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Abstract

Genetic spaces are often described in terms of fitness landscapes or
genotype-to-phenotype maps, where each genetic sequence is associated with phenotypic
properties and linked to other genotypes that are a single mutational step away. The
positions close to a genotype make up its “mutational landscape” and, in aggregate,
determine the short-term evolutionary potential of a population. Populations with wider
ranges of phenotypes in their mutational neighborhood are known to be more evolvable.
Likewise, those with fewer phenotypic changes available in their local neighborhoods are
more mutationally robust. Here, we examine whether forces that change the distribution
of phenotypes available by mutation profoundly alter subsequent evolutionary dynamics.

We compare evolved populations of digital organisms that were subject to either 1

static or cyclically-changing environments. For each of these, we examine diversity of 2

the phenotypes that are produced through mutations in order to characterize the local 3

genotype-phenotype map. We demonstrate that environmental change can push 4

populations toward more evolvable mutational landscapes where many alternate 5

phenotypes are available, though purely deleterious mutations remain suppressed. 6

Further, we show that populations in environments with harsh changes switch 7

phenotypes more readily than those in environments with more benign changes. We 8

trace this effect to repeated population bottlenecks in the harsh environments, which 9

result in shorter coalescence times and keep populations in regions of the mutational 10

landscape where the phenotypic shifts in question are more likely to occur. Typically, 11

static environments select solely for immediate optimization, at the expensive of 12

long-term evolvability. In contrast, we show that with changing environments, 13

short-term pressures to deal with immediate challenges can align with long-term 14

pressures to explore a more productive portion of the mutational landscape. 15

Introduction 16

Interactions are ubiquitous in evolving systems. Some of these interactions are between 17

individuals of the same population [1–5]; others are between members of different 18

populations [6–8]. A third group – interactions between an individual and the 19

environment [9–11] – can also be crucial, both for how an individual experiences the 20
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world, and how it modifies its surroundings [12, 13], which can have impacts on the rest 21

of the ecosystem [14,15]. 22

The interactions between an environment and possible genomes can be 23

mathematically expressed by a fitness landscape. Fitness landscapes are a mathematical 24

tool to map genetic sequences to reproductive fitness. Many studies have examined the 25

important role that different types of fitness landscapes play on evolutionary dynamics 26

and outcomes, both in biological populations [16–19] and in evolutionary computation 27

settings [20–22]. However, real-world fitness landscapes are far more complex and varied 28

than the limited or idealized models that are used in most of these studies. Neighboring 29

regions of real landscapes can have starkly different properties from each other based on 30

the effects of and interactions among mutations; as such, a local region of a fitness 31

landscape around a genotype is commonly referred to as its mutational landscape. 32

Different landscapes, or different regions of a landscape, can vary tremendously in 33

their properties. Examples of the type of properties that we are interested in include 34

robustness, epistasis, and modularity, all of which are measurements of how information 35

is organized inside of a genome and commonly categorized as components of an 36

organism’s “genetic architecture”. Isolated pockets in a landscape can often be 37

characteristically different from the landscape as a whole due to the amount and 38

organization of genetic information. In fact, in most natural fitness landscapes, the vast 39

majority of neighborhoods consist entirely of non-replicating genomes with zero fitness 40

(and thus no genetic information), making life itself appear to be a rare exception [23]. 41

Evolution on realistic landscapes is clearly limited to those regions that have 42

non-zero fitness, with a selective pressure for fitness to increase. Beyond evolution away 43

from zero-fitness regions, populations can evolve in more complicated ways, toward 44

neighborhoods with specific local properties based on the evolutionary forces acting 45

upon the populations. For example, high mutation rates drive populations toward 46

neighborhoods with a higher fraction of neutral mutations in an effect dubbed “survival 47

of the flattest” [24]. Similarly, sexual populations tend toward regions of the fitness 48

landscape with more modularity [25] and more negative epistasis [26] than otherwise 49

equivalent asexual populations. 50

Understanding the dynamics of evolution in complex meta-environments, such as 51

changing environments, is of broad interest. It is important to evolutionary 52

computation, given the strong influence of local landscape properties on the quality of 53

the final solutions that an evolving population is able to obtain. Its relevance to 54

evolutionary biology is equally obvious – the local landscape that a population occupies 55

will influence the selective forces at play in the population, creating a feedback cycle 56

between these two important evolutionary factors [8, 27–29]. Disentangling such 57

interactions is likely to provide further insights into fundamental evolutionary dynamics. 58

Computational artificial life systems have the advantage of being able to bridge these 59

two realms: they have unconstrained evolutionary dynamics similar to natural systems, 60

while maintaining the ability to rapidly perform experiments and collect any data we 61

need about populations or their local landscapes. 62

Evolvability and Genetic Architecture 63

Evolvability refers to a series of distinct but overlapping concepts that are generally 64

concerned with adaptation, variation, and/or novelty generation [30]. Depending on 65

your perspective, evolvability can describe the response to selection at the population 66

level [31, 32], the ability of populations to adapt to changing conditions [33], larger 67

phenomena such as variability generation [34], exploration of neutral spaces and 68

robustness [35,36], generation of novel features [37,38], or even the potential to generate 69

clade-level innovations [39] and major transitions [40]. Here, we will focus on 70

evolvability as the capacity for mutations to generate adaptive variation in a genome. 71
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In the short-term, this kind of evolvability determines a population’s response to 72

selection, and depends primarily on the organization and interrelation of information in 73

the genome; that is, the genetic architecture, and the resulting genotype-to-phenotype 74

map [34]. An example of evolvable architecture can be found in some bacterial genomes 75

that contain highly mutable genome regions, called contingency loci. Small sets of 76

insertions or deletions to these regions create transcription frameshifts that alter the 77

expression of nearby coding regions, thus allowing populations to easily switch 78

phenotypes via minor mutations. Contingency loci are most often seen in the genomes 79

of pathogens, which are subject to frequent environmental shifts caused by the host 80

immune system [41]. Thus, these populations are able to produce large amounts of 81

heritable variation despite their reduction in diversity resulting from population 82

bottlenecks. 83

Mutational Landscapes 84

Properties of genetic architectures such as evolvability and robustness are determined by 85

the shape of the resulting mutational landscape (local fitness landscape around a 86

genotype, accessible in a single mutation) [42]. Robust genetic architectures that can 87

tolerate more mutations without altering their phenotype reside in mutational 88

landscapes that connect to more neutral mutants. Similarly, architectures where 89

mutations are more likely to cause phenotype switching without substantial reductions 90

in fitness, reside in more evolvable regions of genotype-space. 91

It is worth noting that not all neighborhoods of the mutational landscape may be 92

equally accessible. Some genome regions may be more robust to mutation than others. 93

For example, in E. coli, the methyl-directed mismatch repair (MMR) pathway has been 94

shown to preferentially repair coding regions over non-coding regions [43]. Alternately, 95

some kinds of mutations may be more likely to occur than others. A mutation 96

accumulation (MA) study of S. typhimurium found a strong bias toward GC-to-TA 97

transversions rather than GC-to-AT transitions [44]. These kinds of effects thereby skew 98

the probabilities of some kinds mutations occurring that might lead into certain 99

neighborhoods of the mutational landscape. These kinds of differential probabilities 100

may therefore moderate a population’s diffusion through the mutational landscape. 101

Further, response to selection is likely to be weaker in regions of the landscape where 102

there are fewer available mutations that provide potentially adaptive traits, whereas 103

response to selection will be stronger in regions where there are many adaptive variants 104

available within a few mutational steps [37,45]. This differential response to selection 105

may therefore constrain the ability of populations to diffuse across a fitness landscape. 106

Landscape Metrics 107

Assessing the qualities of the nearby mutational landscape requires measures that can 108

relate phenotypes and their fitness effects with the probabilities that these mutants will 109

arise in the population. For the purposes of this paper, we define the organism 110

phenotype as being the set of logical tasks performed by an organism. Phenotype 111

contributes to fitness, but fitness is a distinctly calculated value. In order to assess the 112

relative neutrality of the nearby mutational network, we will measure the Genomic 113

