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Abstract 19 

 20 

We develop a null model of the evolution of transcriptional regulatory networks, and use it to 21 

support an adaptive origin for a canonical “motif”, a 3-node feed-forward loop (FFL) 22 

hypothesized to filter out short spurious signals by integrating information from a fast and a 23 

slow pathway. Our mutational model captures the intrinsically high prevalence of weak affinity 24 

transcription factor binding sites. We also capture stochasticity and delays in gene expression 25 

that distort external signals and intrinsically generate noise. Functional FFLs evolve readily under 26 

selection for the hypothesized function, but not in negative controls. Interestingly, a 4-node 27 

“diamond” motif also emerged as a short spurious signal filter. The diamond uses expression 28 

dynamics rather than path length to provide fast and slow pathways. When there is no external 29 

spurious signal to filter out, but only internally generated noise, only the diamond and not the 30 

FFL evolves.  31 
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Introduction 32 

 33 

Transcriptional regulatory networks (TRNs) are integral to development and physiology, and 34 

underlie all complex traits. An intriguing finding about TRNs is that certain topological “motifs” 35 

of interconnected transcription factors (TFs) are over-represented relative to random re-wirings 36 

that preserve the frequency distribution of connections. The significance of this finding remains 37 

open to debate. 38 

 39 

The canonical example is the feed-forward loop (FFL), in which TF A regulates a target C both 40 

directly, and indirectly via TF B, and no regulatory connections exist in the opposite direction1-3. 41 

Each of the three regulatory interactions in a FFL can be either activating or repressing, so there 42 

are eight distinct kinds of FFLs (Fig. S1)4. Given the eight frequencies expected from the ratio of 43 

activators to repressors, two of these kinds of FFLs are significantly over-represented4. In this 44 

paper, we focus on one of these two over-represented types, namely the type 1 coherent FFL 45 

(C1-FFL), in which all three links are activating rather than repressing (Fig. S1, top left). C1-FFL 46 

motifs are an active part of systems biology research today, e.g. they are used to infer the 47 

function of specific regulatory pathways5, 6. 48 

 49 

The over-representation of FFLs in observed TRNs is normally explained in terms of selection 50 

favoring a function of FFLs. Specifically, the most common adaptive hypothesis is that cells often 51 

benefit from ignoring short-lived signals and responding only to durable signals3, 4, 7. Evidence 52 

that C1-FFLs can perform this function comes from the behavior both of theoretical models4 and 53 

of in vivo gene circuits7. A C1-FFL can achieve this function when its regulatory logic is that of an 54 

“AND” gate, i.e. both the direct path from A to C and the indirect path from A to B to C must be 55 
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activated before the response is triggered. In this case, the response will only be triggered if, by 56 

the time the signal trickles through the longer path, it is still active on the shorter path as well. 57 

This yields a response to long-lived signals but not short-lived signals. 58 

 59 

However, just because a behavior is observed, we cannot conclude that the behavior is a 60 

historical consequence of past selection favoring that behavior8, 9. The explanatory power of this 61 

adaptive hypothesis of filtering out short-lived and spurious signals needs to be compared to 62 

that of alternative, non-adaptive hypotheses10. The over-representation of C1-FFLs might be a 63 

byproduct of some other behavior that was the true target of selection11. Alternatively, it might 64 

be an intrinsic property of TRNs generated by mutational processes – gene duplication patterns 65 

have been found to enrich for FFLs in general12, although not yet C1-FFLs in particular. 66 

Adaptationist claims about TRN organization have been accused of being just-so stories, with 67 

adaptive hypotheses still in need of testing against an appropriate null model of network 68 

evolution13-23. 69 

 70 

Here we develop such a computational null model of TRN evolution, and apply it to the case of 71 

