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Abstract

Genetic spaces are often described in terms of fitness landscapes or
genotype-to-phenotype maps, where each genetic sequence is associated with phenotypic
properties and linked to other genotypes that are a single mutational step away. The
positions close to a genotype make up its “mutational landscape” and, in aggregate,
determine the short-term evolutionary potential of a population. Populations with wider

ranges of phenotypes in their mutational neighborhood are known to be more evolvable.

Likewise, those with fewer phenotypic changes available in their local neighborhoods are
more mutationally robust. Here, we examine whether forces that change the distribution

of phenotypes available by mutation profoundly alter subsequent evolutionary dynamics.

We compare evolved populations of digital organisms that were subject to either
static or cyclically-changing environments. For each of these, we examine diversity of
the phenotypes that are produced through mutations in order to characterize the local
genotype-phenotype map. We demonstrate that environmental change can push
populations toward more evolvable mutational landscapes where many alternate
phenotypes are available, though purely deleterious mutations remain suppressed.
Further, we show that populations in environments with harsh changes switch
phenotypes more readily than those in environments with more benign changes. We
trace this effect to repeated population bottlenecks in the harsh environments, which
result in shorter coalescence times and keep populations in regions of the mutational
landscape where the phenotypic shifts in question are more likely to occur. Typically,
static environments select solely for immediate optimization, at the expensive of
long-term evolvability. In contrast, we show that with changing environments,
short-term pressures to deal with immediate challenges can align with long-term
pressures to explore a more productive portion of the mutational landscape.

Introduction

Interactions are ubiquitous in evolving systems. Some of these interactions are between
individuals of the same population [1-5]; others are between members of different
populations [6-8]. A third group — interactions between an individual and the
environment [9-11] — can also be crucial, both for how an individual experiences the
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world, and how it modifies its surroundings [12,13], which can have impacts on the rest
of the ecosystem [14,15].

The interactions between an environment and possible genomes can be
mathematically expressed by a fitness landscape. Fitness landscapes are a mathematical
tool to map genetic sequences to reproductive fitness. Many studies have examined the
important role that different types of fitness landscapes play on evolutionary dynamics
and outcomes, both in biological populations [16-19] and in evolutionary computation
settings [20-22]. However, real-world fitness landscapes are far more complex and varied
than the limited or idealized models that are used in most of these studies. Neighboring
regions of real landscapes can have starkly different properties from each other based on
the effects of and interactions among mutations; as such, a local region of a fitness
landscape around a genotype is commonly referred to as its mutational landscape.

Different landscapes, or different regions of a landscape, can vary tremendously in
their properties. Examples of the type of properties that we are interested in include
robustness, epistasis, and modularity, all of which are measurements of how information
is organized inside of a genome and commonly categorized as components of an
organism’s “genetic architecture”. Isolated pockets in a landscape can often be
characteristically different from the landscape as a whole due to the amount and
organization of genetic information. In fact, in most natural fitness landscapes, the vast
majority of neighborhoods consist entirely of non-replicating genomes with zero fitness
(and thus no genetic information), making life itself appear to be a rare exception [23].

Evolution on realistic landscapes is clearly limited to those regions that have
non-zero fitness, with a selective pressure for fitness to increase. Beyond evolution away
from zero-fitness regions, populations can evolve in more complicated ways, toward
neighborhoods with specific local properties based on the evolutionary forces acting
upon the populations. For example, high mutation rates drive populations toward
neighborhoods with a higher fraction of neutral mutations in an effect dubbed “survival
of the flattest” [24]. Similarly, sexual populations tend toward regions of the fitness
landscape with more modularity [25] and more negative epistasis [26] than otherwise
equivalent asexual populations.

Understanding the dynamics of evolution in complex meta-environments, such as
changing environments, is of broad interest. It is important to evolutionary
computation, given the strong influence of local landscape properties on the quality of
the final solutions that an evolving population is able to obtain. Its relevance to
evolutionary biology is equally obvious — the local landscape that a population occupies
will influence the selective forces at play in the population, creating a feedback cycle
between these two important evolutionary factors [8,27-29]. Disentangling such
interactions is likely to provide further insights into fundamental evolutionary dynamics.
Computational artificial life systems have the advantage of being able to bridge these
two realms: they have unconstrained evolutionary dynamics similar to natural systems,
while maintaining the ability to rapidly perform experiments and collect any data we
need about populations or their local landscapes.

Evolvability and Genetic Architecture

Evolvability refers to a series of distinct but overlapping concepts that are generally
concerned with adaptation, variation, and/or novelty generation [30]. Depending on
your perspective, evolvability can describe the response to selection at the population
level [31,32], the ability of populations to adapt to changing conditions [33], larger
phenomena such as variability generation [34], exploration of neutral spaces and
robustness [35,36], generation of novel features [37,38], or even the potential to generate
clade-level innovations [39] and major transitions [40]. Here, we will focus on
evolvability as the capacity for mutations to generate adaptive variation in a genome.
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In the short-term, this kind of evolvability determines a population’s response to
selection, and depends primarily on the organization and interrelation of information in
the genome; that is, the genetic architecture, and the resulting genotype-to-phenotype
map [34]. An example of evolvable architecture can be found in some bacterial genomes
that contain highly mutable genome regions, called contingency loci. Small sets of
insertions or deletions to these regions create transcription frameshifts that alter the
expression of nearby coding regions, thus allowing populations to easily switch
phenotypes via minor mutations. Contingency loci are most often seen in the genomes
of pathogens, which are subject to frequent environmental shifts caused by the host
immune system [41]. Thus, these populations are able to produce large amounts of
heritable variation despite their reduction in diversity resulting from population
bottlenecks.

Mutational Landscapes

Properties of genetic architectures such as evolvability and robustness are determined by
the shape of the resulting mutational landscape (local fitness landscape around a
genotype, accessible in a single mutation) [42]. Robust genetic architectures that can
tolerate more mutations without altering their phenotype reside in mutational
landscapes that connect to more neutral mutants. Similarly, architectures where
mutations are more likely to cause phenotype switching without substantial reductions
in fitness, reside in more evolvable regions of genotype-space.

It is worth noting that not all neighborhoods of the mutational landscape may be
equally accessible. Some genome regions may be more robust to mutation than others.
For example, in E. coli, the methyl-directed mismatch repair (MMR) pathway has been
shown to preferentially repair coding regions over non-coding regions [43]. Alternately,
some kinds of mutations may be more likely to occur than others. A mutation
accumulation (MA) study of S. typhimurium found a strong bias toward GC-to-TA
transversions rather than GC-to-AT transitions [44]. These kinds of effects thereby skew
the probabilities of some kinds mutations occurring that might lead into certain
neighborhoods of the mutational landscape. These kinds of differential probabilities
may therefore moderate a population’s diffusion through the mutational landscape.

Further, response to selection is likely to be weaker in regions of the landscape where
there are fewer available mutations that provide potentially adaptive traits, whereas
response to selection will be stronger in regions where there are many adaptive variants
available within a few mutational steps [37,45]. This differential response to selection
may therefore constrain the ability of populations to diffuse across a fitness landscape.

Landscape Metrics

Assessing the qualities of the nearby mutational landscape requires measures that can
relate phenotypes and their fitness effects with the probabilities that these mutants will
arise in the population. For the purposes of this paper, we define the organism
phenotype as being the set of logical tasks performed by an organism. Phenotype
contributes to fitness, but fitness is a distinctly calculated value. In order to assess the
relative neutrality of the nearby mutational network, we will measure the Genomic
Diffusion Rate D, [46]. This rate approximates the overall rate at which the
population encounters new neutral genotypes. To measure the Genomic Diffusion
Rate (D,) in the local neighborhood of a genotype, we first calculated its Fidelity (F),
or the probability of an offspring sharing this genotype with its parent. Given a uniform
mutation rate, Fidelity is the probability that a single locus is not mutated, (1 — p),
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raised to the power of the genome length ().

