bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

N

w

10

11

12

13

14

15

16

17

18

under aCC-BY-ND 4.0 International license.

Feed-forward regulation adaptively
evolves via dynamics rather than

topology when there is intrinsic noise

Short title: Adaptive evolution of feed-forward regulation
Kun Xiong?!, Alex K. Lancaster?, Mark L. Siegal®, Joanna Masel*

! Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United
States of America

2Ronin Institute, Montclair, New Jersey, United States of America

3 Center for Genomics and Systems Biology, Department of Biology, New York University, New
York, New York, United States of America

4 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona,

United States of America

* Corresponding author

Email: masel@email.arizona.edu



mailto:masel@email.arizona.edu
https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

19

20

21

22

23

24

25

26

27

28

29

30

31

under aCC-BY-ND 4.0 International license.

Abstract

We develop a null model of the evolution of transcriptional regulatory networks, and use it to

IM

support an adaptive origin for a canonical “motif”, a 3-node feed-forward loop (FFL)
hypothesized to filter out short spurious signals by integrating information from a fast and a
slow pathway. Our mutational model captures the intrinsically high prevalence of weak affinity
transcription factor binding sites. We also capture stochasticity and delays in gene expression
that distort external signals and intrinsically generate noise. Functional FFLs evolve readily under
selection for the hypothesized function, but not in negative controls. Interestingly, a 4-node
“diamond” motif also emerged as a short spurious signal filter. The diamond uses expression
dynamics rather than path length to provide fast and slow pathways. When there is no external

spurious signal to filter out, but only internally generated noise, only the diamond and not the

FFL evolves.
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Introduction

Transcriptional regulatory networks (TRNs) are integral to development and physiology, and
underlie all complex traits. An intriguing finding about TRNs is that certain topological “motifs”
of interconnected transcription factors (TFs) are over-represented relative to random re-wirings
that preserve the frequency distribution of connections. The significance of this finding remains

open to debate.

The canonical example is the feed-forward loop (FFL), in which TF A regulates a target C both
directly, and indirectly via TF B, and no regulatory connections exist in the opposite direction3.
Each of the three regulatory interactions in a FFL can be either activating or repressing, so there
are eight distinct kinds of FFLs (Fig. S1)*. Given the eight frequencies expected from the ratio of
activators to repressors, two of these kinds of FFLs are significantly over-represented®. In this
paper, we focus on one of these two over-represented types, namely the type 1 coherent FFL
(C1-FFL), in which all three links are activating rather than repressing (Fig. S1, top left). C1-FFL
motifs are an active part of systems biology research today, e.g. they are used to infer the

function of specific regulatory pathways>®.

The over-representation of FFLs in observed TRNs is normally explained in terms of selection
favoring a function of FFLs. Specifically, the most common adaptive hypothesis is that cells often
benefit from ignoring short-lived signals and responding only to durable signals**”. Evidence
that C1-FFLs can perform this function comes from the behavior both of theoretical models* and
of in vivo gene circuits’. A C1-FFL can achieve this function when its regulatory logic is that of an

“AND” gate, i.e. both the direct path from A to C and the indirect path from A to B to C must be
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activated before the response is triggered. In this case, the response will only be triggered if, by
the time the signal trickles through the longer path, it is still active on the shorter path as well.

This yields a response to long-lived signals but not short-lived signals.

However, just because a behavior is observed, we cannot conclude that the behavior is a
historical consequence of past selection favoring that behavior® . The explanatory power of this
adaptive hypothesis of filtering out short-lived and spurious signals needs to be compared to
that of alternative, non-adaptive hypotheses®®. The over-representation of C1-FFLs might be a
byproduct of some other behavior that was the true target of selection!!. Alternatively, it might
be an intrinsic property of TRNs generated by mutational processes — gene duplication patterns
have been found to enrich for FFLs in general?, although not yet C1-FFLs in particular.
Adaptationist claims about TRN organization have been accused of being just-so stories, with
adaptive hypotheses still in need of testing against an appropriate null model of network

evolution323,

Here we develop such a computational null model of TRN evolution, and apply it to the case of
C1-FFL over-representation. We include sufficient realism in our model of cis-regulatory
evolution to capture the non-adaptive effects of mutation in shaping TRNs. In particular, we
consider “weak” TF binding sites (TFBSs) that can easily appear de novo by chance alone, and
from there be selected to bind a TF more strongly, as well as simulating mutations that duplicate

and delete genes.

We also capture the stochasticity of gene expression, which causes the number of mRNAs and

hence proteins to fluctuate?* 2>, This is important, because demand for spurious signal filtering
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80 and hence C1-FFL function may arise not just from external signals, but also from internal

81 fluctuations. Stochasticity in gene expression also shapes how external spurious signals are

82 propagated. Stochasticity is a constraint on what TRNs can achieve, but it can also be adaptively
83  co-opted in evolution?; either way, it might underlie the evolution of certain motifs. Most other
84  computational models of TRN evolution that consider gene expression as the major phenotype
85  do not simulate stochasticity in gene expression (but see three notable exceptions2’?%).

86

87 Here we ask whether AND-gated C1-FFLs evolve as a response to selection for filtering out short
88  and spurious external signals. Our new model allows us to compare the frequencies of network
89 motifs arising in the presence of this hypothesized evolutionary cause to motif frequencies

90 arising under non-adaptive control simulations, i.e. evolution under conditions that lack short
91 spurious external signals while controlling both for mutational biases and for less specific forms
92 of selection. We also ask whether other network motifs evolve to filter out short spurious

93 signals, and if so, whether different conditions favor the appearance of different motifs during

94 evolution.

95

96 Model overview

97

98  We simulate the dynamics of TRNs as the TFs activate and repress one another’s transcription

99 over developmental time, to generate gene expression phenotypes on which selection then acts
100 over longer evolutionary timescales. For each moment in developmental time, we simulate the
101 numbers of nuclear and cytoplasmic mRNAs in a cell, the protein concentrations, and the
102 chromatin state of each gene in a haploid genome. Transitions between three possible

103 chromatin states -- Repressed, Intermediate, and Active -- are a stochastic function of TF
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binding, and transcription initiation from the Active state is also stochastic. An overview of the
model is shown in Fig. 1. The pattern of TF binding affects chromatin, which affects transcription
rates, eventually feeding back to affect the concentration of TFs and hence their binding. The
genotype is specified by a set of cis-regulatory sequences that contain TFBSs to which TFs may
bind, by which consensus sequence each TF recognizes and with what affinity, and by 5 gene-
specific parameters that control gene expression as a function of TF binding: mean duration of
transcriptional bursts, mRNA degradation, protein production, and protein degradation rates,
and gene length (which affects delays in transcription and translation). An external signal (Fig.
1A red) is treated like another TF, and the concentration of an effector gene (Fig. 1A blue) in
response is a primary determinant of fitness, combined with a cost associated with gene
expression (Fig. 1B). Mutants replace resident genotypes as a function of the difference in
estimated fitness (Fig. 1C). Parameter values, taken as far as possible from Saccharomyces
cerevisiae, are summarized in Table S1. Source code in C is available at

https://github.com/MaselLab/network-evolution-simulator.
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Figure 1. Overview of the model. (A) Simulation of gene expression phenotypes. We show a
simple TRN with one TF (yellow) and one effector gene (blue), with arrows for major biological
processes simulated in the model. (B) Phenotype-fitness relationship. Fitness is primarily
determined by the concentration of an effector protein (here shown as beneficial as in Eq. 1, but
potentially deleterious in a different environment as in Eq. 2), with a secondary component
coming from the cost of gene expression (proportional to the rate of protein production),
combined to give an instantaneous fitness at each moment in developmental time. (C)
Evolutionary simulation. A single resident genotype is replaced when a mutant’s estimated
fitness is high enough. Stochastic gene expression adds uncertainty to the estimated fitness,
allowing less fit mutants to occasionally replace the resident, capturing the flavor of genetic
drift.
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Transcription factor binding

Transcription of each gene is controlled by TFBSs present within a 150-bp cis-regulatory region.
When bound, a TF occupies a stretch of DNA 14 bp long. In the center of this stretch, each TF
recognizes an 8-bp consensus sequence, and binds to it with a TF-specific (and mutable)
dissociation constant K4(0). TFs also bind somewhat specifically when there are one or two
mismatches, with K4(1) and K4(2) values calculated from K4(0) according to a model of
approximately additive binding energy per base pair. With three mismatches, binding occurs at
the same background affinity as to any 14 bp stretch of DNA. We model competition between a
smaller number of specific higher-affinity binding sites and the much larger number of non-
specific binding sites, the latter corresponding to the total amount of nucleosome-free sequence
in S. cerevisiae. Competition with non-specific binding can be approximated by using an
effective dissociation constant I?d = 10K,. See Supplementary Text Section 1 for justification

and details of these model choices.

Each TF is either an activator or a repressor. The algorithm for obtaining the probability
distribution for A activators and R repressors being bound to a given cis-regulatory region at a

given moment in developmental time is described in Supplementary Text Section 2.

Transcriptional regulation

Activation of the effector gene requires at least two TFBSs to be occupied by activators — not

necessarily different activators. The requirement for two activators makes the effector gene

capable of evolving an AND-gate via a configuration of TFBSs in which the only way to have two
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TFs bound is for them to be different TFs (Fig. 2). All other genes are AND-gate-incapable,
meaning that their activation requires only one TFBS to be occupied by an activator. P, denotes
the probability of having at least one activator bound for an AND-gate-incapable gene, or two
for an AND-gate-capable gene. P, denotes the probability of having at least one repressor

bound.

slow-TF- signal-
controlled controlled

E

AND-gated OR-gated

e
o b

o2

- 1. I | |
No Emergent Emergent . s
regulation  MFFL I3FFL Sufficient activation: ———
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Figure 2. The numbers of TFBSs, and any hindrance between them, determine the regulatory
logic of effector expression. We use the pattern of TFBSs (red and yellow bars along black cis-
regulatory sequences) to classify the regulatory logic of the effector gene. C1-FFLs are classified
first by whether or not they are capable of simultaneously binding the signal and the TF (top vs
bottom). Further classification is based on whether either the signal or the TF has multiple non-
overlapping TFBSs, allowing it to activate the effector without help from the other (solid arrow).
The three subtypes on the bottom (where the signal and TF cannot bind simultaneously) are
rarely seen; they are unless otherwise indicated included in “Any logic” and “non-AND-gated”
tallies, but are not analyzed separately. Two of them involve emergent repression, creating
“incoherent” feed-forward loops (see Fig. S1 for full FFL naming scheme). Emergent repression
occurs when the binding of one activator to its only TFBS prevents the other activator from

binding to either of its two TFBSs, hence preventing simultaneous binding of two activators.
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172 Noise in yeast gene expression is well described by a two step process of transcriptional

173  activation3%3!

, e.g. nucleosome disassembly followed by transcription machinery assembly. We
174  denote the three corresponding possible states of the transcription start site as Repressed,
175 Intermediate, and Active (Fig. 1A). Transitions between the states depend on the numbers of
176  activator and repressor TFs bound (e.g. via recruitment of histone-modifying enzymes3* 33). We
177 make conversion from Repressed to Intermediate a linear function of P4, ranging from the

178 background rate 0.15 min of histone acetylation®* (presumed to be followed by nucleosome
179 disassembly), to the rate of nucleosome disassembly 0.92 min™! for the constitutively active
180  PHOS5 promoter®:

181

182 Trep to it = 0.92P4 + 0.15(1 — Py).

183

184  We make conversion from Intermediate to Repressed a linear function of Py, ranging from a
185  background histone de-acetylation rate of 0.67 min™t 34, up to a maximum of 4.11 min (the
186  latter chosen so as to keep a similar maximum:basal rate ratio as that of rzep to_int):

187

188 Tint_to Rep = 4-11Pg + 0.67(1 — Pg).

189

190  We assume that repressors disrupt the assembly of transcription machinery® to such a degree
191  that conversion from Intermediate to Active does not occur if even a single repressor is bound.
192 In the absence of repressors, activators facilitate the assembly of transcription machinery3.
193 Brown et al.>° reported that the rate of transcription machinery assembly is 3.3 min for a

194 constitutively active PHOS5 promoter, and 0.025 min™* when the Pho4 activator of the PHO5S

195 promoter is knocked out. We use this range to set

10
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Tint_to_Act = 3-3PA_no_R + O-OZSPnOtA_no_R

where P, _no  is the probability of having no repressors and either one (for an AND-gate-
incapable gene) or two (for an AND-gate-capable gene) activators bound, and P,,¢4 no g is the
probability of having no TFs bound (for AND-gate-incapable genes) or having no repressors and

not more than one activator bound (for AND-gate-capable genes).

The promoter sequence not only determines which specific TFBSs are present, but also
influences non-specific components of the transcriptional machinery®” 38, We capture this via
gene-specific but TF-binding-independent rates rac: o it with which the machinery disassembles
and a burst of transcription ends. In other words, we let TF binding regulate the frequency of
“bursts” of transcription, while other properties of the cis-regulatory region regulate their
duration. For example, the yeast transcription factor Pho4 regulates the frequency but not
duration of bursts of PHO5 expression, by regulating the rates of nucleosome removal and of
transition to but not from a transcriptionally active state®°. Parameterization of ract to_int is

described in Supplementary Text Section 3.

mRNA and protein dynamics

All genes in the Active state initiate new transcripts stochastically at rate rmax_transc_init = 6.75
mRNA/min3, while the time for completing transcription depends on gene length (see
Supplementary Text Section 4 for parameterization of gene length and associated delay times).

