

1 Bacterial community dynamics during embryonic and

2 larval development of three confamilial echinoids

3

4 Tyler J. Carrier^{1,*} and Adam M. Reitzel¹

5

6 ¹ Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte,
7 NC USA, 28223

8

9 * Corresponding author: tcarrie1@uncc.edu

10

11 **Running title:** Bacterial dynamics during development

12

13 **Keywords:** microbiome; *Strongylocentrotus*; *Mesocentrotus*; host-microbe; symbiosis

14

15

16 ABSTRACT

17 Development of some animals is influenced by and, in some cases, dependent on
18 the associated microbiota. The timing of when associated bacterial communities are
19 established during the development of marine invertebrates and their subsequent dynamics
20 across stages are known for only a few species. Here, we compare the bacterial
21 communities of three confamilial echinoids from egg to juvenile using sequence-based
22 approaches. Bacterial communities are established on unfertilized eggs and change
23 gradually during embryonic and larval development. Despite the differences amongst these
24 pre-metamorphic stages, approximately thirty-percent of OTUs identified in association
25 with unfertilized egg were present in the juveniles. During embryonic development, host-
26 associated communities diverged from the environmental microbiota but later converged
27 following the onset of larval feeding. Taken together, the data presented here support the
28 hypothesis that bacterial communities are established prior to fertilization and community
29 composition shifts gradually thereafter, all while remaining distinct from the environment.
30 Future work will need to determine the relative influence of the host and bacteria-bacteria
31 interactions in shaping the associated bacterial community to determine the potential
32 functional importance of bacteria during the development of larval sea urchins and benthic
33 marine invertebrates more broadly.

34

35

36 INTRODUCTION

37 The journey from fertilized egg to adulthood has fascinated developmental
38 biologists for centuries. A growing consensus in the field of animal-microbe symbioses
39 suggests that developmental processes are, at least in part, affected by the presence and
40 activity of associated microbiota (McFall-Ngai & Ruby 2000, McFall-Ngai 2002, Fraune
41 & Bosch 2010, Nyholm & McFall-Ngai 2014). The degree of dependency on these
42 communities is highly variable: the removal of bacterial associates inhibits the
43 differentiation of gut tissues in zebrafish (Bates et al. 2006) while other taxa are seemingly
44 unaffected (Manahan et al. 1993). Nevertheless, several patterns have emerged from
45 comparative studies of animal-bacteria interactions. First, animals tend to associate with
46 developmental stage-specific bacterial communities (Apprill et al. 2012, Mortzfeld et al.
47 2015, Carrier & Reitzel 2018). Second, changes in morphology and life history stage
48 correlate with shifts in the composition and structure of this community (Apprill et al. 2012,
49 Sharp et al. 2012, Mortzfeld et al. 2015, Fieth et al. 2016). Lastly, during ontogeny, animal-
50 associated bacterial communities can be highly specific and diverge from the
51 environmental microbiota through host-mediated selection (Davidson & Stahl 2008,
52 Fraune et al. 2010, Pradea 2011, Franzenburg et al. 2013, McFall-Ngai et al. 2013).

53 Development of many marine invertebrates includes several morphologically
54 diverse life-history stages. Regardless of taxonomy, reproduction in most species involves
55 an external fertilization, embryogenesis, and larval development before settling and
56 metamorphosing into a benthic juvenile (e.g., Thorson 1950, Mileikovsky 1971). When
57 microbial communities are established during early development for marine invertebrates
58 appears to vary among species. Larvae of deep-sea vestimentiferans, for example, are

59 symbiont free until settlement while several species from various taxa are known to
60 vertically inherit microbial symbionts and diversify this community later in development
61 by horizontal (environmental) acquisitions (Nussbaumer et al. 2006, Stewart et al. 2008,
62 Bright & Bulgheresi 2010, Apprill et al. 2012, Sharp et al. 2012, Sipkema et al. 2015).
63 Once established, the location of the bacterial symbionts can also vary. The embryos and
64 larvae of eight echinoderm species have, for example, symbiotic bacteria in the out-pockets
65 of the extracellular matrix surrounding the larval body as well as near or in gut epidermal
66 cells (Cameron & Holland 1983, Bosch 1992, Cerra et al. 1997, Galac et al. 2016, Carrier
67 & Reitzel 2018, Carrier et al. 2018b).

68 The composition and structure of the bacterial communities associated with
69 echinoderm larvae is highly variable and has been shown to be influenced by food
70 availability (Carrier & Reitzel 2018, Carrier et al. 2018b), phenotype (Carrier & Reitzel
71 2018), asexual reproduction (Galac et al. 2016), and, potentially, disease (Carrier et al.
72 2018a). Three confamilial echinoderms (*Strongylocentrotus purpuratus*, *Mesocentrotus*
73 *franciscanus*, and *S. droebachiensis*), in particular, associate with species-specific bacterial
74 communities that shift according to larval stage (Carrier & Reitzel 2018). When the diverse
75 and dynamic bacterial community associating with these echinoid larvae are established
76 and how this community varies throughout the entirety of pelagic development is unknown.

77 By sampling each developmental stage from the unfertilized egg to benthic juvenile
78 and assaying the associated bacterial communities using next-generation sequencing, we
79 test two explicit hypotheses. First, we test if stage-specific bacterial communities during
80 larval development result from associations established in earlier embryonic stages and
81 continue after metamorphosis. Second, we test that three confamilial Strongylocentrotids

82 exhibit relatively similar developmental patterning in the bacterial communities due to their
83 phylogenetic relatedness. Implications from these hypotheses are predicted to complement
84 previous studies showing that the biology of echinoid larvae is inseparable from their
85 microbial community and is an informative system to understand the ecology of animal-
86 microbe symbiosis.

87

88 MATERIALS AND METHODS

89 Specimen collection and larval rearing

90 Adult urchin for each species were collected from populations in the Salish Sea in
91 April 2016 (Carrier & Reitzel 2018). *Strongylocentrotus purpuratus* was hand-collected at
92 low tide at Slip Point, Clallam Bay, WA (48°15'39" N, 124°15'03" W; Figure S1) and
93 transferred overnight to the Friday Harbor Laboratories (FHL; University of Washington;
94 Friday Harbor, WA, USA; Figure S1). Similarly, *S. droebachiensis* were hand-collected at
95 low tide at Cattle Point, San Juan Island, WA (48°27'00" N, 122°57'43" W; Figure S1) and
96 were transferred to FHL within one hour. *M. franciscanus*, on the other hand, were
97 collected by SCUBA off Bell Island, WA (48°35'49" N, 122°58'55" W; Figure S1) and
98 transferred to FHL within two hours. All urchins were suspended in separate sub-tidal
99 cages off the dock at FHL and fed *Nereocystis* spp. (sugar kelp) *ad libitum* until spawning
100 two weeks later.

101 Urchins were spawned by a one to two mL intracoelomic injection of 0.50 M KCl.
102 Gametes from *S. purpuratus* (n=3 for males and females), *M. franciscanus* (n=1 for males
103 and n=3 for females), and *S. droebachiensis* (n=3 for males and females) were collected,
104 rinsed, and pooled separately for each species. Fertilization of eggs and larval rearing

105 followed Strathmann (1987), with the exception that embryos and larvae were reared using
106 5.0- μ m filtered seawater (FSW) to include the environmental microbiota.

107 Embryos were incubated in one-liter of FSW at ambient conditions (~10°C and
108 12°C; Carrier & Reitzel 2018). Two hours post-fertilization, embryos were transferred to
109 triplicate one-liter jars at a density of two individuals•mL⁻¹. Beginning at the prism stage,
110 larvae were provided *Rhodomonas lens* at 10,000 cells•mL⁻¹, for which was made growth
111 medium-free by centrifugation and resuspension in FSW prior to the introduction to larval
112 cultures. Larval cultures were subsequently diluted to one larvae per two mL at advanced
113 developmental stages. Larval cultures were given 90 to 95% water changes every other day
114 and *R. lens* was replenished at 10,000 cells•mL⁻¹.

115 Monocultures of *R. lens* were grown in f/2 media at room temperature with a
116 combination of ambient and artificial lighting for 24 hours per day (Guillard 1975).

117

118 **Sampling across development**

119 Each urchin species was cultured from egg to juvenile. We sampled ten stages: (i)
120 unfertilized eggs, (ii) 16-cell embryo (referred to hereafter as ‘cleavage’), (iii) pre-hatched
121 blastula, (iv) hatched blastula, (v) gastrula, (vi) pre-feeding prism, (vii) 4-, (viii) 6-, and (ix)
122 8-armed larvae, and (x) post-metamorphic juvenile (see, Table S1 for biological replication
123 for each species at each developmental stage). Developmental stages were identified using
124 a compound microscope (Nikon Eclipse E600; camera: QImaging MicroPublisher 5.0
125 RTV). At each developmental stage, 100 individuals per jar (n=3) were sampled at random
126 for each species. Immediately after collections, samples were concentrated into a pellet
127 using a microcentrifuge, the FSW was removed with a sterile glass pipette, and pelleted

128 embryos, larvae, or juveniles were then preserved in RNAlater (Thermo Scientific,
129 Massachusetts, USA) and stored at -20°C before DNA extractions.

130 Complementary to sampling of the developmental stages, the environmental
131 microbiota from the seawater was also sampled. When cultures were sampled, triplicate ~1
132 L of 5.0-µm FSW was filtered onto a 0.22-µm Millipore filter to retain the environmental
133 microbiota. Full filter disks were then preserved in RNAlater and stored at -20°C before
134 DNA extractions.