Diffusion Rate Dg [46]. This rate approximates the overall rate at which the 114

population encounters new neutral genotypes. To measure the Genomic Diffusion 115

Rate (Dg) in the local neighborhood of a genotype, we first calculated its Fidelity (F ), 116

or the probability of an offspring sharing this genotype with its parent. Given a uniform 117

mutation rate, Fidelity is the probability that a single locus is not mutated, (1− µ), 118
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raised to the power of the genome length (l)1. 119

Next, we measured the proportion of one-step mutants that were neutral or 120

beneficial when compared to the parent (pν) as well as those that were detrimental or 121

lethal (pd), which must sum to one (pν + pd = 1). The Neutral Fidelity (Fν) of a 122

genotype is thus the probability that no harmful mutations occur, assuming no epistasis. 123

Finally, subtracting Fidelity from Neutral Fidelity yields the overall probability of 124

producing an offspring with a different genotype, yet neutral or better fitness (Dg). 125

F = (1− µ)l (1)
126

Fν = (1− µpd)l (2)
127

Dg = Fν − F (3)

Measures of neutral exploration, however, only show part of the picture. While some 128

form of neutrality is necessary for exploring a fitness landscape, new phenotypes must 129

be discoverable to achieve higher local evolvability. In order to assess evolvability more 130

specifically, we introduce a related measure, the Phenotypic Diffusion Rate (Dp), 131

which represents the probability that an offspring will be fitness-neutral (or better), but 132

also express a different phenotype than its parent. To do so, we must first measure the 133

proportion of one-step mutants that are phenotypically neutral as compared to their 134

parent (ppν) and follow a similar procedure as above, first calculating the probability 135

that a phenotype-changing mutation will occur (µpheno), then the phenotypic-level 136

Fidelity (Fpν). 137

µpheno = µ(1− ppν) (4)
138

Fpν = (1− µpheno)l (5)
139

Dp = Fν − Fpν (6)

The difference between the overall Neutral Fidelity and the phenotype-preserving 140

Neutral Fidelity (Fν − Fpν) yields the phenotypic diffusion rate. 141

Expected Value of Fitness Landscapes 142

In the context of changing environments, the expected fitness value (E(w)), and thus 143

the neutrality, of a mutant on the mutational landscape will vary depending on the 144

environmental context. So, in one environment, a mutant may be highly fit, but the 145

same allele may be highly deleterious in a different environment. In order to address 146

this variation, all metrics must be normalized by the probability that a particular 147

environment will occur (Pi). That is, the nearby mutational landscape must be 148

evaluated in each possible environment, yielding a traditional fitness landscape. Then, 149

the set of fitnesses of each mutant (wi) in each environment must be aggregated 150

according to the probability of that environment occurring. 151

E(w) =
e∑
i=1

wiPi (7)

1For simplicity, these measures are calculated based on the probability of single mutations occurring.
However, in nature, multiple mutations may occur at once. We performed parallel experiments using
a sampling approach (which could collect multiple mutations) to calculate similar metrics. These
experiments yielded qualitatively similar results to those in this paper. See Section 1 of the supplemental
materials.
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Changing environments create more paths to different kinds of 152

phenotypes 153

Sustained directional selection adjusts the composition of phenotypes and genotypes in 154

a population [47], typically moving that population across the mutational landscape to 155

local regions of higher fitness. When populations find a fitness peak, they tend to 156

cluster there, and exploration of regions further away slows dramatically. 157

In changing environments, however, the direction of selection is not fixed and peaks 158

are not stable. Instead, as the environment changes, populations are driven to explore 159

new regions of the mutational landscape [48–50]. As they proceed, populations 160

accumulate and carry with them the genetic material acquired in prior explorations and 161

adaptations, and use this history as raw material for new adaptation [51]. Indeed, 162

earlier work has shown that changing environments promote evolvability in many 163

contexts [48], without compromising robustness [24, 52]. Strength of selection is also an 164

important component of this exploration, since the harshness of the environment drives 165

the speed with which organisms adapt to new conditions [53]. 166

For longer evolutionary timescales, beyond the limited scope of direct response to 167

selection against an environment, evolvability is concerned with generation of variability 168

and exploration of neutral spaces. Populations that exhibit this kind of evolvability 169

would possess genomes with genetic architectures that more easily traverse the 170

mutational landscape along neutral roads and thereby discover new fitness peaks while 171

avoiding needing to cross fitness valleys. This kind of evolvability would allow 172

populations to more easily colonize new ecological niches and form new clades [38,39]. 173

Despite some common features, the relationship between short-term and long-term 174

evolvability is not obvious. Architectural features and evolutionary pressures that 175

convey short-term evolvability may not be the same as those that confer longer-term 176

evolvability [30]. For example, features such as anti-robustness that promote rapid 177

adaptation to a harsh fluctuating environment might reduce fitness in constant or 178

benign fluctuating environments as compared to that of wild-type invaders. Alternately, 179

the adaptation to harsh fluctuating environments and the resulting bottlenecks would 180

potentially reduce diversity to the point where large amounts of neutral novelty 181

generation could not occur. 182

Finally, there is some evidence that the types of selection regimes typically used in 183

experiments with changing environments and evolvability might preferentially favor 184

individual evolvability (the probability of an individual’s offspring accessing novel 185

phenotypes) over population-level evolvability (the probability of the population at 186

large accessing novel phenotypes) [54, 55]. Adaptive selection – that is, selection toward 187

a particular goal – has been shown to depress population diversity even while it 188

increases individual evolvability in changing environment regimes. In contrast, divergent 189

(diversity-promoting) selection, such as frequency-dependent selection, increases 190

standing diversity, and thus evolvability at the population level [54]. Therefore, it is not 191

clear that the kinds of selective pressures that promote short-term adaptation in 192

changing environments would, in turn, promote exploration and exploitation of novel 193

environments. 194

In this paper, we show how changing environments not only drive exploration of the 195

mutational landscape, but also select for populations whose genetic architectures are 196

qualitatively different than those from populations evolved in static environmental 197

conditions under purely directional selection. 198

In particular, we show that populations evolved under harsh, cyclically-changing 199

environments have many more changes along their phylogenetic histories than those 200

evolved in static or benign changing environments. Organisms evolved in these 201

populations also contain reservoirs of pseudogene-like vestigial loci that were acquired 202

and deactivated through repeated adaptation and fixation cycles. As a result, 203
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populations evolved in these harsh cyclically-changing environments are low in standing 204

neutral diversity at the population level, but they still connect locally with many more 205

phenotypically-interesting regions of the mutational landscape than more diverse 206

populations evolved in static or benign environments. 207

Even so, we show that the strong selective pressures associated with these harsh 208

environments are detrimental to long-term evolvability, and instead, that benign 209

environments, with their higher standing diversity, are more successful at adapting to 210

entirely new environments. 211

Digital Evolution 212

Digital Evolution uses self-replicating computer programs as model organisms to study 213

evolutionary dynamics [56]. Unlike theoretical simulations, digital organisms have a 214

fully functional genome that direct them to self-replicate, mutate, and compete with 215

their peers for resources and space in which to reproduce. Because digital organisms 216

undergo random genetic mutations (i.e., variation) that are passed on to their offspring 217

(inheritance), and their survival is based on the actions they take (differential selection), 218

they undergo evolution by natural selection [57]. 219

Indeed, because evolution is an algorithmic process, studies with digital organisms 220

are not simulations of evolution, but actual instantiations of evolution, albeit on an 221

artificial substrate. Therefore, research performed using digital organisms are not 222

theoretical explorations, but rather true experiments, where hypotheses are tested, and 223

the outcomes are not pre-arranged. Studies of evolutionary processes in digital 224

organisms are particularly well suited to examining fundamental questions about 225

evolutionary principles, such as how information flows through evolutionary processes, 226

how arrangements of genetic architecture can affect evolutionary trajectories, how 227

different types of selective pressures interact to produce complexity, to name a few. 228