We model a second delay before a newly completed transcript produces the first protein, which

11
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we assume is dominated by translation initiation (length-independent) plus elongation (length-
dependent) and not splicing or mRNA export (see Supplementary Text Section 5). After the
second delay, we model protein production as continuous at a gene-specific rate rprotein_syn (s€€

Supplementary Text Section 5).

Protein transport into the nucleus is rapid® and is approximated as instantaneous and
complete, so that the newly produced protein molecules immediately increase the probability of
TF binding. Each gene has its own mRNA and protein decay rates, initialized from distributions

taken from data (see Supplementary Text Section 6).

All the rates regarding transcription and translation are listed in Table S1, including distributions
estimated from data, and hard bounds imposed to prevent unrealistic values arising during

evolutionary simulations.

Developmental simulation

Our algorithm is part stochastic, part deterministic. We use a Gillespie algorithm*° to simulate
stochastic transitions between Repressed, Intermediate, and Active chromatin states, and to
simulate transcription initiation and mRNA decay events. Fixed (i.e. deterministic) delay times
are simulated between transcription initiation and completion, and between transcript
completion and the production of the first protein. Protein production and degradation are
described deterministically with ODEs, and updated frequently in order to recalculate TF

concentrations and hence chromatin transition rates. Details of our simulation algorithm are

12
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given in the Supplementary Text Section 7. We initialize developmental simulations with no

mRNA or protein, and all genes in the Repressed state.

Selection

Filtering out short spurious signals is a special case of signal recognition. In environment 1,
expressing the effector is beneficial, and in environment 2 it is deleterious. We select for TRNs
that take information from the signal and correctly decide whether to express the effector.
Fitness is a weighted average across separate developmental simulations in the two
environments, one with a signal and one without. In both cases, we begin each developmental
simulation with no signal. To ensure that gene expression changes in response to the signal, and
not via an internal timer, we simulate a burn-in phase with duration drawn from an exponential
distributed truncated at 30 minutes, with un-truncated mean of 10 minutes. By having no fitness
effects of gene expression during the burn-in, we eliminate a significant source of noise in
fitness estimation due to variable burn-in duration. In our control condition, at the end of the
burn-in, the signal suddenly switches to a constant “on” level in environment 1, and remains off
in environment 2. In our test condition (Fig. 3), the signal is turned on in the same way in
environment 1 but is also briefly turned on (for the first 10 minutes after the burn-in) in
environment 2 — selection is to ignore this short spurious signal. The signal is treated as though
it were an activating TF whose concentration is controlled externally, with an “off”
concentration of zero and an “on” concentration of 1,000 molecules per cell, which is the typical

per-cell number of a yeast TF*.

13
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Environment 1: beneficial effector Environment 2: deleterious effector

Signal
Effector (a good solution)
Effector (a bad solution)

Number of protein molecules
Number of protein molecules

[/ ]

266 Developmental time (min) Developmental time (min)

0 100 0 15 25 105

267 Figure 3. Selection for filtering out short spurious signals. Each selection condition averages
268  fitness across simulations in two environments. The effectors have different fitness effects in
269  the two environments, and the signal also behaves differently in the two environments.

270 Simulations begin with zero mRNA and protein, and all genes at the Repressed state. Each
271  simulation is burned in for a randomly sampled length of time in the absence of signal (shown
272 here as 10 minutes in environment 1, and 15 minutes in environment 2), and continues for
273 another 90 minutes after the burn-in. The signal is shown in black. Red illustrates a good

274  solution in which the effector responds appropriately in each of the environments, while blue
275 shows an inferior solution. See Fig. S2 for examples of high-fitness and low-fitness evolved
276 phenotypes, where, as shown in this schematic, high-fitness solutions have longer delays

277  followed by more rapid responses thereafter.

278

279  We make fitness quantitative in terms of a “benefit” B(t) as a function of the amount of

280  effector protein N.(t) at developmental time t. Our motivation is a scenario in which the effector

281 protein is responsible for directing resources from a metabolic program favored in environment

14
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282 2 to a metabolic program favored in environment 1. In environment 1, where the effector

283 produces benefits,

284
Ne(t)
bmax ==, N(t) <N,
285 B(¢) = maxy. .’ (1) e_sat, (1)
bimax, Ne(t) = Ne sat
286

287 where bmaxis the maximum benefit if all resources were redirected, and Ne sq: is the minimum

288  amount of effector protein needed to achieve this. Similarly, in environment 2

289
Ne(t)
b — bpax ==, Ng(t) <N,
290 B(t) = max max Negur e (0) esat. 2)
0, Ne(t) = N,
291

292 We set Ne . to 10,000 molecules, which is about the average number of molecules of a

293 metabolism-associated protein per cell in yeast*

. Without loss of generality given that fitness is
294 relative, we set bpgxto 1.

295

296 A second contribution to fitness comes from the cost of gene expression C(t) (Fig. 1B, middle).
297  We make this cost proportional to the total protein production rate. We estimate a fitness cost
298 of gene expression of 2x10° per protein molecule translated per minute, based on the cost of
299  expressing a hon-toxic protein in yeast*? (see Supplementary Text Section 7 for details).

300

301  We simulate gene expression for 90 minutes plus the duration of the burn-in (Fig. 3). A “cellular

302 fitness” in a given environment is calculated as the average instantaneous fitness B(t)-C(t) over

303  the 90 minutes. We consider environment 2 to be twice as common as environment 1 (a

15
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304  “signal” should be for an uncommon event rather than the default), and take the corresponding
305 weighted average.

306

307  Evolutionary simulation

308

309 We simulate a novel version of origin-fixation (weak-mutation-strong-selection) evolutionary
310 dynamics, i.e. the population contains only one resident genotype at any time, and mutant
311  genotypes are either rejected or chosen to be the next resident (Fig. 1C). Despite the fact that
312 our mutant acceptance rule (see below) was chosen to maximize computational efficiency, our
313 model usually takes 10 CPUs 1-3 days to complete an evolutionary simulation; modeling a

314 heterogeneous population is clearly out of the question. We note that genetic homogeneity
315 entails ignoring some important population genetic phenomena. First, if there were

316  recombination, heterogeneity would favor mutations that combine well with a range of other
317 genotypes. Second, clonal interference would shift evolution toward beneficial mutations of

t*3 (an effect we can mimic by modifying the value 102 in the equation below). Third,

318 larger effec
319  polymorphic populations would evolve mutational robustness*. None of these three effects
320 seems a priori likely to change our conclusions, although the possibility cannot be ruled out.
321

322 Estimators F of genotype fitness are averages of the cellular fitness values of 200

323  developmental replicates per environment in the case of the mutant, plus an additional 800

324  should it be chosen to be the next resident. The mutant replaces the resident if

325

326 qutaz\lt B Fresident > 1078.
|Fresident|

327
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This differs from Kimura’s* equation for fixation probability, but captures the flavor of genetic
drift. Genetic drift allows slightly deleterious mutations to occasionally fix, and beneficial
mutations to sometimes fail to do so, even as the probability of fixation is monotonic with
fitness. This is also achieved by our procedure, because of stochastic deviations of F from true
genotype fitness. The number of developmental replicates captures the flavor of effective

population size.

Note that it is possible, especially at the beginning of an evolutionary simulation, for relative
fitness to be paradoxically negative. This occurs when a randomly initialized genotype does not
express the effector (garnering no fitness benefit), but does express other genes (accruing a cost
of expression); this combination makes fitness negative. In this rare case, for simplicity, we use

the absolute value of F on the denominator.

If 2,000 successive mutants are all rejected, the simulation is terminated; upon inspection, we
found that these resident genotypes had evolved to not express the effector in either
environment. We refer to each change in resident genotype as an evolutionary step. We stop
the simulation after 50,000 evolutionary steps; at this time, most replicate simulations seem to
have reached a fitness plateau (Fig. S3); we analyze all replicates except those terminated early.
To reduce the frequency of early termination in the case where the signal was not allowed to
directly regulate the effector, we used a burn-in phase selecting on a more accessible
intermediate phenotype (see Supplementary Text Section 10). In this case, burn-in occurred for
1,000 evolutionary steps, followed by the usual 50,000 evolutionary steps with selection for the

phenotype of interest (Fig. S3, right panels). Most replicates found a stable fitness plateau
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within 10,000 evolutionary steps, although some replicates were temporarily trapped at a low

fitness plateau (Fig. S3).

Genotype Initialization

We initialize genotypes with 3 activator genes, 3 repressor genes, and 1 effector gene. Cis-
regulatory sequences and consensus binding sequences contain As, Cs, Gs, and Ts sampled with
equal probability. Rate constants associated with the expression of each gene are sampled from

the distributions summarized in Table S1.

Mutation

A genotype is subjected to 5 broad classes of mutation, at rates summarized in Table S2 and
justified in Supplementary Text Section 9. First are single nucleotide substitutions in the cis-
regulatory sequence; the resident nucleotide mutates into one of the other three types of
nucleotides with equal probability. Second are single nucleotide changes to the consensus
binding sequence of a TF, with the resident nucleotide mutated into recognizing one of the
other three types with equal probability. Both of these types of mutation can affect the number

and strength of TFBSs.

Third are gene duplications or deletions. Because computational cost scales steeply (and non-
linearly) with network size, we do not allow effector genes to duplicate once there are 5 copies,
nor TF genes to duplicate once the total number of TF gene copies is 19. We also do not allow

the signal, the last effector gene, nor the last TF gene to be deleted.

18


https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

under aCC-BY-ND 4.0 International license.

Fourth are mutations to gene-specific expression parameters. Most of these (L, ract to_int,
Tprotein_syn, FmRNA_deg, @Nd F'protein_deg) APPIY to both TFs and effector genes, while mutations to the
gene-specific values of K4(0) apply only to TFs. Each mutation to Lincreases or decreases it by 1
codon, with equal probability unless L is at the upper or lower bound. Effect sizes of mutations
to the other five parameters are modeled in such a way that mutation would maintain specified
log-normal stationary distributions for these values, in the absence of selection or arbitrary
bounds (see Supplementary Text Section 9 for details). Upper and lower bounds (Supplementary
Text Section 9) are used to ensure that selection never drives these parameters to unrealistic

values.

Fifth is conversion of a TF from being an activator to being a repressor, and vice versa. The signal

is always an activator, and does not evolve.

Importantly, this scheme allows for divergence following gene duplication. When duplicates
differ due only to mutations of class 4, i.e. protein function is unchanged, we refer to them as
“copies” of the same gene, encoding “protein variants”. Mutations in classes 2 and 5 can create

a new protein.

Table S3 summarizes the tendencies of different mutation types to be accepted, and to
contribute to evolution. Acceptance rates are high, indicative of substantial nearly neutral

evolution, in which slightly deleterious mutations are fixed and subsequently compensated for.

Results
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Functional AND-gated C1-FFLs evolve readily under selection for filtering out a short spurious

signal

We begin by simulating the easiest case we can devise to allow the evolution of C1-FFLs for their
purported function of filtering out short spurious signals. The signal is allowed to act directly on
the effector, after which all that needs to evolve is a single activating TF between the two, as
well as AND-logic for the effector (Fig. 2, top left; see “Transcriptional regulation” in the Model
Overview for how AND-logic evolution is handled). We score network motifs at the end of a set
period of evolution (see Supplemental Text Section 11 for details), further classifying evolved
C1-FFLs into subtypes based on the presence of non-overlapping TFBSs (Fig. 2). The adaptive
hypothesis predicts the evolution of the C1-FFL subtype with AND-regulatory logic, which
requires the effector to be stimulated both by the signal and by the slow TF. While all
evolutionary replicates show large increases in fitness, the extent of improvement varies
dramatically, indicating whether or not the replicate was successful at evolving the phenotype
of interest rather than becoming stuck at an alternative locally optimal phenotype (Fig. 4A).
AND-gated C1-FFLs frequently evolve in replicates that reach high fitness outcomes, but not

replicates that reach lower fitness (Fig. 4B).
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Figure 4. AND-gated C1-FFLs are associated with a successful response to selection for filtering
out short spurious signals. (A) Distribution of fithess outcomes across replicate simulations,
calculated as the average fitness over the last 10,000 steps of the evolutionary simulation. We
divide genotypes into a low-fitness group (blue) and a high-fitness group (red) using as a
threshold an observed gap in the distribution. (B) High fitness replicates are characterized by the
presence of an AND-gated C1-FFL. “Any logic” counts the presence of any of the seven subtypes
shown in Fig. 2B. Because one TRN can contain multiple C1-FFLs of different subtypes, each of
which are scored, the sum of the occurrences of all seven subtypes will generally be more than
“Any logic”. See Supplementary Text Section 11 for details on the calculation of the y-axis. (C)
The over-representation of AND-gated C1-FFLs becomes even more pronounced relative to
alternative logic-gating when weak (two-mismatch) TFBSs are excluded while scoring motifs.