135

136 **Assaying bacterial communities**

137 Total DNA was extracted from larval samples using the GeneJet Genomic DNA
138 Purification Kit (Thermo Scientific, Massachusetts, USA). For FSW samples, we extracted
139 eDNA using the FastDNA Spin Kit for Soil (MP Biomedical, Illkirch, France). DNA was
140 then quantified using the NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Scientific,
141 Massachusetts, USA) and diluted to 5 ng•µL⁻¹ using RNase/DNase-free water.

142 Bacterial sequences were amplified using universal primers for the V3/V4 regions
143 of the 16S rRNA gene (Forward: 5' CTACGGNGGCWGCAG, Reverse: 5'
144 GACTACHVGGGTATCTAATCC; Klindworth et al. 2013). Products were purified using
145 the Axygen AxyPrep Mag PCR Clean-up Kit (Axygen Scientific, New York, USA),
146 indexed via PCR using the Nextera XT Index Kit V2 (Illumina, California, USA), and then
147 purified again. At each of these three steps, fluorometric quantitation was performed using
148 a Qubit (Life Technologies, California, USA) and libraries were validated using a
149 Bioanalyzer High Sensitivity DNA chip (Agilent Technologies, California, USA). Illumina

150 MiSeq sequencing (v3, 2x300 bp paired-end reads) was performed at the University of
151 North Carolina at Charlotte. PCR recipe and thermal profiles are available in Table S2.

152 Forward and reverse sequences were paired and trimmed using PEAR (Zhang et al.
153 2014) and Trimmomatic (Bolger et al. 2014), respectively, converted from fastq to fasta
154 using a custom script, and chimeric sequences were detected using USEARCH (Edgar et
155 al. 2011) and removed using filter_fasta.py prior to the analysis of bacterial 16S rRNA
156 sequences. Using QIIME 1.9.1 (or Quantitative Insights Into Microbial Ecology; Caporaso
157 et al. 2010), bacterial 16S rRNA sequences were analyzed and grouped into operational
158 taxonomic units (OTUs) based on a minimum 97% similarity. The biom table generated
159 by the pick_open_reference_otus.py script was filtered of OTUs with ten or less reads as
160 well as sequences matching the chloroplast of cryptophytes (*i.e.*, *R. lens*; Carrier & Reitzel
161 2018).

162 Using the filtered biom table and “biom summarize-table” function to count total
163 sequences per sample, the rarefaction depth of 25,396 was determined and applied to all
164 subsequent analyses (Figure S2). Alpha diversity estimates were calculated using the
165 alpha_diversity.py script and compared statistically by a two-way analysis of variance
166 (ANOVA) in JMP (Pro v. 13). Beta diversity was calculated using unweighted and
167 weighted UniFrac (Lozupone & Knight 2005) as part of jackknifed_beta_diversity.py, and
168 compared using principal coordinate analyses (PCoA) that were then visualized in
169 EMPor (Vazquez-Baeza et al. 2013) and stylized in Adobe Illustrator CS6. UPGMA-
170 based microbial dendograms were generated using jackknifed_beta_diversity.py as part
171 of the PCoA analyses. Community similarity across species and developmental stages were
172 compared statistically using an analysis of similarity (ANOSIM) in QIIME as part of the

173 compare_categories.py script, with $p < 0.05$ considered significant. Community
174 composition was generated using summarize_taxa_through_plots.py script and visualized
175 using Prism 7 (GraphPad Software, California, USA). Lastly, observed OTUs were
176 calculated using the alpha_diversity.py script, shared OTUs were calculated using the
177 shared_phylotypes.py script, and the Bray-Curtis index was calculated using the
178 beta_diversity.py script, and compared statistically using ANOVA in JMP (Pro v. 13).

179 A step-by-step listing of QIIME scripts used to convert raw reads to OTUs for
180 visualization of the data is located in Supplemental Note 1. The raw sequence reads as part
181 of this dataset are available on Dryad.

182

183 RESULTS

184 Community-level shifts across development

185 Urchin-specific bacterial communities (ANOSIM, unweighted: $p=0.0011$; weighted:
186 $p < 0.001$; Figure 1) shifted significantly in OTU membership (ANOSIM, $p=0.0013$; Figure
187 1A; Figures S3-4) and composition (ANOSIM, $p=0.0011$; Figure 1B; Figures S2-3) during
188 embryonic and larval development. Moreover, community evenness (Shannon and
189 Robbins), diversity (Simpson), richness (Chao1), phylogenetic distance (Faith's), and
190 Fishers alpha varied significantly across developmental stages ($p < 0.0001$ for all tests) and
191 amongst urchin species ($p < 0.0001$ for all tests) (Figure S5; Table S2).

192 Unweighted and weighted UniFrac comparisons of the associated bacterial
193 communities for each urchin species suggests that community similarity largely group by
194 developmental stage (Figure 2). Bacterial communities were grouped largely by sequential
195 developmental stages with some specific clusters for: (i) early embryological stages, (ii)

196 late embryogenesis and early larval development, and (iii) later larval stages. The benthic
197 juveniles had more variable positioning on the microbial dendograms: the bacterial
198 community of *S. purpuratus* juveniles were intermediate to early- and late-stage larvae, *M.*
199 *franciscanus* juvenile was most similar to eggs, and the *S. droebachiensis* juvenile were
200 most similar to late-stage larvae (Figure 2).

201 A total of nine classes of bacteria represented at least 1% of the community (Figure
202 2). Of these, the relative abundance of the γ -proteobacteria (Phylum: Proteobacteria), α -
203 proteobacteria (Phylum: Proteobacteria), and Flavobacteriia (Phylum: Bacteroidetes) were,
204 on average, each more than 10% of the community (Figure 2). For the γ -proteobacteria, the
205 relative abundance ranged from 26.6% to 61.0% for *S. purpuratus*, 12.2% to 62.9% for *M.*
206 *franciscanus*, and 39.6% to 88.7% for *S. droebachiensis* (Figure 2). Next, for the α -
207 proteobacteria, the relative abundance ranged from 7.7% to 42.4% for *S. purpuratus*,
208 11.0% to 31.1% for *M. franciscanus*, and 5.1% to 22.7% for *S. droebachiensis* (Figure 2).
209 Lastly, for the Flavobacteriia, the relative abundance ranged from 4.9% to 30.5% for *S.*
210 *purpuratus*, 5.1% to 36.1% for *M. franciscanus*, and 1.5% to 34.2% for *S. droebachiensis*
211 (Figure 2).

212

213 **Dynamics of the associated bacterial species**

214 Total OTUs in association with these confamilial echinoids differed significantly
215 between developmental stages (ANOVA, $p<0.0001$) for each species (ANOVA, *S.*
216 *purpuratus*: $p<0.0001$; *M. franciscanus*: $p<0.0001$; *S. droebachiensis*: $p<0.0001$; Figure
217 3A; Table S1). Unfertilized eggs, on average, associated with a similar number of OTUs
218 amongst species (~1,400 OTUs; ANOVA, $p=0.508$), which increased during embryonic

219 development (Figure 3A). Following the onset of feeding and larval development, the
220 number of OTUs subsequently decreased until metamorphosis (Figure 3A). The maximum
221 number of associated OTUs during development varied amongst species (*S. purpuratus*:
222 1,839; *M. franciscanus*: 1,723; *S. droebachiensis*: 1,864) and at which stages this occurred
223 (*S. purpuratus*: gastrula; *M. franciscanus*: 4-armed larva; *S. droebachiensis*: pre-hatched
224 blastula (Figure 3A).

225 A significant proportion of the OTUs associated with echinoid eggs did not remain
226 in association throughout embryonic and larval development for each urchin species
227 (ANOVA, *S. purpuratus*: $p < 0.0001$; *M. franciscanus*: $p < 0.0001$; *S. droebachiensis*:
228 $p < 0.0001$; Figure 3B; Table S1). Following fertilization and early embryogenesis, ~52%
229 of OTUs from the egg remained in association while ~48% were lost (Figure 3B). In the
230 subsequent larval and juvenile stages, egg-associated OTUs were lost gradually, resulting
231 in juvenile urchins with ~29% of the egg-associated OTUs (Figure 3B). Moreover, when
232 transitioning between any two sequential developmental stages, ~48% of OTUs retained
233 while the rest were specific to either stage (Figure 3C). This result was not simply due to a
234 high diversity of OTUs in the egg samples because OTU number increased after the egg
235 stage for all species (Figure 3A).

236 Community dissimilarity (Bray-Curtis) between the sea urchin host and
237 environmental microbiota showed significant differences during embryonic and larval
238 developmental for each species (ANOVA, *S. purpuratus*: $p < 0.0001$; *M. franciscanus*:
239 $p < 0.0001$; *S. droebachiensis*: $p < 0.0001$; Figure 3D, Figure S6, Table S1). During
240 development from egg to hatched blastula, the associated bacterial community became
241 more dissimilar from the environmental microbiota (Figure 3D), with the magnitude of

242 dissimilarity varying amongst species (Figure 3D; ANOVA, egg through hatched blastula,
243 each $p \leq 0.0001$). Furthermore, following development of the mouth and the onset of
244 feeding, late embryos and early stage larvae became more similar to the environmental
245 bacterial community (Figure 3D). The relative dissimilarity converged in the early larval
246 stages (Figure 3D; ANOVA, 4-armed larvae: $p=0.406$), which was the last sampled time
247 point for which we determined the bacterial community of the FSW. During divergence
248 and convergence events between the larval host and the environmental microbiota, the
249 environmental bacterial community was consistent throughout the experiment and did not
250 cluster with bacterial communities associated with the urchin (Figure S6).