Next, we measured the proportion of one-step mutants that were neutral or
beneficial when compared to the parent (p,) as well as those that were detrimental or
lethal (pg), which must sum to one (p, + pqg = 1). The Neutral Fidelity (F,) of a

genotype is thus the probability that no harmful mutations occur, assuming no epistasis.

Finally, subtracting Fidelity from Neutral Fidelity yields the overall probability of
producing an offspring with a different genotype, yet neutral or better fitness (D).

F=(1-p) 1)
F, = (1 - ppa)t (2)
Dy=F,—F (3)

Measures of neutral exploration, however, only show part of the picture. While some
form of neutrality is necessary for exploring a fitness landscape, new phenotypes must
be discoverable to achieve higher local evolvability. In order to assess evolvability more
specifically, we introduce a related measure, the Phenotypic Diffusion Rate (D)),
which represents the probability that an offspring will be fitness-neutral (or better), but
also express a different phenotype than its parent. To do so, we must first measure the
proportion of one-step mutants that are phenotypically neutral as compared to their
parent (pp,) and follow a similar procedure as above, first calculating the probability
that a phenotype-changing mutation will occur (fpheno), then the phenotypic-level
Fidelity (F),).

Hpheno = N(l - ppu) (4)
Fpl/ = (1 - /J/pheno)l (5)
Dp = FI/ - Fpl/ (6)

The difference between the overall Neutral Fidelity and the phenotype-preserving
Neutral Fidelity (F, — F},) yields the phenotypic diffusion rate.

Expected Value of Fitness Landscapes

In the context of changing environments, the expected fitness value (E(w)), and thus
the neutrality, of a mutant on the mutational landscape will vary depending on the
environmental context. So, in one environment, a mutant may be highly fit, but the
same allele may be highly deleterious in a different environment. In order to address
this variation, all metrics must be normalized by the probability that a particular
environment will occur (P;). That is, the nearby mutational landscape must be
evaluated in each possible environment, yielding a traditional fitness landscape. Then,
the set of fitnesses of each mutant (w;) in each environment must be aggregated
according to the probability of that environment occurring.

E(w) = Zwipi (7)

1For simplicity, these measures are calculated based on the probability of single mutations occurring.

However, in nature, multiple mutations may occur at once. We performed parallel experiments using
a sampling approach (which could collect multiple mutations) to calculate similar metrics. These
experiments yielded qualitatively similar results to those in this paper. See Section 1 of the supplemental
materials.
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Changing environments create more paths to different kinds of
phenotypes

Sustained directional selection adjusts the composition of phenotypes and genotypes in
a population [47], typically moving that population across the mutational landscape to
local regions of higher fitness. When populations find a fitness peak, they tend to
cluster there, and exploration of regions further away slows dramatically.

In changing environments, however, the direction of selection is not fixed and peaks
are not stable. Instead, as the environment changes, populations are driven to explore
new regions of the mutational landscape [48-50]. As they proceed, populations
accumulate and carry with them the genetic material acquired in prior explorations and
adaptations, and use this history as raw material for new adaptation [51]. Indeed,
earlier work has shown that changing environments promote evolvability in many
contexts [48], without compromising robustness [24,52]. Strength of selection is also an
important component of this exploration, since the harshness of the environment drives
the speed with which organisms adapt to new conditions [53].

For longer evolutionary timescales, beyond the limited scope of direct response to
selection against an environment, evolvability is concerned with generation of variability
and exploration of neutral spaces. Populations that exhibit this kind of evolvability
would possess genomes with genetic architectures that more easily traverse the
mutational landscape along neutral roads and thereby discover new fitness peaks while
avoiding needing to cross fitness valleys. This kind of evolvability would allow
populations to more easily colonize new ecological niches and form new clades [38,39].

Despite some common features, the relationship between short-term and long-term
evolvability is not obvious. Architectural features and evolutionary pressures that
convey short-term evolvability may not be the same as those that confer longer-term
evolvability [30]. For example, features such as anti-robustness that promote rapid
adaptation to a harsh fluctuating environment might reduce fitness in constant or
benign fluctuating environments as compared to that of wild-type invaders. Alternately,
the adaptation to harsh fluctuating environments and the resulting bottlenecks would
potentially reduce diversity to the point where large amounts of neutral novelty
generation could not occur.

Finally, there is some evidence that the types of selection regimes typically used in
experiments with changing environments and evolvability might preferentially favor
individual evolvability (the probability of an individual’s offspring accessing novel
phenotypes) over population-level evolvability (the probability of the population at
large accessing novel phenotypes) [54,55]. Adaptive selection — that is, selection toward
a particular goal — has been shown to depress population diversity even while it
increases individual evolvability in changing environment regimes. In contrast, divergent
(diversity-promoting) selection, such as frequency-dependent selection, increases
standing diversity, and thus evolvability at the population level [54]. Therefore, it is not
clear that the kinds of selective pressures that promote short-term adaptation in
changing environments would, in turn, promote exploration and exploitation of novel
environments.

In this paper, we show how changing environments not only drive exploration of the
mutational landscape, but also select for populations whose genetic architectures are
qualitatively different than those from populations evolved in static environmental
conditions under purely directional selection.

In particular, we show that populations evolved under harsh, cyclically-changing
environments have many more changes along their phylogenetic histories than those
evolved in static or benign changing environments. Organisms evolved in these
populations also contain reservoirs of pseudogene-like vestigial loci that were acquired
and deactivated through repeated adaptation and fixation cycles. As a result,
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populations evolved in these harsh cyclically-changing environments are low in standing
neutral diversity at the population level, but they still connect locally with many more
phenotypically-interesting regions of the mutational landscape than more diverse
populations evolved in static or benign environments.

Even so, we show that the strong selective pressures associated with these harsh
environments are detrimental to long-term evolvability, and instead, that benign
environments, with their higher standing diversity, are more successful at adapting to
entirely new environments.

Digital Evolution

Digital Evolution uses self-replicating computer programs as model organisms to study
evolutionary dynamics [56]. Unlike theoretical simulations, digital organisms have a
fully functional genome that direct them to self-replicate, mutate, and compete with
their peers for resources and space in which to reproduce. Because digital organisms
undergo random genetic mutations (i.e., variation) that are passed on to their offspring
(inheritance), and their survival is based on the actions they take (differential selection),
they undergo evolution by natural selection [57].

Indeed, because evolution is an algorithmic process, studies with digital organisms
are not simulations of evolution, but actual instantiations of evolution, albeit on an
artificial substrate. Therefore, research performed using digital organisms are not
theoretical explorations, but rather true experiments, where hypotheses are tested, and
the outcomes are not pre-arranged. Studies of evolutionary processes in digital
organisms are particularly well suited to examining fundamental questions about
evolutionary principles, such as how information flows through evolutionary processes,
how arrangements of genetic architecture can affect evolutionary trajectories, how
different types of selective pressures interact to produce complexity, to name a few.

Digital organisms do not suffer from many of the drawbacks of experimentation on
natural organisms. Three of the advantages of digital organisms are particularly
relevant for our study. First, the rates of reproduction in digital systems are much faster
than in even the most rapidly-reproducing physical organisms; we can process
generations of organisms in seconds, rather than the hours required for the fastest
biological organisms under sustained conditions [58,59], or the weeks to years needed for
more complex multicellular organisms [60,61].

