABC-type polysaccharide/polyol phosphate export systems;
752 COG1879, ABC-type sugar transport system; COG2182, maltose-binding periplasmic
753 proteins/domains; COG2211, Na⁺/melibiose symporter and related transporters; COG4213,
754 ABC-type xylose transport system. The pectin structures shown are not quantitatively accurate.

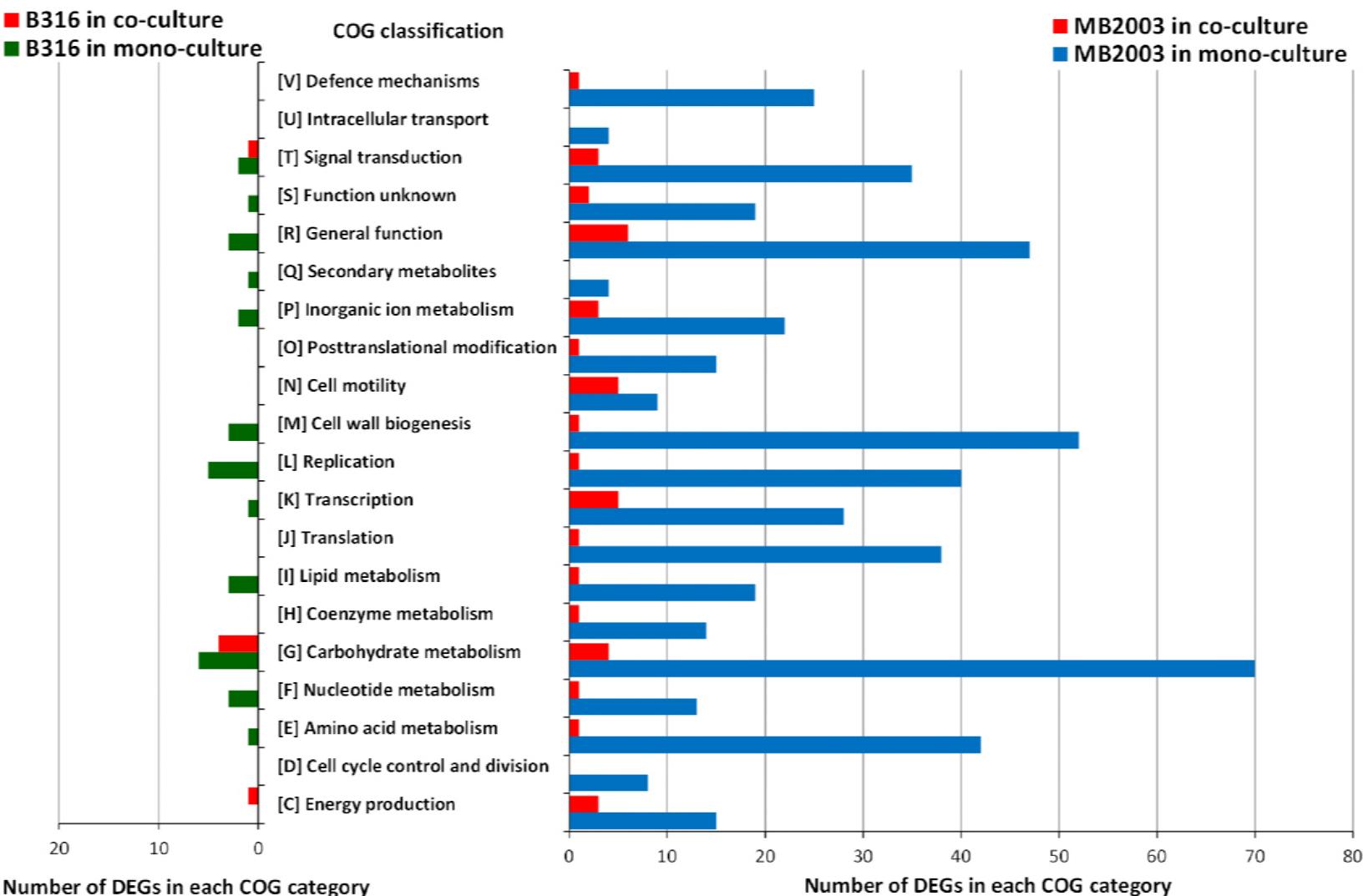

755 **Figure. 9.** Overview of the workflow for RNA-seq *in silico* analysis. Software and programmes
756 used at each stage are *italicized* and shown in brackets.