251

252 ***Psychromonas* and echinoid eggs**

253 Bacteria in the genus *Psychromonas* showed the highest abundance for any
254 bacterial genus for each urchin species at any one of the sampled stages, in contrast to their
255 relative rarity (0.7%) in the seawater (Figure 4; Tables S6-7). For each urchin species, the
256 abundance and diversity (Figure S7; ANOVA, $p < 0.0001$ for each) of *Psychromonas* was
257 highest in the unfertilized eggs and declined significantly following fertilization (ANOVA,
258 $p < 0.0001$ for each), until being in very low abundance in 4-armed larvae and the
259 subsequent developmental stages (Figure 4). The magnitude of relative abundance varied
260 amongst urchin species (ANOVA, $p < 0.0001$) and was directly proportion to egg diameter
261 ($R^2=0.833$). The OTUs within *Psychromonas* totaled 96 for *S. purpuratus*, 100 for *M.*
262 *franciscanus*, and 116 for *S. droebachiensis*, while the FSW had 81 (Figure 4). Of those,
263 nine of the ten most abundant *Psychromonas* OTUs for each urchin species were shared
264 amongst urchin species.

265

266 **DISCUSSION**

267 Like many marine invertebrates, echinoid life cycles involve a distinct embryonic,
268 larval, and juvenile stage. Our assay of the bacterial communities of three confamilial
269 echinoids supports the hypothesis that the bacterial consortium is highly dynamic across
270 developmental stages, with taxonomic membership and the relative abundance of those
271 taxa shifting gradually from egg to juvenile. Furthermore, over the course of development,
272 the bacterial community of urchin embryos remains distinct and diverges from the
273 environmental microbiota until larvae begin feeding. Lastly, eggs of these echinoids appear
274 to have a specific association with diverse OTUs that match the genus *Psychromonas*.

275 The bacterial communities associated with echinoplutei are highly dynamic when
276 the larval holobiont faces variation in the abiotic and biotic environment (Carrier & Reitzel
277 2018, Carrier et al. 2018b). For example, following diet-restriction the bacterial
278 communities of *S. purpuratus*, *M. franciscanus*, and *S. droebachiensis* each shift
279 considerably from their well-fed counterparts, to potentially cope with reduced exogenous
280 resources (Carrier & Reitzel 2018). When diet-restriction is prolonged and the larval host
281 expresses phenotypic plasticity, the composition and structure of the bacterial community
282 is specific to phenotype, a response correlated with the magnitude in which phenotypic
283 plasticity is expressed (Carrier & Reitzel 2018).

284 Phenotypic plasticity for echinoid larvae, more broadly, is the interaction between
285 phenotype, nutritional state, and the environment. Characterization of bacterial
286 communities across developmental stages for these three confamilial echinoids extends the
287 understanding of the complex interplay between developmental processes and the

288 surrounding environment in which these species develop. Particularly, after unfertilized
289 eggs establish a bacterial community, the composition of these prokaryotic species shift
290 gradually during embryogenesis and during transitions towards a feeding larva. In these
291 gradual community transitions, it was surprising that more coarse shifts were not observed
292 between major developmental milestones, such as when blastula hatch and shed the
293 fertilization envelope, larvae begin feeding, and/or when larvae metamorphose into benthic
294 juveniles. The latter may be because echinoid larvae undergoing metamorphosis reabsorb
295 some of the larval digestive tract (Chia & Burke 1978). The juveniles therefore may have
296 retained, instead of shed (Fieth et al. 2016), a portion of their bacterial community present
297 in late larval stages.

298 The influence of particular bacteria and bacterial communities on the development
299 of aquatic and terrestrial invertebrates is well-studied in few species (McFall-Ngai & Ruby
300 2000, Fraune & Bosch 2010, McFall-Ngai 2014, Nyholm & McFall-Ngai 2014).
301 Established invertebrate systems where bacteria play a significant functional role include
302 *Vibrio fisheri*-mediated maturation of the light organ in the bobtail squid *Euprymna*
303 *scolopes* (McFall-Ngai & Ruby 2000, McFall-Ngai 2014), immune regulation relating to
304 the epithelial bacteria associated with the freshwater cnidarian *Hydra* spp. (Fraune & Bosch
305 2010, Bosch 2013, Franzenburg et al. 2013), and the nutritional endosymbionts (e.g.,
306 *Buchnera*) of aphids (Douglas 1998). Provided the vast genomic and molecular foundation
307 established over the past several decades for the echinoid clade used in this study
308 (Kudtarkar & Cameron 2017), these confamilial urchins have the potential to be established
309 as a comparative system for beneficial animal-microbe interactions during development
310 (Buckley & Rast 2017, Heyland et al. 2018) and in bi-phasic life-histories. One route for

311 testing the impact of microbial symbionts on echinoid development may be through the
312 egg-associated *Psychromonas*.

313 Eggs of echinoids have been used as a metric in larval biology, ecology, and
314 evolution (Vance 1973, Wray & Raff 1991, Jaeckle 1995, Moran & McAlister 2009,
315 Marshall et al. 2012) to make inferences about life history mode and transitions (Vance
316 1973, Collins & Moran 2018), fertilization ecology (Pennington 1985, Levitan 1995), and
317 maternal inheritance (Byrne et al. 1999, Villinski et al. 2002). The high abundance of egg-
318 associated *Psychromonas* and their loss and replacement may imply that this network of
319 bacterial symbionts are functionally connected to early developmental processes.

320 Interestingly, egg size of echinoids is strongly correlated with total lipid content
321 (Jaeckle 1995, Moran & McAlister 2009) and data here support that egg size is also highly
322 correlated with the abundance of *Psychromonas*. Maternally-inherited lipids for
323 *Dendraster excentricus*, a related echinoid found in the same geographical region of this
324 study, are depleted by the same developmental stage that *Psychromonas* was undetectable
325 here (Rendleman et al. 2018). Moreover, symbiotic bacteria associated with developing
326 embryos of the deep-sea clam *Calyptogena okutanii* is spatiotemporally regulated and has
327 the genetic components to process lipopolysaccharides (Ikuta et al. 2016). *Psychromonas*
328 may, therefore, aid in lipid metabolism (Riley et al. 2008) during embryonic development
329 or serve as a commensal symbiont that relies on the lipids leaching out maturing embryos.

330 An additional pattern we observed during embryonic development was that urchin-
331 associated bacterial communities diverged from the environmental microbiota. Divergence
332 of host-associated microbiota from the environmental community suggests that urchin
333 embryos and larvae may select, at least, part of their microbial symbiont community.

334 Maintenance of host-specific symbionts may further suggest that these communities are
335 functionally important. To explicitly test how urchin larvae maintain a specific bacterial
336 community and their functional relevance during embryonic and larval development, a
337 multifaceted molecular and -omic (*e.g.*, meta-genomic and -transcriptomic) approach
338 would be needed (Williams & Carrier 2018). Approaches for characterizing the
339 mechanisms that establish and regulate host specificity may be adopted from well-
340 established biological systems, such as *Hydra* (Fraune et al. 2010, Fraune & Bosch 2010,
341 Franzenburg et al. 2013) or the winnowing of *Euprymna scolopes* to the luminescent
342 mutualist *Vibrio fisheri* (McFall-Ngai & Ruby 2000, McFall-Ngai 2002, Nyholm &
343 Mcfall-Ngai 2004).

344 Taken together, data presented here support the hypothesis that the bacterial
345 community associated with the developmental stages of three sea urchin species are
346 established prior to fertilization and shift gradually thereafter. The functional importance
347 and evolutionary significance of this bacterial community and the mechanisms for these
348 corresponding shifts remains unknown. Future experiments involving germ-free culturing
349 as well as manipulations of the host, members of the microbial community, and variable
350 culturing conditions will be needed to determine roles of associated microbiota. Results
351 from these experiments would serve as a key piece towards establishing echinoids as a
352 comparative system for understanding the interdependence of animal development and the
353 associated bacterial communities.

354

355 *Acknowledgements.* We thank Jason Hodin and Billie Swalla for providing laboratory
356 space; Morgan Eisenlord, Gustav Pauley, Katie Dobkowski, Joe Gaydos, and Richard

357 Strathmann for collecting urchins; Colette Feehan and Richard Strathmann for larval
358 rearing advise; Daniel Janies for sequencing resources; Karen Lopez for technical
359 assistance with sequencing; and the reviewers for improving the specificity and clarity of
360 this manuscript. TJC was supported by an NSF Graduate Research Fellowship, Charles
361 Lambert Memorial Endowment fellowship from the Friday Harbor Laboratories, and a
362 Sigma Xi Grants-in-Aid of Research grant, and AMR was supported by Human Frontier
363 Science Program Award RGY0079/2016.

364

365

366 **FIGURE LEGEND**

367

368 **Figure 1.** Similarity amongst the associated bacterial community across development for
369 three species of echinoids. Community similarity for *Strongylocentrotus purpuratus*
370 (triangle), *Mesocentrotus franciscanus* (square), and *S. droebachiensis* (circle) for ten
371 developmental stages when considering the presence/absence of taxa (A) and their relative
372 abundance (B).

373

374 **Figure 2.** Relatedness of bacterial communities during development. Weighted UniFrac
375 dendrograms and corresponding class-level taxonomic plots for the bacterial communities
376 of *Strongylocentrotus purpuratus* (left), *Mesocentrotus franciscanus* (center), and *S.*
377 *droebachiensis* (right) across ten developmental stages.

378

379 **Figure 3.** Measures of OTU shifts during development. OTU dynamics across embryonic
380 and larval development for *Strongylocentrotus purpuratus* (purple), *Mesocentrotus*
381 *franciscanus* (red), and *S. droebachiensis* (green), and the average of the urchin species
382 (black), when considering (A) total observed OTUs, (B) percent of OTUs shared with
383 unfertilized eggs, (C) proportion of OTUs shared between developmental stages, and (D)
384 similarity with the environmental microbiota.

385

386 **Figure 4.** Decay in abundance of *Psychromonas* during development. Relative abundance
387 of the bacterial genus *Psychromonas* across embryonic and larval development for

388 *Strongylocentrotus purpuratus* (purple), *Mesocentrotus franciscanus* (red), *S.*

389 *droebachiensis* (green), and the seawater (blue) with the number of total OTUs.