Data are shown as mean+SE of the occurrence over replicate evolution simulations.
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428  We also see C1-FFLs that, contrary to expectations, are not AND-gated. Non-AND-gated motifs
429  are found more often in low fitness than high fitness replicates (Fig. 4B), indicating that the
430  preference for AND-gates is associated with adaptation rather than mutation bias. However,
431  some non-AND-gated motifs are still found even in the high fitness replicates. This is because
432 motifs and their logic gates are scored on the basis of all TFBSs, even those with two

433 mismatches and hence low binding affinity. Unless these weak TFBSs are deleterious, they will
434  appear quite often by chance alone. A random 8-bp sequence has probability (g) x 0.25° x
435 0.75% = 0.0038 of being a two-mismatch binding site for a given TF. In our model, a TF has the
436 potential to recognize 137 different sites in a 150-bp cis-regulatory sequence (taking into

437 account steric hindrance at the edges), each with 2 orientations. Thus, by chance alone a given
438  TF will have 0.0038 X 137 X 2 = 1 two-mismatch binding sites in a given cis-regulatory

439 sequence (ignoring palindromes for simplicity), compared to only ~0.1 one-mismatch TFBSs.
440 Non-AND-gated C1-FFLs mostly disappear when two-mismatch TFBSs are excluded, but the
441  AND-gated C1-FFLs found in high fitness replicates do not (Fig. 4C).

442

443  To confirm the functionality of these AND-gated C1-FFLs, we mutated the evolved genotype in
444  two different ways (Fig. 5A) to remove the AND regulatory logic. As expected, this lowers fitness
445 in the presence of the short spurious signal but increases fitness in the presence of constant
446 signal, with a net reduction in fitness (Fig. 5B). This is consistent with AND-gated C1-FFLs

447 representing a tradeoff, by which a more rapid response to a true signal is sacrificed in favor of

448  the greater reliability of filtering out short spurious signals.
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449

450 Figure 5. Destroying the AND-logic of a C1-FFL removes its ability to filter out short spurious
451  signals. (A) For each of the n = 25 replicates in the high fitness group in Fig. 4, we perturbed the
452 AND-logic in two ways, by adding one binding site of either the signal or the slow TF to the cis-
453 regulatory sequence of the effector gene. (B) For each replicate, the fitness of the original motif
454  (blue) or of the perturbed motif (red or orange) was averaged across the subset of evolutionary
455  steps with an AND-gated C1-FFL and lacking other potentially confounding motifs (see

456 Supplementary Text Section 11 for details). Destroying the AND-logic slightly increases the

457 ability to respond to the signal, but leads to a larger loss of fitness when short spurious signals
458 are responded to. Fitness is shown as mean#SE over replicate evolutionary simulations.

459

460  Adaptive motifs are constrained not only in their topology and regulatory logic, but also in the
461 parameter space of their component genes. In particular, there is selection for rapid synthesis of
462 both effector and TF proteins, as well as rapid degradation of effector mRNA and protein (Table
463  S4). Fast effector degradation reduces the transient expression induced by the short spurious
464  signal (Fig. S2).

465
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466

467 Figure 6. Selection for filtering out short spurious signals is the primary cause of C1-FFLs. TRNs
468  are evolved under different selection conditions, and we score the probability that at least one
469 C1-FFL is present (Supplementary Text Section 11). Weak (two-mismatch) TFBSs are included (A)
470  or excluded (B) during motif scoring. Data are shown as mean+SE over evolutionary replicates.
471  C1-FFL occurrence is similar for high-fitness and low-fitness outcomes in control selective

472 conditions (Fig. S4), and so all evolutionary outcomes were combined. “Spurious signal filter
473 required (high fitness)” uses the same data as in Fig. 4.

474

475  To test the extent to which AND-gated C1-FFLs are a specific response to selection to filter out
476 short spurious signals, we simulated evolution under three negative control conditions: 1) no
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selection, i.e. all mutations are accepted to become the new resident genotype; 2) no spurious
signal, i.e. selection to express the effector under a constant “ON” signal and not under a
constant “OFF” signal; 3) harmless spurious signal, i.e. selection to express the effector under a
constant “ON” environment whereas effector expression in the “OFF” environment with short
spurious signals is neither punished nor rewarded beyond the cost of unnecessary gene
expression. AND-gated C1-FFLs evolve much less often under all three negative control
conditions (Fig. 6), showing that their prevalence is a consequence of selection for filtering out
short spurious signals, rather than a consequence of mutational bias and/or simpler forms of
selection. C1-FFLs that do evolve under control conditions tend not to be AND-gated (Fig. 6A),

and mostly disappear when weak TFBSs are excluded during motif scoring (Fig. 6B).

Diamond motifs are an alternative adaptation in more complex networks

In real biological situations, sometimes the source signal will not be able to directly regulate an
effector, and must instead operate via a longer regulatory pathway involving intermediate TFs*.
In this case, even if the signal itself takes the idealized form shown in Fig. 3, its shape after
propagation may become distorted by the intrinsic processes of transcription. Motifs are under

selection to handle this distortion.

To enforce indirect regulation, we ran simulations in which the signal was only allowed to bind
to the cis-regulatory sequences of TFs and not of effector genes. The fitness distribution of the
evolutionary replicates has no obvious gaps (Fig. S5), so we compared the highest fitness, lowest

fitness, and median fitness replicates. In agreement with results when direct regulation is
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allowed, genotypes of low and medium fitness contain few AND-gated C1-FFLs, while high

fitness genotypes contain many more (Fig. 7B, left and right).

While visually examining the network context of these C1-FFLs, we discovered that many were
embedded within AND-gated “diamonds”. In a diamond, the signal activates the expression of
two genes that encode different TFs, and the two TFs activate the expression of an effector gene
(Fig. 7A middle). When one of the two TF genes activates the other, then a C1-FFL is also
present among the same set of genes; we call this topology a “FFL-in-diamond” (Fig. 7A right),
and the prevalence of this configuration drew our attention toward diamonds. This led us to
discover that AND-gated diamonds also occurred frequently without AND-gated C1-FFLs, in the
configuration we call “isolated diamonds” (Fig. 7A middle). Note that it is in theory possible, but
in practice uncommon, for diamonds to be part of more complex conjugates. Systematically
scoring the AND-gated isolated diamond motif confirmed its high occurrence (Fig. 7B and C,

middle).
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Figure 7. Both AND-gated C1-FFLs and AND-gated diamonds (A) are associated with high
fitness in complex networks under selection to filter out short spurious signals. Out of 160
simulations (Fig. S5), we took the 30 with the highest fitness (H), the 30 with the lowest fitness
(L), and 30 of around median fitness (M). AND-gated motifs are scored while including weak
TFBSs in the effectors’ cis-regulatory regions, near-AND-gated motifs are those scored only
when these weak TFBSs are excluded. It is possible for the same genotype to contain one of
each, resulting in overlap between the red AND-gated columns and the dotted near-AND-gated
columns. Weak TFBSs upstream in the TRN, i.e. not in the effector, are shown both included (B)
and excluded (C). See Supplementary Text Section 11 for y-axis calculation details. Error bars
show meanzSE of the proportion of evolutionary steps containing the motif in question, across
replicate evolutionary simulations.
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An AND-gated C1-FFL integrates information from a short/fast regulatory pathway with
information from a long/slow pathway, in order to filter out short spurious signals. A diamond
achieves the same end of integrating fast and slowly transmitted information via differences in
the gene expression dynamics of the two regulatory pathways, rather than via topological length
(Fig. 8). The fast and slow pathways could be distinguished in a number of ways, e.g. by the
slope at which the transcription factor concentration increases or the time at which it exceeds a
threshold or plateaus. We found it convenient to identify the “fast TF” as the one with the
higher protein degradation rate. Specifically, we use the geometric mean of the protein
degradation rate over gene copies of a TF in order to differentiate the two TFs. The parameter
values of the fast TF are more evolutionarily constrained than those of the slow TF (Table S5). In
particular, there is selection for rapid degradation of the fast TF protein and mRNA (Table S5).
Isolated AND-gated C1-FFLs also show pronounced selection for the TF in the fast pathway to

have rapid protein degradation (Table S6).
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543 Figure 8. The two intermediate TFs in an AND-gated “diamond” motif have different

544  expression dynamics and propagate the signal at different speeds. Expression of the two TFs in
545 one representative genotype from the one high-fitness evolutionary replicate in Fig. 7B that
546 evolved an AND-gated isolated diamond is shown. Each TF is a different protein, and each is
547 encoded by 3 gene copies, shown separately in color, with the total in thick black. The

548  expression of one TF plateaus faster than that of the other; this is characteristic of the AND-
549  gated diamond motif, and leads to the same functionality as the AND-gated C1-FFL.

550

551 But mutational biases make it difficult to evolve very fast-degrading mRNA and protein. And
552 even when they do evolve, fast degradation keeps the fast TF at low concentrations. To

553  compensate, the fast TF must overcome mutational bias to also evolve high binding affinity and

554  rapid protein synthesis (Table S5, Table S6).
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Note that a simple transcriptional cascade, signal -> TF -> effector, has also been found
experimentally to filter out short spurious signals when the intermediate TF is rapidly degraded,

[*7. Two such transcriptional cascades involving different

dampening the effect of a brief signa
intermediate TFs form a diamond, so the utility of a single cascade is a potential explanation for
the high prevalence of double-cascade diamonds. However, in this case we would have no
reason to expect marked differences in expression dynamics between the two TFs, as illustrated
in Fig. 8 and Table S5. Enrichment for AND-gates (Fig. 7) indicates selection to integrate
information from the two cascades. On the other hand, we do find some non-AND-gated
diamonds, and these might best be considered as cascades. Inspection of their parameter values
reveals that in these diamonds, both TFs have fast-degrading mRNAs and proteins so that both
TFs shut down rapidly once signal is turned off. This makes such diamonds less vulnerable to
spurious signals, reducing the need for the AND gate. The difficulty of evolving not just one but
two fast-degrading high-affinity TFs likely explains why non-AND-gated diamonds are rare. As

we will see in the next section, these non-AND-gated diamonds are nevertheless scored as AND-

gated when weak TFBSs are excluded.

Weak TFBSs can change how adaptive motifs are scored even when they do not change

function

Results depend on whether we include weak TFBSs when scoring motifs. Weak TFBSs can either
be in the effector’s cis-regulatory region, affecting how the regulatory logic is scored, or in TFs
upstream in the TRN, affecting only the presence or absence of motifs. When a motif is scored

as AND-gated only when two-mismatch TFBSs in the effector are excluded, we call it a “near-
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AND-gated” motif. Recall from Fig. 2 that effector expression requires two TFs to be bound, with
only one TFBS of each type creating an AND-gate. When a second, two-mismatch TFBS of the
same type is present, we have a near-AND-gate. TFs may bind so rarely to this weak affinity TFBS
that its presence changes little, making the regulatory logic still effectively AND-gated. A near-
AND-gated motif may therefore evolve for the same adaptive reasons as an AND-gated one. Fig.
7B and C shows that both AND-gated and near-AND-gated motifs are enriched in the higher

fitness genotypes.

When we exclude upstream weak TFBSs while scoring motifs, FFL-in-diamonds are no longer
found, while the occurrence of isolated C1-FFLs and diamonds increases (Fig. 7C). This makes
sense, because adding one weak TFBS, which can easily happen by chance alone, can convert an
isolated diamond or C1-FFL into a FFL-in-diamond (added between intermediate TFs, or from

signal to slow TF, respectively).

AND-gated isolated C1-FFLs appear mainly in the highest fitness outcomes, while AND-gated
isolated diamonds appear in all fitness groups (Fig. 7C), suggesting that diamonds are easier to
evolve. 25 out of 30 high-fitness evolutionary replicates are scored as having a putatively
adaptive AND-gated or near-AND-gated motif in at least 50% of their evolutionary steps when
upstream weak TFBSs are ignored (close to addition of bars in Fig. 7C, because these two AND-

gated motifs rarely coexist in a high-fitness genotype).

Just as for the AND-gated C1-FFLs evolved under direct regulation and analyzed in Fig. 5,
perturbation analysis supports an adaptive function for AND-gated C1-FFLs and diamonds

evolved under indirect regulation (Fig. 9A.i, 9B.i). Breaking the AND-gate logic of these motifs by
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adding a (strong) TFBS to the effector cis-regulatory region reduces the fitness under the
spurious signal but increases it under the constant “ON” beneficial signal, resulting in a net

decrease in the overall fitness.