Digital organisms do not suffer from many of the drawbacks of experimentation on 229

natural organisms. Three of the advantages of digital organisms are particularly 230

relevant for our study. First, the rates of reproduction in digital systems are much faster 231

than in even the most rapidly-reproducing physical organisms; we can process 232

generations of organisms in seconds, rather than the hours required for the fastest 233

biological organisms under sustained conditions [58,59], or the weeks to years needed for 234

more complex multicellular organisms [60,61]. 235

Second, using digital organisms allows us to tightly control and verify experimental 236

conditions. For example, in physical organisms, factors such as mutation rate can 237

generally be measured only after the fact, or coarsely altered through mutagens. In 238

digital organisms, however, we can not only control mutation rates with fine-grained 239

precision, but also types and probabilities of different types mutations (e.g., 240

substitutions vs. insertions vs. deletions). Furthermore, we are also able to track and 241

replay the evolutionary history of every organism at any point in time to verify that 242

unusual or unexpected results do not represent measurement error. This ability to 243

exactly replicate evolutionary results at an individual organism level is firmly out of 244

reach for experiments with physical organisms. 245

Finally, we can precisely and perfectly map the mutational landscape around the 246

genome of a digital organism, and identify the role of every site in its genome [46]; such 247

exhaustive techniques are not feasible in even the simplest physical organisms. All of 248

these factors make digital organisms ideal for studying the effects of changing 249

environments on the mutational landscape. 250
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Methods 251

Avida Digital Evolution Platform 252

We used Avida [62] to examine the effects of cyclic changing environments on the 253

genomes of evolved digital organisms. Avida is a software platform for performing 254

evolution experiments with digital organisms in a virtual world. 255

Fig 1. An example virtual CPU from Avida, with a circular genome (blue),
three registers (purple), input and output handlers (tan), and an instruction pointer
(yellow) indicating the next instruction to be executed [63].

An Avida organism is composed of a circular genome of assembly-like computer 256

instructions that are executed in a virtual CPU (Fig 1). Populations of these organisms 257

are placed in a toroidal world in individual cells where they are allowed to execute, 258

reproduce, compete for space, mutate, and evolve. 259

Organisms in Avida are self-replicating, and experience mutation. The genome in 260

the initial default organism contains all of the instructions necessary for reproduction. 261

However, the instructions are not copied into an offspring perfectly. By default, the 262

reproductive copy instruction is faulty, meaning that it will probabilistically introduce 263

errors (mutations) into the offspring genomes. These offspring organisms execute their 264

own genomes even when different from their parent, and in turn pass on their inherited 265

mutations, along with new mutations, to their own offspring (i.e., variation in the 266

systems is heritable). 267

Avida worlds can be space- or resource-constrained. Avida allows the experimenter 268

to configure many aspects of the environment, thus subjecting the organisms to various 269

kinds of selective pressures. In many cases, these environments will include resources 270

that can be metabolized by performing specific functions or activities, resulting in a 271

boost to execution speed that gives the organisms a competitive advantage. However, 272

even without explicit external pressures, organisms still experience an implicit pressure 273

to execute more quickly and efficiently. The organisms that run fastest are typically 274
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Table 1. Experimental Treatments - Stage 1 - Cyclic Changing
Environments

Treatment
Changing

Environment

Rewarded Tasks

XOR EQU

Control
None
(static)

constant
23

constant
25

Benign Cyclic
constant

23

benign
fluctuating
20 or 25

Harsh Cyclic
constant

23

harsh
fluctuating
2−5 or 25

Two types of changing environment, plus a static control. In the first two treatments,
the environment switches in a predictable cycle. The benign treatment enables and
disables reward for the EQU task, while the harsh treatment rewards and then punishes
this task.

able to also reproduce fastest, and thus out-compete their peers for space. 275

Avida is available for download without cost from 276

http://avida.devosoft.org/, and specific versions along with data-files and 277

analysis scripts to reproduce the experiments described in this paper may be found at 278

https://github.com/voidptr/avida and 279

https://github.com/voidptr/ce_rapid_adaptation_data. 280

Experimental Design 281

In order to examine the dynamics and mechanisms of evolving populations in changing 282

environments, we performed a set of experiments divided into two stages. In the first 283

stage, we subjected populations of evolving digital organisms to a set of benign and 284

harsh cyclic changing environments. The cyclic environments were designed to simulate 285

predictable cycles of change, such as day/night or seasonal cycles. These experiments 286

allow organisms to adapt to a predictable set of environments, and explores short-term 287

evolvability dynamics. See Table 1 288

The second stage takes these change-evolved populations and introduces them to a 289

completely new environment. This set of experiments explores the relationship between 290

evolvability traits acquired via selection for short-term adaptation to cyclical change, 291

and examines how these traits perform in a long-term evolutionary context. See Table 2. 292

Short-Term Evolvability - Stage 1 293

We subjected a total of 150 replicate populations of digital organisms to two different 294

treatments of two-phase cyclically changing environments, plus a static control. The 295

environment cycles between equal-length periods of reward and punishment. Each cycle 296

extends for 1000 updates, or roughly 30 generations. In the static control, there is no 297

cycle. Rather, the rewards remain constant. This stage of the experiment extends for 298

200 cycles, or 200,000 updates, approximately 6,000 generations. 299

We set up the system to detect organisms that performed XOR or EQU, two 300

challenging bit-wise logical tasks. In the static control, XOR is rewarded with a CPU 301

speed (and thus fitness) multiple of 8, while EQU is rewarded with a CPU speed 302

multiple of 32. In the harsh treatment, as the cycle progresses, the XOR reward remains 303
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constant, while the EQU reward cycles between a 32-fold bonus and a correspondingly 304

harsh 32-fold penalty (i.e., CPU speed is divided by 32 when EQU is performed in the 305

off phase of the cycle). The benign treatment is nearly identical to the harsh treatment, 306

except that the reward merely goes away in the off-cycle as opposed to incurring a 307

severe penalty. 308

In both environments, we identify EQU as the Fluctuating Task. XOR, because it is 309

rewarded continuously, is the Backbone Task, and is used as a background for 310

comparing the separation or intertwining of functional genetic components in the 311

evolution of EQU. Further, the 4-fold difference in reward level between XOR and EQU 312

encourages the evolution and maintenance of EQU when possible. 313

Long-Term Evolvability - Stage 2 314

The second stage of the experiment continues the evolution of these populations, but 315

introduces them to a completely new environment, with an expanded set of rewarded 316

bitwise tasks to perform: Logic-77 (Table 2). We refer to those tasks which were 317

selected for in stage 1 as the basic task set. The Logic-77 task set is a super-set of the 318

basic task set, and includes all bitwise tasks for which there are up to 3 inputs, 319

including those that were initially rewarded in stage 1. We refer to the additional tasks 320

from Logic-77 - those which are not part of the basic tasks set, and that we reward only 321

in stage 2 - as the expanded task set. The total Logic-77 task set is a combination of 322

both the basic and expanded task sets. 323

These new tasks use up to three bit-wise inputs rather than two, and are each 324

rewarded with a constant 1.2-fold bonus to execution. This reward provides a mild 325

selective pressure to evolve these tasks, but the benefits to performing them do not 326

overwhelm the existing selective pressure to continue performing XOR or EQU. 327

In order to differentiate between the effects of architectural features and direct 328

effects of alternating selection, we duplicated the populations in each the benign and 329

harsh treatments at the end of stage 1 into two treatments each. Each treatment 330

introduces the rewards of the expanded task set, but one treatment in each pair 331

continues the changing environment of the first stage, while the other treatment stops 332

the cycle, and instead rewards the basic task set at a constant rate. 333

• Static (Control): This treatment is a baseline for comparing adaptation to the 334

expanded task set. For the first 200k updates (stage 1), we reward populations 335

for performing XOR and EQU (Table 2). For the second 200k updates (stage 2), we 336

add constant rewards for the expanded task set. Each new task is rewarded at 337

a 1.2-fold bonus to task execution. 338

• Benign Changing Environment: This treatment shows the effects of a 339

continuing benign changing environment on adaptation to the expanded task 340

set. For the first 200k updates (stage 1), we alternate rewarding and not 341

rewarding populations for performing the EQU task (Table 2). For the second 342

stage of the experiment, starting at 200k updates, we add constant rewards for 343

each of the new tasks in the expanded task set, at a 1.2-fold bonus to task 344

execution. The environmental fluctuation from the first stage continues through 345

the end of the experiment. 346

• Benign Quiescent Changing Environment: In contrast to the benign 347

changing environment treatment, this treatment tests the abilities of populations 348

initially evolved in a benign changing environment to adapt to the expanded 349

task set, but without active environmental fluctuation during the adaptation. 350