Second, using digital organisms allows us to tightly control and verify experimental
conditions. For example, in physical organisms, factors such as mutation rate can
generally be measured only after the fact, or coarsely altered through mutagens. In
digital organisms, however, we can not only control mutation rates with fine-grained
precision, but also types and probabilities of different types mutations (e.g.,
substitutions vs. insertions vs. deletions). Furthermore, we are also able to track and
replay the evolutionary history of every organism at any point in time to verify that
unusual or unexpected results do not represent measurement error. This ability to
exactly replicate evolutionary results at an individual organism level is firmly out of
reach for experiments with physical organisms.

Finally, we can precisely and perfectly map the mutational landscape around the
genome of a digital organism, and identify the role of every site in its genome [46]; such
exhaustive techniques are not feasible in even the simplest physical organisms. All of
these factors make digital organisms ideal for studying the effects of changing
environments on the mutational landscape.
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Methods

Avida Digital Evolution Platform

We used Avida [62] to examine the effects of cyclic changing environments on the
genomes of evolved digital organisms. Avida is a software platform for performing
evolution experiments with digital organisms in a virtual world.

Fig 1. An example virtual CPU from Avida, with a circular genome (blue),
three registers (purple), input and output handlers (tan), and an instruction pointer
(yellow) indicating the next instruction to be executed [63].

An Avida organism is composed of a circular genome of assembly-like computer
instructions that are executed in a virtual CPU (Fig 1). Populations of these organisms
are placed in a toroidal world in individual cells where they are allowed to execute,
reproduce, compete for space, mutate, and evolve.

Organisms in Avida are self-replicating, and experience mutation. The genome in
the initial default organism contains all of the instructions necessary for reproduction.
However, the instructions are not copied into an offspring perfectly. By default, the
reproductive copy instruction is faulty, meaning that it will probabilistically introduce
errors (mutations) into the offspring genomes. These offspring organisms execute their
own genomes even when different from their parent, and in turn pass on their inherited
mutations, along with new mutations, to their own offspring (i.e., variation in the
systems is heritable).

Avida worlds can be space- or resource-constrained. Avida allows the experimenter
to configure many aspects of the environment, thus subjecting the organisms to various
kinds of selective pressures. In many cases, these environments will include resources
that can be metabolized by performing specific functions or activities, resulting in a
boost to execution speed that gives the organisms a competitive advantage. However,
even without explicit external pressures, organisms still experience an implicit pressure
to execute more quickly and efficiently. The organisms that run fastest are typically
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Table 1. Experimental Treatments - Stage 1 - Cyclic Changing
Environments

Treatment Changing Rewarded Tasks
Environment XOR EQU
Control None constant constant
(static) 23 29
benign
. . tant .
Benign Cyclic con;3an fluctuating
20 or 2°
constant harsh
Harsh Cyclic 93 fluctuating
275 or 2°

Two types of changing environment, plus a static control. In the first two treatments,
the environment switches in a predictable cycle. The benign treatment enables and
disables reward for the EQU task, while the harsh treatment rewards and then punishes
this task.

able to also reproduce fastest, and thus out-compete their peers for space.

Avida is available for download without cost from
http://avida.devosoft.org/, and specific versions along with data-files and
analysis scripts to reproduce the experiments described in this paper may be found at
https://github.com/voidptr/avida and
https://github.com/voidptr/ce_rapid_adaptation_data.

Experimental Design

In order to examine the dynamics and mechanisms of evolving populations in changing
environments, we performed a set of experiments divided into two stages. In the first
stage, we subjected populations of evolving digital organisms to a set of benign and
harsh cyclic changing environments. The cyclic environments were designed to simulate
predictable cycles of change, such as day/night or seasonal cycles. These experiments
allow organisms to adapt to a predictable set of environments, and explores short-term
evolvability dynamics. See Table 1

The second stage takes these change-evolved populations and introduces them to a
completely new environment. This set of experiments explores the relationship between
evolvability traits acquired via selection for short-term adaptation to cyclical change,

and examines how these traits perform in a long-term evolutionary context. See Table 2.

Short-Term Evolvability - Stage 1

We subjected a total of 150 replicate populations of digital organisms to two different
treatments of two-phase cyclically changing environments, plus a static control. The
environment cycles between equal-length periods of reward and punishment. Each cycle
extends for 1000 updates, or roughly 30 generations. In the static control, there is no
cycle. Rather, the rewards remain constant. This stage of the experiment extends for
200 cycles, or 200,000 updates, approximately 6,000 generations.

We set up the system to detect organisms that performed XOR or EQU, two
challenging bit-wise logical tasks. In the static control, XOR is rewarded with a CPU
speed (and thus fitness) multiple of 8, while EQU is rewarded with a CPU speed
multiple of 32. In the harsh treatment, as the cycle progresses, the XOR reward remains
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constant, while the EQU reward cycles between a 32-fold bonus and a correspondingly
harsh 32-fold penalty (i.e., CPU speed is divided by 32 when EQU is performed in the
off phase of the cycle). The benign treatment is nearly identical to the harsh treatment,
except that the reward merely goes away in the off-cycle as opposed to incurring a
severe penalty.

In both environments, we identify EQU as the Fluctuating Task. XOR, because it is
rewarded continuously, is the Backbone Task, and is used as a background for
comparing the separation or intertwining of functional genetic components in the
evolution of EQU. Further, the 4-fold difference in reward level between XOR and EQU
encourages the evolution and maintenance of EQU when possible.

Long-Term Evolvability - Stage 2

The second stage of the experiment continues the evolution of these populations, but
introduces them to a completely new environment, with an expanded set of rewarded
bitwise tasks to perform: Logic-77 (Table 2). We refer to those tasks which were
selected for in stage 1 as the basic task set. The Logic-77 task set is a super-set of the
basic task set, and includes all bitwise tasks for which there are up to 3 inputs,
including those that were initially rewarded in stage 1. We refer to the additional tasks
from Logic-77 - those which are not part of the basic tasks set, and that we reward only
in stage 2 - as the expanded task set. The total Logic-77 task set is a combination of
both the basic and expanded task sets.

These new tasks use up to three bit-wise inputs rather than two, and are each
rewarded with a constant 1.2-fold bonus to execution. This reward provides a mild
selective pressure to evolve these tasks, but the benefits to performing them do not
overwhelm the existing selective pressure to continue performing XOR or EQU.

In order to differentiate between the effects of architectural features and direct
effects of alternating selection, we duplicated the populations in each the benign and
harsh treatments at the end of stage 1 into two treatments each. Each treatment
introduces the rewards of the expanded task set, but one treatment in each pair
continues the changing environment of the first stage, while the other treatment stops
the cycle, and instead rewards the basic task set at a constant rate.

e Static (Control): This treatment is a baseline for comparing adaptation to the
expanded task set. For the first 200k updates (stage 1), we reward populations
for performing XOR and EQU (Table 2). For the second 200k updates (stage 2), we
add constant rewards for the expanded task set. Each new task is rewarded at
a 1.2-fold bonus to task execution.

e Benign Changing Environment: This treatment shows the effects of a
continuing benign changing environment on adaptation to the expanded task
set. For the first 200k updates (stage 1), we alternate rewarding and not
rewarding populations for performing the EQU task (Table 2). For the second
stage of the experiment, starting at 200k updates, we add constant rewards for
each of the new tasks in the expanded task set, at a 1.2-fold bonus to task
execution. The environmental fluctuation from the first stage continues through
the end of the experiment.