390

391

392 **LITERATURE CITED**

393 Apprill A, Marlow HQ, Martindale MQ, Rappe MS (2012) Specificity of associations
394 between bacteria and the coral *Pocillopora meandrina* during early development.
395 Applied and Environmental Microbiology 78:7467-7475

396 Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct
397 signals from the microbiota promote different aspects of zebrafish gut
398 differentiation. Dev Biol 297:374-386

399 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina
400 sequence data. Bioinformatics 30:2114-2120

401 Bosch I (1992) Symbiosis between bacteria and oceanic clonal sea star larvae in the
402 western North Atlantic Ocean. Marine Biology 114:495-502

403 Bosch TCG (2013) Cnidarian-microbe interactions and the origin of innate immunity in
404 metazoans. Annual Review of Microbiology 67:499-518

405 Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts.
406 Nat Rev Microbiol 8:218-230

407 Buckley KM, Rast JP (2017) An organismal model for gene expression networks in the
408 gut-associated immune response. Frontiers in Immunology 8:1297

409 Byrne M, Villinski JT, Cisternas P, Siegel RK, Popodi E, Raff RA (1999) Maternal factors
410 and the evolution of developmental mode: evolution of oogenesis in *Helicidaris*
411 *erythrogramma*. Development Genes and Evolution 209:275-283

412 Cameron RA, Holland ND (1983) Electron microscopy of extracellular materials during
413 the development of a seastar, *Patiria miniata* (Echinoderm: Asteroidea). Cell
414 Tissue Research 243:193-200

415 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer
416 N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig
417 JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J,
418 Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J,
419 Knight R (2010) QIIME allows analysis of high-throughput community sequencing
420 data. *Nat Methods* 7:335-336

421 Carrier TJ, Macrander J, Reitzel AM (2018a) A microbial perspective on the life-history
422 evolution of marine invertebrate larvae: if, where, and when to feed. *Marine
423 Ecology* 39:e12490

424 Carrier TJ, Reitzel AM (2018) Convergent shifts in host-associated microbial communities
425 across environmentally elicited phenotypes. *Nature Communications* 9:952

426 Carrier TJ, Wolfe K, Lopez K, Gall M, Janies DA, Byrne M, A.M. R (2018b) Diet-induced
427 shifts in the crown-of-thorns (*Acanthaster* sp.) larval microbiome. *Marine Biology*
428 165:157

429 Cerra A, Byrne M, Hoegh-Guldberg O (1997) Developments of the hyaline layer around
430 the planktonic embryos nad larvae of the asteroid *Patiriella calcar* and the presence
431 of associated bacteria. *Invertebrate Reproduction and Development* 31:337-343

432 Chia F-S, Burke RD (1978) Echinoderm metamorphosis: fate of larval structures. In: Chia
433 F-S, Rice ME (eds) *Settlement and metamorphosis of marine invertebrate larvae:*
434 *proceedings of the Symposium on settlement and metamorphosis of marine*
435 *Invertebrate larvae, American Zoological Society Meeting.* Elsevier

436 Collins R, Moran AL (2018) Evolutionary transitions in mode of development. In: Carrier
437 TJ, Reitzel AM, Heyland A (eds) Evolutionary Ecology of Marine Invertebrate
438 Larvae. Oxford University Press

439 Davidson SK, Stahl DA (2008) Selective recruitment of bacteria during embryogenesis of
440 an earthworm. *The ISME Journal* 2:510-518

441 Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their
442 symbiotic bacteria *Buchnera*. *Annu Rev Entomol* 43:17-37

443 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves
444 sensitivity and speed of chimera detection. *Bioinformatics* 27:2194-2200

445 Fieth RA, Gauthier M-EA, Bayes J, Green KM, Degnan SM (2016) Ontogenetic changes
446 in the bacterial symbiont community of the tropical demosponge *Amphimedon*
447 *queenslandica*: metamorphosis is a new beginning. *Frontiers in Marine Science*
448 3:228

449 Franzenburg S, Fraune S, Altrock PM, Künzel S, Baines JF, Traulsen A, Bosch TCG
450 (2013) Bacterial colonization of *Hydra* hatchlings follows a robust temporal
451 pattern. *The ISME Journal* 7:781

452 Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB,
453 Samoilovich MP, Bosch TCG (2010) In an early branching metazoan, bacterial
454 colonization of the embryo is controlled by maternal antimicrobial peptides. *P Natl
455 Acad Sci USA* 107:18067-18072

456 Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution.
457 *Bioessays* 32:571-580

458 Galac MR, Bosch I, Janies DA (2016) Bacterial communities of oceanic sea star
459 (Asteroidea: Echinodermata) larvae. *Marine Biology* 163:162

460 Guillard RRL (ed) (1975) Culture of phytoplankton for feeding marine invertebrates.
461 Plenum Press, New York, USA

462 Heyland A, Schuh NW, Rast JP (2018) Sea urchin larvae as a model for postembryonic
463 development. In: Kloc M, Kubiak JZ (eds) *Marine Organisms as Model Systems in*
464 *Biology and Medicine*. Springer

465 Ikuta T, Igawa K, Tame A, Kuroiwa T, Kuroiwa H, Aoki Y, Takaki Y, Nagai Y, Ozawa
466 G, Yamamoto M, Deguchi R, Fujikura K, Maruyama T, Yoshida T (2016) Surfing
467 the vegetal pole in a small population: extracellular vertical transmission of an
468 'intracellular' deep-sea clam symbiont. *Royal Society Open Science* 3:160130

469 Jaeckle WB (1995) Variation in size, energy content, and biochemical composition of
470 invertebrate eggs: correlates to the mode of larval development. In: McEdward LR
471 (ed) *Ecology of Marine Invertebrate Larvae*. CRC Press

472 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013)
473 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-
474 generation sequencing-based diversity studies. *Nucleic Acids Research* 41:e1

475 Kudtarkar P, Cameron RA (2017) Echinobase: an expanding resource for echinoderm
476 genomic information. *Database* 2017:bax074

477 Levitan DR (1995) The ecology of fertilization in free-spawning invertebrates. In:
478 McEdward LR (ed) *Ecology of Marine Invertebrate Larvae*. CRC Press

479 Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing
480 microbial communities. *Applied and Environmental Microbiology* 71:8228-8235

481 Manahan DT, Davis JP, Stephens GC (1993) Bacteria-free sea urchin larvae: selective
482 uptake of neutral amino acids from seawater. *Science* 220:204-206

483 Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB (2012) The biogeography of
484 marine invertebrate life histories. *Annual Review of Ecology, Evolution, and*
485 *Systematics* 43:97-114

486 McFall-Ngai M (2014) The importance of microbes in animal development: lessons from
487 the squid-*Vibrio* symbiosis. *Annual Review of Microbiology* 68:177-194

488 McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE,
489 Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S,
490 Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls
491 JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013)
492 Animals in a bacterial world, a new imperative for the life sciences. *P Natl Acad*
493 *Sci USA* 110:3229-3236

494 McFall-Ngai M, Ruby EG (2000) Developmental biology and marine invertebrate
495 symbioses. *Current Opinion in Microbiology* 3:603-607

496 McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development.
497 *Dev Biol* 242:1-14

498 Mileikovsky SA (1971) Types of larval development in marine bottom invertebrates, their
499 distribution and ecological significance: a re-evaluation. *Marine Biology* 10:193-
500 213

501 Moran AL, McAlister JS (2009) Egg size as a life history character of marine invertebrates:
502 Is it all it's cracked up to be? *Biological Bulletin* 216:226-242

503 Mortzfeld BM, Urbanski S, Reitzel AM, Kunzel S, Technau U, Fraune S (2015) Response
504 of bacterial colonization in *Nematostella vectensis* to development, environment
505 and biogeography. *Environmental Microbiology* 18:1764-1781

506 Nussbaumer AD, Fisher CR, Bright M (2006) Horizontal endosymbiont transmission in
507 hydrothermal vent tubeworms. *Nature* 441:345-348

508 Nyholm SV, McFall-Ngai M (2014) Animal development in a microbial world. In: Minelli
509 A, Pradeu T (eds) *Towards a Theory of Development*. Oxford University Press

510 Nyholm SV, Mcfall-Ngai MJ (2004) The winnowing: establishing the squid-*Vibrio*
511 symbiosis. *Nat Rev Microbiol* 2:632-642

512 Pennington JT (1985) The ecology of fertilization of echinoid eggs: the consequences of
513 sperm dilution, adult aggregation, and synchronous spawning. *Biological Bulletin*
514 169:417-430

515 Pradeu T (2011) A mixed self: the role of symbionts in development. *Biological Theory*
516 6:80-88

517 Rendleman A, Rodriguez J, Ohanian A, Pace D (2018) More than morphology: differences
518 in food ration drive physiological plasticity in echinoid larvae. *Journal of*
519 *Experimental Marine Biology and Ecology* 501:1-15

520 Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson
521 LS (2008) Genomics of an extreme psychrophile, *Psychromonas ingrahamii*. *BMC*
522 *Genomics* 9:210

523 Sharp KH, Distel D, Paul VJ (2012) Diversity and dynamics of bacterial communities in
524 early life stages of the Caribbean coral *Porites astreoides*. *The ISME Journal* 6:790-
525 801

526 Sipkema D, de Caralt S, Morillo JA, Al-Soud WA, Sørensen SJ, Smidt H, Uriz MJ (2015)

527 Similar sponge-associated bacteria can be acquired via both vertical and horizontal

528 transmission. *Environmental Microbiology* 17:3807-3821

529 Stewart FJ, Young CR, Cavanaugh CM (2008) Lateral symbiont acquisition in a maternally

530 transmitted chemosynthetic clam endosymbiosis. *Mol Biol Evol* 25:673-687

531 Strathmann MF (1987) Reproduction and development of marine invertebrates of the

532 northern Pacific coast: data and methods for the study of eggs, embryos, and larvae.