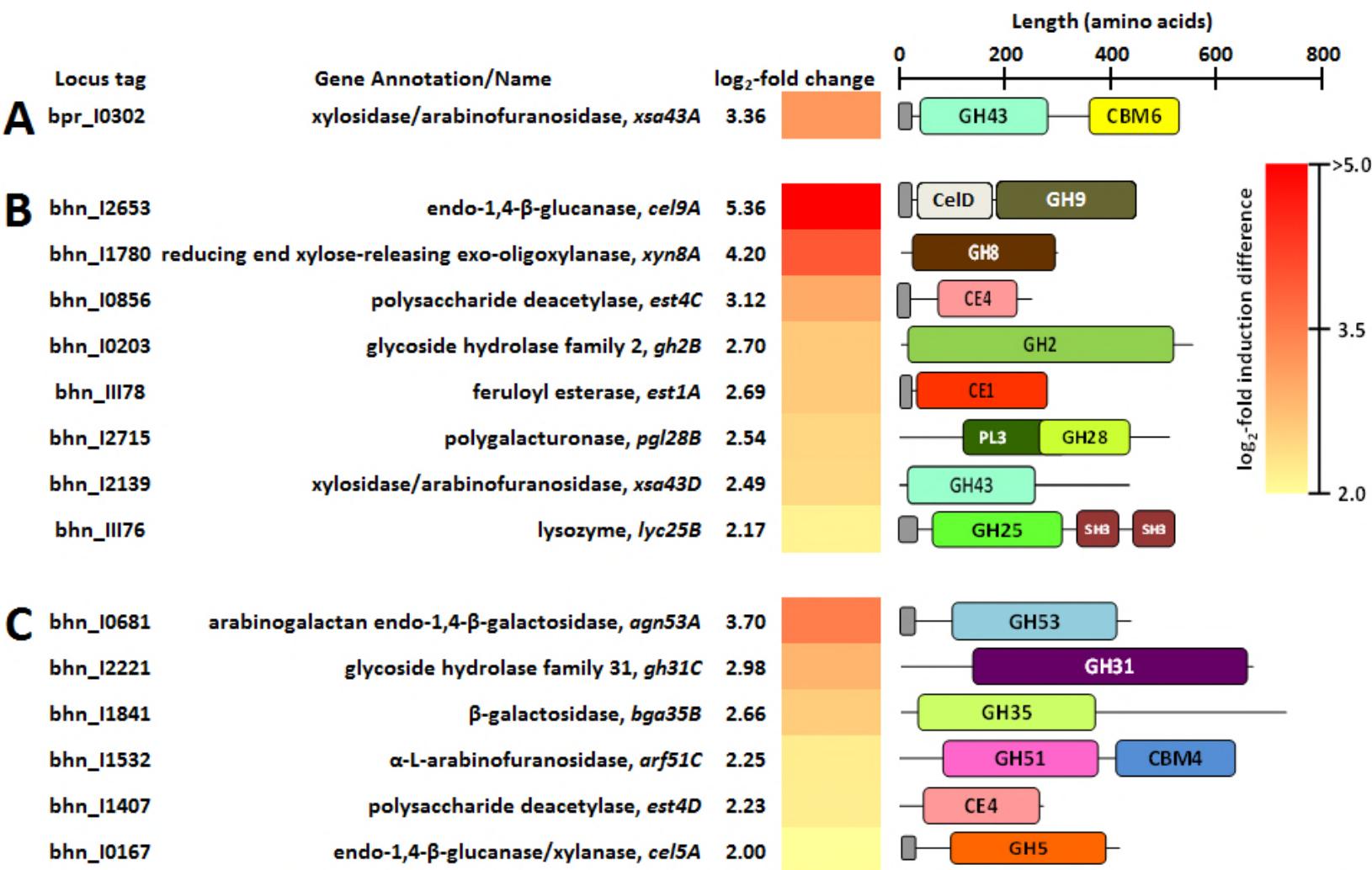
757 **Fig. S1.** Overview of *B. hongatei* MB2003 and *B. proteoelasticus* B316^T co-culture growth
758 experiment. * 0.5% (v/v) co-culture inoculum comprised of 0.25% (v/v) *B. hongatei* MB2003
759 and 0.25% (v/v) *B. proteoelasticus* B316 inocula.