C1-FFL over-representation. We include sufficient realism in our model of cis-regulatory 72 

evolution to capture the non-adaptive effects of mutation in shaping TRNs. In particular, we 73 

consider “weak” TF binding sites (TFBSs) that can easily appear de novo by chance alone, and 74 

from there be selected to bind a TF more strongly, as well as simulating mutations that duplicate 75 

and delete genes. 76 

 77 

We also capture the stochasticity of gene expression, which causes the number of mRNAs and 78 

hence proteins to fluctuate24, 25. This is important, because demand for spurious signal filtering 79 
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and hence C1-FFL function may arise not just from external signals, but also from internal 80 

fluctuations. Stochasticity in gene expression also shapes how external spurious signals are 81 

propagated. Stochasticity is a constraint on what TRNs can achieve, but it can also be adaptively 82 

co-opted in evolution26; either way, it might underlie the evolution of certain motifs. Most other 83 

computational models of TRN evolution that consider gene expression as the major phenotype 84 

do not simulate stochasticity in gene expression (but see three notable exceptions27-29).  85 

 86 

Here we ask whether AND-gated C1-FFLs evolve as a response to selection for filtering out short 87 

and spurious external signals. Our new model allows us to compare the frequencies of network 88 

motifs arising in the presence of this hypothesized evolutionary cause to motif frequencies 89 

arising under non-adaptive control simulations, i.e. evolution under conditions that lack short 90 

spurious external signals while controlling both for mutational biases and for less specific forms 91 

of selection. We also ask whether other network motifs evolve to filter out short spurious 92 

signals, and if so, whether different conditions favor the appearance of different motifs during 93 

evolution. 94 

 95 

Model overview 96 

 97 

We simulate the dynamics of TRNs as the TFs activate and repress one another’s transcription 98 

over developmental time, to generate gene expression phenotypes on which selection then acts 99 

over longer evolutionary timescales. For each moment in developmental time, we simulate the 100 

numbers of nuclear and cytoplasmic mRNAs in a cell, the protein concentrations, and the 101 

chromatin state of each gene in a haploid genome. Transitions between three possible 102 

chromatin states -- Repressed, Intermediate, and Active -- are a stochastic function of TF 103 
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binding, and transcription initiation from the Active state is also stochastic. An overview of the 104 

model is shown in Fig. 1. The pattern of TF binding affects chromatin, which affects transcription 105 

rates, eventually feeding back to affect the concentration of TFs and hence their binding. The 106 

genotype is specified by a set of cis-regulatory sequences that contain TFBSs to which TFs may 107 

bind, by which consensus sequence each TF recognizes and with what affinity, and by 5 gene-108 

specific parameters that control gene expression as a function of TF binding: mean duration of 109 

transcriptional bursts, mRNA degradation, protein production, and protein degradation rates, 110 

and gene length (which affects delays in transcription and translation). An external signal (Fig. 111 

1A red) is treated like another TF, and the concentration of an effector gene (Fig. 1A blue) in 112 

response is a primary determinant of fitness, combined with a cost associated with gene 113 

expression (Fig. 1B). Mutants replace resident genotypes as a function of the difference in 114 

estimated fitness (Fig. 1C). Parameter values, taken as far as possible from Saccharomyces 115 

cerevisiae, are summarized in Table S1. Source code in C is available at 116 

https://github.com/MaselLab/network-evolution-simulator. 117 
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118 
Figure 1. Overview of the model. (A) Simulation of gene expression phenotypes. We show a 119 

simple TRN with one TF (yellow) and one effector gene (blue), with arrows for major biological 120 

processes simulated in the model. (B) Phenotype-fitness relationship. Fitness is primarily 121 

determined by the concentration of an effector protein (here shown as beneficial as in Eq. 1, but 122 

potentially deleterious in a different environment as in Eq. 2), with a secondary component 123 

coming from the cost of gene expression (proportional to the rate of protein production), 124 

combined to give an instantaneous fitness at each moment in developmental time. (C) 125 