533 University of Washington Press

534 Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates.

535 *Biological Reviews* 25:1-45

536 Vance RR (1973) On reproductive strategies in marine benthic invertebrates. *The*

537 *American Naturalist* 107:339-352

538 Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for

539 visualizing high-throughput microbial community data. *Gigascience* 2:16

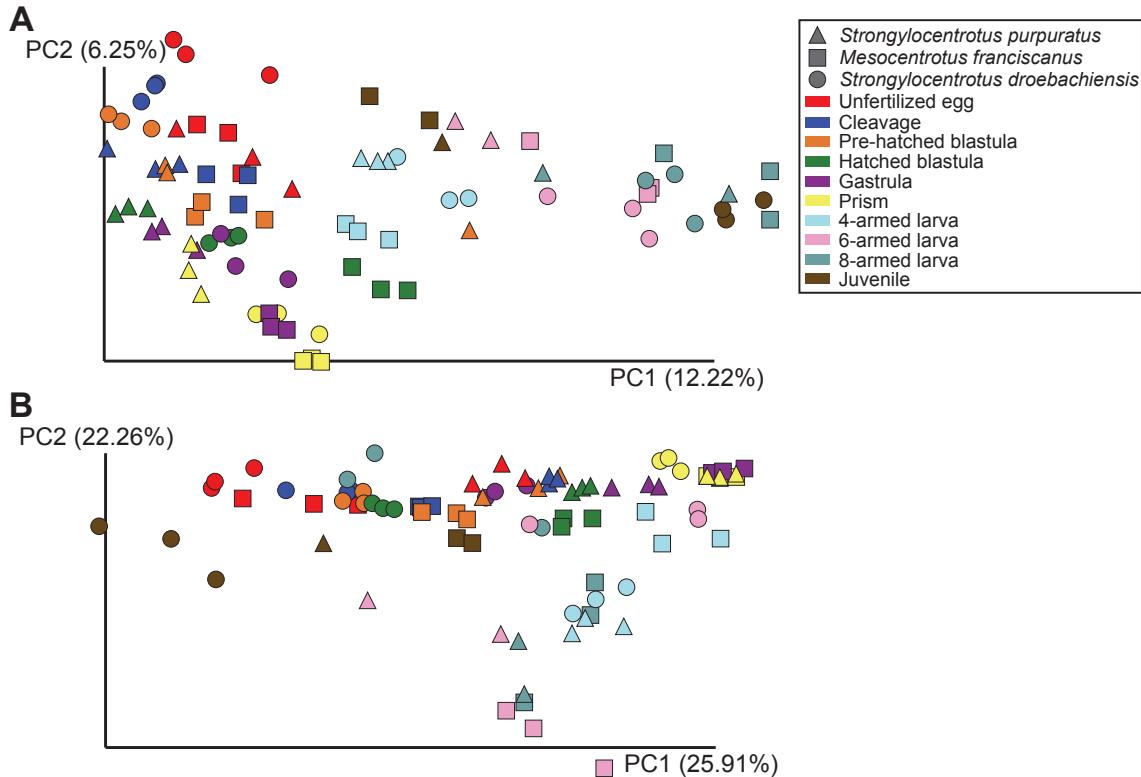
540 Villinski JT, Villinski JC, Byrne M, Raff RA (2002) Convergent maternal provisioning

541 and life-history evolution in echinoderms. *Evolution* 56:1764-1775

542 Williams EA, Carrier TJ (2018) An -omics perspective on marine invertebrate larvae. In:

543 Carrier TJ, Reitzel AM, Heyland A (eds) *Evolutionary Ecology of Marine*

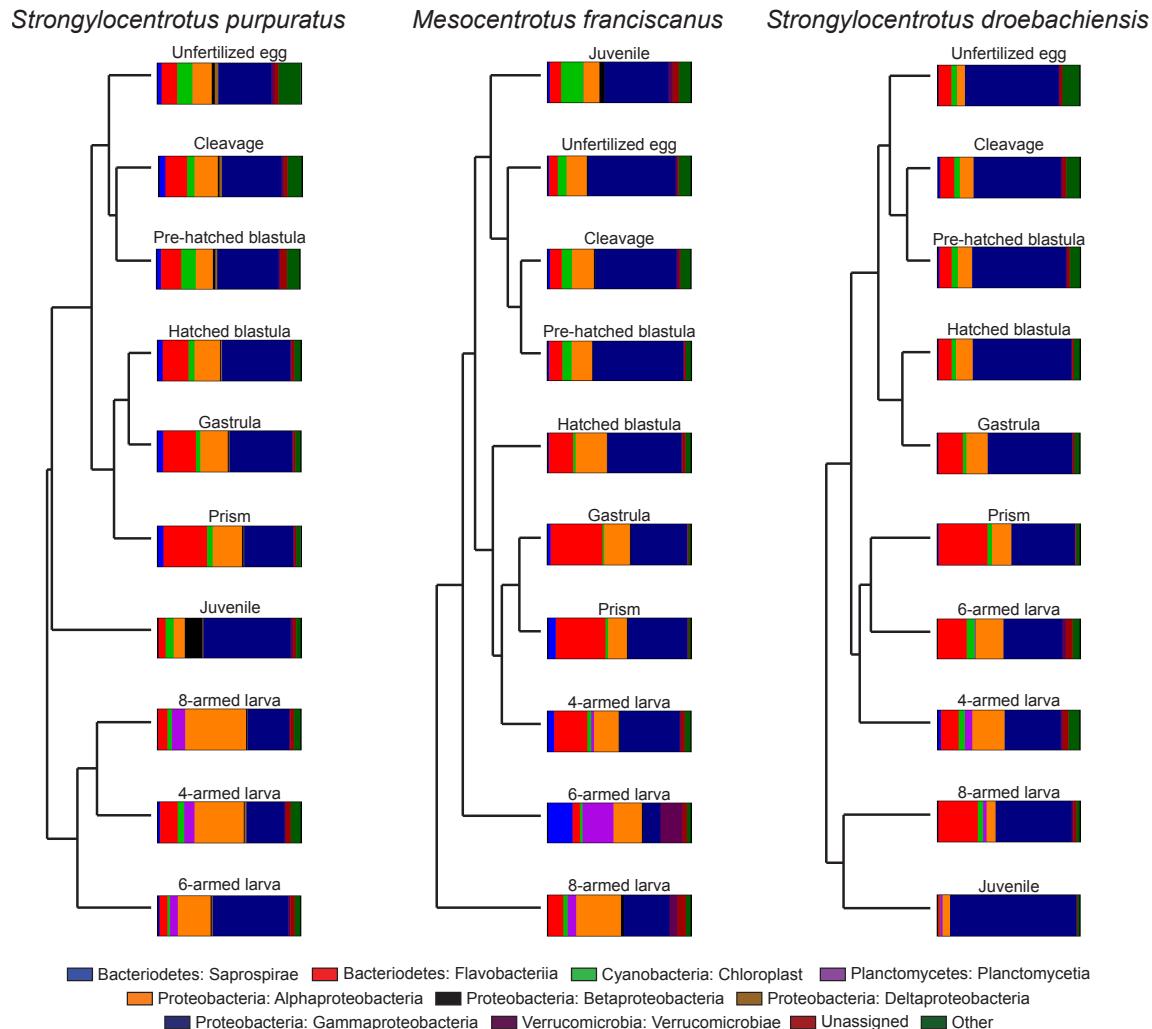
544 *Invertebrate Larvae*. Oxford University Press, Oxford, UK


545 Wray GA, Raff RA (1991) The evolution of developmental strategy in marine

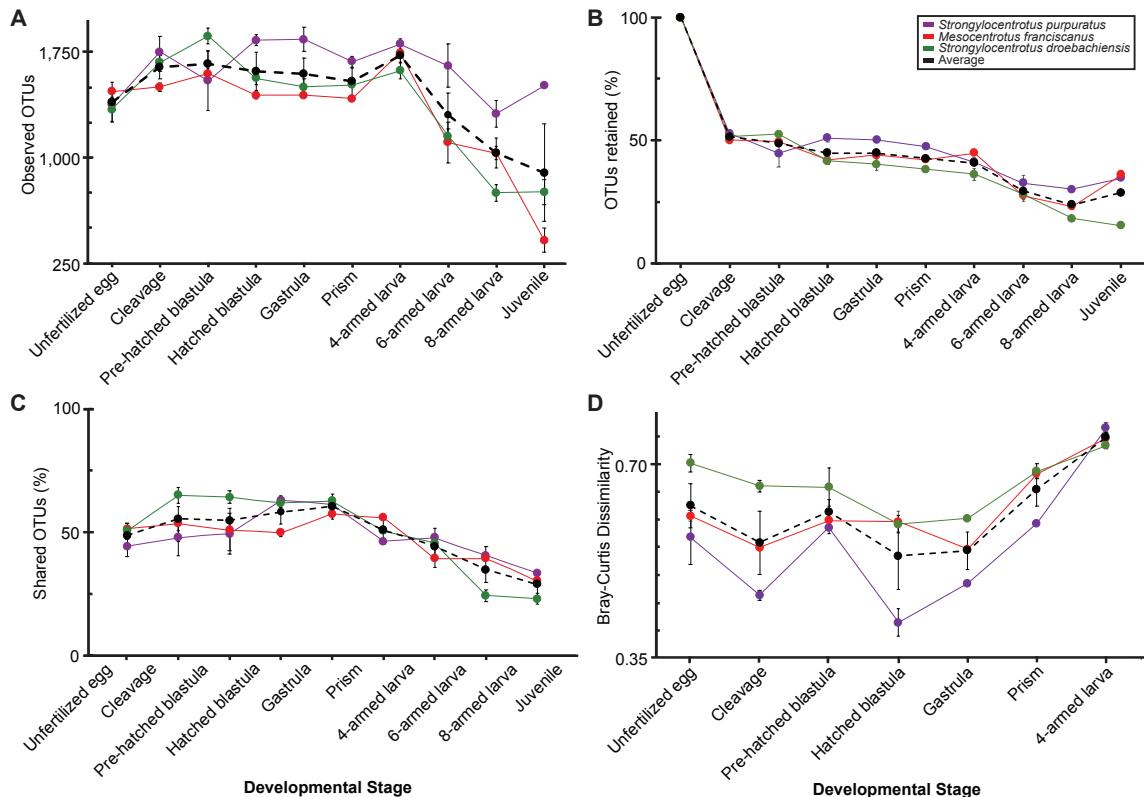
546 invertebrates. *Trends in Ecology & Evolution* 6:45-50