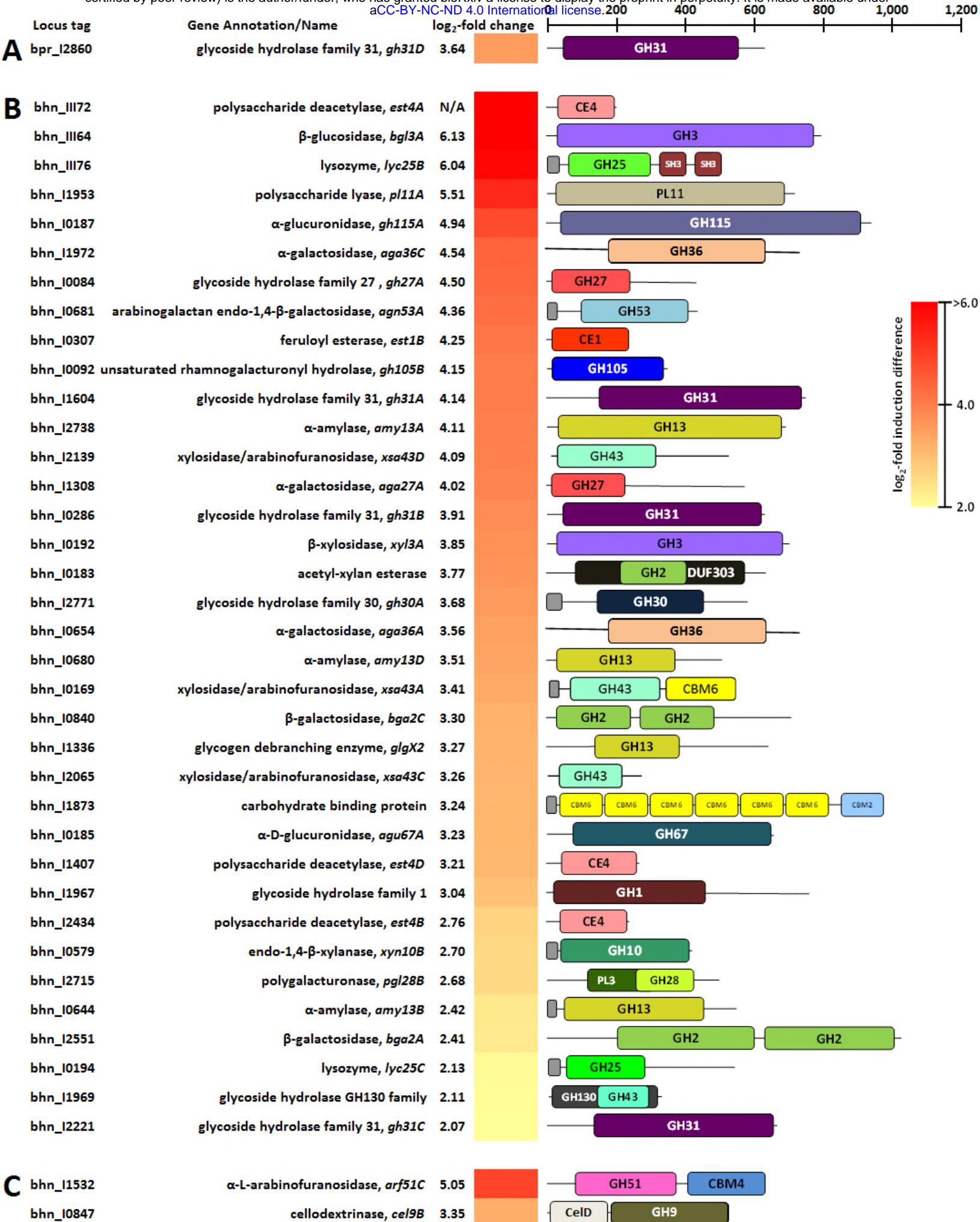
760 **Fig. S2.** Ordinate plots comparing BH-adjusted ANOVA and BH-adjusted KW analyses. A, *B.*
761 *proteoelasticus* B316^T and B, *B. hongatei* MB2003 xylan and pectin complete transcriptome
762 datasets. Abbreviations: BHov2t *p*-value, Benjamin Hochberg adjusted ANOVA *t*-test *p*-values;
763 BHkrus *p*-value, Benjamin Hochberg adjusted KW analysis of variance by ranks *p*-values.