Evolutionary simulation.  A single resident genotype is replaced when a mutant’s estimated 126 

fitness is high enough. Stochastic gene expression adds uncertainty to the estimated fitness, 127 

allowing less fit mutants to occasionally replace the resident, capturing the flavor of genetic 128 

drift. 129 
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Transcription factor binding 130 

 131 

Transcription of each gene is controlled by TFBSs present within a 150-bp cis-regulatory region. 132 

When bound, a TF occupies a stretch of DNA 14 bp long. In the center of this stretch, each TF 133 

recognizes an 8-bp consensus sequence, and binds to it with a TF-specific (and mutable) 134 

dissociation constant Kd(0). TFs also bind somewhat specifically when there are one or two 135 

mismatches, with Kd(1) and Kd(2) values calculated from Kd(0) according to a model of 136 

approximately additive binding energy per base pair. With three mismatches, binding occurs at 137 

the same background affinity as to any 14 bp stretch of DNA. We model competition between a 138 

smaller number of specific higher-affinity binding sites and the much larger number of non-139 

specific binding sites, the latter corresponding to the total amount of nucleosome-free sequence 140 

in S. cerevisiae. Competition with non-specific binding can be approximated by using an 141 

effective dissociation constant 𝐾𝐾�𝑑𝑑 = 10𝐾𝐾𝑑𝑑. See Supplementary Text Section 1 for justification 142 

and details of these model choices.  143 

 144 

Each TF is either an activator or a repressor. The algorithm for obtaining the probability 145 

distribution for A activators and R repressors being bound to a given cis-regulatory region at a 146 

given moment in developmental time is described in Supplementary Text Section 2. 147 

 148 

Transcriptional regulation 149 

 150 

Activation of the effector gene requires at least two TFBSs to be occupied by activators – not 151 

necessarily different activators. The requirement for two activators makes the effector gene 152 

capable of evolving an AND-gate via a configuration of TFBSs in which the only way to have two 153 
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TFs bound is for them to be different TFs (Fig. 2). All other genes are AND-gate-incapable, 154 

meaning that their activation requires only one TFBS to be occupied by an activator. 𝑃𝑃𝐴𝐴 denotes 155 

the probability of having at least one activator bound for an AND-gate-incapable gene, or two 156 

for an AND-gate-capable gene. 𝑃𝑃𝑅𝑅  denotes the probability of having at least one repressor 157 

bound.  158 

 159 

Figure 2. The numbers of TFBSs, and any hindrance between them, determine the regulatory 160 

logic of effector expression. We use the pattern of TFBSs (red and yellow bars along black cis-161 

regulatory sequences) to classify the regulatory logic of the effector gene. C1-FFLs are classified 162 

first by whether or not they are capable of simultaneously binding the signal and the TF (top vs 163 

bottom). Further classification is based on whether either the signal or the TF has multiple non-164 

overlapping TFBSs, allowing it to activate the effector without help from the other (solid arrow). 165 

The three subtypes on the bottom (where the signal and TF cannot bind simultaneously) are 166 

rarely seen; they are unless otherwise indicated included in “Any logic” and “non-AND-gated” 167 

tallies, but are not analyzed separately. Two of them involve emergent repression, creating 168 

“incoherent” feed-forward loops (see Fig. S1 for full FFL naming scheme). Emergent repression 169 

occurs when the binding of one activator to its only TFBS prevents the other activator from 170 

binding to either of its two TFBSs, hence preventing simultaneous binding of two activators.  171 
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Noise in yeast gene expression is well described by a two step process of transcriptional 172 

activation30, 31, e.g. nucleosome disassembly followed by transcription machinery assembly. We 173 

denote the three corresponding possible states of the transcription start site as Repressed, 174 

Intermediate, and Active (Fig. 1A). Transitions between the states depend on the numbers of 175 

activator and repressor TFs bound (e.g. via recruitment of histone-modifying enzymes32, 33). We 176 

make conversion from Repressed to Intermediate a linear function of 𝑃𝑃𝐴𝐴, ranging from the 177 

background rate 0.15 min-1 of histone acetylation34 (presumed to be followed by nucleosome 178 

disassembly), to the rate of nucleosome disassembly 0.92 min-1 for the constitutively active 179 