¢ Benign Quiescent Changing Environment: In contrast to the benign
changing environment treatment, this treatment tests the abilities of populations
initially evolved in a benign changing environment to adapt to the expanded
task set, but without active environmental fluctuation during the adaptation.
For the first 200k updates (stage 1), we alternate rewarding and not rewarding
populations, as in the Benign Changing Environment above. For the second stage
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Table 2. Experimental Treatments - Stage 2 - Long Term Evolution

Changing Rewarded Tasks
Treatment ?nv. Stage 1 Stage 2
ype (0-200,000 Updates) (200,000-400,000 Updates)
Expanded
Task-set
XOR EQU XOR EQU (Logic-77
minus
XOR & EQU)
Control None constant constant constant constant constant
(static) 23 25 23 2° 203
beni beni
. . constant enlgr'l constant enlgr.l constant
Benign Cyclic 93 fluctuating 93 fluctuating 90.3
20 or 2° 20 or 2°
. beni
Benign . constant enlgr'l constant constant constant
. Cyclic 3 fluctuating 3 5 0.3
Quiescent 2 90 oy 95 2 2 2
harsh harsh
. constant . constant . constant
Harsh Cyclic 93 fluctuating o3 fluctuating 90.3
275 or 25 275 or 2°
harsh
Harsh Cvelic constant ﬂuc:g;tin constant constant constant
Quiescent Y 23 95 op 25g 23 25 203

Four types of cyclic changing environment, plus a static control. Each treatment is split
into two stages. The first stage is a normal changing environment like those found in
Table 1. The second stage introduces an additional set of tasks (the expanded task

set) that are rewarded at a lower rate.
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of the experiment, starting at 200k updates, we add constant rewards for each of
the new tasks in the expanded task set, at a 1.2-fold bonus to task execution.
The environmental fluctuation from the first phase stops at 200k updates, and we
instead reward the tasks of the first phase (the basic task-set) as we did in the
static treatment (all constant reward).

e Harsh Changing Environment: This treatment shows the effects of a

continuing harsh changing environment on adaptation to the expanded task set.

For the first 200k updates (stage 1), we alternate rewarding and punishing
populations for performing the EQU task (Table 2). For the second stage of the
experiment, starting at 200k updates, we add constant rewards for each of the new
tasks of the expanded task set, at a 1.2-fold bonus to task execution. The
environmental fluctuation from the first phase continues through the end of the
experiment.

e Harsh Quiescent Changing Environment: In contrast to the harsh changing
environment treatment, this treatment tests the abilities of populations initially
evolved in a harsh changing environment to adapt to the expanded task set,
but without active environmental fluctuation during the adaptation. For the first
200k updates (stage 1), we alternate rewarding and punishing populations, as in
the Harsh Changing Environment above. For the second stage of the experiment,
starting at 200k updates, we add constant rewards for each of the new tasks in the
expanded task set, at a 1.2-fold bonus to task execution. The environmental
fluctuation from the first stage stops at 200k updates, and we instead reward the
basic tasks of the first phase as we did in the static treatment (all constant
reward).

Measuring Task Discovery and Task Performance

Task discovery and task performance are important measures not only of the adaptation
of digital organisms to their local environment, but they also indicate the extent to
which populations are more or less evolvable. Populations that are more evolvable
should be able to acquire new tasks at a faster rate than less evolvable populations. If
the evolvability of our populations is affected by evolution in a changing environment,
then this effect should result in differential rates of task discovery and performance.
Task discovery and performance together describe the exploration and exploitation of
the environment by a population.

Task Discovery

Task discovery represents the level of exploration of the fitness landscape. We measured
task discovery by counting the number of unique non-ephemeral tasks that have been
discovered by a population. Each task may be performed only once per organism,
yielding a maximum task count of 3600 at any given time. We define a non-ephemeral
task as one that is performed by at least than 0.1% of the population. Therefore, in
order for a new task to be marked as discovered, it must be performed by at least 4
individuals at the time of sampling.

Once a task is discovered, it may not be un-discovered; task discovery counts will
always increase monotonically. We measure overall task discovery by beginning to
collect unique tasks starting at the beginning of the experiment. For the overall
measurement, we count all possible tasks - the expanded task-set - even though not
all tasks are rewarded in the first stage of the experiment. We also measure
post-reward task discovery, where we begin counting new tasks from the beginning of
the second stage of the experiment, once we have begun rewarding execution of the
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expanded task set. Task discovery can range anywhere from a minimum of zero tasks
discovered, to a maximum of 77.

Task Performance

In addition to counting the number of unique task discovered, we also measure task
performance. We measure task performance by counting the total number of unique,
non-ephemeral tasks that a population is performing at each sampling point. This
measure represents the level of exploitation of the fitness landscape. This measure can
range from 0 to a maximum of 77 task being performed by the population. This value
will always be either equal to, or smaller than the number of tasks discovered, since a
population can’t perform a task it hasn’t discovered yet.

Experimental System

For all of the experiments described in this paper, we held the individual genomes at a
fixed length of 1212 instructions, but tested the new genomes for mutations after each
successful replication event at a substitution probability of 0.00075 per site.

We configured the Avida world to have local interactions on a toroidal grid that is
60-by-60 cells (3600 cells in total), and we seeded the initial populations with an
ancestor that was previously evolved to perform XOR and EQU under a static reward.
The genetic architecture for performing XOR and EQU is tightly intertwined in this
ancestral organism, as it was evolved with no selective pressure for modularity.

Statistical Methods

In experiments with digital organisms, it is fairly simple to perform so many replicates
that questions of the meaning of significance arise. In order to paint a true statistical
picture of the differences between our controls and experimental conditions, we limited
our replicates to 50 for each experimental condition, and emphasize the effect size in all
our statistical claims, in addition to reporting significance.

Most of the statistical techniques used in this paper are non-parametric, and focused
on differentiating between sample distributions. In general, we applied Wilcoxon
Rank-Sum tests [64] to distinguish between pairs of distributions, as well as
Kruskal-Wallis [65] for identifying whether we could reject the null hypothesis of
sameness between several different distributions. We assume all distributions are
independent, and that compared distributions have similar shapes. In all situations
where there were multiple comparisons of a given distributions, we applied Bonferonni
corrections [66] before assessing statistical significance.

In certain cases, we report mean and median values of distributions. In these cases,
we also report the standard deviation or 95% confidence intervals.

In specific cases, we also apply Spearman’s rank-order correlation coefficient p (or
rs) [67] to measure correlations between data sets. In all cases, data points are matched
from within a replicate.

All statistics were calculated using the SciPy [68] and Pandas [69] packages, in
Python [70].

2As part of our initial controls, we hand-wrote an organism with separated sections that performed
XOR and EQU. This hand-written organism had 121 instructions and, as such, we used this genome
length as a constraint for the evolved organisms as well.
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Results and Discussion

Our experiments (detailed below) demonstrate that digital organisms that were evolved
in changing environments differ substantially from those that evolved in static
environments in a number of ways. These differences include the number of mutations
that fix in the lineage from the ancestor (the “phylogenetic depth”), key metrics of their
genetic architecture, and the presence of reservoirs of pseudogenes that change the
nearby mutational landscape. These features represent adaptation to the larger regime
of repeated environmental switching.

We also show that while harsh changing environments are better at promoting
short-term adaptation to changing environments, benign environments produce
populations that adapt more rapidly to entirely new sets of tasks. This result suggests
that the selective pressures that promote short-term adaptation are not necessarily the
same as those that promote long-term evolvability.