If we add a weak (two-mismatch) TFBS instead, this converts an AND-gated motif to a near-AND-
gated motif. This lowers fitness only when the extra link is from the slow TF to the effector, and

not when the extra link is from the fast TF to the effector (Fig. 9A.ii, 9B.ii).
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610  Figure 9. Perturbation analysis shows that AND-gated C1-FFLs (A) and diamonds (B) filter out

Fitness

611  short spurious signals. We add a strong TFBS (i) or a two-mismatch TFBS (ii) or (iii); the latter
612 creates near-AND-gated motifs. Allowing the effector to respond to the slow TF alone slightly
613 increases the ability to respond to the signal, but leads to a larger loss of fitness when effector
614  expression is undesirable. Allowing the effector to respond to the fast TF alone does so only
615 when the conversion uses a strong TFBS not a two-mismatch TFBS. (A) We perform the

616 perturbation on 8 of the 18 high-fitness replicates from Fig.7B that evolved an AND-gated C1-
617 FFL. (B) (i) and (ii) are based on 4 of the 26 high-fitness replicates that evolved an AND-gated
618  diamond in Fig. 7B, (iii) is based on 15 of the 37 replicates that evolved an AND-gated diamond
619 in response to selection for signal recognition in the absence of an external spurious signal (Fig.
620  10B). Replicate exclusion was based on the co-occurrence of other motifs with the potential to
621  confound results (see Supplementary Text Section 12 for details). Fitness is shown as meantSE

622 of over replicate evolutionary simulations, calculated as described for Fig. 5.
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Indeed, these extra links are tolerated during evolution too. If we take the 16 high-fitness
replicates that contain a near-AND-gated C1-FFL in at least 1% of the evolutionary steps, then
for 15 replicates of the 16, at least 88% of the near-AND-gated C1-FFLs in each of the 15
replicates are only near-AND-gated because of extra weak TFBSs for the fast TF. In the remaining
1 replicate, 93% of the near-AND-gated C1-FFLs have extra weak TFBSs specific for each of the
TFs (and are therefore scored as OR-gated). In this last replicate, the two TFs in these OR-gated
C1-FFLs have high and similar protein degradation rates, reducing the need for an AND gate for
reasons discussed earlier. We similarly examine high-fitness replicates that, when upstream
weak TFBSs are excluded, contain a near-AND-gated diamond in at least 1% of the evolutionary
steps. In 15 of these 24 evolutionary replicates, the near-AND regulatory logic is in most
evolutionary steps due to an extra weak TFBS of the fast TF, in 8 replicates (all of them OR-
gated, like the OR-gated C1-FFL already discussed) it is due to weak TFBSs for each of the TFs,
and in only 1 replicate is it due to an extra TFBS for the slow TF. For the latter two categories,
both TFs in near-AND-gated diamonds have high and similar protein degradation rates. By
chance alone, fast and slow TF should be equally likely to contribute the weak TFBS that makes a
motif near-AND-gated rather than AND-gated. This expected 50:50 ratio can be rejected from
our observed 15:0 and 15:1 ratios withp = 3 X 107> and p = 3 x 10™%, respectively
(cumulative binomial distribution, one-sided test). This non-random occurrence of weak TFBSs
creating near-AND-gates illustrates how even weak TFBSs can be shaped by selection against

some (but not all) motif-breaking links.

AND-gated isolated diamonds also evolve in the absence of external spurious signals
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646 We simulated evolution under the same three control conditions as before, this time without

III

647  allowing the signal to directly regulate the effector. In the “no spurious signal” and “harmless
648  spurious signal” control conditions, motif frequencies are similar between low and high fitness
649  genotypes (Fig. S6, Fig. S7), and so our analysis includes all evolutionary replicates. When weak
650 (two-mismatch) TFBSs are excluded, AND-gated isolated C1-FFLs are seen only after selection
651 for filtering out a spurious signal, and not under other selection conditions (Fig. 10A). However,

652 AND-gated isolated diamonds also evolve in the absence of spurious signals, indeed at even

653 higher frequency (Fig. 10B). Results including weak TFBSs are similar (Fig. S8).

654

A Isolated C1-FFL B Isolated diamond
® I No selection n = 30 o I No selection n = 30
Q B No spurious signal n = 50 0 M No spurious signal n =50
3 Harmless spurious signal n = 46 2 Harmless spurious signal n = 46
o I Spur. signal filter required (high fitness) n = 30 o B Spur. signal filter required (high fitness) n = 30
a a
5 1] 5 1]
> 2
g 0.5+ B 0.5
3 o
o o = -

0 - - 0
Any logic AND-gated Non-AND-gated Any logic AND-gated Non-AND-gated

655 Figure 10. Selection for filtering out a short spurious signal is the primary way to evolve AND-
656  gated isolated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of
657  spurious signals (B). The selection conditions are the same as in Fig. 6, but we do not allow the
658  signal to directly regulate the effector. When scoring motifs, we exclude all two-mismatch

659  TFBSs; more comprehensive results are shown in Fig. S8. Many non-AND-gated diamonds have
660  the “no regulation” logic in Fig. 2, perhaps as an artifact created by the duplication and

661  divergence of intermediate TFs; we excluded them from the “Any logic” and “Non-AND-gated”
662  talliesin (B). See Supplementary Text Section 11 for the calculation of y-axis. Data are shown as
663 meanSE over evolutionary replicates. We reused data from Fig. 7 for “Spurious signal filter

664  required (high fitness)”.
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Perturbing the AND-gate logic in these isolated diamonds reduces fitness via effects in the
environment where expressing the effector is deleterious (Fig. 9B.iii). Even in the absence of
external short spurious signals, the stochastic expression of intermediate TFs might effectively
create short spurious signals when the external signal is set to “OFF”. It seems that AND-gated
diamonds evolve to mitigate this risk, but that AND-gated C1-FFLs do not. The duration of
internally generated spurious signals has an exponential distribution, which means that the
optimal filter would be one that does not delay gene expression®®. The two TFs in an AND-gated
diamond can be activated simultaneously, but they must be activated sequentially in an AND-
gated C1-FFL; the shorter delays possible with AND-gated diamonds might explain why only

diamonds and not FFLs evolve to filter out intrinsic noise in gene expression.

Discussion

Adaptive nature of AND-gated C1-FFLs

There has never been sufficient evidence to satisfy evolutionary biologists that motifs in TRNs
represent adaptations for particular functions. Critiques by evolutionary biologists to this
effect!®23 have been neglected, rather than answered, until now. While C1-FFLs can be
conserved across different species**2, this does not imply that specific “just-so” stories about
their function are correct. In this work, we study the evolution of AND-gated C1-FFLs, which are
hypothesized to be adaptations for filtering out short spurious signals®. Using a novel and more
mechanistic computational model to simulate TRN evolution, we found that AND-gated C1-FFLs
evolve readily under selection for filtering out a short spurious signal, and not under control
conditions. Our results support the adaptive hypothesis about C1-FFLs.

36


https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

under aCC-BY-ND 4.0 International license.

AND-gated C1-FFLs express an effector after a noise-filtering delay when the signal is turned on,
but shut down expression immediately when the signal is turned off, giving rise to a “sign-
sensitive delay”®”’. Rapidly switching off has been hypothesized to be part of their selective
advantage, above and beyond the function of filtering out short spurious signals*®. We intended
to select only for filtering out a short spurious signal, and not for fast turn-off; specifically, we
expected effector expression to evolve a delay equal to the duration of the spurious signal.
However, evolved solutions still expressed the effector in the presence of short spurious signals
(Fig. S2), and thus benefitted from rapidly turning off this spurious expression. In other words,
we effectively selected for both delayed turn-on and rapid turn-off, despite our intent to only

select for the former.

It is difficult to distinguish adaptations from “spandrels”®. Standard procedure is to look for
motifs that are more frequent than expected from some randomized version of a TRN* >3, For
this method to work, this randomization must control for all confounding factors that are non-
adaptive with respect to the function in question, from patterns of mutation to a general
tendency to hierarchy — a near-impossible task. Our approach to a null model is not to
randomize, but to evolve with and without selection for the specific function of interest. This

meets the standards of evolutionary biology for inferring the adaptive nature of a motif!>23,

Technical lessons learned

Previous studies have also attempted to evolve adaptive motifs in a computational TRN,

successfully under selection for circadian rhythm and for multiple steady states®*, and
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unsuccessfully under selection to produce a sine wave in response to a periodic pulse?. Other
studies have evolved adaptive motifs in a mixed network of transcriptional regulation and
protein-protein interaction®>®’. Our successful simulation might offer some methodological

lessons, especially a focus on high-fitness evolutionary replicates, which was done by us and by

|54 |23

Burda et al.>* but not by Knabe et a
Knabe et al.Z suggested that including a cost for gene expression may suppress unnecessary
links and thus make it easier to score motifs. However, when we removed the cost of gene
expression term (C(t) = 0 in Supplementary Section 8), AND-gated C1-FFLs still evolved in the
high-fitness genotypes under selection for filtering out a spurious signal (Fig. $9). In our model,

removing the cost of gene expression did not, via permitting unnecessary links, conceal motifs.

While simplified relative to reality, our model is undeniably complicated. An important question
is which complications are important for what. One complication is our nucleotide-sequence-
level model of cis-regulatory sequences. This has the advantage of capturing weak TFBSs,
realistic turnover, and other mutational biases. The disadvantage is that calculating the
probabilities of TF binding is computationally expensive and scales badly with network size.
Future work might design a more schematic model of cis-regulatory sequences to improve
computation while still capturing realistic mutation biases. A second complication of our
approach is the stochastic simulation of gene expression. This is essential for our question,
because intrinsic noise in gene expression can mimic the effects of a spurious signal, but may be

less important in other scenarios, e.g. where the focus is on steady state behavior.

The ubiquity of weak TFBSs complicates motif scoring
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Our model, while complex for a model and hence capable of capturing intrinsic noise, is
inevitably less complex than the biological reality. However, we hope to have captured key
phenomena, albeit in simplified form. One key phenomenon is that TFBSs are not simply present
vs. absent but can be strong or weak, i.e. the TRN is not just a directed graph, but its

1.>% in the context of circadian

connections vary in strength. Our model, like that of Burda et a
rhythms, captures this fact by basing TF binding affinity on the number of mismatch deviations
from a consensus TFBS sequence. While in reality, the strength of TF binding is determined by
additional factors, such as broader nucleic context and cooperative behavior between TFs
(reviewed in Inukai et al.*®), these complications are unlikely to change the basic dynamics of
frequent appearance of weak TFBSs and greater mutational accessibility of strong TFBSs from

weak TFBSs than de novo. Similarly, AND-gating can be quantitative rather than qualitative®, a

phenomenon that weak TFBSs in our model provide a simplified version of.

Core links in adaptive motifs almost always involve strong not weak TFBSs. However, weak (two-
mismatch) TFBSs can create additional links that prevent an adaptive motif from being scored as
such. Some potential additional links are neutral while others are deleterious; the observed links
are thus shaped by this selective filter, without being adaptive. Note that there have been
experimental reports that even weak TFBSs can be functionally important® ®%; these might,

however, better correspond to 1-mismatch TFBSs in our model than two-mismatch TFBSs.

|61 |60

Ramos et al.°* and Crocker et al.*” identified their “weak” TFBSs in comparison to the strongest

possible TFBS, not in comparison to the weakest still showing affinity above baseline.

Different solutions for filtering out short spurious signals
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761

762 A striking and unexpected finding of our study was that AND-gated diamonds evolved as an
763 alternative motif for filtering out short spurious external signals, and that these, unlike FFLs,
764  were also effective at filtering out intrinsic noise. Multiple motifs have previously been found
765 capable of generating the same steady state expression pattern?!; here we find multiple motifs
766  for a much more complex function.

767

768 Diamonds are not overrepresented in the TRNs of bacteria? or yeast®?, but are overrepresented
769 in signaling networks (in which post-translational modification plays a larger role)®, and in

770 neuronal networks®. In our model, we treated the external signal as though it were a

771 transcription factor, simply as a matter of modeling convenience. In reality, signals external to a
772 TRN are by definition not TFs (although they might be modifiers of TFs). This means that our
773 indirect regulation case, in which the signal is not allowed to directly turn on the effector, is the
774  most appropriate one to analyze if our interest is in TRN motifs that mediate contact between
775 the two. Note that if under indirect regulation we were to score the signal as not itself a TF, we
776 would observe adaptive C1-FFLs but not diamonds, in agreement with the TRN data. However,
777  this TRN data might miss functional diamond motifs that spanned levels of regulatory

778 organization, i.e. that included both transcriptional and other forms of regulation. The greatest
779 chance of finding diamonds within TRNs alone come from complex and multi-layered

780 developmental cascades, rather than bacterial or yeast®. Multiple interwoven diamonds are
781 hypothesized to be embedded with multi-layer perceptrons that are adaptations for complex
782  computation in signaling networks®.

783
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Previous work has also identified alternatives to AND-gated C1-FFLs. Specifically, in mixed
networks of transcriptional regulation and protein-protein interactions, FFLs did not evolve
under selection for delayed turn-on (as well as rapid turn-off)*’. Indeed, even when a FFL
topology was enforced, with only the parameters allowed to evolve, two alternative motifs
remained superior®’. However, one alternative motif, which the authors called “positive
feedback” is essentially still an AND-gated C1-FFL, specifically one in which the intermediate TF
expression is also AND-gated, requiring both itself and the signal for upregulation. The other is a
cascade in which the signal inhibits the expression of an intermediate TF protein that represses
the expression of the effector. The cost of constitutive expression of the intermediate TF in the

absence of the signal was not modeled®’, giving this cascade an unrealistic advantage.