PHO5 promoter30: 180 

 181 

𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅_𝑡𝑡𝑡𝑡_𝐼𝐼𝐼𝐼𝐼𝐼 = 0.92𝑃𝑃𝐴𝐴 + 0.15(1 − 𝑃𝑃𝐴𝐴). 182 

 183 

We make conversion from Intermediate to Repressed a linear function of 𝑃𝑃𝑅𝑅, ranging from a 184 

background histone de-acetylation rate of 0.67 min-1 [34], up to a maximum of 4.11 min-1 (the 185 

latter chosen so as to keep a similar maximum:basal rate ratio as that of rRep_to_Int): 186 

 187 

𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑅𝑅 = 4.11𝑃𝑃𝑅𝑅 + 0.67(1 − 𝑃𝑃𝑅𝑅). 188 

 189 

We assume that repressors disrupt the assembly of transcription machinery35 to such a degree 190 

that conversion from Intermediate to Active does not occur if even a single repressor is bound. 191 

In the absence of repressors, activators facilitate the assembly of transcription machinery36. 192 

Brown et al.30 reported that the rate of transcription machinery assembly is 3.3 min-1 for a 193 

constitutively active PHO5 promoter, and 0.025 min-1 when the Pho4 activator of the PHO5 194 

promoter is knocked out. We use this range to set 195 
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 196 

𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡_𝐴𝐴𝐴𝐴𝐴𝐴 = 3.3𝑃𝑃𝐴𝐴_𝑛𝑛𝑛𝑛_𝑅𝑅 + 0.025𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛_𝑅𝑅 197 

 198 

where PA_no_R is the probability of having no repressors and either one (for an AND-gate-199 

incapable gene) or two (for an AND-gate-capable gene) activators bound, and 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛_𝑅𝑅 is the 200 

probability of having no TFs bound (for AND-gate-incapable genes) or having no repressors and 201 

not more than one activator bound (for AND-gate-capable genes). 202 

 203 

The promoter sequence not only determines which specific TFBSs are present, but also 204 

influences non-specific components of the transcriptional machinery37, 38. We capture this via 205 

gene-specific but TF-binding-independent rates rAct_to_Int with which the machinery disassembles 206 

and a burst of transcription ends. In other words, we let TF binding regulate the frequency of 207 

“bursts” of transcription, while other properties of the cis-regulatory region regulate their 208 

duration. For example, the yeast transcription factor Pho4 regulates the frequency but not 209 

duration of bursts of PHO5 expression, by regulating the rates of nucleosome removal and of 210 

transition to but not from a transcriptionally active state30. Parameterization of rAct_to_Int is 211 

described in Supplementary Text Section 3.  212 

 213 

mRNA and protein dynamics 214 

 215 

All genes in the Active state initiate new transcripts stochastically at rate rmax_transc_init = 6.75 216 

mRNA/min30, while the time for completing transcription depends on gene length (see 217 

Supplementary Text Section 4 for parameterization of gene length and associated delay times). 218 

We model a second delay before a newly completed transcript produces the first protein, which 219 
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we assume is dominated by translation initiation (length-independent) plus elongation (length-220 

dependent) and not splicing or mRNA export (see Supplementary Text Section 5). After the 221 

second delay, we model protein production as continuous at a gene-specific rate rprotein_syn (see 222 

Supplementary Text Section 5).  223 

 224 

Protein transport into the nucleus is rapid39 and is approximated as instantaneous and 225 

complete, so that the newly produced protein molecules immediately increase the probability of 226 