Stage 1 - Cyclic Changing Environments

We begin by examining the characteristics of populations evolved in cyclic changing
environments.

Performance of EQU

Each population was seeded with organisms that performed both the EQU fluctuating
task, and the XOR backbone task. We measured the execution of the EQU task, and
observed that in the static control treatment, EQU is fixed in the population and
remains so throughout the run. In contrast, we observed a periodic dip in the execution
of EQU in the benign changing environment during the non-rewarded phase of the cycle,
followed by a rapid recovery when rewards are reinstated. Finally, in the harsh
treatment, we observed abrupt disappearance of EQU performance, followed by rapid
recoveries, coinciding with phases of reward and punishment. As expected, these results
suggest that the populations are responding to the selective pressures to perform EQU
when it is rewarded, and to lose functionality when it is not rewarded or when it is
punished.

Evolutionary History and Population Structure

We then surveyed the evolutionary history and population structure of the evolving
populations. Evolution in the harsh cyclic changing environment resulted in many more
mutations fixing, and thus populations with substantially higher phylogenetic depth as
compared to those evolved in static or benign environments. At each environmental
shift, adaptive mutations rapidly swept and fixed in the populations. (Fig 3)

The populations that evolved in the control and benign environments displayed more
genetic diversity as compared to those evolved in the harsh cyclic environment, which
underwent a bottleneck at each cycle shift (see Fig 5). Because a selective sweep reduces
current diversity within a population, the smaller number of sweeps in the benign and
control treatments led populations in them to have higher standing diversity for most of

their evolutionary history than those populations from the harsh changing environment.

Despite this higher standing diversity in the benign and control treatments, regions of
low diversity are still evident in the genomes of these populations, implying purifying
selection on the traits encoded at these sites (see Fig 4).
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Fig 2. Number of organisms performing EQU task. We measured the execution
of the EQU task in all treatments. In the benign treatment, we observed increasing
periodic dips in execution that coincide with phases of non-reward as the experiments
progressed. In the harsh treatment, we observed adaptation, resulting in abrupt
disappearance of EQU in the punishment phase, followed by rapid recovery of EQU
performance during the reward phase. This result suggests that, over time, populations
became more apt at rapidly gaining and losing EQU as a response to changing selective
pressures.

Genetic Architecture

The alternating selection in both benign and harsh changing environments results in
qualitatively different architectural styles as compared with those genomes evolved in
the static environment. The task arrangements evolved under both experimental
treatments are much more scattered throughout the genome than in the control, which
is tightly compacted. Specifically, the bulk of the sites responsible for performing the
fluctuating task (EQU) did not overlap with the backbone task (XOR), except for a small
core region, which represents portions of the tasks that are shared between XOR and
EQU. That is, in the changing environment treatments, we see many more sites that
only code for a single task, whereas in the static treatment, the majority of functional
tasks sites code for both XOR and EQU. (See Figs 6, 7, and 8)

In terms of site placement over time, functional task site locations in the control
treatment did not change substantially over the course of the experiment. In the benign
treatment, many more regions that performed the fluctuating task (XOR) were
scattered throughout the genome, but site positions remained relatively fixed
throughout the run after an initial adaptive phase. In the harsh treatment, however, not
only were the active sites scattered, but the positions of active sites changed and
proliferated wildly over time.

In addition to the variation in site placement, populations in the benign and harsh
changing environment treatments had significantly more functional sites devoted to
performing just the EQU task (Wilcoxon Rank Sum Test: Z = -5.57 and -6.96,
respectively, p << 0.001). Interestingly, populations evolved in both the benign and
harsh treatments also show development of a large reservoir of formerly functional, now
vestigial, sites; that is, sites that remain unchanged from when they were previously
active in performing a task, but were disabled by a mutation elsewhere and are thus
now neutral. These vestigial pseudogene-like sites may be important for allowing the
organisms to quickly re-adapt as the fluctuations in the environment restore the
previously-rewarded functions. (Fig 9)
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Fig 3. Phylogenetic depth over time of a sample population evolved in each of the
three treatments of the cyclic changing environments. White horizontal lines mark the
depth of the most recent common ancestor, and discontinuities in this line indicate that
the most recent common ancestor has changed, and thus that a sweep occurred, or that
a competing clade went extinct. The control treatments had a mean of 18 sweeps
(STD=9.05), the benign treatments had a mean of 21 (STD=19.05), and the harsh
treatments had a mean of 88 sweeps (STD=23.37). Note the difference in scales
between y-axes: the control-evolved population has a maximum depth of 400 mutational
steps from ancestor, while the harsh-evolved has upward of 1100.

Nearby Mutational Landscape

In order to identify the role that these longer task footprints and pseudogene-like
structures play, we performed a survey of the single-step mutational neighborhood
surrounding the most abundant genotype present at the end of the experiment for each
replicate population. Each neighborhood contained 3,025 distinct mutants (121 loci
with 25 possible mutations per locus) in each of the 50 replicates per treatment, for a
total of nearly 450,000 mutants surveyed. We measured the fraction of mutants that
lost each of the rewarded tasks. (Fig 10).

We found that in both the benign and harsh treatments, there were many more
mutations that resulted in loss of the fluctuating task as compared to the control
(Wilcoxon Rank Sum Test: Z = -5.46 and -7.80 respectively, p << 0.001). An increase
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Fig 4. Per-site entropy over time of a representative sample population. Each
vertical slice represents the per-site entropy of the population at each update by genetic
locus. Hotter colors (red/orange/yellow) indicate greater diversity at this locus, while
cooler colors (blues) indicate that a locus is more consistent across the population.
These data indicates that in harsher changing environments, per-site diversity was much
lower than in benign or static environments.

Fig 5. Population entropy over time of the representative sample population in
Figure 4. Mean population entropy indicates the relative diversity of the population at
any given time, while the per-site entropy (see Fig 4) shows where in the genomes the
population diversity is located. These data indicate that in harsher changing
environments, as in per-site diversity (above), overall population diversity was much
lower than in benign or static environments.

in task loss in the harsh treatment is to be expected, but why would the benign
treatment lose EQU nearly as easily as the harsh treatment? One possibility is selective
pressure to lose the task. There is no explicit pressure for task loss, merely an absence
of reward. Even so, there is certainly an implicit penalty for performing a complex task
for which there is no reward.
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Fig 6. Genetic architecture of XOR and EQU over time in static environment
for the final dominant genotype in a randomly selected replicate. Starting from the
ancestor on the left, each vertical slice represents an organism along the line of descent
to the final dominant. Positions along the Y-axis represent each genome locus; loci in
an organism are colored based on the tasks that they currently (or previously) code for.
Sites in red are active sites that code for the XOR task only, sites in blue code for the
EQU task only, and purple sites code for both. Sites in black are critical for organism
replication. Sites in the lighter colors (tan, light blue, lavender) represent vestigial sites,
unchanged since they previously coded for XOR only, EQU only, or both tasks,
respectively. As we proceed from left to right, we can see the evolutionary history of the
final dominant genotype. XOR and EQU overlap almost completely throughout the run.
This kind of genetic architecture is typical of purely directional selection, where a
population has stabilized around a fitness peak.