547 Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: A fast and accurate Illumina

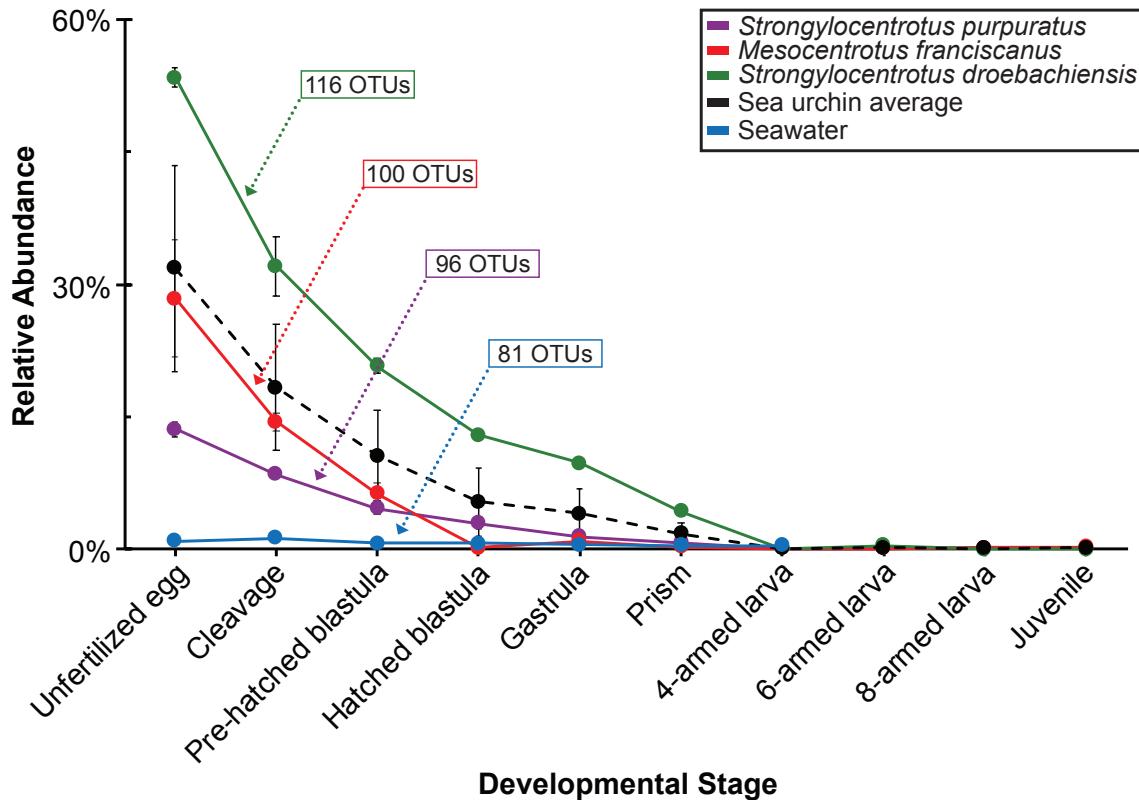
548 Paired-End reAd mergeR. *Bioinformatics* 30:614-620