For the first 200k updates (stage 1), we alternate rewarding and not rewarding 351

populations, as in the Benign Changing Environment above. For the second stage 352
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Table 2. Experimental Treatments - Stage 2 - Long Term Evolution

Treatment
Changing

Env.
Type

Rewarded Tasks

Stage 1
(0-200,000 Updates)

Stage 2
(200,000-400,000 Updates)

XOR EQU XOR EQU

Expanded
Task-set
(Logic-77
minus

XOR & EQU)

Control
None
(static)

constant
23

constant
25

constant
23

constant
25

constant
20.3

Benign Cyclic
constant

23

benign
fluctuating
20 or 25

constant
23

benign
fluctuating
20 or 25

constant
20.3

Benign
Quiescent

Cyclic
constant

23

benign
fluctuating
20 or 25

constant
23

constant
25

constant
20.3

Harsh Cyclic
constant

23

harsh
fluctuating
2−5 or 25

constant
23

harsh
fluctuating
2−5 or 25

constant
20.3

Harsh
Quiescent

Cyclic
constant

23

harsh
fluctuating
2−5 or 25

constant
23

constant
25

constant
20.3

Four types of cyclic changing environment, plus a static control. Each treatment is split
into two stages. The first stage is a normal changing environment like those found in
Table 1. The second stage introduces an additional set of tasks (the expanded task
set) that are rewarded at a lower rate.
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of the experiment, starting at 200k updates, we add constant rewards for each of 353

the new tasks in the expanded task set, at a 1.2-fold bonus to task execution. 354

The environmental fluctuation from the first phase stops at 200k updates, and we 355

instead reward the tasks of the first phase (the basic task-set) as we did in the 356

static treatment (all constant reward). 357

• Harsh Changing Environment: This treatment shows the effects of a 358

continuing harsh changing environment on adaptation to the expanded task set. 359

For the first 200k updates (stage 1), we alternate rewarding and punishing 360

populations for performing the EQU task (Table 2). For the second stage of the 361

experiment, starting at 200k updates, we add constant rewards for each of the new 362

tasks of the expanded task set, at a 1.2-fold bonus to task execution. The 363

environmental fluctuation from the first phase continues through the end of the 364

experiment. 365

• Harsh Quiescent Changing Environment: In contrast to the harsh changing 366

environment treatment, this treatment tests the abilities of populations initially 367

evolved in a harsh changing environment to adapt to the expanded task set, 368

but without active environmental fluctuation during the adaptation. For the first 369

200k updates (stage 1), we alternate rewarding and punishing populations, as in 370

the Harsh Changing Environment above. For the second stage of the experiment, 371

starting at 200k updates, we add constant rewards for each of the new tasks in the 372

expanded task set, at a 1.2-fold bonus to task execution. The environmental 373

fluctuation from the first stage stops at 200k updates, and we instead reward the 374

basic tasks of the first phase as we did in the static treatment (all constant 375

reward). 376

Measuring Task Discovery and Task Performance 377

Task discovery and task performance are important measures not only of the adaptation 378

of digital organisms to their local environment, but they also indicate the extent to 379

which populations are more or less evolvable. Populations that are more evolvable 380

should be able to acquire new tasks at a faster rate than less evolvable populations. If 381

the evolvability of our populations is affected by evolution in a changing environment, 382

then this effect should result in differential rates of task discovery and performance. 383

Task discovery and performance together describe the exploration and exploitation of 384

the environment by a population. 385

Task Discovery 386

Task discovery represents the level of exploration of the fitness landscape. We measured 387

task discovery by counting the number of unique non-ephemeral tasks that have been 388

discovered by a population. Each task may be performed only once per organism, 389

yielding a maximum task count of 3600 at any given time. We define a non-ephemeral 390

task as one that is performed by at least than 0.1% of the population. Therefore, in 391

order for a new task to be marked as discovered, it must be performed by at least 4 392

individuals at the time of sampling. 393

Once a task is discovered, it may not be un-discovered; task discovery counts will 394

always increase monotonically. We measure overall task discovery by beginning to 395

collect unique tasks starting at the beginning of the experiment. For the overall 396

measurement, we count all possible tasks - the expanded task-set - even though not 397

all tasks are rewarded in the first stage of the experiment. We also measure 398

post-reward task discovery, where we begin counting new tasks from the beginning of 399

the second stage of the experiment, once we have begun rewarding execution of the 400
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expanded task set. Task discovery can range anywhere from a minimum of zero tasks 401

discovered, to a maximum of 77. 402

Task Performance 403

In addition to counting the number of unique task discovered, we also measure task 404

performance. We measure task performance by counting the total number of unique, 405

non-ephemeral tasks that a population is performing at each sampling point. This 406

measure represents the level of exploitation of the fitness landscape. This measure can 407

range from 0 to a maximum of 77 task being performed by the population. This value 408

will always be either equal to, or smaller than the number of tasks discovered, since a 409

population can’t perform a task it hasn’t discovered yet. 410

Experimental System 411

For all of the experiments described in this paper, we held the individual genomes at a 412

fixed length of 1212 instructions, but tested the new genomes for mutations after each 413

successful replication event at a substitution probability of 0.00075 per site. 414

We configured the Avida world to have local interactions on a toroidal grid that is 415

60-by-60 cells (3600 cells in total), and we seeded the initial populations with an 416

ancestor that was previously evolved to perform XOR and EQU under a static reward. 417

The genetic architecture for performing XOR and EQU is tightly intertwined in this 418

ancestral organism, as it was evolved with no selective pressure for modularity. 419

Statistical Methods 420

In experiments with digital organisms, it is fairly simple to perform so many replicates 421

that questions of the meaning of significance arise. In order to paint a true statistical 422

picture of the differences between our controls and experimental conditions, we limited 423

our replicates to 50 for each experimental condition, and emphasize the effect size in all 424

our statistical claims, in addition to reporting significance. 425

Most of the statistical techniques used in this paper are non-parametric, and focused 426

on differentiating between sample distributions. In general, we applied Wilcoxon 427

Rank-Sum tests [64] to distinguish between pairs of distributions, as well as 428

Kruskal-Wallis [65] for identifying whether we could reject the null hypothesis of 429

sameness between several different distributions. We assume all distributions are 430

independent, and that compared distributions have similar shapes. In all situations 431

where there were multiple comparisons of a given distributions, we applied Bonferonni 432

corrections [66] before assessing statistical significance. 433

In certain cases, we report mean and median values of distributions. In these cases, 434

we also report the standard deviation or 95% confidence intervals. 435

In specific cases, we also apply Spearman’s rank-order correlation coefficient ρ (or 436

rs) [67] to measure correlations between data sets. In all cases, data points are matched 437

from within a replicate. 438

All statistics were calculated using the SciPy [68] and Pandas [69] packages, in 439

Python [70]. 440

2As part of our initial controls, we hand-wrote an organism with separated sections that performed
XOR and EQU. This hand-written organism had 121 instructions and, as such, we used this genome
length as a constraint for the evolved organisms as well.
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Results and Discussion 441