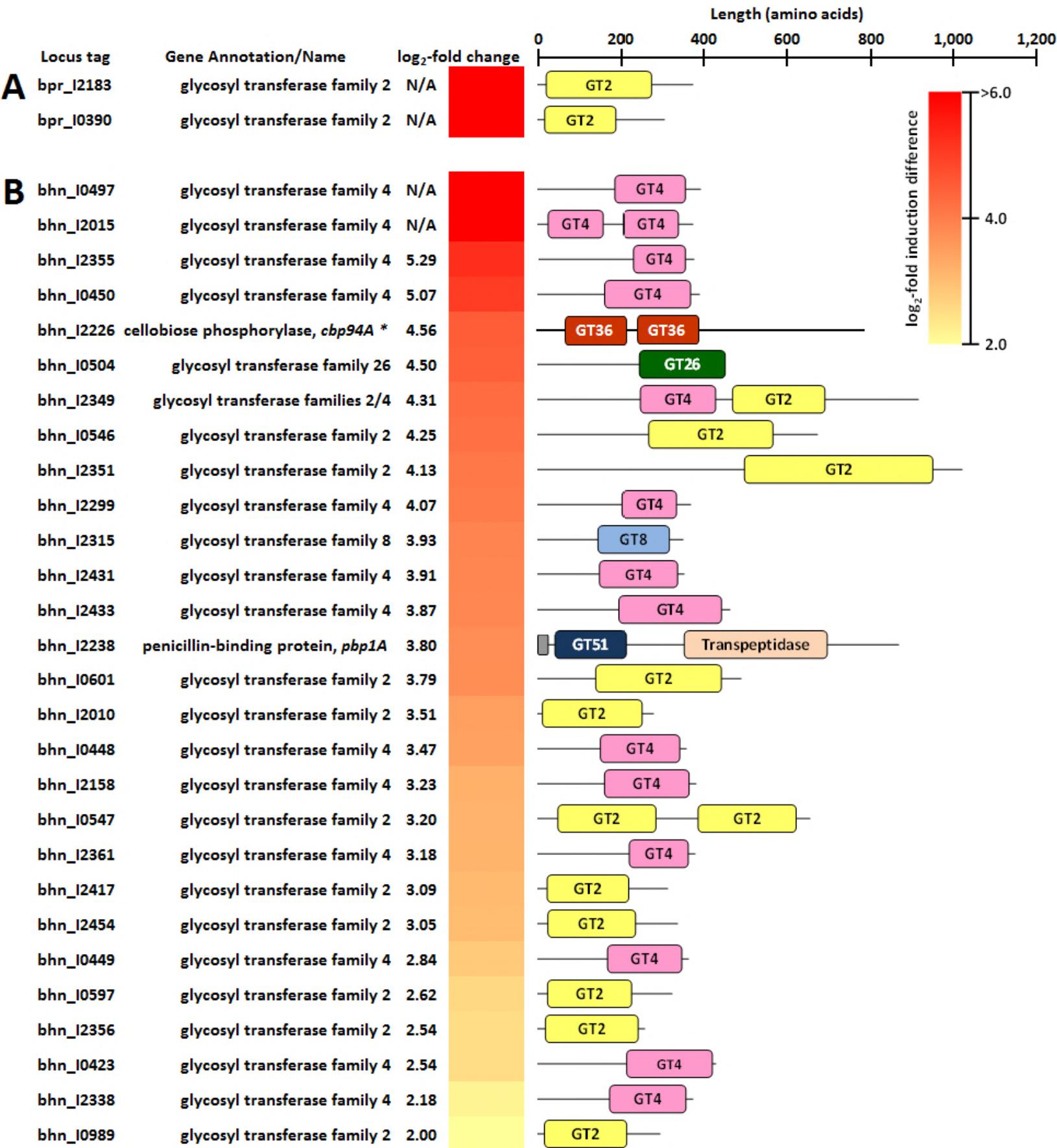

A

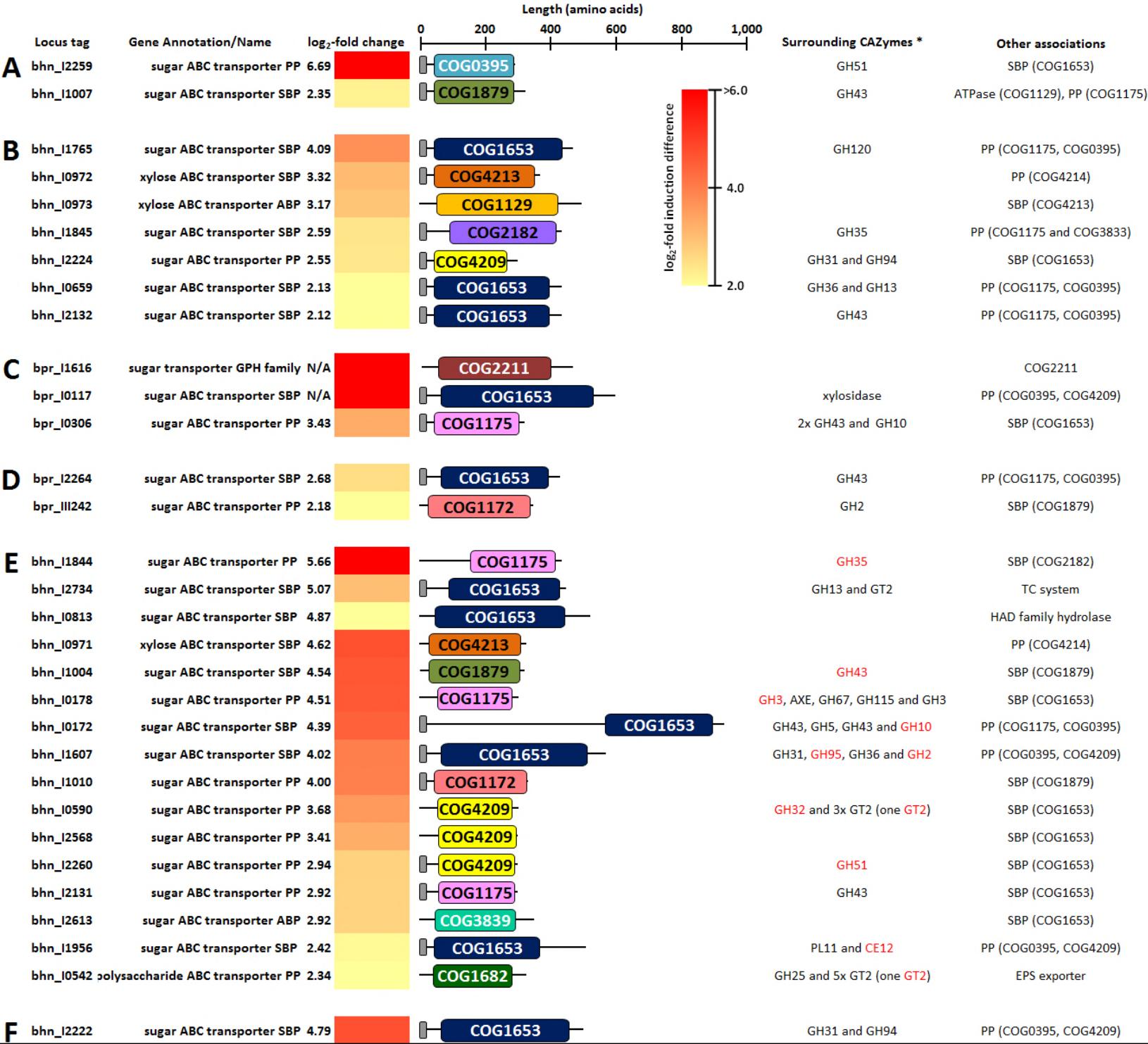

qPCR analysis and xylose released by *Butyrivibrio* strains grown on xylan