1 **Figure 1**
2

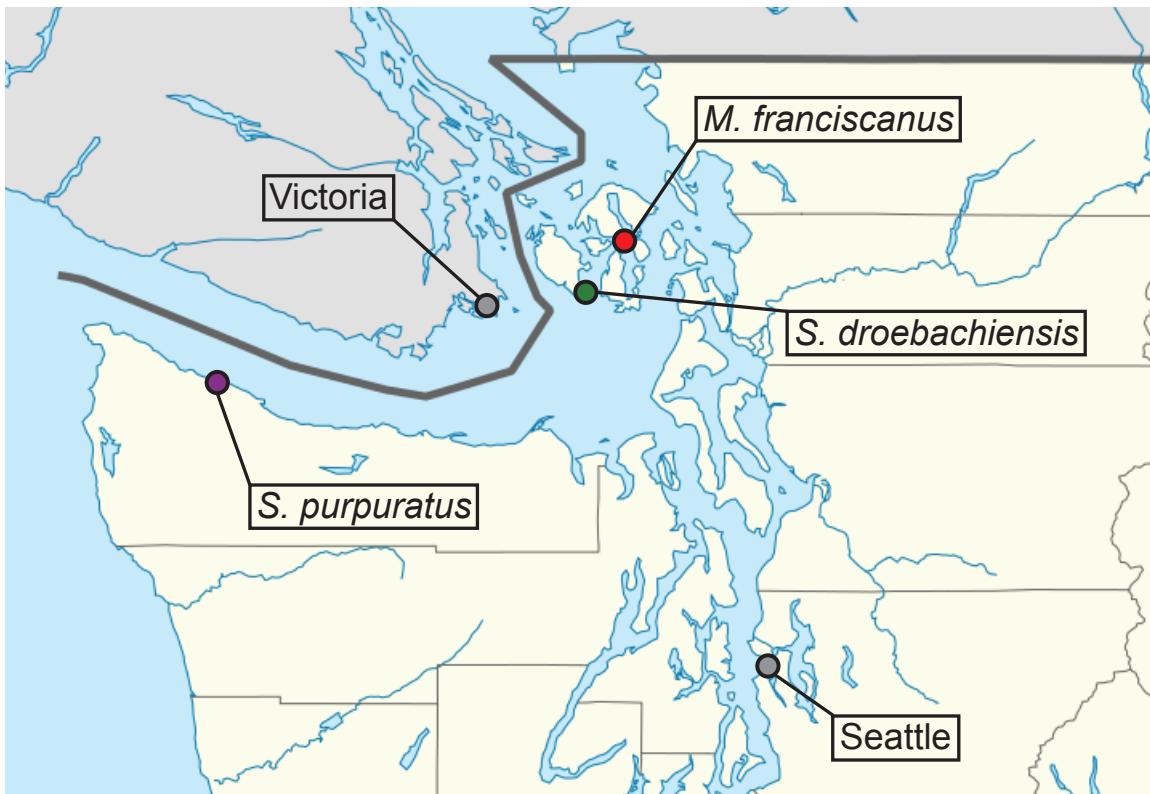
3
4
5


6 **Figure 2**

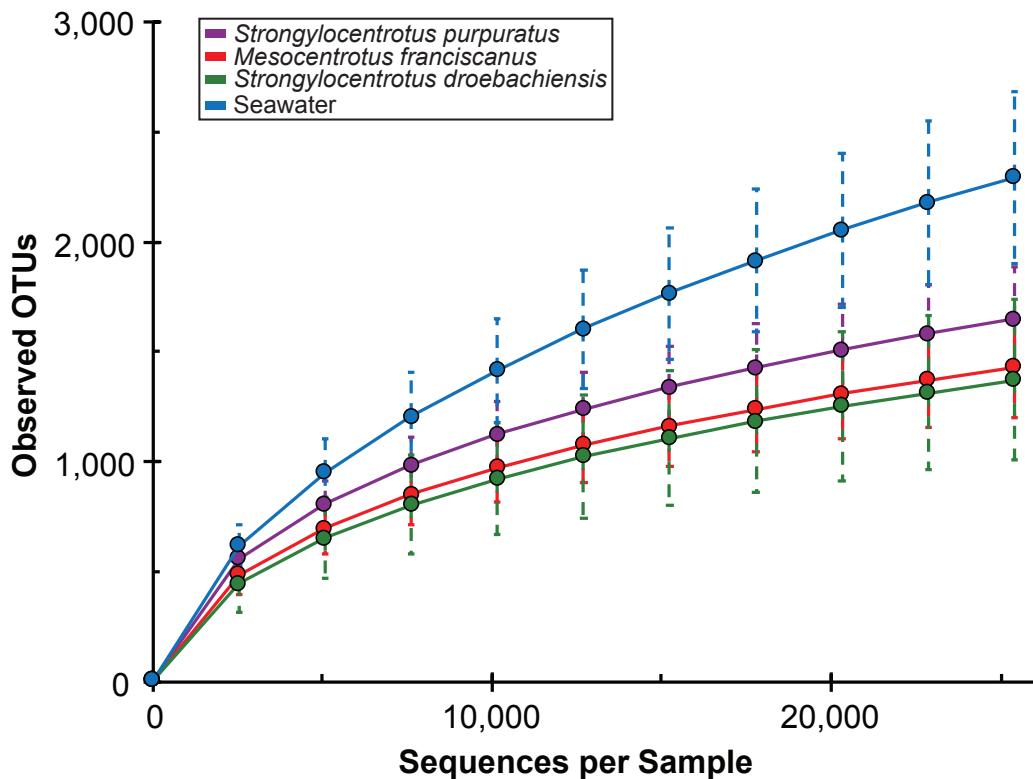
7

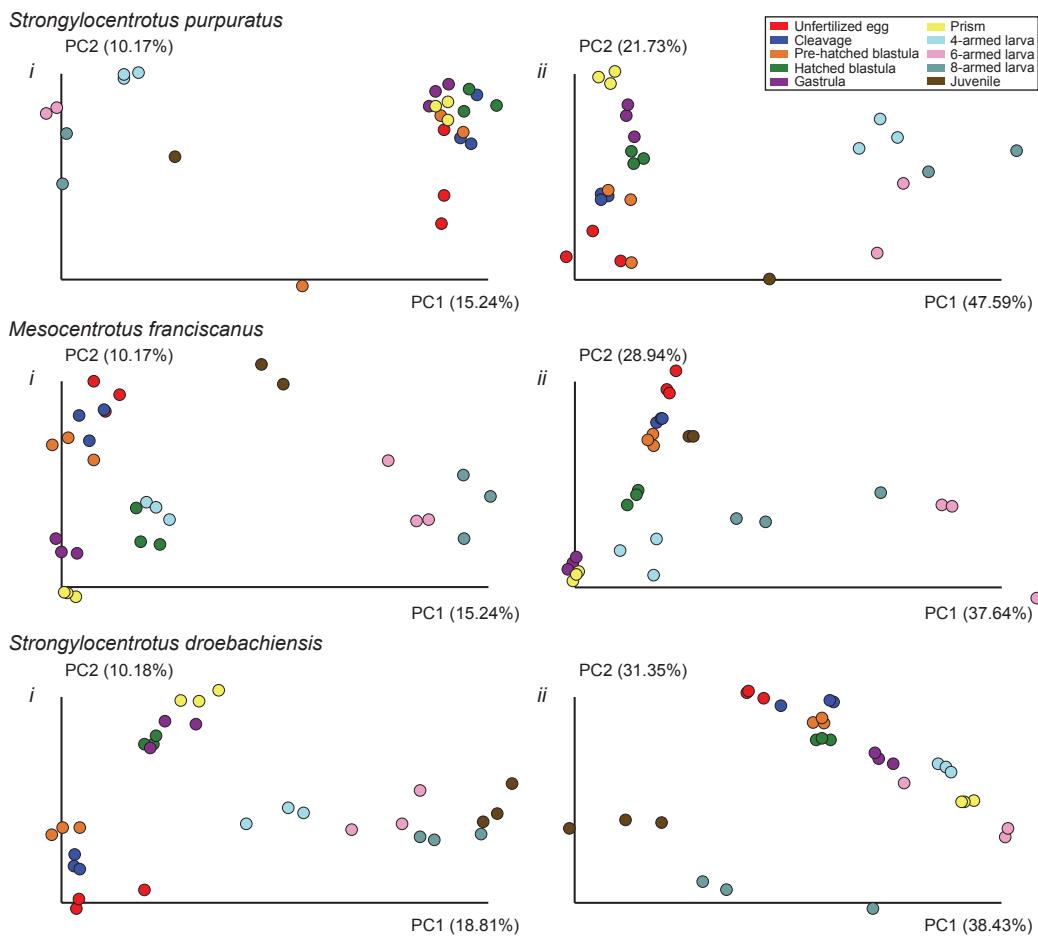

8
9
10

11 **Figure 3**
12

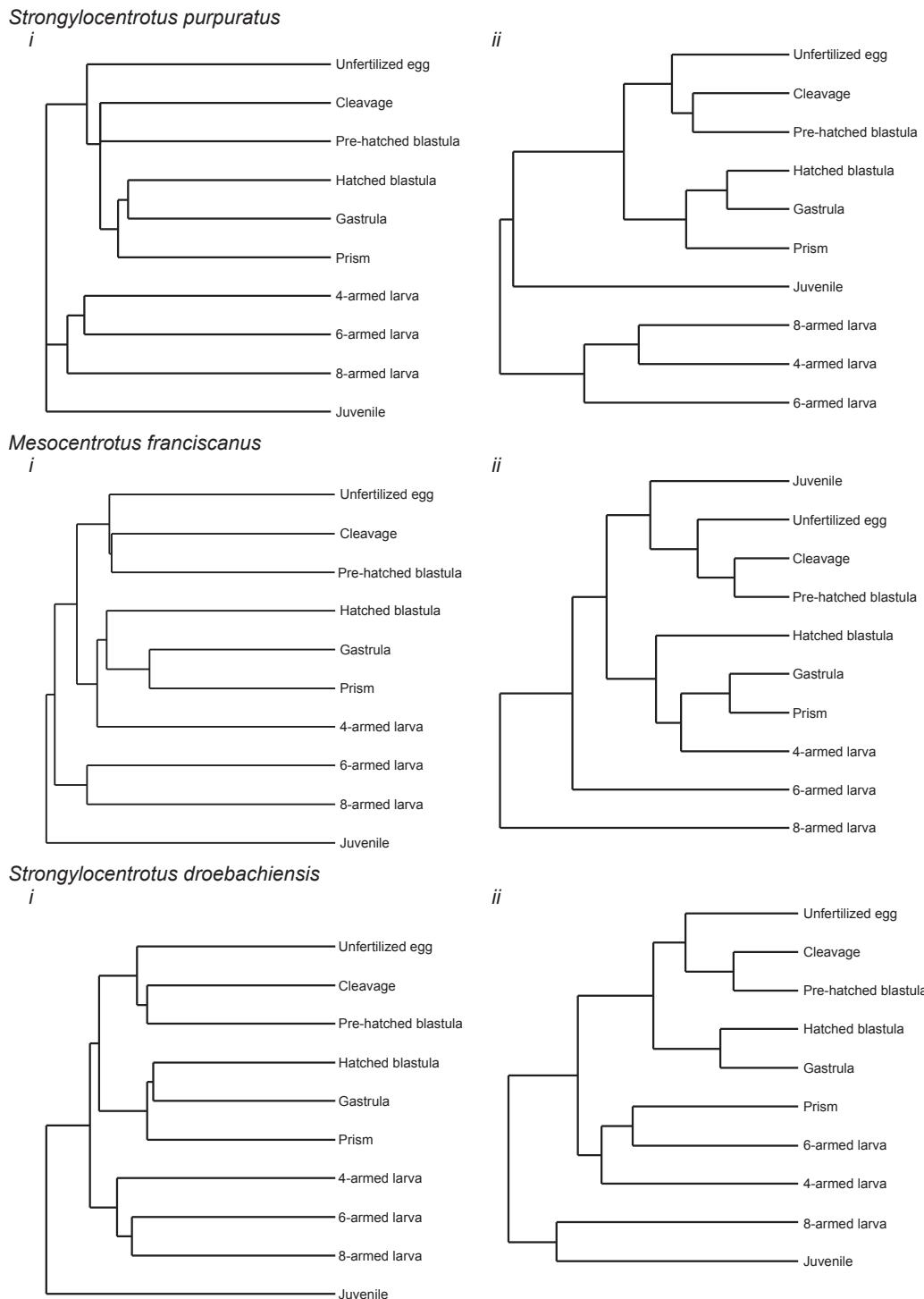


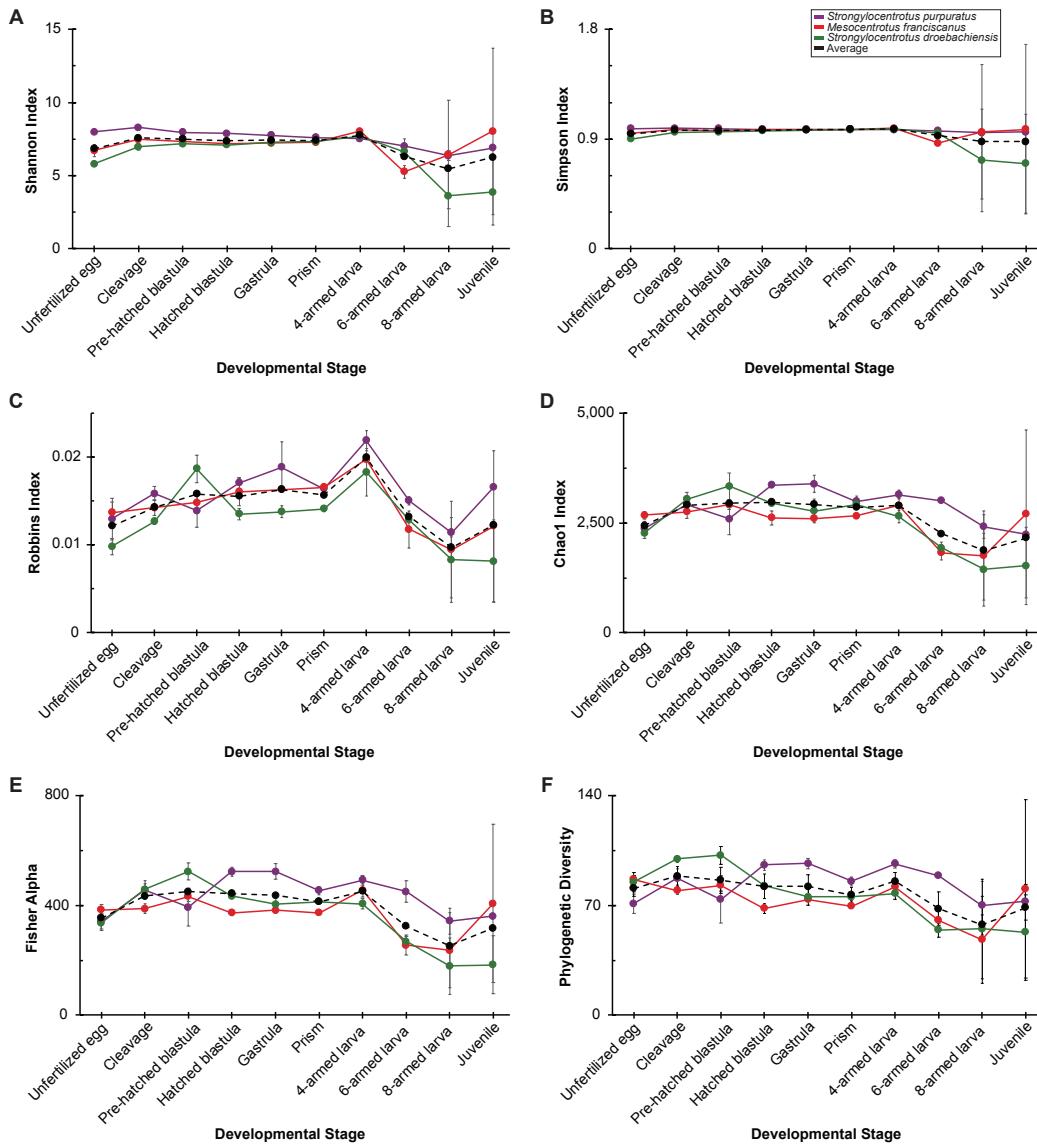
13
14
15


16 **Figure 4**
17


18
19
20

1
2 **Figure S1.** Locations of adult urchin collections throughout the Salish Sea with geographic
3 reference points. Specifically, *Strongylocentrotus purpuratus* were hand-collected at Slip
4 Point, Clallam Bay, WA; *S. droebachiensis* were hand-collected at low tide at Cattle Point,
5 San Juan Island, WA; and, *M. franciscanus* were collected by SCUBA off Bell Island, WA.
6
7
8


Figure S2. Alpha rarefaction curves for three species of echinoids and of the seawater. Alpha rarefaction curves for *Strongylocentrotus purpuratus* (purple), *Mesocentrotus franciscanus* (red), and *S. droebachiensis* (green) and seawater (blue) based on rarefaction depth of 25,396.


16
17

18 **Figure S3.** Similarity between the associated bacterial community across development for
19 three species of echinoids. Community similarity for *Strongylocentrotus purpuratus* (top),
20 *Mesocentrotus franciscanus* (middle), and *S. droebachiensis* (bottom) for ten
21 developmental stages when considering the presence/absence of taxa (i) and their relative
22 abundance (ii).

23
24

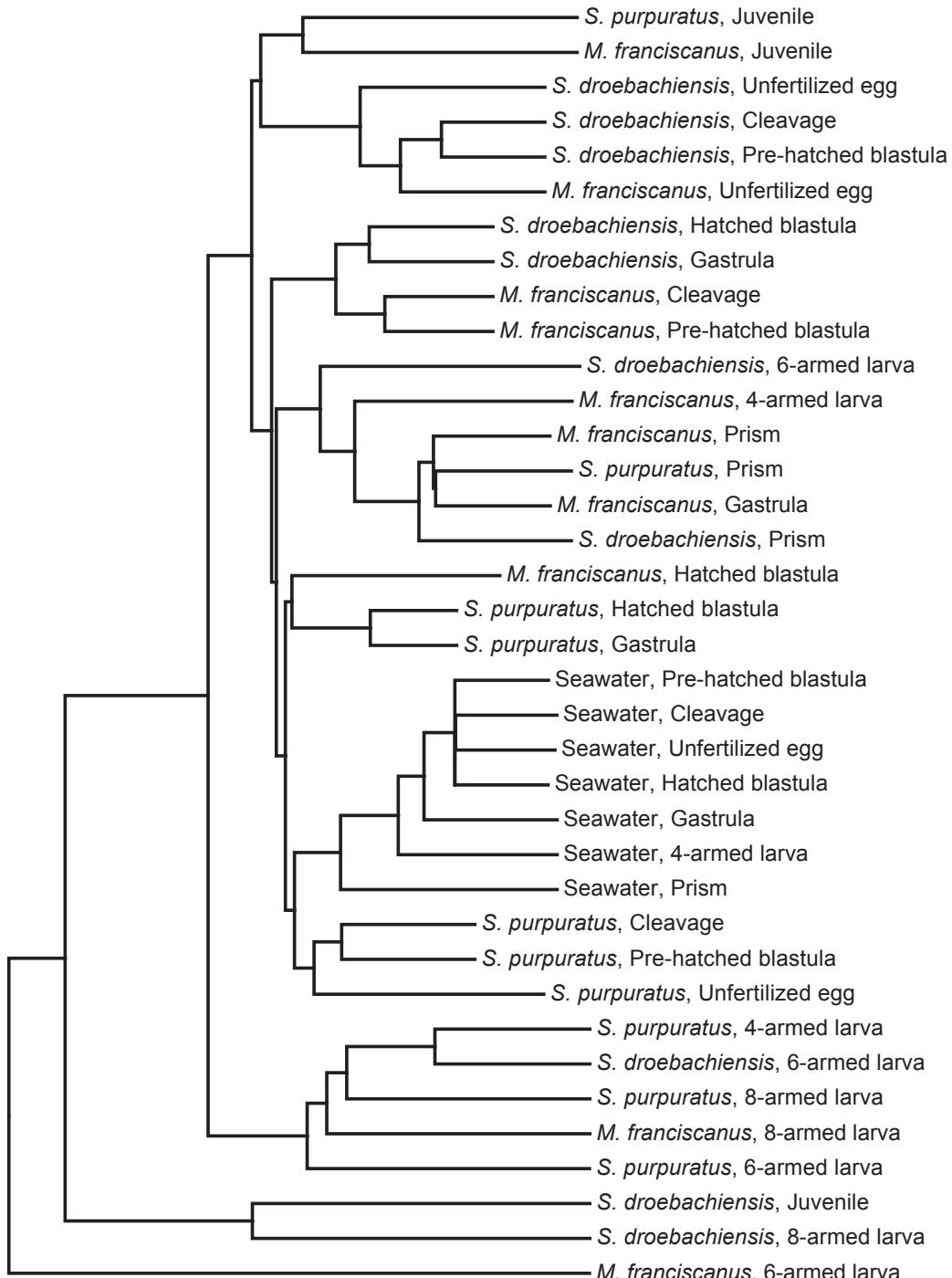