Our experiments (detailed below) demonstrate that digital organisms that were evolved 442

in changing environments differ substantially from those that evolved in static 443

environments in a number of ways. These differences include the number of mutations 444

that fix in the lineage from the ancestor (the “phylogenetic depth”), key metrics of their 445

genetic architecture, and the presence of reservoirs of pseudogenes that change the 446

nearby mutational landscape. These features represent adaptation to the larger regime 447

of repeated environmental switching. 448

We also show that while harsh changing environments are better at promoting 449

short-term adaptation to changing environments, benign environments produce 450

populations that adapt more rapidly to entirely new sets of tasks. This result suggests 451

that the selective pressures that promote short-term adaptation are not necessarily the 452

same as those that promote long-term evolvability. 453

Stage 1 - Cyclic Changing Environments 454

We begin by examining the characteristics of populations evolved in cyclic changing 455

environments. 456

Performance of EQU 457

Each population was seeded with organisms that performed both the EQU fluctuating 458

task, and the XOR backbone task. We measured the execution of the EQU task, and 459

observed that in the static control treatment, EQU is fixed in the population and 460

remains so throughout the run. In contrast, we observed a periodic dip in the execution 461

of EQU in the benign changing environment during the non-rewarded phase of the cycle, 462

followed by a rapid recovery when rewards are reinstated. Finally, in the harsh 463

treatment, we observed abrupt disappearance of EQU performance, followed by rapid 464

recoveries, coinciding with phases of reward and punishment. As expected, these results 465

suggest that the populations are responding to the selective pressures to perform EQU 466

when it is rewarded, and to lose functionality when it is not rewarded or when it is 467

punished. 468

Evolutionary History and Population Structure 469

We then surveyed the evolutionary history and population structure of the evolving 470

populations. Evolution in the harsh cyclic changing environment resulted in many more 471

mutations fixing, and thus populations with substantially higher phylogenetic depth as 472

compared to those evolved in static or benign environments. At each environmental 473

shift, adaptive mutations rapidly swept and fixed in the populations. (Fig 3) 474

The populations that evolved in the control and benign environments displayed more 475

genetic diversity as compared to those evolved in the harsh cyclic environment, which 476

underwent a bottleneck at each cycle shift (see Fig 5). Because a selective sweep reduces 477

current diversity within a population, the smaller number of sweeps in the benign and 478

control treatments led populations in them to have higher standing diversity for most of 479

their evolutionary history than those populations from the harsh changing environment. 480

Despite this higher standing diversity in the benign and control treatments, regions of 481

low diversity are still evident in the genomes of these populations, implying purifying 482

selection on the traits encoded at these sites (see Fig 4). 483
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Fig 2. Number of organisms performing EQU task. We measured the execution
of the EQU task in all treatments. In the benign treatment, we observed increasing
periodic dips in execution that coincide with phases of non-reward as the experiments
progressed. In the harsh treatment, we observed adaptation, resulting in abrupt
disappearance of EQU in the punishment phase, followed by rapid recovery of EQU
performance during the reward phase. This result suggests that, over time, populations
became more apt at rapidly gaining and losing EQU as a response to changing selective
pressures.

Genetic Architecture 484

The alternating selection in both benign and harsh changing environments results in 485

qualitatively different architectural styles as compared with those genomes evolved in 486

the static environment. The task arrangements evolved under both experimental 487

treatments are much more scattered throughout the genome than in the control, which 488

is tightly compacted. Specifically, the bulk of the sites responsible for performing the 489

fluctuating task (EQU) did not overlap with the backbone task (XOR), except for a small 490

core region, which represents portions of the tasks that are shared between XOR and 491

EQU. That is, in the changing environment treatments, we see many more sites that 492

only code for a single task, whereas in the static treatment, the majority of functional 493

tasks sites code for both XOR and EQU. (See Figs 6, 7, and 8) 494

In terms of site placement over time, functional task site locations in the control 495

treatment did not change substantially over the course of the experiment. In the benign 496

treatment, many more regions that performed the fluctuating task (XOR) were 497

scattered throughout the genome, but site positions remained relatively fixed 498

throughout the run after an initial adaptive phase. In the harsh treatment, however, not 499

only were the active sites scattered, but the positions of active sites changed and 500

proliferated wildly over time. 501

In addition to the variation in site placement, populations in the benign and harsh 502

changing environment treatments had significantly more functional sites devoted to 503

performing just the EQU task (Wilcoxon Rank Sum Test: Z = -5.57 and -6.96, 504

respectively, p << 0.001). Interestingly, populations evolved in both the benign and 505

harsh treatments also show development of a large reservoir of formerly functional, now 506

vestigial, sites; that is, sites that remain unchanged from when they were previously 507

active in performing a task, but were disabled by a mutation elsewhere and are thus 508

now neutral. These vestigial pseudogene-like sites may be important for allowing the 509

organisms to quickly re-adapt as the fluctuations in the environment restore the 510

previously-rewarded functions. (Fig 9) 511
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Fig 3. Phylogenetic depth over time of a sample population evolved in each of the
three treatments of the cyclic changing environments. White horizontal lines mark the
depth of the most recent common ancestor, and discontinuities in this line indicate that
the most recent common ancestor has changed, and thus that a sweep occurred, or that
a competing clade went extinct. The control treatments had a mean of 18 sweeps
(STD=9.05), the benign treatments had a mean of 21 (STD=19.05), and the harsh
treatments had a mean of 88 sweeps (STD=23.37). Note the difference in scales
between y-axes: the control-evolved population has a maximum depth of 400 mutational
steps from ancestor, while the harsh-evolved has upward of 1100.

Nearby Mutational Landscape 512

In order to identify the role that these longer task footprints and pseudogene-like 513

structures play, we performed a survey of the single-step mutational neighborhood 514

surrounding the most abundant genotype present at the end of the experiment for each 515

replicate population. Each neighborhood contained 3,025 distinct mutants (121 loci 516

with 25 possible mutations per locus) in each of the 50 replicates per treatment, for a 517

total of nearly 450,000 mutants surveyed. We measured the fraction of mutants that 518

lost each of the rewarded tasks. (Fig 10). 519

We found that in both the benign and harsh treatments, there were many more 520

mutations that resulted in loss of the fluctuating task as compared to the control 521

(Wilcoxon Rank Sum Test: Z = -5.46 and -7.80 respectively, p << 0.001). An increase 522
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Fig 4. Per-site entropy over time of a representative sample population. Each
vertical slice represents the per-site entropy of the population at each update by genetic
locus. Hotter colors (red/orange/yellow) indicate greater diversity at this locus, while
cooler colors (blues) indicate that a locus is more consistent across the population.
These data indicates that in harsher changing environments, per-site diversity was much
lower than in benign or static environments.

Fig 5. Population entropy over time of the representative sample population in
Figure 4. Mean population entropy indicates the relative diversity of the population at
any given time, while the per-site entropy (see Fig 4) shows where in the genomes the
population diversity is located. These data indicate that in harsher changing
environments, as in per-site diversity (above), overall population diversity was much
lower than in benign or static environments.

in task loss in the harsh treatment is to be expected, but why would the benign 523

treatment lose EQU nearly as easily as the harsh treatment? One possibility is selective 524

pressure to lose the task. There is no explicit pressure for task loss, merely an absence 525

of reward. Even so, there is certainly an implicit penalty for performing a complex task 526

for which there is no reward. 527
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Fig 6. Genetic architecture of XOR and EQU over time in static environment
for the final dominant genotype in a randomly selected replicate. Starting from the
ancestor on the left, each vertical slice represents an organism along the line of descent
to the final dominant. Positions along the Y-axis represent each genome locus; loci in
an organism are colored based on the tasks that they currently (or previously) code for.
Sites in red are active sites that code for the XOR task only, sites in blue code for the
EQU task only, and purple sites code for both. Sites in black are critical for organism
replication. Sites in the lighter colors (tan, light blue, lavender) represent vestigial sites,
unchanged since they previously coded for XOR only, EQU only, or both tasks,
respectively. As we proceed from left to right, we can see the evolutionary history of the
final dominant genotype. XOR and EQU overlap almost completely throughout the run.
This kind of genetic architecture is typical of purely directional selection, where a
population has stabilized around a fitness peak.