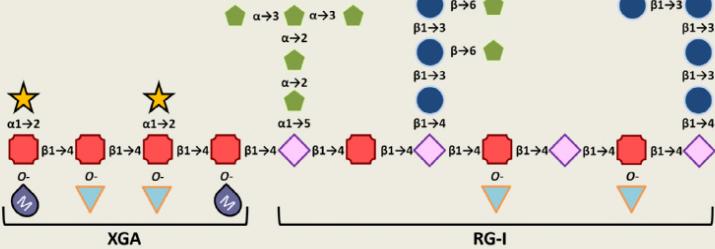

B


qPCR analysis and galactose released by *Butyrivibrio* strains grown on pectin

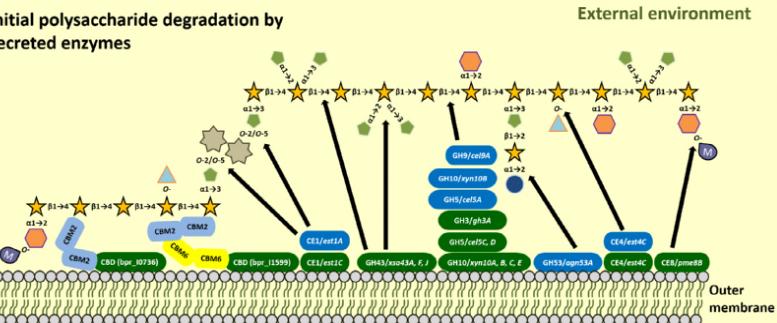