The importance of dynamics and intrinsic noise

Most previous research on C1-FFLs has used an idealized implementation (e.g. a square wave) of
what a short spurious signal entails* “® ¢, In real networks, noise arises intrinsically in a greater
diversity of forms, which our model does more to capture. Even when a “clean” form of noise
enters a TRN, it subsequently gets distorted with the addition of intrinsic noise®’. Intrinsic noise
is ubiquitous and dealing with it is an omnipresent challenge for selection. Indeed, we see
adaptive diamonds evolve to suppress intrinsic noise, even when we select in the absence of

extrinsic spurious signals.

The function of a motif relies ultimately on its dynamic behavior, with topology merely a means
to that end. To create two pathways that regulate the effector in different speeds, the C1-FFL

motif uses a pair of short and long pathways, but these also correspond to fast-degrading and
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slow-degrading TFs. This same function was achieved entirely non-topologically in our
adaptively evolved diamond motifs. This agrees with other studies showing that topology alone

is not enough to infer activities such as spurious signal filtering from network motifs %70,
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22 Table S1. Major model parameters
Parameter Values!* Bounds!? References
Length of cis-regulatory sequence 150 bp (Yuan et al. 2005)
Length of TF recognition sequence 8 bp (Wunderlich & Mirny 2009)
Length occupied by a TF on each side of recognition sequence 3 bp (zhu & Zhang 1999)
. . . . ! (Park et al. 2004; Nalefski et al.
Dissociation constant between TF and perfect TFBS, K4(0) 10Y9-6) mole/liter!3! (0, 10%) 2006)
Dissociation constant between TF and non-specific DNA, K4(3) 10°M (Maerkl & Quake 2007)
Base rate of transition from Repressed to Intermediate 0.15 min? (Katan-Khaykovich & Struhl 2002)
Maximum transition rate from Repressed to Intermediate 0.92 min? (Katan-Khaykovich & Struhl 2002;
Brown et al. 2013)
Base rate of transition from Intermediate to Repressed 0.67 min? (Katan-Khaykovich & Struhl 2002)
Chosen to give same dynamic
Maximum transition rate from Intermediate to Repressed 4.11 min? range and Repressed to
Intermediate
Base rate of transition from Intermediate to Active 0.025 mint (Brown et al. 2013)
Maximum transition rate from Intermediate to Active 3.3 min*t (Brown et al. 2013)
(Guillemette et al. 2005;
Transition rate from Active to Intermediate, ract to_int 10M(1.27,0.226) g iy-1[4] [0.59, 64.7] Pelechano et al. 2010; Brown et
al. 2013)
Length of gene, L 10M2-368,0.34) (o qons [50, 5000] (SGD Project)
Rate of transcription initiation, rmax transc init 6.75 min? (Brown et al. 2013)
e . . (Dujon 1996; Larson et al. 2011;
Speed of transcription elongation 600 codon/min Hocine et al. 2013)
. - L - . (Dujon 1996; Larson et al. 2011;
Time for transcribing UTRs and for terminating transcription 1 min Hocine et al. 2013)
Rate of mRNA degradation, rmgna_deg 10M(-1.49, 0.267) -1 [7.5%10%, 0.54] (Wang et al. 2002)
Speed of translation elongation 330 codon/min (Siwiak et al. 2010)
Translation initiation time 0.5 min (Siwiak et al. 2010)

10M(0:322,0.416) mglecule

Protein synthesis rate, Iprotein_syn mRNA- min-t [4.5x1073, 61.4] (Siwiak et al. 2010)
Rate of protein degradation, rprotein_deg 10M(-1.88, 0.561) mjy-1 [3.0x10°, 0.69] (Belle et al. 2006)
Saturation concentration of effector protein, Ne sat 10,000 molecules/cell (Ghaemmaghami et al. 2003)
Fitness cost of protein expression for a gene with L = 10268, 2x10° (molecules/min)™* (Ghaemme.xghami et al. 2003;
Ctrans! Kafri et al. 2016)
Maximum number of effector gene copies 5

Maximum number of TF gene copies, excluding the signal 19

1 parameters in bold can be altered by mutation, and the table shows the distributions from which their initial values are
sampled. Estimation of Ne sqtis described in the Methods; estimation of the other parameters is described in the
Supplementary Text (Sections 1, 2 — 7, and 8).

2Same units as the parameter values. Parentheses mean the parameter cannot take the boundary values; square
brackets mean it can. We also use these bounds to constrain mutation (see Section 9).

3 The uniform distribution is denoted U(min, max).

* The normal distribution is denoted N(mean, SD).
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23 Table S2. Mutation rates and effect sizes
Mutation Relative rate Effect of mutation!!

Single nucleotide substitution 5.25%10%per gene
Gene deletion 1.5%107 per gene?
Gene duplication 1.5%107 per gene?
Mutation to consensus sequence of a TF 3.5%107 per gene
Mutation to TF identity (activator vs. repressor) 3.5%107 per gene
Mutation to K4(0) 3.5x10° per gene k=0.5u=-5%0=0.776
Mutation to L 1.2x10* per codon
Mutation to rprotein_syn 9.5x10'? per codon k=0.5u=0.0212% 06=0.760
Mutation to rprotein_deg 9.5%10™*2 per codon k=0.5u=-1.88,0=0.739
Mutation to ract to_int 9.5x10*2 per codon k=0.5u=1.57% 0=0.773
Mutation to rmrna_deg 9.5X10™"2 per codon k=0.5u=-1.19,0=0.396

24 ! Mutation to these quantitative rates takes the form log,ox’ = log;ox + Normal(k(u — log,¢x), o), where x is the
25 original value of the rate and x” is the value after mutation. See Section 9 for details.
26 2The value of this parameter is different during burn-in. See Section 9 for details.
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27

Probability that mutation of this type

is accepted, given it occurs

Probability that an accepted mutation is of

this type, given that it is accepted

First 1000 evol. steps

Last 1000 evol. steps

First 1000 evol. steps

Last 1000 evol. steps

Substitution 0.34+0.01 0.35+0.00 0.180 + 0.005 0.213 £ 0.008
Deletion 0.27 £0.01 0.21+0.01 0.360 + 0.003 0.345 + 0.005
Duplication 0.34+0.01 0.32+0.01 0.368 +0.003 0.343 +0.005
TF recognition seq. 0.30+0.02 0.19+0.02 0.009 +0.001 0.005 +0.000
T Act to_Int 0.33+0.02 0.25+0.01 0.012 £ 0.001 0.010 £ 0.001
TmRNA deg 0.34+0.02 0.27 £0.01 0.014 +0.001 0.016 +0.002
Tprotein_syn 0.32 £0.02 0.23+£0.01 0.013 +0.001 0.013 £0.001
Tprotein_deg 0.35+0.01 0.26 £ 0.01 0.014 +0.001 0.015 £ 0.002
K4(0) 0.28 £ 0.02 0.21+£0.02 0.006 +0.000 0.005 +0.001
TF identity 0.29+0.01 0.29£0.02 0.008 +0.000 0.008 +0.001
Locus length 0.33+0.01 0.36+£0.01 0.017 +0.001 0.026 +0.002
28

29  Table S3. Summary of mutations that replaced the resident genotype. Data is shown as mean

30 =+ SE over the 45 evolutionary replicates under selection for filtering out a spurious signal, with

31 thesignal allowed to regulate the effector directly. Without selection, each mutation would

32 have probability 50% of replacing the resident; selection reduces this to around one in three at

33  the beginning of the simulation, down to around one in four at the end. This high rate of

34  accepting mutations after fitness has plateaued suggests significant nearly neutral evolution, i.e.
35 thatslightly deleterious mutations fix and are then compensated for. The estimated selection
36 coefficient need only be 10® for a mutant to replace the resident, which can be easily occur for a
37 slightly deleterious mutation through the error in fitness estimation (see Evolution Simulation in
38 the main text). Single nucleotide substitutions are particularly prone to nearly neutral evolution,
39  whereas changes to the consensus sequence recognized by a TF are under stronger stabilizing
40 selection. Deletion and duplication mutations are the most common forms of substitution not

41 because they are more likely to be accepted, but because they occur at higher mutation rates.
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Signal TFs Effector
Vn/ Vs Ms/ M, Va/ Vs Ms/ M, Vol Vs M/ M,

T Act to Int NA NA 0.89 0.18 8.26 0.13
T'mRNA_deg NA NA 2.09 0.98 13.4 2.55
Tprotein_syn NA NA 1.51 8.03 43.1 62.4
Tprotein_deg NA NA 1.28 0.56 7.23 12.5
K4(0) 0.68 0.002 0.67 0.009 NA NA
Locus length NA NA 1.01 0.72 2.07 0.79

Table S4. Evolutionary constraint on parameters in AND-gated C1-FFLs. Adaptive AND-gated
C1-FFLs are taken from the 25 high-fitness replicates evolved for filtering out a spurious signal,
where the signal directly regulates the effector. For each replicate, we sample one of the last
10,000 evolutionary time steps, and then sample one AND-gated C1-FFL in that genotype,
should there be more than one (or resample a time step for that replicate, if there are none).
We then take the variance V; of each C1-FFL parameter value across the 25 replicates. We
repeat this sampling process 100 times (using the same 25 replicates) and take the mean in
order to obtain a better estimator of the variance in each parameter value. We compare this by
a comparable variance V, given no selection. We obtain these from 30 evolutionary replicates
under no selection (from Fig. 6), sampling parameter values from the signal, from one TF gene
copy, and from one effector gene, without the requirement for C1-FFL presence. Variances are
calculated for log-transformed parameter values, except for locus length. For locus length, we
use the coefficient of variation rather than variance, i.e. we divide both variances by the square
of the average locus length. The table also shows the how the parameter values M in adaptive
AND-gated C1-FFLs differ from the expected value M, given no selection. Ms and M, are
calculated as arithmetic means for locus length and as geometric means for all other
parameters. The variance ratio is greater than 1 (indicating constraint), for all parameters except
K4(0), where the ratio of mean parameter values indicates that K4(0) is nevertheless subject to
strong directional selection. Effectors are more constrained than TFs, likely because the former
are less redundant, having evolved fewer gene copies (4.7 on average for effectors vs. 8.6 for
TFs). High degradation rates of effector mRNA and protein suggest selection to shorten the
impact of transient expression in response to a short spurious signal (Fig. S2). High degradation

rates of effector mRNA and protein are also seen in Tables S5 and S6.
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Signal Fast TFs Slow TFs Effector
Vo/ Vs Ms/ M Vol Vs Ms/ My Vo/Vs Ms/ My V,/ Vs Ms/ M

T act to Int NA NA 1.49 0.44 1.15 0.18 6.64 0.1
TmRNA deg NA NA 5.27 8.21 1.07 0.81 7.99 2.34
Tprotein_syn NA NA 2.10 16.2 1.09 4.96 139 57.8
Tproteindeg ~ NA NA 12.5 45.3 1.53 0.99 25.7 11.3
K;(0) 0.65 0.005 0.30 0.004 0.18 0.007 NA NA
Locus length NA NA 3.43 0.47 3.40 0.47 5.97 0.74

67

68  Table S5. Evolutionary constraint on parameters in isolated AND-gated diamonds. V,, V;, M,,
69 and M are defined in the same way as in Table S4, and are calculated from 18 high-fitness

70  evolutionary replicates (Fig. 7B) in which isolated AND-gated diamonds occur in at least 100 of
71  the last 10,000 evolutionary steps. Because they occur at low rates, we sample 50 times per

72 evolutionary replicate, instead of 100 times as in Tables S4 and S6. There is more constraint on
73 fast TFs than on slow TFs. The fast TFs usually have more gene copies than the slow TFs,

74  therefore redundancy is not the reason for this difference in constraint. As seen for the C1-FFLs
75 in Table S4, effectors are more constrained than either TF, K4(0) shows strong selection for high
76  affinity combined with high variance, and effectors evolve rapid degradation. Fast TFs exhibit
77  notjust fast protein degradation (which was used for their identification), but also fast mRNA

78 degradation.
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Signal Signal-regulated TFs TF-regulated TFs Effector
Vo/ Vs Ms/ M Va/ Vs Ms/Mn  Vo/Vs Ms/Mn  Vo/Vs  Ms/ M,

T Act_to_Int NA NA 2.16 0.33 1.03 0.26 6.81 0.13
TmRNA deg NA NA 10.8 8.5 1.40 0.74 12.4 2.36
Tprotein_syn NA NA 4.34 24.9 2.35 9.83 119 58.6
Tproteindeg ~ NA NA 73.6 49.4 1.50 0.34 34.1 9.92
K4(0) 0.51 0.005 0.29 0.009 0.24 0.002 NA NA
Locus length NA NA 2.52 0.71 2.45 0.71 3.35 0.73

Table S6. Evolutionary constraint on parameters in isolated AND-gated C1-FFLs. V,, Vs, M,, and
M; are defined in the same way as in Table S4, and are calculated from 12 high-fitness
evolutionary replicates (Fig. 7B) evolved when the signal cannot directly regulate the effector,
and in which isolated AND-gated C1-FFLs occur in at least 1,000 out of the last 10,000
evolutionary steps. Note that the signal-regulated TFs, which are identified via network
topology, also have high protein degradation rates, as is used to identify their fast TF
counterparts in diamonds — they can thus be seen as a kind of fast TF. Consistent with results on
C1-FFLs when direct regulation is allowed (Table S4) and results on isolated AND-gated
diamonds (Table S5), effectors are more constrained than signal-regulated (fast) TFs, which are
more constrained than TF-regulated (slow) TFs, despite an opposite trend in gene copy number.
Note that selection promotes fast mRNA and protein degradation in fast TFs, but promotes slow

degradation of slow TFs; this result is also found more weakly in Table S5.
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93  Supplementary Figures
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95 Fig. S1. Feed-forward loops come in eight subtypes. TF A and TF B can activate (indicated by

Olm©,

X
(@)
s

96 arrows) or repress (indicated by bars) expression of the effector C as well as other TFs. Auto-
97 regulation is allowed, but not shown. Following Milo et al. (2002), we exclude the case in which
98 Aand B regulate one another, rather than treating this case as two overlapping FFLs. C stands

99 for coherent and | for incoherent.
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Fig. S2 Examples of evolved phenotypes under selection for filtering out a short spurious
signal. The figure shows trajectories of the effector protein in one randomly chosen high-fitness
replicate (red) and one randomly chosen low-fitness replicate (blue), as defined in Fig. 4A. The
genotype of the final evolutionary step is used, and other genotypes were confirmed to behave
similarly. Each genotype is illustrated by 5 replicate developmental simulations in each of the
two environments. The high-fitness genotype has a longer delay followed by more rapid
response given a consistent signal, with this longer delay reducing but not eliminating effector
expression given a short spurious signal. The signal is allowed to directly regulate the effector in
these simulations. The burn-in period is not shown, with developmental time zero
corresponding to the moment the signal is turned on. Among developmental replicates of the
same genotype, the concentration at a given time usually has an approximately log-normal
distribution, but in environment 2 the distribution has two modes after the spurious signal turns
off. One mode corresponds to expression at the basal rate, the other to a burst of expression
that has yet to turn off. Because of this bimodality, we plot sample trajectories rather than

mean concentration over many replicates.
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116
117  Fig. S3 Representative fitness trajectories under selection to filter out short spurious signals.