Fig 7. Genetic architecture of XOR and EQU over time in benign
environment for the final dominant genotype in a randomly selected replicate.
Proceeding from the left of each figure, each vertical slice represents an organism along
the line-of-descent to the final dominant, and as in Figure 6, colors represent tasks
performed by each genome locus. In this genome, XOR and EQU evolve to overlap much
less than in the control. In contrast to the control (above), because fitness peaks are
changing over time, more functional mutations are accepted.
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Fig 8. Genetic architecture of XOR and EQU over time in harsh environment
for the final dominant genotype in a randomly selected replicate. Proceeding from the
left of each figure, each vertical slice represents an organism along the line-of-descent to
the final dominant, and as in Figures 6 and 7, colors represent tasks performed by each
genome locus. In this genome, XOR and EQU evolve to overlap even less than in the
control and benign treatments, with the EQU-only task sites becoming increasingly
scattered throughout the genome. In contrast to both the control and benign
environments (above), the harsh changes in selective pressure promote the adoption of
many more mutations, and result in a much different genetic architecture.

Fig 9. Number of functional and vestigial sites by treatment. Both the
benign and harsh changing environments had significantly more sites devoted to
performing only the EQU function (Wilcoxon Rank Sum Test: Z = -5.57 and -6.96,
respectively, p << 0.001). The harsh environment has a significantly larger number of
vestigial sites for the fluctuating (EQU) task compared to the benign treatment or
control (Wilcoxon Rank-Sum Z = -6.57 and -8.33, p << 0.001).
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Fig 10. A survey of the single-step mutational neighborhood around
organisms that performed the fluctuating task. Note that in both the benign and harsh
treatments, there were significantly more mutants that lost the EQU task as compared
to the control (Wilcoxon Rank Sum Test: Z = -5.46 and -7.80 respectively, p << 0.001).
This result indicates that it was easier for the organisms in both treatments to turn off
the EQU task in response to one mutation.

Another possibility is drift. Indeed, in Figure 2, we observe a steady downward trend 528

in execution of EQU when rewards are withdrawn. Then, as the reward returns, new 529

mutations are applied that reactivate the task, and overall performance recovers quickly. 530

This pattern of loss and regain would, over time tend, to increase the length of the task. 531

Indeed, as noted in Figure 8, there is a rapid increase in task length as EQU is cyclically 532

lost and regained. 533

However, is increased task length enough to account for increased task vulnerability 534

to mutation? In order to begin to address this question, we constructed a linear model 535

relating the task length of each task with the fraction of mutants that lost each of the 536

tasks. We discovered a strong relation between the number of functional sites and the 537

number of task-losing mutants for the EQU task, both alone, and overlapping with XOR, 538

such that we could predict approximately 77% and 63% of the variation in task loss, 539

respectively (Fig 11, see Tables 3 and 4). We also found a weaker, but still significant 540

relationship between the number of XOR-only functional sites and loss of the XOR task, 541

such that we could predict approximately 22% (See Table 5). This result confirms our 542

intuition that the longer the task, the more targets there are for mutation to disable the 543

task. 544

Further, the lower correlation between length and task loss for the XOR suggests that 545

it is not only task length, but some other architectural feature that makes the XOR task 546

more robust to mutation, and the EQU task more fragile. Even so, the question of what 547

kinds of architectural features account for this differential robustness remains open. 548

We then measured the proportion of second step mutants that regained EQU after 549

having lost it in the single-step survey. We found that changing environments shifted 550

the populations’ position in the mutational landscape, such that when a task that was 551

lost due to mutation, that task could be regained via one or two additional mutations 552
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Table 3. OLS Regression Results - Fraction of mutants losing EQU vs
number of EQU-only functional sites

Dep. Variable: Fraction R-squared: 0.770
Model: OLS Adj. R-squared: 0.768
Method: Least Squares F-statistic: 477.6
No. Observations: 145 Prob (F-statistic): 2.00e-47
Df Residuals: 143 Log-Likelihood: 325.51
Df Model: 1 AIC: -647.0

BIC: -641.1

coef std err t P>|t| [0.025 0.975]

Intercept 0.1178 0.004 32.430 0.000 0.111 0.125
Sites 0.0111 0.001 21.854 0.000 0.010 0.012

Omnibus: 25.415 Durbin-Watson: 2.073
Prob(Omnibus): 0.000 Jarque-Bera (JB): 43.864
Skew: 0.836 Prob(JB): 2.99e-10
Kurtosis: 5.114 Cond. No. 12.2

Linear regression, predicting fraction of one-step mutants that lost EQU, based on the
number of EQU-only functional sites in the original genome.

Fig 11. Correlation between task length and mutational task loss in the
1-step neighborhood across all treatments. Note the strong correlation between the
length of the EQU task and the fraction of mutants that lost EQU (Spearman’s Rho: rs
= 8.72, p << 0.001). Further, consider the weaker correlation between XOR task length,
and fraction of mutants that lost XOR. These data suggest that EQU is even less robust
to mutation compared to XOR than can be accounted for by task length alone.

elsewhere. That is, once a mutation caused the loss of a task, a different mutation could 553

reactivate the task. (Fig 12). 554

We speculate that this effect is due to the availability of reservoirs of formerly 555

vestigial sites. How such reservoirs might perform these functions remains an open 556

question. New mutations may either re-enable the old functional sites, or recruit 557

vestigial functionality to perform the task elsewhere. Potentially, these vestigial sites are 558

not altogether dormant at all. They might individually appear vestigial in the context 559

of a single knockout survey, but they might also be related to other sites in a network of 560

backup functionality that becomes activated in response to mutation. More research is 561

needed to explore what role these feature play. 562
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Table 4. OLS Regression Results - Fraction of mutants losing EQU and XOR
vs number of overlapping functional sites

Dep. Variable: Fraction R-squared: 0.631
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 244.4
No. Observations: 145 Prob (F-statistic): 9.41e-33
Df Residuals: 143 Log-Likelihood: 457.55
Df Model: 1 AIC: -911.1

BIC: -905.2

coef std err t P>|t| [0.025 0.975]

Intercept 0.0127 0.007 1.832 0.069 -0.001 0.026
Sites 0.0068 0.000 15.634 0.000 0.006 0.008

Omnibus: 29.951 Durbin-Watson: 1.875
Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.950
Skew: 1.023 Prob(JB): 3.87e-11
Kurtosis: 4.938 Cond. No. 128.

Linear regression, predicting fraction of one-step mutants that lost both XOR and EQU,
based on the number of overlapping functional sites in the original genome.

Fig 12. A survey of the two-step mutational neighborhood of the organisms
that lost EQU function in the one-step survey. We found that in both the harsh and
benign treatments, there were significantly more organisms that regained function in
response to mutation than the control. (Wilcoxon Rank Sum Test: Z = -47.9 and -57.82
respectively, p << 0.001). This result indicates that it was easier for the organisms in
both fluctuating environments to regain the task in response to one additional,
non-reversion mutation.
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Table 5. OLS Regression Results - Fraction of mutants losing XOR vs
number of XOR-only functional sites

Dep. Variable: Fraction R-squared: 0.228
Model: OLS Adj. R-squared: 0.222
Method: Least Squares F-statistic: 42.17
No. Observations: 145 Prob (F-statistic): 1.29e-09
Df Residuals: 143 Log-Likelihood: 367.39
Df Model: 1 AIC: -730.8

BIC: -724.8

coef std err t P>|t| [0.025 0.975]

Intercept 0.1152 0.004 31.955 0.000 0.108 0.122
Sites 0.0111 0.002 6.494 0.000 0.008 0.014

Omnibus: 101.236 Durbin-Watson: 2.062
Prob(Omnibus): 0.000 Jarque-Bera (JB): 956.241
Skew: 2.359 Prob(JB): 2.26e-208
Kurtosis: 14.663 Cond. No. 5.62

Linear regression, predicting fraction of one-step mutants that lost XOR, based on the
number of XOR-only functional sites in the original genome.