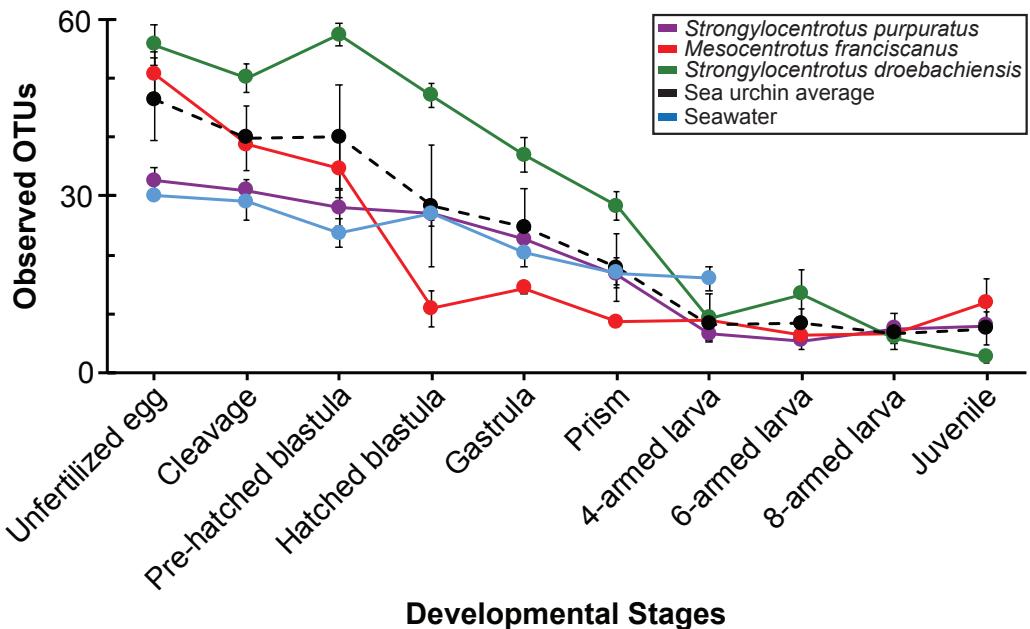


Figure S4. Bacterial community dendograms across development for three echinoid species. Unweighted (i) and weighted (ii) bacterial community dendograms for *Strongylocentrotus purpuratus* (top), *Mesocentrotus franciscanus* (middle), and *S. droebachiensis* (bottom).

33
34


35 **Figure S5.** Various alpha diversity indices for three echinoid species across development.
36 Shannon (A), Simpson (B), Robbins (C), Chao1 (D), Fisher (E), and Faiths (F) indices
37 for *Strongylocentrotus purpuratus* (purple), *Mesocentrotus franciscanus* (red), *S.*
38 *droebachiensis* (green), and the average (black) at ten developmental stages.
39
40

41
42

43 **Figure S6.** Microbial dendrogram of developmental stages and seawater. Dendrogram of
44 the bacterial communities based on weighted UniFrac for the developmental stages of
45 *Strongylocentrotus purpuratus*, *Mesocentrotus franciscanus*, and *S. droebachiensis* as well
46 as the respective environmental bacterial communities.

47
48

49

50

51 **Figure S7.** Diversity of *Psychromonas* during development. Total operational taxonomic
52 units (OTUs) within the bacterial genus *Psychromonas* across embryonic and larval
53 development for *Strongylocentrotus purpuratus* (purple), *Mesocentrotus franciscanus*
54 (red), *S. droebachiensis* (green) as well as the average for the three sea urchin species and
55 the in the seawater.