118 Left panels: The signal is allowed to directly regulate the effector genes. Panels 1 and 3

119 correspond to the two genotypes shown in Fig. S2. Right panels: the signal cannot directly

120 regulate the effector genes. Average fitness (black) is a weighted average of the blue and red
121 trajectories, with environment 2 (where the signal is spurious) being considered twice as

122 common as environment 1 (where the signal is sustained and real). When the signal cannot

123 directly regulate the effector genes, evolutionary simulations begins with a burn-in phase that
124 lasts 1000 evolutionary steps (see Evolutionary Simulation in the Main Text). We show the burn-
125 in phase in undiluted color, and dilute color after burn-in. Most replicates quickly reach a stable
126  fitness plateau (first and third rows). Certain replicates can be temporarily trapped at a low

127  fitness plateau (second and third rows on the left).
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128

129  Fig. S4 Genotypes evolved under control selective conditions: (A) “no spurious signal”, and (B)
130  “harmless spurious signal”. There is no clear evidence of a multimodal distribution of fitness
131 outcomes among replicates (left), and C1-FFLs occur equally in the 10 genotypes of the highest
132  fitness vs. the 10 genotypes of the lowest fitness (right), and so the entire distribution (left) was

133 used to produce Fig. 6. Data are shown as meanzSE over evolutionary replicates.
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135 Fig. S5 Fitness distribution of 258 evolutionary replicates under selection for filtering out short
136  spurious signals, when the signal cannot directly regulate the effector. The fitness of a
137 replicate is the average genotype fitness over the last 10,000 evolutionary steps. Colors indicate

138 replicates analyzed elsewhere.
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Fig. S6 Evolution when responding to a spurious signal is harmless, when the signal is not
allowed to directly regulate the effector. (A) Fitness distribution of 50 replicate simulations.
The occurrence of both (B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10
genotypes with the highest fitness vs. in 10 genotypes with the lowest fitness. Weak (two-
mismatch) TFBSs are included when scoring motifs. Data are shown as mean+SE over replicates.

Isolated C1-FFLs rarely evolve under this condition, therefore their occurrence is not plotted.

13


https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

146

147

148

149

150

151

152

under aCC-BY-ND 4.0 International license.

A 6 No spurious signal B
® | m—Low-fitness n=10 £ = Low-finess n=10
CE, I High-fitness n=10 e 'gh-fitness n=
5 & 28 |
- a 1
3 © 0.8
Qo >3 5T
EZ £
35 25
E E L 0.5
(=] 0 e
W g - er
0.8 0.85 0.9 0.95 1 0 -
Fitness Any logic AND-gated OR-gated

(9]

I Low-fitness n=10
I High-fitness n=10

Probability of observing
an FFL-in-diamond

Any logic AND-gated OR-gated

Fig. S7 Evolution when there is no spurious signal, when the signal is not allowed to directly
regulate the effector. (A) Fitness distribution of 46 replicate simulations. The occurrence of both
(B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 genotypes with the highest
fitness vs. in the 10 genotypes with the lowest fitness. Weak (two-mismatch) TFBSs are included
when scoring motifs. Data are shown as meanzSE over replicates. Isolated C1-FFLs rarely evolve

under this condition, therefore their occurrence is not plotted.
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153 Fig. S8 Selection for filtering out a short spurious signal is the primary way to evolve AND-

154  gated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of spurious
155  signals (B). The signal is not allowed to directly regulate the effector, and the right panels of (A)
156  and (B) are identical to Fig. 10. When scoring motifs, we either include (left) or exclude (right) all
157  two-mismatch TFBSs in the cis-regulatory sequences of intermediate TF genes and effector

158  genes. We excluded “no regulation” (Fig. 2) diamonds from the “Any logic” and “Non-AND-

159  gated” tallies in (B); this was necessary because of their high occurrence due to duplication and
160 divergence of intermediate TFs. See Section 11 for the calculation of y-axis. Data are shown as

161 mean1SE over evolutionary replicates.
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Fig. S9 After removing cost of gene expression, AND-gated C1-FFLs are still associated with a
successful response to selection for filtering out a short spurious signal. The signal can directly
regulate the effector genes. (A) We arbitrarily divide the 36 replicate simulations into high-
fitness (red) and low-fitness (blue) groups. (B) The high-fitness replicates still evolve AND-gated

C1-FFLs. Bars are meanSE of the occurrence over replicate evolutionary simulations.
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168 Supporting Text

169 1. TF binding

170  Transcription of each gene is controlled by TFBSs present within a 150-bp cis-regulatory region,
171  corresponding to a typical yeast nucleosome-free region within a promoter (Yuan et al. 2005).
172  The perfect TFBS for a typical yeast TF has information content equivalent to 13.8 bits

173 (Wunderlich & Mirny 2009); this means that in a simplified model of binding where only one of
174  the four nucleotides is a good match at each site, ~7 bp are recognized as an optimal consensus
175 binding site. Maerkl & Quake (2007) reported that the TFBSs of two yeast TFs, Pho4p and Cbflp,
176 can have up to 2 mismatched sites within their 6 bp consensus binding sequence, while still

177 binding the TF above background levels (Maerkl & Quake 2007). Our model therefore tracks
178  TFBSs with up to 2 mismatches. This low information content implies a higher density of TFBSs
179  within our cis-regulatory regions than our algorithm was able to handle, so we instead assigned
180  each TF an 8-bp consensus sequence. Two TFs cannot simultaneously occupy overlapping

181  stretches (Fig. S10), which we assume extend beyond the recognition sequence to occupy a total
182  of 14 bp (Zhu & Zhang 1999); this captures competitive binding. The consequences of hindrance

183 between TFBSs for the regulation of effector gene expression are shown in Fig. 2.

184
Adjacent but non-overlapping TFBSs Overlapping TFBSs
GCGATGGAATACTTACCAGCGTAAGTATTGGUGGA GCGATGGAATACTT ACC GTAAGTATTGGOGGA
J921Y20LIVIDVYVYLIOOIDIVLIIOVIVYIIOPDIL 2901y LLVIOVV.LIOSDDIVLIIOVIVYIIODIL
185

186  Fig. S10 TFs (white boxes) recognize 8 bp (red) sites while occupying and thus excluding other
187  TFsfrom a 14 bp long space. TFs are assumed to bind in either orientations (Sharon et al. 2012).

188  The sequence on the left allows simultaneous binding but that on the right does not.
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189

190 We denote the dissociation constant of a TFBS with m mismatches as K4(m). Sites with m>3

191 mismatches are assumed to still bind at a background rate equal to m=3 mismatches, with

192 dissociation constant K4(3) = 10° mole/liter (Maerkl & Quake 2007) for all TFs. We assume that
193 each of the last three base pairs makes an equal and independent additive contribution AG,, < 0
194  to the binding energy (Benos et al. 2002): although not always true, this approximates average
195 behavior well (Maerkl & Quake 2007). We ignore cooperativity in binding. Dissociation constants
196  of eukaryotic TFs for perfect TFBSs can range from 10° mole/liter (Park et al. 2004) to 10!

197  mole/liter (Nalefski et al. 2006). We initialize each TF with its own value of logio(K4(0)) sampled
198  from a uniform distribution between -6 and -9, with mutation capable of further expanding this
199 range, subject to K4(0) < 10° mole/liter. Substituting m=0 and m=3 into

200

201 AG,, = —RTInK;(m) = AG, — min(m, 3)AGy,,,

202

203  we can solve for AGy, and AG, and thus obtain K4(1) and K4(2) (the dissociation constants for
204  TFBS with one and two mismatches, respectively).

205

206 Because TFs bind non-specifically to DNA at a high background rate, each nucleosome-free

207 stretch of 14 bp can be considered to be a non-specific binding site (NSBS). A haploid S.

208  cerevisiae genome is 12 Mb, 80% of which is wrapped in nucleosomes (Lee et al. 2007), yielding
209 approximately 10° potential non-specific binding sites (NSBSs). In a yeast nucleus of volume
210 3%x107 liters, the NSBS concentration is of order 10 mole/liter. To find the concentration of
211 free TF [TF] in the nucleus given a total nucleic TF concentration of Crr, we consider

212
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[binding_site][TF]

[binding_site - TF]’

in the context of NSBSs, substitute [TF-NSBS] with Cre- [TF], and solve for

= Ka® 1070
[TF] = Kq(3)+[NSBS] “TF ™ 10-5+10-4 Crr = 0.1Crf.

Thus, about 90% of total TFs are bound non-specifically, leaving about 10% free. The relatively
small number of specific TFBSs is not enough to significantly perturb the proportion of free TFs,
and so for the specific TFBSs with m<3 that are of interest in our model, we simply use K;(m) =
10K4(m) to account for the reduction in the amount of available TF due to non-specific binding.
We also convert IG from the units of mole/liter in which K, is estimated empirically to the more
convenient molecules/nucleus. The rescaling factor r for which I/(E(in molecule/nucleus) = r/K\d
(in mole/liter) is 3x10?° liter/nucleus X 6.02x10%* molecule/mole = 1.8 x10° molecule cell* liter
mole. Taken together, K;(molecule/nucleus) = 10rky (mole/liter), where the factor 10 accounts

for non-specific TF binding.

2. TF occupancy

Here we calculate the probability that there are A activators and R repressors bound to a given
cis-regulatory region at a given moment in developmental time. First we note that if we consider
TF i binding to TFBS j in isolation from all other TFs and TFBSs, Eq. S1 gives us probability of

being bound:

Ci
Kg+Ci

P,(j) =1-R() = (S1)
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Let Pf;) be a term proportional (for a given value of n) to the combined probability of all binding
configurations in which exactly A activators and R repressors are bound to the first n binding

. . n . . .
sites along the cis-regulatory sequence. We calculate PA( ) recursively, considering one

R
additional TFBS at each step. Note that if two different TFs bind to exactly the same location on
a cis-regulatory region, we treat this as two TFBSs, not as one, and treat first one and then the

other in our recursive algorithm.

Consider the case where the (n+1)" binding site belongs to an activator. The case where this

activator is not bound contributes PA(ﬁ)Pu(n +1)to PA(';H). If it is bound, then we must also

take into account that the (n+1)™" binding site overlaps (partially or completely) with the last

H = 0 sites, and so contributes PA(fl_’g)Pb n+1) H’]-Ln_HH P,(j). Taken together,

PO = PP, (n+ 1) + PR Py(n+ D) [Tepeper Pu(D).

Similarly, if the (n+1)™ site belongs to a repressor, we have

P = PA(;?Pu(n + 1)+ PP, (n+ D Tenpran P ().

By definition, Pf}? = 0 for binding configurations that are impossible, e.g. those with negative A
or negative R. We initialize the recursion at n = 0, where the only valid binding configuration is
forA=R=0,i.e. Po(,?)) =1.Atn=1, Po(,%)) o P, (1), and if the binding site belongs to an activator,

Pl('é) o P, (1); otherwise, Po(,i) o P, (1). For N = 1, the two probabilities sum to 1 and
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normalization is unnecessary. For higher values of N= Na+Ng TFBSs, we normalize PAU;’) at the

end of the recursion by dividing by ZZQO Zgﬁo 134(,1;) to get the probability of binding

configurations that include exactly A activators and R repressors.