As an overall measure of neutral exploration, we also measured the proportion of 563

non-deleterious mutants in the nearby fitness landscape - the Genomic Diffusion Rate. 564

We found that this proportion remained approximately the same between all treatments 565

(Kruskal-Wallis: H(2) = 1.44, p = 0.49). However, we found that the Phenotypic 566

Diffusion Rate, the proportion of these mutants with different (and potentially adaptive) 567

phenotypes, increased in the changing environment treatments as compared to the 568

controls (Wilcoxon Rank Sum Test: Z = -8.02, -8.39, respectively, p << 0.001). In this 569

way, the organisms from the changing environment treatments have an advantage over 570

organisms from the control runs in the short-term evolvability of the fluctuating task. 571

This result is consistent with real adaptation, not only to resources in their local 572

environment, but a direct adaptation to the environmental change. (Fig 13) 573

What might account for this adaptation? Similar to the relationship between the 574

number of functional sites of a task, and the number of single-step mutants that lost 575

that task (see Fig 11), we hypothesize that the reacquisition of tasks in the 2nd-step 576

survey may be mediated by the amount of useful task material present in the genome. 577

We performed a multiple linear regression, predicting the mean fraction of mutants that 578

regained EQU, by the number of functional and vestigial sites contained in the original 579

genome (see Table 6 and Fig 14). 580

We can predict approximately 47% of the variation in mean number of second step 581

mutants that regained EQU based on the number of functional and vestigial sites. Most 582

of the variation is predicted by the number of functional sites, though vestigial sites do 583

contribute a small amount. This result is consistent with the role of task length, and 584

thus the number of informational sites, being important for regaining task function. We 585

could not, however, account for all variation, indicating that there are other factors, 586

possibly in robustness or modular architecture of tasks, that are important to this kind 587

evolvability. 588
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Fig 13. Genomic and phenotypic diffusion rates, showing the probabilities of
producing offspring that are genotypically (Dg) or phenotypically (Dp) distinct from
the parent, while not reducing fitness. Note that while overall neutral exploration
capacity remains relatively stable between treatments (Kruskal-Wallis: H(2) = 1.44, p
= 0.49), phenotypic exploration capacity is increased in both treatments, but especially
in the Harsh treatment. (Wilcoxon Rank Sum Test: Z = -8.02, -8.39, respectively, p <<
0.001). This result is consistent with changing environments promoting the phenotypic
evolvability of populations.

Stage 2 - Long-Term Evolvability 589

Task Discovery 590

Task discovery is an important measure of long-term evolvability in that it quantifies 591

the ability of populations to explore and adapt to entirely new environments. We 592

measured task discovery in each of the changing environment treatments. 593

Benign changing environments outperform harsh environments in task 594

discovery 595

We found that once we began rewarding the expanded task set, populations evolving 596

in harsh changing environments discovered many fewer tasks that those evolving in 597

benign changing environments (Wilcoxon Rank Sum Test: Z = 2.75, p < 0.01) (Fig 15). 598

We hypothesize that this effect is due to the relative differences in the strength of 599

selection between the harsh changing environment and the directional selection toward 600

the expanded task set. 601

In the harsh changing environments, the selective pressure to gain or lose the 602

fluctuating tasks represents up to a 26-fold swing (between a ×25 penalty and a ×25 603

bonus) over the course of a single cycle, whereas the expanded task set can 604

individually only offer a 1.2-fold bonus to execution speed. Thus, those organisms that 605

promptly gain or lose a fluctuating task are more likely to survive, regardless of whether 606

or not they have gained one of the new expanded task-set tasks. Thus pressures to 607

gain and lose the fluctuating tasks are much stronger than the pressure to acquire new 608
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Fig 14. Multiple linear regression predicting mean fraction of second-step
mutants from the number of functional and vestigial sites in the original organism. See
Table 6.

expanded task-set tasks, thereby depressing the rate at which they are found. 609

In contrast, the benign environment experiences a weaker strength of selection for 610

EQU task gain and loss, in the form of a maximum 25-fold bonus directional selection 611

pressure to gain the tasks, and no direct pressure to lose the task. Thus, when 612

compared to the harsh treatments, the fraction of the total selective pressure for gaining 613

new expanded tasks is greater in the benign treatment. This increased pressure, plus 614

the benefit of an increased exploration rate conveyed by the benign changing 615

environment, result in a higher overall task discovery rates. 616

Interestingly, in the harsh quiescent treatment (HarshQuiescent) beginning in stage 617

2, we saw that task exploration recovered and achieved a comparable level to the control 618

(Wilcoxon Rank Sum Test: Z = -0.91, p = 0.37). What could account for this recovery? 619

One possibility is that the introduction of the new tasks provided sufficient selective 620

pressure to cause the increase in the discovery rate. In this case, we would expect to see 621

a similar increase in task exploration in the harsh changing environment treatment 622

(HarshCE). 623

Another possibility is that the alternating environment in the first part of the 624

experiment created a diversity disadvantage in populations in those treatments. If this 625

were the case, we would expect HarshQuiescent’s task discovery to initially grow more 626

slowly than the control, which would have suffered from no such disadvantage. Then, as 627

diversity recovered, we would expect to see task discovery grow at comparable rates. 628

Finally, there is the possibility is that the alternating selection regime was directly 629
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Table 6. OLS Regression Results - Mean Fraction of Mutants Regained
EQU vs Number of Functional and Vestigial Sites

Dep. Variable: Mean Fraction R-squared: 0.472
Model: OLS Adj. R-squared: 0.464
Method: Least Squares F-statistic: 61.65
No. Observations: 141 Prob (F-statistic): 7.39e-20
Df Residuals: 138 Log-Likelihood: 467.28
Df Model: 2 AIC: -928.6

BIC: -919.7

coef std err t P>|t| [0.025 0.975]

Intercept 0.0003 0.001 0.243 0.808 -0.002 0.003
Func Sites 0.0016 0.000 8.115 0.000 0.001 0.002
Vest Sites 0.0005 0.000 3.180 0.002 0.000 0.001

Omnibus: 79.316 Durbin-Watson: 1.928
Prob(Omnibus): 0.000 Jarque-Bera (JB): 437.211
Skew: 1.970 Prob(JB): 1.15e-95
Kurtosis: 10.675 Cond. No. 15.0

Multiple linear regression, predicting Mean fraction of second-step mutants that
regained EQU, based on the number of Functional and Vestigial sites in the original
genome.

Fig 15. Number of new expanded task set tasks discovered post-reward.
The left plot shows a time-series of the number of non-ephemeral tasks discovered by
populations by each treatment. The right plot shows the number of tasks discovered at
the end of the experiments. While the individual values overlap their neigbors, the top
and bottom-most treatments (Benign and Harsh) are significantly different from each
other (Wilcoxon Rank Sum Test: Z = 2.75, p < 0.01).

responsible for depressing task exploration. In this case, once we stopped alternating 630

task rewards, we would expect to see a significant difference in task discovery rates 631

between the HarshQuiescent and HarshCE treatments. 632
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Indeed, we found that the HarshQuiescent treatment has a much higher task 633

discovery rate than the HarshCE treatment. This result is inconsistent with the 634

hypothesis that the task rewards alone account for the recovery of the HarshQuiescent. 635

Instead, this result is consistent with the possibility of a direct negative effect from the 636

continuing alternating selection. We also found that there was a lag in task discovery 637

compared to the control. These data suggest that there was, at least initially, some 638

population-level disadvantage occurring in the HarshQuiescent populations. We also 639

observed that after the initially slow recovery phase, the quiescent treatment rapidly 640

increased its task discovery rate, and exceeded that of the control. This outcome is 641

consistent with a recovery of diversity, plus, potentially some lingering architectural 642

advantage for finding new tasks. 643

Harsh changing environments drive populations across the mutational 644

landscape 645

Fig 16. Number of new expanded task set tasks discovered over the whole
experiment. The left plot shows a time-series of all new tasks discovered over the
course of the entire run, including non-rewarded expanded task-set tasks. The
right-hand plot shows the final count at the end of the run. Before we introduce
rewards for performing the expanded task-set tasks, the harsh changing environment
discovers far more new tasks (Mdn = 28.0, CI 95% [27.0, 30.0]) than either of the other
treatments (Mdn = 22.0, CI 95% [22.0, 23.0]) (Wilcoxon Rank Sum Test: Z = 8.61, p
<< 0.001). These tasks appear despite no reward being given for performing any of the
expanded task-set in the first part of the experiment.