Fig 7. Genetic architecture of XOR and EQU over time in benign
environment for the final dominant genotype in a randomly selected replicate.
Proceeding from the left of each figure, each vertical slice represents an organism along
the line-of-descent to the final dominant, and as in Figure 6, colors represent tasks
performed by each genome locus. In this genome, XOR and EQU evolve to overlap much
less than in the control. In contrast to the control (above), because fitness peaks are
changing over time, more functional mutations are accepted.
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Fig 8. Genetic architecture of XOR and EQU over time in harsh environment
for the final dominant genotype in a randomly selected replicate. Proceeding from the
left of each figure, each vertical slice represents an organism along the line-of-descent to
the final dominant, and as in Figures 6 and 7, colors represent tasks performed by each
genome locus. In this genome, XOR and EQU evolve to overlap even less than in the
control and benign treatments, with the EQU-only task sites becoming increasingly
scattered throughout the genome. In contrast to both the control and benign
environments (above), the harsh changes in selective pressure promote the adoption of
many more mutations, and result in a much different genetic architecture.

Fig 9. Number of functional and vestigial sites by treatment. Both the
benign and harsh changing environments had significantly more sites devoted to
performing only the EQU function (Wilcoxon Rank Sum Test: Z = -5.57 and -6.96,
respectively, p << 0.001). The harsh environment has a significantly larger number of
vestigial sites for the fluctuating (EQU) task compared to the benign treatment or
control (Wilcoxon Rank-Sum Z = -6.57 and -8.33, p << 0.001).
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Fig 10. A survey of the single-step mutational neighborhood around
organisms that performed the fluctuating task. Note that in both the benign and harsh
treatments, there were significantly more mutants that lost the EQU task as compared

to the control (Wilcoxon Rank Sum Test: Z = -5.46 and -7.80 respectively, p << 0.001).

This result indicates that it was easier for the organisms in both treatments to turn off
the EQU task in response to one mutation.

Another possibility is drift. Indeed, in Figure 2, we observe a steady downward trend
in execution of EQU when rewards are withdrawn. Then, as the reward returns, new
mutations are applied that reactivate the task, and overall performance recovers quickly.
This pattern of loss and regain would, over time tend, to increase the length of the task.
Indeed, as noted in Figure 8, there is a rapid increase in task length as EQU is cyclically
lost and regained.

However, is increased task length enough to account for increased task vulnerability
to mutation? In order to begin to address this question, we constructed a linear model
relating the task length of each task with the fraction of mutants that lost each of the
tasks. We discovered a strong relation between the number of functional sites and the
number of task-losing mutants for the EQU task, both alone, and overlapping with XOR,
such that we could predict approximately 77% and 63% of the variation in task loss,
respectively (Fig 11, see Tables 3 and 4). We also found a weaker, but still significant
relationship between the number of XOR-only functional sites and loss of the XOR task,
such that we could predict approximately 22% (See Table 5). This result confirms our
intuition that the longer the task, the more targets there are for mutation to disable the
task.

Further, the lower correlation between length and task loss for the XOR suggests that
it is not only task length, but some other architectural feature that makes the XOR task
more robust to mutation, and the EQU task more fragile. Even so, the question of what
kinds of architectural features account for this differential robustness remains open.

We then measured the proportion of second step mutants that regained EQU after
having lost it in the single-step survey. We found that changing environments shifted
the populations’ position in the mutational landscape, such that when a task that was
lost due to mutation, that task could be regained via one or two additional mutations
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Table 3. OLS Regression Results - Fraction of mutants losing EQU vs
number of EQU-only functional sites

Dep. Variable: Fraction R-squared: 0.770
Model: OLS Adj. R-squared: 0.768
Method: Least Squares  F-statistic: 477.6
No. Observations: 145 Prob (F-statistic): 2.00e-47
Df Residuals: 143 Log-Likelihood: 325.51
Df Model: 1 AIC: -647.0
BIC: -641.1

coef std err t P>[t| [0.025 0.975]
Intercept 0.1178 0.004 32.430 0.000 0.111 0.125

Sites 0.0111 0.001 21.854 0.000 0.010 0.012
Omnibus: 25.415 Durbin-Watson: 2.073
Prob(Omnibus): 0.000 Jarque-Bera (JB): 43.864
Skew: 0.836  Prob(JB): 2.99¢-10
Kurtosis: 5.114 Cond. No. 12.2

Linear regression, predicting fraction of one-step mutants that lost EQU, based on the
number of EQU-only functional sites in the original genome.

Fig 11. Correlation between task length and mutational task loss in the
1-step neighborhood across all treatments. Note the strong correlation between the
length of the EQU task and the fraction of mutants that lost EQU (Spearman’s Rho:
= 8.72, p << 0.001). Further, consider the weaker correlation between XOR task length,
and fraction of mutants that lost XOR. These data suggest that EQU is even less robust
to mutation compared to XOR than can be accounted for by task length alone.

elsewhere. That is, once a mutation caused the loss of a task, a different mutation could
reactivate the task. (Fig 12).

We speculate that this effect is due to the availability of reservoirs of formerly
vestigial sites. How such reservoirs might perform these functions remains an open
question. New mutations may either re-enable the old functional sites, or recruit
vestigial functionality to perform the task elsewhere. Potentially, these vestigial sites are
not altogether dormant at all. They might individually appear vestigial in the context
of a single knockout survey, but they might also be related to other sites in a network of
backup functionality that becomes activated in response to mutation. More research is
needed to explore what role these feature play.
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Table 4. OLS Regression Results - Fraction of mutants losing EQU and XOR
vs number of overlapping functional sites

Dep. Variable: Fraction R-squared: 0.631
Model: OLS Adj. R-squared: 0.628
Method: Least Squares  F-statistic: 2444
No. Observations: 145 Prob (F-statistic): 9.41e-33
Df Residuals: 143 Log-Likelihood: 457.55
Df Model: 1 AIC: -911.1
BIC: -905.2

coef std err t P>[t| [0.025 0.975]
Intercept 0.0127  0.007 1.832  0.069 -0.001  0.026

Sites 0.0068 0.000 15.634 0.000  0.006 0.008
Omnibus: 29.951  Durbin-Watson: 1.875
Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.950
Skew: 1.023  Prob(JB): 3.87e-11
Kurtosis: 4.938 Cond. No. 128.

Linear regression, predicting fraction of one-step mutants that lost both XOR and EQU,
based on the number of overlapping functional sites in the original genome.

Fig 12. A survey of the two-step mutational neighborhood of the organisms
that lost EQU function in the one-step survey. We found that in both the harsh and
benign treatments, there were significantly more organisms that regained function in
response to mutation than the control. (Wilcoxon Rank Sum Test: Z = -47.9 and -57.82
respectively, p << 0.001). This result indicates that it was easier for the organisms in
both fluctuating environments to regain the task in response to one additional,
non-reversion mutation.
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Table 5. OLS Regression Results - Fraction of mutants losing XOR vs
number of XOR-only functional sites

Dep. Variable: Fraction R-squared: 0.228
Model: OLS Adj. R-squared: 0.222
Method: Least Squares  F-statistic: 42.17
No. Observations: 145 Prob (F-statistic): 1.29e-09
Df Residuals: 143 Log-Likelihood: 367.39
Df Model: 1 AIC: -730.8
BIC: -724.8

coef std err t P>[t| [0.025 0.975]
Intercept 0.1152 0.004 31.955 0.000  0.108 0.122

Sites 0.0111 0.002 6.494  0.000  0.008 0.014
Omnibus: 101.236  Durbin-Watson: 2.062
Prob(Omnibus):  0.000 Jarque-Bera (JB): 956.241
Skew: 2.359 Prob(JB): 2.26e-208
Kurtosis: 14.663 Cond. No. 5.62

Linear regression, predicting fraction of one-step mutants that lost XOR, based on the
number of XOR-only functional sites in the original genome.