3. FAct_to_int
Transcription initiation over an interval of time riransc_init is proportional to the proportion of time
spent in the Active state. Assuming a steady state between Repressed, Intermediate, and Active

states, as a function of current TF concentrations, we have:

Ttransc_init TInt_to_Act
- = — Prnt_or_acts (52)
Tmax_transc_init TInt_to_ActtT Act_to_Int -

where Pt or actis the probability a gene is at Intermediate or Active. We set rmax_transc_init (the rate
of transcription given 100% Active state) to 6.75 min’, based on the corresponding rate when a
model of the PHO5 promoter is fit to data (Brown et al. 2013). In this model fit, the
constitutively expressed PHOS5 promoter is free of nucleosomes 80% of the time, i.e. Pint or act=
0.8. We take these two values as universal for constitutively expressed genes, and assume that
variation in ract to_int is responsible for variation in reansc init- TO identify a set of constitutively
expressed genes, we identified 225 genes that have mRNA production rate of at least 0.5
molecule min’! from genome-wide measurements (Pelechano et al. 2010); this threshold
corresponds to low H2A.Z occupancy (Guillemette et al. 2005). We set riransc_inie to the production
rate of mMRNA of these 225 genes, and solve for gene-specific rac to_in: from Eq. S2. We fit the

solutions to a log-normal distribution and arrive at 10V27:0226) mjnL,
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To initialize values of ract t_intfor each gene, we sample from this distribution. We also set lower
and upper bounds for allowable values; if either the initial sample or subsequent mutation put
Iact to_int eyond these bounds, we set the value of rac t it to equal to boundary value. We set
the lower bound for rac 1 _mtat 0.59 min?, half the minimum of the values inferred from the set
of 225 genes. To set an upper bound, we use the low H2A.Z occupancy bound of rtransc_init= 0.5,

which gives a solution of 32.34 min!; we double this to set the upper bound as 64.7 min™.

4, Transcription delay times

Yeast protein lengths fit a log-normal distribution of 10268 934 gmino acids (from the
Saccharomyces Genome Database (SGD Project), excluding mitochondrial proteins). We sample
ORF length L from this distribution. To constrain the values of L, we set a lower bound of 50
amino acids and an upper bound of 5000 amino acids; the longest protein in SGD is 4910 amino
acids. If either initialization or mutation put L beyond these bounds, we set the value of Lto the

boundary value.

With an mRNA elongation rate of 600 codon/min (Larson et al. 2011; Hocine et al. 2013), it takes
L / 600 minutes to transcribe the ORF of an mRNA. Also including time for transcribing UTRs and
for transcription termination, and ignoring introns for simplicity, it takes 290 seconds to
complete transcription of the yeast GLT1 gene (Larson et al. 2011), whose ORF is 6.4kb. Putting
the two together, we infer that transcribing the UTRs and terminating transcription takes
around 1 minute for GLT1. Generalizing to assume that transcribing UTRs and terminating
transcription takes exactly 1 minute for all genes, producing an mRNA from a gene of length L

takes 1 + L/ 600 minutes.
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5. Translation delay times and rprotein_syn

We model a second delay between the completion of a transcript and the production of the first
protein from it. The delay comes from a combination of translation initiation and elongation; it
ends when the mRNA is fully loaded with ribosomes all the way through to the stop codon and
the first protein is produced. We ignore the time required for mRNA splicing; introns are rare in
yeast (Dujon 1996). mRNA transportation from nucleus to cytosol, which is likely diffusion-
limited (Nifio et al. 2013; Smith et al. 2015), is fast even in mammalian cells (Mor et al. 2010) let
alone much smaller yeast cells, and the time it takes is also ignored. The median time in yeast
for initiating translation is 0.5 minute (Table 1 in Siwiak et al. 2010), and the genomic average
peptide elongation rate is 330 codon/min (Siwiak et al. 2010). After an mRNA is produced, we
therefore wait for 0.5 + L / 330 minutes, and then model protein production as continuous at a

gene-specific rate rorotein_syn-

To calculate rprotein_syn , We combine the gene-specific ribosome densities D along the mRNAs and
the gene-specific peptide elongation rates E, both measured in yeast (Siwiak et al. 2010). The
values of DE across yeast genes fit the log-normal distribution 1003220416 molecule mRNA™
min’; we initialize rprotein syn for each gene by sampling from this distribution. We set the lower
bound for ryrotein_syn at half the minimum observed value of DE (4.5%10°% molecule mRNA™ min).
The upper bound corresponds to an mRNA fully occupied by rapidly moving ribosomes. Each
ribosome occupies about 10 codons (Siwiak et al. 2010), and the peptide elongation rate can be
as high as 614 codon/min (Waldron et al. 1977). If ribosomes are packed closely together at 10
codons apart, a protein comes off the end of production in the time taken to elongate 10
codons, i.e. proteins are produced at 61.4 molecules per minute. If either initialization or

mutation put rprotein_syn beyond these bounds, we set the value of rprpotein_syn to the boundary value.
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6. mRNA and protein decay rates

We fit the log-normal distribution 10V14% 9267 min" to yeast mRNA degradation rates (Wang et
al. 2002), and initialize the mRNA degradation rate rmgna_deg for each gene by sampling from this
distribution. We set lower and upper bounds for rmava_deq at half the minimum and twice the
maximum observed values (7.5%10* min't and 0.54 min™), respectively. If either initialization or

mutation put rmgna_deg beyond these bounds, we set the value of rmgna_degto the boundary value.

Expressing the estimated half-lives of yeast proteins (Belle et al. 2006) in terms of protein
degradation rates, they fit the log-normal distribution 10M188 956 min: we initialize gene-
specific protein degradation rates rprotein_deg by sampling from this distribution. We ignore the
additional reduction in protein concentration due to dilution as the cell grows and thus
increases in volume. We set lower and upper bounds for rprotein_deg at half the minimum and twice
the maximum observed degradation rate (3.0 X 10~® min* and 0.69 min), respectively. If
either initialization or mutation put rprotein_deg beyond these bounds, we set the value of rprotein_deg

to the boundary value.

7. Simulation of gene expression

Our algorithm is part-stochastic, part-deterministic. We use a Gillespie algorithm (Gillespie
1977) to simulate stochastic transitions between Repressed, Intermediate, and Active chromatin
states, and to simulate transcription initiation and mRNA decay events. We refer to these as
“Gillespie events”. The completion of transcription to produce a complete mRNA, and
subsequent ribosomal loading onto the mRNA, are referred to as “fixed events” (they require

fixed times of 1 + L / 600 minutes and 0.5 + L / 330 minutes, respectively). Scheduled changes in
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the strength of the external signal are also fixed events. Protein production and degradation are
described deterministically with ODEs, and updated frequently in order to recalculate TF
concentrations and hence chromatic transition rates. Updates occur at the time of Gillespie and

fixed events, and also in between.

The total rate of all Gillespie events is

Rep

— Int Act
Ttotal = Zi rRep_to_Int_i + Zi (rlnt_to_Rep_i + rInt_to_Act_i) + Zi (TAct_to_Int_i + rtransc) +

genes
Zi TmRNA_deg iNmrNA_i »

where Rep, Int, and Act are the numbers of gene copies in our haploid model that are in the
Repressed, Intermediate, and Active chromatin states, respectively, and Nmzna i is the number of
completely transcribed mRNA molecules from gene i. We only simulate degradation of full
transcribed mRNA, and not that of mRNA that are still being transcribed, because the latter are
already captured implicitly by rmax_transc_init, Which is based on mRNAs that complete transcription
(Brown et al. 2013). Once an mRNA finishes transcription, it is subjected to degradation

regardless of whether ribosome loading is complete.

The waiting time At before the next Gillespie event is

X

At =

’
Ttotal
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where x is random number drawn from an exponential distribution with mean 1. Which Gillespie
event takes place next is sampled only if a different update does not happen first. If a fixed
event is scheduled to happen first at At; < At, we advance time by At;, update the state of the
cell, and calculate a new riwtq”. Since the cellular activity has been going on with the old rate riota
for At;, the remaining “labor” required to trigger the Gillespie event planned earlier is reduced.

The new waiting time, At’, to trigger the planned Gillespie event is

At = X—Ttotaldly
Ttotal’

Gene duplication creates n = 1 genes producing the same protein, where each copy i might
have diverged in their production rate rprotein_syn i and degradation rate rprotein_deg_i. Complete
proteins are produced continuously once an mRNA molecule is fully loaded with ribosomes,
which occurs 0.5 + L / 330 minutes after transcription is complete — the concentration of such

molecules is denoted Nmgna_aft delay i(t). TOtal protein concentration obeys:

Nzl)rotein(t) = Zln(rprotein_syn_iNmRNA_aft_delay_i(t) - rprotein_deg_inrotein_i (t)) (53)

Protein concentrations are updated using a closed-form integral of Eq. S3

_ Tprotein,syn,iNmRNA,aft,delay,i
Nprotein(t1) - Z?( r ] , + (Nprotein_i(to) -
protein_deg_i

Tprotein_syn_iNmRNA_aft_delay_i) e _rprotein,deg,i(tl —to)) (54)
Tprotein_deg_i
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with this expression updated every time a Gillespie or fixed event at time t; changes the value of

NmRNA_aft_delay_i-

In between updates, values of Pa, Pg, Pa_no_r, and Ppota_no &, and hence chromatin transition rates,
are calculated under the approximation of constant Ny, ¢ein- Additional updates, above and
beyond fixed and Gillespie events, are performed in order to ensure that chromatin transition
rates do not change too dramatically from one update to the next. We use a target of D = 0.01
for the amount of change tolerated in the values of Pa, Pg, Pa no 8, and Ppota no &, in order to
schedule updates after time At*, which are triggered when neither a Gillespie event nor a fixed

event occurs before this time has elapsed, i.e. when At™ < At; and At* < At.

There is the greatest potential for large changes after an update that changes the value of
Nmena_aft delay i- IN this case, we use Eq. S1 to solve for the time interval for which the probability
that TF i would be bound to a single perfect and non-overlapping TFBS would change by D, by

choosing At* > 0 that satisfies

N;i(t) _ N;(t+At™) _
Ni(©)+Kj;(0)  Ny(t+At9)+Kj;(0)]

(S5)

A solution for At may not exist, e.g. if the concentration of TF i is decreasing but Py(t;) < D. In

such cases, we set At* to infinity.

When the previous update does not change any Nmawa_aft deiay i Values, then we modify At*
adaptively. Let d be the maximum of APa, APg, AP4 no g, and AProta_no_r during the last update. We
then schedule an update at
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At* = = At*. (S6)

After an update that changes the value of Nmeva_aft_deiay i, We use the smaller value from Egs. S5
and S6. These additional update times are discarded and recalculated when a Gillespie or fixed

event occurs first.

In Fig. $11, we see that simulations rarely exceed our target of D=0.01, and do so only modestly.

Environment 1 Environment 2
4000 4000

2000

Count
Count

0 0.005 0.01 0.015 0 0.005 0.01 0.015
Maximum simulation error d Maximum simulation error d

Fig. S11 Our updating algorithm is able to limit simulation errors. The distribution across 9,000
simulations of the maximum value of d over the course of development. For each of the 45
evolutionary replicates in Fig. 4, we run 200 simulations of development of the final evolved
genotype. These genotypes were the outcome of evolution under selection for filtering out
short spurious signals, in which direct regulation of the effector by the signal is not allowed. In
environment 1 a genotype responds to a constant “ON” signal and in environment 2 it responds

to a short spurious signal (Fig. 3).
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8. Cost of gene expression

The cost of gene expression comes from some combination of the act of expression and from
the presence of the resulting gene product. Yeast cells with plasmids carrying fast-degrading
GFP had as much growth impairment as those carrying wild-type GFP (Fig. 3 of Kafri et al. 2016),
suggesting that the former cost dominates. Universal costs stemming from the act of gene
expression include the consumption of energy (Wagner 2005; Wagner 2007) and the
opportunity cost of not using ribosomes to make other gene products (Scott et al. 2014). While
some costs arise from transcription (Kafri et al. 2016), we simplify our model by attributing all of

the cost of expression to the act of translation.

Kafri et al. (2016) reported that, in rich media, the growth rate of haploid yeast is reduced by
about 1% when mCherry is expressed to about 2% of proteome. With bme= 1 giving the growth
rate of the yeast when mCherry is not expressed, we have the cost of gene expression equal to
0.01. Next, we estimate the production rate of mCherry in Kafri et al. (2016) by assuming that
mCherry is in steady state between production and dilution due to cell division; fluorescent
proteins tend to be stable such that degradation can be ignored (Snapp 2009). Ghaemmaghami
et al. (2003) estimated that a haploid yeast cell contains about 5x107 protein molecules, 2% of
which are now mCherry. Over a 90 minute cell cycle in Kafri et al. (2016), about 5x10° mCherry
molecule per cell need to be expressed in order to double in numbers. This yields a production
rate of about 5x10% mCherry molecules per minute per cell. Because the total cost of gene
expression is 0.01, the cost at a protein production rate of one mCherry molecule per minute
per cell, Ceransi, is 2%10®. Long genes should be more expensive to express than short ones; for
a gene of length L, we assume its cost of expression is C¢rqnsiL / 370, where 370 is the geometric

mean length of a yeast protein as described above in Section 4. Results using the length of
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465 mCherry instead, i.e. a slightly higher cost of expression of ¢;,qnsiL / 236, are unlikely to be
466  significantly different.