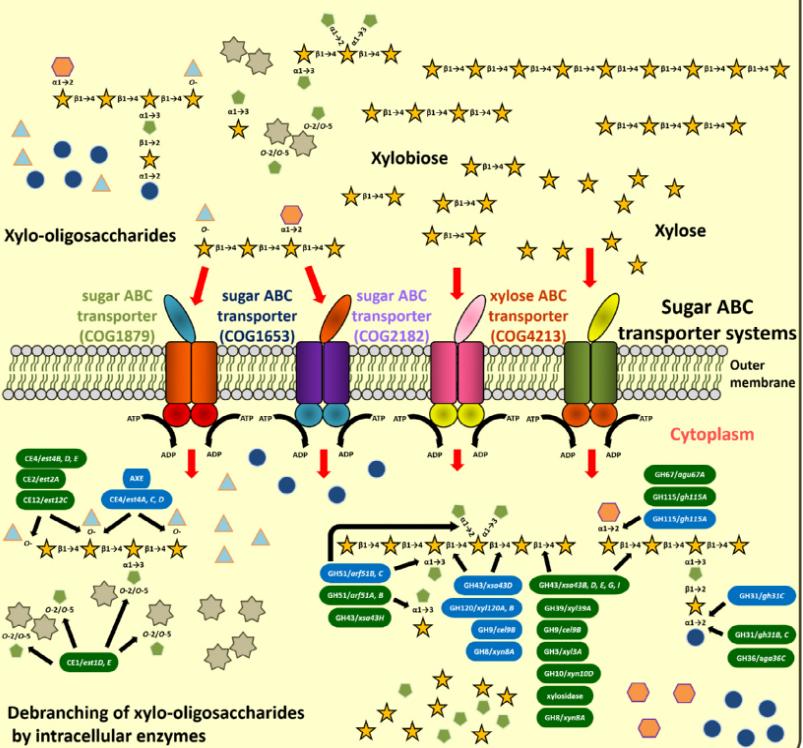




A Glucuronoarabinoxylan (GAX)

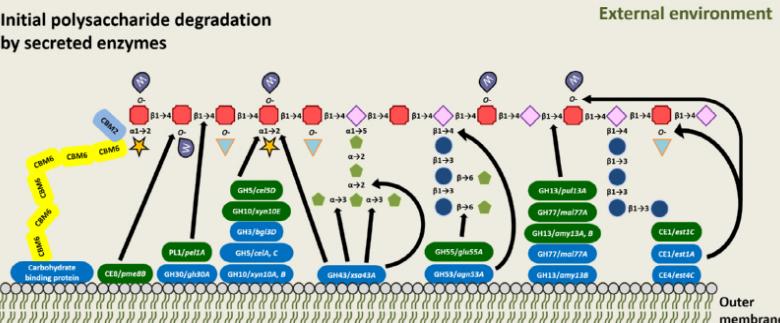


B Xylogalacturonan (XGA) and rhamnogalacturonan I (RG-I)