As an overall measure of neutral exploration, we also measured the proportion of
non-deleterious mutants in the nearby fitness landscape - the Genomic Diffusion Rate.
We found that this proportion remained approximately the same between all treatments
(Kruskal-Wallis: H(2) = 1.44, p = 0.49). However, we found that the Phenotypic
Diffusion Rate, the proportion of these mutants with different (and potentially adaptive)
phenotypes, increased in the changing environment treatments as compared to the
controls (Wilcoxon Rank Sum Test: Z = -8.02, -8.39, respectively, p << 0.001). In this
way, the organisms from the changing environment treatments have an advantage over
organisms from the control runs in the short-term evolvability of the fluctuating task.
This result is consistent with real adaptation, not only to resources in their local
environment, but a direct adaptation to the environmental change. (Fig 13)

What might account for this adaptation? Similar to the relationship between the
number of functional sites of a task, and the number of single-step mutants that lost
that task (see Fig 11), we hypothesize that the reacquisition of tasks in the 2nd-step
survey may be mediated by the amount of useful task material present in the genome.
We performed a multiple linear regression, predicting the mean fraction of mutants that
regained EQU, by the number of functional and vestigial sites contained in the original
genome (see Table 6 and Fig 14).

We can predict approximately 47% of the variation in mean number of second step
mutants that regained EQU based on the number of functional and vestigial sites. Most
of the variation is predicted by the number of functional sites, though vestigial sites do
contribute a small amount. This result is consistent with the role of task length, and
thus the number of informational sites, being important for regaining task function. We
could not, however, account for all variation, indicating that there are other factors,
possibly in robustness or modular architecture of tasks, that are important to this kind
evolvability.
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Fig 13. Genomic and phenotypic diffusion rates, showing the probabilities of
producing offspring that are genotypically (Dgy) or phenotypically (D,) distinct from
the parent, while not reducing fitness. Note that while overall neutral exploration
capacity remains relatively stable between treatments (Kruskal-Wallis: H(2) = 1.44, p
= 0.49), phenotypic exploration capacity is increased in both treatments, but especially
in the Harsh treatment. (Wilcoxon Rank Sum Test: Z = -8.02, -8.39, respectively, p <<
0.001). This result is consistent with changing environments promoting the phenotypic
evolvability of populations.

Stage 2 - Long-Term Evolvability

Task Discovery

Task discovery is an important measure of long-term evolvability in that it quantifies
the ability of populations to explore and adapt to entirely new environments. We
measured task discovery in each of the changing environment treatments.

Benign changing environments outperform harsh environments in task
discovery

We found that once we began rewarding the expanded task set, populations evolving
in harsh changing environments discovered many fewer tasks that those evolving in

benign changing environments (Wilcoxon Rank Sum Test: Z = 2.75, p < 0.01) (Fig 15).

We hypothesize that this effect is due to the relative differences in the strength of
selection between the harsh changing environment and the directional selection toward
the expanded task set.

In the harsh changing environments, the selective pressure to gain or lose the
fluctuating tasks represents up to a 2%-fold swing (between a x2° penalty and a x2°
bonus) over the course of a single cycle, whereas the expanded task set can
individually only offer a 1.2-fold bonus to execution speed. Thus, those organisms that
promptly gain or lose a fluctuating task are more likely to survive, regardless of whether
or not they have gained one of the new expanded task-set tasks. Thus pressures to
gain and lose the fluctuating tasks are much stronger than the pressure to acquire new
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Fig 14. Multiple linear regression predicting mean fraction of second-step
mutants from the number of functional and vestigial sites in the original organism. See
Table 6.

expanded task-set tasks, thereby depressing the rate at which they are found.

In contrast, the benign environment experiences a weaker strength of selection for
EQU task gain and loss, in the form of a maximum 2?-fold bonus directional selection
pressure to gain the tasks, and no direct pressure to lose the task. Thus, when
compared to the harsh treatments, the fraction of the total selective pressure for gaining
new expanded tasks is greater in the benign treatment. This increased pressure, plus
the benefit of an increased exploration rate conveyed by the benign changing
environment, result in a higher overall task discovery rates.

Interestingly, in the harsh quiescent treatment (HarshQuiescent) beginning in stage
2, we saw that task exploration recovered and achieved a comparable level to the control
(Wilcoxon Rank Sum Test: Z = -0.91, p = 0.37). What could account for this recovery?

One possibility is that the introduction of the new tasks provided sufficient selective
pressure to cause the increase in the discovery rate. In this case, we would expect to see
a similar increase in task exploration in the harsh changing environment treatment
(HarshCE).

Another possibility is that the alternating environment in the first part of the
experiment created a diversity disadvantage in populations in those treatments. If this
were the case, we would expect HarshQuiescent’s task discovery to initially grow more
slowly than the control, which would have suffered from no such disadvantage. Then, as
diversity recovered, we would expect to see task discovery grow at comparable rates.

Finally, there is the possibility is that the alternating selection regime was directly
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Table 6. OLS Regression Results - Mean Fraction of Mutants Regained

EQU vs Number of Functional and Vestigial Sites

Dep. Variable: Mean_Fraction = R-squared: 0.472
Model: OLS Adj. R-squared: 0.464
Method: Least Squares F-statistic: 61.65
No. Observations: 141 Prob (F-statistic): 7.39e-20
Df Residuals: 138 Log-Likelihood: 467.28
Df Model: 2 AIC: -928.6
BIC: -919.7
coef std err t P>[t| [0.025 0.975]
Intercept  0.0003 0.001 0.243 0.808 -0.002  0.003
Func_Sites 0.0016 0.000 8.115 0.000  0.001 0.002
Vest_Sites  0.0005  0.000 3.180 0.002  0.000 0.001
Omnibus: 79.316 Durbin-Watson: 1.928
Prob(Omnibus): 0.000 Jarque-Bera (JB):  437.211
Skew: 1.970  Prob(JB): 1.15e-95
Kurtosis: 10.675  Cond. No. 15.0

Multiple linear regression, predicting Mean fraction of second-step mutants that
regained EQU, based on the number of Functional and Vestigial sites in the original

genome.

Fig 15. Number of new expanded task set tasks discovered post-reward.
The left plot shows a time-series of the number of non-ephemeral tasks discovered by
populations by each treatment. The right plot shows the number of tasks discovered at
the end of the experiments. While the individual values overlap their neigbors, the top
and bottom-most treatments (Benign and Harsh) are significantly different from each

other (Wilcoxon Rank Sum Test: Z = 2.75, p < 0.01).

responsible for depressing task exploration. In this case, once we stopped alternating
task rewards, we would expect to see a significant difference in task discovery rates

between the HarshQuiescent and HarshCE treatments.
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Indeed, we found that the HarshQuiescent treatment has a much higher task
discovery rate than the HarshCE treatment. This result is inconsistent with the

hypothesis that the task rewards alone account for the recovery of the HarshQuiescent.

Instead, this result is consistent with the possibility of a direct negative effect from the
continuing alternating selection. We also found that there was a lag in task discovery
compared to the control. These data suggest that there was, at least initially, some
population-level disadvantage occurring in the HarshQuiescent populations. We also
observed that after the initially slow recovery phase, the quiescent treatment rapidly
increased its task discovery rate, and exceeded that of the control. This outcome is
consistent with a recovery of diversity, plus, potentially some lingering architectural
advantage for finding new tasks.