467

468  The overall cost of gene expression at time t, C(t) is:

469

L.
470 C(t) = Ctransl(zrll 102.lsss rtransl_init_iNmRNA_aft_delay_i(t) +

471 T 102L_i568 ~ISLILL N, A during detay. i (£):

472

473  The second term represents transcripts that are on average half-loaded with ribosomes, and
474  hence experiencing on average half the cost of translation. We integrate C(t) within segments of
475  constant C(t) to obtain the overall cost of gene expression during a simulation.

476

477 9. Mutation

478 Because we use an origin-fixation approach, only the relative and not the absolute values of our
479 mutation rates matter. In S. cerevisiae, the rates of small indels and of single nucleotide

480  substitutions have been estimated as 0.2x107° per base pair and 3.3x107° per base pair,

481 respectively (Lynch et al. 2008). Thus, cis-regulatory sequences are primarily shaped by single
482 nucleotide substitutions. We do not model small indels in the cis-regulatory sequence, but

483 increase the single nucleotide substitution up to 3.5x107° per base pair to compensate. This
484 corresponds to a rate of 5.25x10% per 150 bp cis-regulatory sequence.

485

486 Lynch et al. (2008) also report a rate of gene duplication of 1.5x10° per gene and of deletion of
487 1.3x10°® per gene (not including non-deletion-based loss of function mutations). These values
488  turned out to swamp the evolution of TFBSs and hence significantly slow down our simulations,
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so we chose values 10-fold lower, making both gene duplication and gene deletion occur at rate

1.5%107 per gene. This preserves their numerical excess but reduces its magnitude.

Our model contains 8 gene-specific parameters, namely L, ract to_int, Forotein_deg, 'protein_syn, FmRNA_deg,
the K4(0) of a TF, whether a TF is an activator vs. repressor, and the consensus binding sequence
of a TF. We assume mutations to L are caused by relatively neutral small indels, which we
assume to be 20% of all small indels; mutation to L therefore occurs at rate 1.2x10! per codon,
i.e. 1.2x10*L for a gene of length L. For rac t_int, we assume that it is altered by 10% of all the
point mutations (single nucleotide substitution and small indels) to the core promoter of a gene.
The length of a core promoter is about 100 bp and is relatively constant among genes (Roy &

Singer 2015), yielding a mutation rate of rac 1, mtof 3.5X107 per gene.

The remaining 6 gene-specific parameter mutation rates are parameterized with lower accuracy
due to lack to data; the principal decision is which to make dependent vs. independent of gene
length. TF binding to DNA depends on particular peptide motifs whose length is likely
independent of TF length, therefore we make mutation rates independent of gene length for
mutations to K(0), to the consensus binding sequence of a TF, and to the activating vs
repressing identity of a TF. We set the rate of each of the three mutation types to 3.5x10° per
gene. In contrast, because the stability of an mRNA mainly depends on its codon usage (Cheng
et al. 2017) and thus more codons means more opportunities for change, we assume the rate of
mutation to rmana_deg does depend on gene length, as do mutations to protein stability rprotein_deg-
I'orotein_syn IS determined by the density of ribosomes on mRNA and the elongation rate of
ribosomes, and therefore is affected both by ribosome loading speed and by slow spots forming

gueues in the mRNA. Ribosome loading often relies on the 5’UTR of mRNA (Hinnebusch 2011),
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513  and 5’UTR length is positively correlated with ORF length (Tuller et al. 2009). Slow-spots in

514 MRNA can be due to secondary structure or to suboptimal codons, therefore are also more

515 likely to appear by mutation to long mRNAs, so we assume the rate of mutation to rprotein_syn

516  depends on gene length. We set the mutation rates of r'protein_deg, Forotein_syn, AN Fmgna_deg €ach to
517 9.5%10? per codon; in other words, each mutation rate is 3.5x10° for a yeast gene of average
518  length (on a log-scale) 10%°%8 = 370 codons.

519

520 Tact_to_int, Fprotein_syn, Ka(0), Forotein_deg, AN Imana_deq €VOIVe as quantitative traits. They are assumed to
521 have, in the absence of selection, a log-normal stationary distribution with mean u and standard
522 deviation g, with values estimated below and listed in Table S2. Denote the values of a

523 parameter as x before mutation and x” after mutation; mutation takes the form:

524

525 logiox" = log;ox + Normal(k(u — log1x), 0), (S7)
526

527  where k controls the speed of regressing back to the stationary distribution; we set k = 0.5 for all
528 5 parameters. To set values of y, central tendency estimates of these five values (from Table S1)
529 are adjusted according to our expectations about mutation bias. We assume a mutation bias
530  toward faster mRNA degradation rmana_deg, faster rac t it (Decker & Hinton 2013; Roy & Singer
531 2015), slower translation initiation rprotein_syn (Hinnebusch 2011), and larger Kq4(0). We assume
532  that the observed log-normal means of rmgna_deg, forotein_syn, aNd Fact to_int differ by 2-fold from the
533 mean expected from mutational bias; for example, the mean of logio(rmana_deg) is -1.49, so the
534  value of u for rmena_degis -1.49 + logio(2) = -1.19. We assume a larger bias for K4(0), namely that
535 mutation is likely to reduce the affinity of a TF for a TFBS down to non-specific levels. Thus, we

536 set i = logio(K4(3)) = -5 for K4(0); note that in this case u is equal to one of the boundary values,
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537  which will be hit far more often than during the evolution of other parameters. We assume that
538 the observed central tendency estimate of protein stability does not depart from mutational
539  equilibrium, therefore the value of u for rprotein_deg is the mean of l0g1o(rprotein_deg) =-1.88.

540

541  The value of o controls mutational effect size. We set the value of o such that 1% of mutational
542 changes from x=10* go beyond the boundary values, for simplicity approximating by considering

543 only the closer of the two boundary values on a log scale, i.e. we solve Eq. S8 for a:

544

s45 {P(u + Normal(0,0) = log,o,U) = 0.01, ifthe upper bound U is closer (s8)
P(u+ Normal(0,0) < log,oL) = 0.01, ifthe lower bound L is closer

546

547 For example, the upper and the lower bounds of rmgya degare 0.54 mintand 7.5%X10* min%; on a
548  log-scale, the upper bound is closer to 10 = 10 min™. Plugging these values in Eq. S8 and
549  solving for g, we have 0 = 0.396. We set the values of g for rprotein_syn, aNd Forotein_deg iN the same
550  way. However for rac 1 nt, 0 is set according to the lower bound, even though it is the more
551 distant from 10%, because otherwise a stable preinitiation complex will evolve too rarely. Under
552 this high mutational variance, evolutionary outcomes at the two bounds are still only observed
553 5% of the time. For K,4(0), because its upper bound is equal to 10%, we set o to 0.776, such that
554 1% of mutations can change the values of K4(0) by 100-fold or more.

555

556 Mutant values of L, ract to_int, Fprotein_syn, Forotein_deg, @Nd rmana_deg are constrained by the same

557  bounds that constrain the initial values of these parameters (Sections 3-6). If a mutation

558 increases the value of any of these 5 parameters to beyond the corresponding upper bound, we
559  set the mutant value to the upper bound; similarly for a mutant value that is smaller than the
560 lower bound of the corresponding parameter. For mutation to K4(0), we resample if x” = K4(3),

33


https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

under aCC-BY-ND 4.0 International license.

because otherwise the mutation effectively “deletes” the TF by reducing its affinity to non-

specific levels.

10. Burn-in evolutionary simulation conditions

When the signal is not allowed to regulate the effector genes directly, most simulations under
selection either to filter out short spurious signals or for simple signal recognition in the absence
of spurious signals rapidly found a local optimal solution in which effector genes are never
expressed. This local optimum exists in part because we assume that the environment in which
the effector is deleterious is twice as common as the environment in which it is beneficial (Fig.
3). When the signal is not allowed to directly turn on the effector, then to escape this local
optimum, at least one activator must be induced by the signal and then induce the effector.
Such activators are rare when genotypes are randomly initialized. Making matters worse,

mutation tends to reduce expression after initialization (see Section 9).

To reduce the frequency of this problem, we added a burn-in stage to simulations in which the
signal is not allowed to regulate the effector directly. During burn-in, we switch the frequencies
of the two environments, so that selection to express the effector is stronger. We also change
the mutational bias in ract to_int, Forotein_syn, and Kq(0) to favor higher expression and stronger
binding. For ract to it and rprotein_syn, We use 0.1 instead of 0.01 as the tolerated fraction of
extreme mutations in Eq. S8. For K,4(0), we decrease u from -5 to -7.5, biasing mutation toward
the mean value at which we initialize (Table S1). Evolving an activator that can reliably turn on
the effector when the signal is “ON” primarily relies on forming strong binding sites and
appropriate kinetic constants in expression, assisted by the change in mutational bias above. To

better focus the simulations on sampling appropriate mutations during the burn-in phase, we

34


https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393884; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

under aCC-BY-ND 4.0 International license.

reduce the rate of gene duplication and the rate of deletion to 5.25 X 10° per gene, and limit
the maximum number of TF genes to 9 and that of effector genes to 2. Each simulation is run
under burn-in conditions for 1000 steps, after which normal model settings and selection
conditions are restored. The same burn-in mutational settings are used for the control selection

conditions (no selection, no spurious signal, and harmless spurious signal).

11. Quantifying occurrence of network motifs

Scoring the presence of a C1-FFL motif (e.g. Fig. 4B) or diamond motif (e.g. Fig. 7) is based on
scoring whether TF x regulates gene y. Gene duplication and divergence complicate this scoring,
because different gene copies might encode functionally identical proteins, but one copy of
gene y might have a TFBS for TF x and the other might not. For the purpose of scoring motifs,

our algorithm begins by simply treating each gene copy as though it were a unique gene.

Following Milo et al. (2002), a C1-FFL is scored if activating TF A can bind to the cis-regulatory
sequence of activating TF B and to the effector, if B can also bind to that of the effector, and if B
does not bind to that of A. Auto-regulation is allowed. We exclude C1-FFLs in which A and B
encode the same TF or variants of the same TF. In the case of direct regulation, A can be the
signal rather than a TF. C1-FFLs can then be subdivided into categories based on overlap

between the TFBSs in the cis-regulatory region of the effector (Fig. 2).

A diamond is scored if two signal-regulated activating TFs, A and B, do not bind to each other’s

cis-regulatory region, but both bind to that of the effector. We allow auto-regulation and

require A and B to not encode the same TF or variants of the same TF.
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A FFL-in-diamond is scored if one signal-regulated activating TF A binds to the cis-regulatory
region of another signal-regulated activating TF B, but B does not bind to that of A, and both A
and B bind to that of the effector. Again, auto-regulation is allowed, and A and B must not

encode the same TF or variants of the same TF.

Occurrence within one evolutionary replicate is calculated as the fraction of the last 10,000
evolutionary steps in which at least one motif of the type of interest is present. The mean and

standard error of this occurrence metric is then calculated across replicates.

12, Perturbing network motifs

In Fig. 5 and Fig. 9, we add a TFBS to the cis-regulatory sequence of the effector gene, in order
to destroy the AND-gate logic of an isolated C1-FFL or diamond. The new TFBS is chosen such
that it does not overlap with any existing TFBSs, and has the same affinity as the strongest TFBS
that is already present in the cis-regulatory sequence of the effector gene for the signal/fast TF
(to convert from an AND-gate to sighal-controlled/fast TF-controlled), or for the slow TF (to

convert from an AND-gate to slow TF-controlled).

When a TRN has multiple AND-gated motifs of interest, we convert all of them. A perturbation
can also affect the logic of other, potentially non-AND-gated motifs in the same TRN (e.g. Fig.
$12), making it hard to attribute the fitness effect to the AND-gate logic of the targeted motif.
For this reason, we perform the perturbation analysis not on a single potentially problematic
genotype, but on the last 10,000 evolutionary steps of an evolutionary simulation. Within those
10,000 related genotypes, we exclude those that also contain other motifs that might influence

our results. For simulations where the signal is allowed to directly regulate the effector, this
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means excluding those with non-AND-gated C1-FFLs. For simulations where the signal is not
allowed to directly regulate the effector, we exclude genotypes with either AND-gated or non-
AND-gated motifs other those of interest (e.g. if we intend to perturb AND-gated isolated C1-
FFLs, we exclude genotypes that also contain either an AND-gated isolated diamond or a non-
AND-gated C1-FFL). Both pre-perturbation fitness and post-perturbation fitness are averaged
over the remaining genotypes. If no evolutionary step meets our requirement, we exclude the
entire evolutionary simulation; this occurs only when the signal cannot directly regulate the

effector genes.

Fig. S12 Examples of confounding motifs in perturbation analysis. The TRN on the left contains
a slow TF-controlled C1-FFL (S-B-E) and an AND-gated C1-FFL (S-C-E). To convert S-C-E into a

signal-controlled C1-FFL, we need to add one TFBS for the signal to the cis-regulatory sequence
of E. However, this change also makes S-B-E OR-gated, making it difficult to conclude whether it

is the AND gate logic of S-B-E that matters for fitness.
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