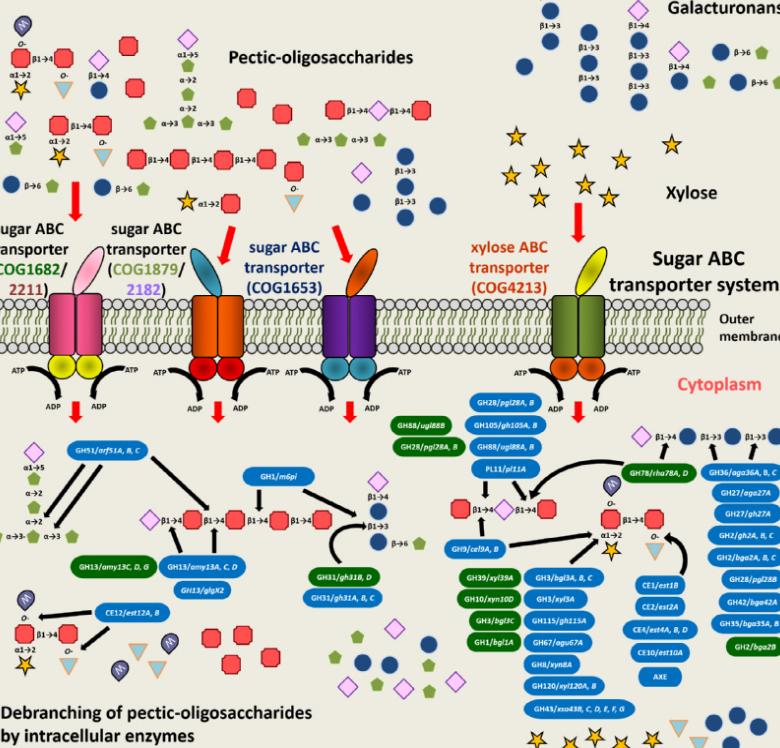


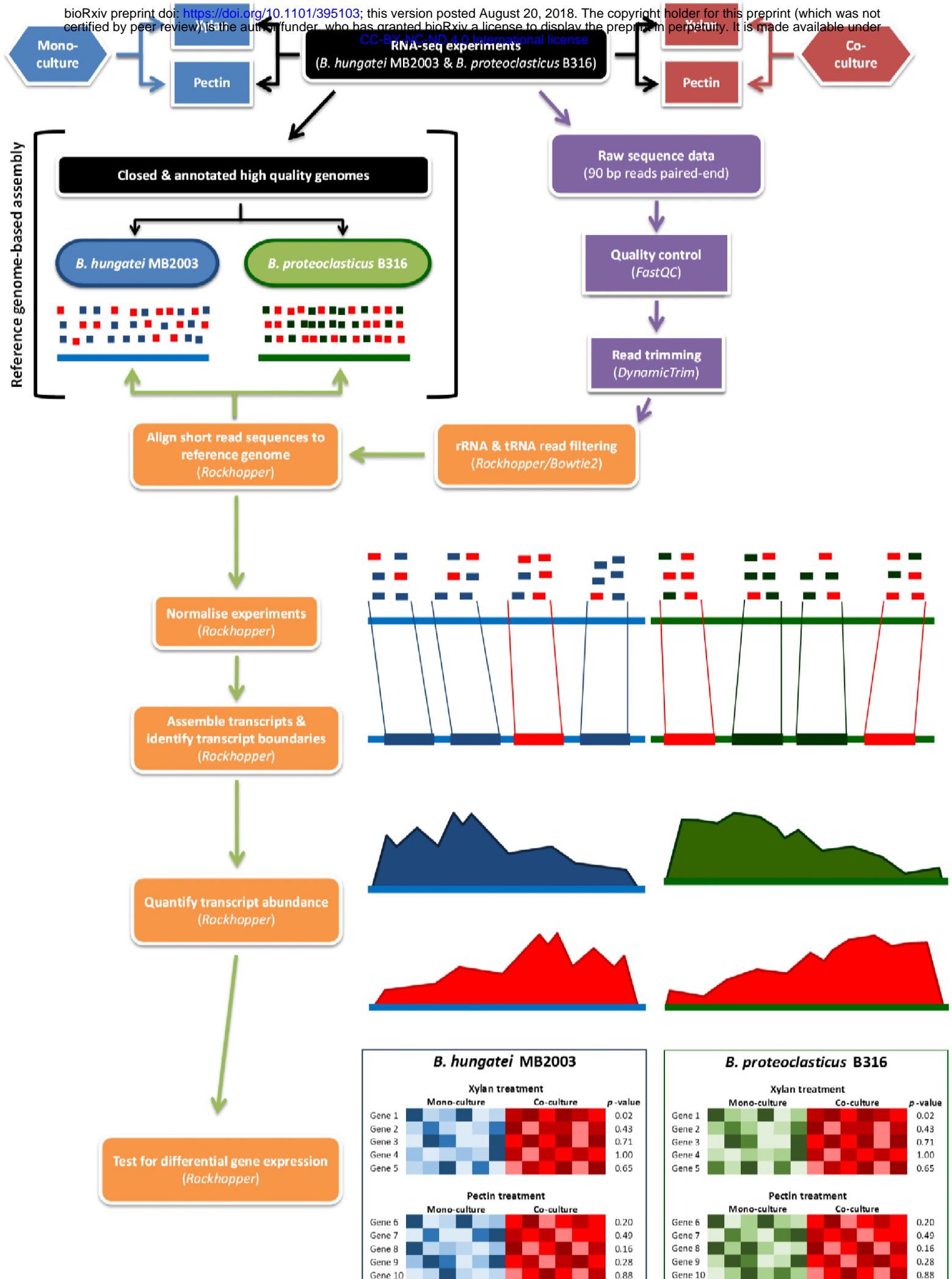
C Proposed model for the degradation of GAX

Initial polysaccharide degradation by secreted enzymes



Transport of xylo-oligosaccharides by sugar ABC transport systems




D Proposed model for the degradation of XGA and RG-I

Initial polysaccharide degradation by secreted enzymes

Transport of pectic-oligosaccharides by sugar ABC transport systems