Harsh changing environments drive populations across the mutational
landscape

Fig 16. Number of new expanded task set tasks discovered over the whole
experiment. The left plot shows a time-series of all new tasks discovered over the
course of the entire run, including non-rewarded expanded task-set tasks. The
right-hand plot shows the final count at the end of the run. Before we introduce
rewards for performing the expanded task-set tasks, the harsh changing environment
discovers far more new tasks (Mdn = 28.0, CI 95% [27.0, 30.0]) than either of the other
treatments (Mdn = 22.0, CI 95% [22.0, 23.0]) (Wilcoxon Rank Sum Test: Z = 8.61, p
<< 0.001). These tasks appear despite no reward being given for performing any of the
expanded task-set in the first part of the experiment.

In the first part of the experiments, despite the expanded task set not being
rewarded, both changing-environment treatments (BenignCE and HarshCE) discovered
more new tasks than the control (Wilcoxon Rank Sum Test: Z = -5.75 and -11.15
respectively, p << 0.001). The harsh treatment in particular discovered substantially
and significantly more expanded task set tasks than either the benign treatment
(Wilcoxon Rank Sum Test: Z = -8.0, p << 0.001) or the control, despite these tasks not
being rewarded (Fig 16). We speculate that this effect may be due to the large
phylogenetic depth of the harsh-evolved populations, where the repeated bottlenecks
drive the populations along a kind of forced march across the mutational landscape.
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However, as the experiment proceeds, and expanded task-set task rewards are
introduced, this effect disappears, and task discovery rates converge (Kruskal-Wallis:
H(2) = 6.97, p = 0.03).

Task Performance

In addition to task discovery, task performance is another important measure of
long-term evolvability, in that it quantifies exploitation and fixation of traits that are
beneficial in new environments. We measured task performance in each of the changing
environment treatments.

Benign changing environments outperform harsh environments in task
performance

Fig 17. Number of distinct tasks performed. The left plot shows a time-series of
the number of distinct tasks performed by the treatment populations over time. The
right-had plot shows the number of tasks performed at the end of the experiments. The
harsh changing environment treatment performs substantially and significantly fewer
tasks than any of the benign or control treatments (Wilcoxon Rank Sum Test: Z =
-11.22 and -11.15 respectively, p << 0.001). The benign treatments perform best, but
the differences are not statistically significantly different than the control
(Kruskal-Wallis: H(2) = 2.76, p = 0.25).

Similar to task discovery, populations evolving in harsh changing environments
performed far fewer distinct tasks than either the control, or either benign populations
(Wilcoxon Rank Sum Test: Z = -11.22 and -11.15 respectively) (Fig 17). While both
the BenignCE and BenignQuiescent populations seemed to outperform the control, the
differences were not statistically significant (Kruskal-Wallis: H(2) = 2.76, p = 0.25).

Conclusion

In cyclic changing environments, the direction of selection shifts frequently, and
periodically drives populations to not only explore new regions of the genetic landscape,
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but also to carry with them vestigial genetic information about previous environmental
conditions. Thus, the resulting populations are not only adapted to the current
environment, but also to the meta-environment of cyclic change. Because of their
evolutionary history, the genomes contain vestigial fragments of genetic material that
were adapted to prior environments. As this exploration proceeds, mutations
accumulate in the population, each creating a link to a new region of the mutational
landscape. As these links accumulate, they form a reservoir of mobility for the
population to quickly shift to new phenotypes as dictated by current selective
conditions. In this way, the accumulation of vestigial or pseudogene-like regions acts as
an indirect adaptation to the larger pattern of changing selective forces.

By contrast, in static (non-changing) environments, the majority of neutral
mutations do not connect to as many phenotypically-interesting regions of
genotype-space. There are far fewer pseudogene-like regions available that could regain
functionality should conditions change. Thus, populations evolved in static
environments are less evolvable in the short-term.

These results suggest, therefore, that architectural features that help with short-term
evolvability are more likely the result of repeated hitchhiking on adaptive mutants. In
particular, we observed that much of the task-loss associated with the harsh changing
environment could be attributed to increasing task length which is a result of the
continuous addition of new mutations activating and deactivating the task. Despite this
correlation, however, we observed a potential difference in robustness between the XOR
and EQU tasks, which suggest that a kind of anti-robustness may also be selected for as
a result of the changing environments.

Long-Term Evolvability

The relationship between short- and long-term evolvability is non-obvious. Architectural
features and selective pressures that promote repeated re-adaptation to a known set of
environments may not be beneficial for the acquisition of entirely new adaptive traits,
and the outcomes depend on the evolutionary and selective history of the population.

For example, harsh changing environments depress both fitness and population
diversity, which might make these populations less effective at adaptation when
introduced into a new environment. Even so, our results suggest that there are
important architectural features conveyed by these environments that are beneficial for
new task acquisition, despite the short-term downsides. Our experiments show that
harsh changing environments, with their strong selective pressures, initially suppress the
ability of populations to acquire new, weakly-selected traits. But if alternating selection
is then removed, these populations are able to bounce back and rapidly acquire new
tasks.

In contrast, in conditions where alternating selection persists, benign changing
environments win at new task acquisition. Benign changing environments, with their
milder set of selective pressures, are able to leverage their accumulated heritage of
dormant vestigial sites to rapidly respond to selection, and acquire new tasks at a faster
rate than either harsh or non-change-evolved populations.

Limitations of Cyclic Changing Environments

Changing environments produce a set of selective pressures that speed up exploration of
genotype space, while also building reservoirs of partial functionality that may be
co-opted in the evolution of more complex structures. These features make changing
environments useful for both their exploratory power in natural evolution, and as
practical tools in the Artificial Life toolkit. Ultimately, however, as alluded to above,
cyclic changing environments only re-tread existing phenotypic ground, and though
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genotypic exploration can be faster than under purely directional or stabilizing selection,
the space explored remains constrained by the type of phenotypes that are selected.
Despite this constraint, however, we see that, particularly under harsh conditions, a lot
of novel genotypic ground may be explored, even without direct selection for novelty.

Even so, there must exist methods of exploring genotype space that do not suffer
from these limitations at all. For example, perhaps repeated bottlenecking of
populations could promote faster traversal of the fitness landscape in quasi-random
directions. More ambitiously, perhaps these kinds of environments could be coupled
with dynamically increasing open-ended complexity goals, or divergent selection
mechanisms such as negative frequency dependence to promote the maintenance of
diversity in evolving populations.

Understanding the mechanisms by which select environmental conditions alter
fitness landscapes is vital to understanding the forces that promote evolvability and
increase complexity. In particular, understanding the role of vestigial sites may help us
untangle how robustness can promote evolvability. Are these vestigial sites merely
inactive remnants, reservoirs of function, or are they part of a complex compensatory
framework supporting and buffering the expression of the phenotype? Or all of these
things? Changing environments provide one view into these dynamics, but we must
explore further to find other mechanisms for exploring and exploiting genotype space.
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Supplemental Materials

Sampled Nearby Mutational Landscape

As noted in equation 6, the mutants in the nearby mutational landscape include those
that have more than one mutation. However, for completeness, we performed an
exhaustive landscaping of the single-step mutational landscape, which, by definition,
only includes mutants with a single mutation (see Figure 10). In order to verify that our
results are indeed representative of the expected genomic and phenotypic diffusion rates,
we sampled the mutants in the nearby mutational landscape using all naturally
occurring mutations, including multiple mutations in a single mutant.

Our results (see figure 18) were virtually identical, showing that the sampling
approach and the exhaustive landscaping produce qualitatively indistinguishable results.
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Fig 18. A survey of the single-step and sampled mutational neighborhoods
around organisms that performed the fluctuating task. The results are qualitatively
identical to each other.
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