In the first part of the experiments, despite the expanded task set not being 646

rewarded, both changing-environment treatments (BenignCE and HarshCE) discovered 647

more new tasks than the control (Wilcoxon Rank Sum Test: Z = -5.75 and -11.15 648

respectively, p << 0.001). The harsh treatment in particular discovered substantially 649

and significantly more expanded task set tasks than either the benign treatment 650

(Wilcoxon Rank Sum Test: Z = -8.0, p << 0.001) or the control, despite these tasks not 651

being rewarded (Fig 16). We speculate that this effect may be due to the large 652

phylogenetic depth of the harsh-evolved populations, where the repeated bottlenecks 653

drive the populations along a kind of forced march across the mutational landscape. 654
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However, as the experiment proceeds, and expanded task-set task rewards are 655

introduced, this effect disappears, and task discovery rates converge (Kruskal-Wallis: 656

H(2) = 6.97, p = 0.03). 657

Task Performance 658

In addition to task discovery, task performance is another important measure of 659

long-term evolvability, in that it quantifies exploitation and fixation of traits that are 660

beneficial in new environments. We measured task performance in each of the changing 661

environment treatments. 662

Benign changing environments outperform harsh environments in task 663

performance 664

Fig 17. Number of distinct tasks performed. The left plot shows a time-series of
the number of distinct tasks performed by the treatment populations over time. The
right-had plot shows the number of tasks performed at the end of the experiments. The
harsh changing environment treatment performs substantially and significantly fewer
tasks than any of the benign or control treatments (Wilcoxon Rank Sum Test: Z =
-11.22 and -11.15 respectively, p << 0.001). The benign treatments perform best, but
the differences are not statistically significantly different than the control
(Kruskal-Wallis: H(2) = 2.76, p = 0.25).

Similar to task discovery, populations evolving in harsh changing environments 665

performed far fewer distinct tasks than either the control, or either benign populations 666

(Wilcoxon Rank Sum Test: Z = -11.22 and -11.15 respectively) (Fig 17). While both 667

the BenignCE and BenignQuiescent populations seemed to outperform the control, the 668

differences were not statistically significant (Kruskal-Wallis: H(2) = 2.76, p = 0.25). 669

Conclusion 670

In cyclic changing environments, the direction of selection shifts frequently, and 671

periodically drives populations to not only explore new regions of the genetic landscape, 672
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but also to carry with them vestigial genetic information about previous environmental 673

conditions. Thus, the resulting populations are not only adapted to the current 674

environment, but also to the meta-environment of cyclic change. Because of their 675

evolutionary history, the genomes contain vestigial fragments of genetic material that 676

were adapted to prior environments. As this exploration proceeds, mutations 677

accumulate in the population, each creating a link to a new region of the mutational 678

landscape. As these links accumulate, they form a reservoir of mobility for the 679

population to quickly shift to new phenotypes as dictated by current selective 680

conditions. In this way, the accumulation of vestigial or pseudogene-like regions acts as 681

an indirect adaptation to the larger pattern of changing selective forces. 682

By contrast, in static (non-changing) environments, the majority of neutral 683

mutations do not connect to as many phenotypically-interesting regions of 684

genotype-space. There are far fewer pseudogene-like regions available that could regain 685

functionality should conditions change. Thus, populations evolved in static 686

environments are less evolvable in the short-term. 687

These results suggest, therefore, that architectural features that help with short-term 688

evolvability are more likely the result of repeated hitchhiking on adaptive mutants. In 689

particular, we observed that much of the task-loss associated with the harsh changing 690

environment could be attributed to increasing task length which is a result of the 691

continuous addition of new mutations activating and deactivating the task. Despite this 692

correlation, however, we observed a potential difference in robustness between the XOR 693

and EQU tasks, which suggest that a kind of anti-robustness may also be selected for as 694

a result of the changing environments. 695

Long-Term Evolvability 696

The relationship between short- and long-term evolvability is non-obvious. Architectural 697

features and selective pressures that promote repeated re-adaptation to a known set of 698

environments may not be beneficial for the acquisition of entirely new adaptive traits, 699

and the outcomes depend on the evolutionary and selective history of the population. 700

For example, harsh changing environments depress both fitness and population 701

diversity, which might make these populations less effective at adaptation when 702

introduced into a new environment. Even so, our results suggest that there are 703

important architectural features conveyed by these environments that are beneficial for 704

new task acquisition, despite the short-term downsides. Our experiments show that 705

harsh changing environments, with their strong selective pressures, initially suppress the 706

ability of populations to acquire new, weakly-selected traits. But if alternating selection 707

is then removed, these populations are able to bounce back and rapidly acquire new 708

tasks. 709

In contrast, in conditions where alternating selection persists, benign changing 710

environments win at new task acquisition. Benign changing environments, with their 711

milder set of selective pressures, are able to leverage their accumulated heritage of 712

dormant vestigial sites to rapidly respond to selection, and acquire new tasks at a faster 713

rate than either harsh or non-change-evolved populations. 714

Limitations of Cyclic Changing Environments 715

Changing environments produce a set of selective pressures that speed up exploration of 716

genotype space, while also building reservoirs of partial functionality that may be 717

co-opted in the evolution of more complex structures. These features make changing 718

environments useful for both their exploratory power in natural evolution, and as 719

practical tools in the Artificial Life toolkit. Ultimately, however, as alluded to above, 720

cyclic changing environments only re-tread existing phenotypic ground, and though 721
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genotypic exploration can be faster than under purely directional or stabilizing selection, 722

the space explored remains constrained by the type of phenotypes that are selected. 723

Despite this constraint, however, we see that, particularly under harsh conditions, a lot 724

of novel genotypic ground may be explored, even without direct selection for novelty. 725

Even so, there must exist methods of exploring genotype space that do not suffer 726

from these limitations at all. For example, perhaps repeated bottlenecking of 727

populations could promote faster traversal of the fitness landscape in quasi-random 728

directions. More ambitiously, perhaps these kinds of environments could be coupled 729

with dynamically increasing open-ended complexity goals, or divergent selection 730

mechanisms such as negative frequency dependence to promote the maintenance of 731

diversity in evolving populations. 732

Understanding the mechanisms by which select environmental conditions alter 733

fitness landscapes is vital to understanding the forces that promote evolvability and 734

increase complexity. In particular, understanding the role of vestigial sites may help us 735

untangle how robustness can promote evolvability. Are these vestigial sites merely 736

inactive remnants, reservoirs of function, or are they part of a complex compensatory 737

framework supporting and buffering the expression of the phenotype? Or all of these 738

things? Changing environments provide one view into these dynamics, but we must 739

explore further to find other mechanisms for exploring and exploiting genotype space. 740
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Supplemental Materials 941

Sampled Nearby Mutational Landscape 942

As noted in equation 6, the mutants in the nearby mutational landscape include those 943

that have more than one mutation. However, for completeness, we performed an 944

exhaustive landscaping of the single-step mutational landscape, which, by definition, 945

only includes mutants with a single mutation (see Figure 10). In order to verify that our 946

results are indeed representative of the expected genomic and phenotypic diffusion rates, 947

we sampled the mutants in the nearby mutational landscape using all naturally 948

occurring mutations, including multiple mutations in a single mutant. 949

Our results (see figure 18) were virtually identical, showing that the sampling 950

approach and the exhaustive landscaping produce qualitatively indistinguishable results. 951
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Fig 18. A survey of the single-step and sampled mutational neighborhoods
around organisms that performed the fluctuating task. The results are qualitatively
identical to each other.
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