TF binding. Each gene has its own mRNA and protein decay rates, initialized from distributions 227 

taken from data (see Supplementary Text Section 6). 228 

 229 

All the rates regarding transcription and translation are listed in Table S1, including distributions 230 

estimated from data, and hard bounds imposed to prevent unrealistic values arising during 231 

evolutionary simulations. 232 

 233 

Developmental simulation 234 

 235 

Our algorithm is part stochastic, part deterministic. We use a Gillespie algorithm40 to simulate 236 

stochastic transitions between Repressed, Intermediate, and Active chromatin states, and to 237 

simulate transcription initiation and mRNA decay events. Fixed (i.e. deterministic) delay times 238 

are simulated between transcription initiation and completion, and between transcript 239 

completion and the production of the first protein. Protein production and degradation are 240 

described deterministically with ODEs, and updated frequently in order to recalculate TF 241 

concentrations and hence chromatin transition rates. Details of our simulation algorithm are 242 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/393884doi: bioRxiv preprint 

https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

given in the Supplementary Text Section 7. We initialize developmental simulations with no 243 

mRNA or protein, and all genes in the Repressed state. 244 

  245 

Selection  246 

 247 

Filtering out short spurious signals is a special case of signal recognition. In environment 1, 248 

expressing the effector is beneficial, and in environment 2 it is deleterious. We select for TRNs 249 

that take information from the signal and correctly decide whether to express the effector. 250 

Fitness is a weighted average across separate developmental simulations in the two 251 

environments, one with a signal and one without. In both cases, we begin each developmental 252 

simulation with no signal. To ensure that gene expression changes in response to the signal, and 253 

not via an internal timer, we simulate a burn-in phase with duration drawn from an exponential 254 

distributed truncated at 30 minutes, with un-truncated mean of 10 minutes. By having no fitness 255 

effects of gene expression during the burn-in, we eliminate a significant source of noise in 256 

fitness estimation due to variable burn-in duration. In our control condition, at the end of the 257 

burn-in, the signal suddenly switches to a constant “on” level in environment 1, and remains off 258 

in environment 2. In our test condition (Fig. 3), the signal is turned on in the same way in 259 

environment 1 but is also briefly turned on (for the first 10 minutes after the burn-in) in 260 

environment 2 – selection is to ignore this short spurious signal. The signal is treated as though 261 

it were an activating TF whose concentration is controlled externally, with an “off” 262 

concentration of zero and an “on” concentration of 1,000 molecules per cell, which is the typical 263 

per-cell number of a yeast TF41.  264 

 265 
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 266 

Figure 3. Selection for filtering out short spurious signals. Each selection condition averages 267 

fitness across simulations in two environments. The effectors have different fitness effects in 268 

the two environments, and the signal also behaves differently in the two environments. 269 

Simulations begin with zero mRNA and protein, and all genes at the Repressed state. Each 270 

simulation is burned in for a randomly sampled length of time in the absence of signal (shown 271 

here as 10 minutes in environment 1, and 15 minutes in environment 2), and continues for 272 

another 90 minutes after the burn-in. The signal is shown in black. Red illustrates a good 273 

solution in which the effector responds appropriately in each of the environments, while blue 274 

shows an inferior solution. See Fig. S2 for examples of high-fitness and low-fitness evolved 275 

phenotypes, where, as shown in this schematic, high-fitness solutions have longer delays 276 

followed by more rapid responses thereafter. 277 

 278 

We make fitness quantitative in terms of a “benefit” 𝐵𝐵(𝑡𝑡) as a function of the amount of 279 

effector protein Ne(t) at developmental time t. Our motivation is a scenario in which the effector 280 

protein is responsible for directing resources from a metabolic program favored in environment 281 
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2 to a metabolic program favored in environment 1. In environment 1, where the effector 282 

produces benefits,  283 

 284 

𝐵𝐵(𝑡𝑡) = �
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑒𝑒(𝑡𝑡)
𝑁𝑁𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠

, 𝑁𝑁𝑒𝑒(𝑡𝑡) < 𝑁𝑁𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑁𝑁𝑒𝑒(𝑡𝑡) ≥ 𝑁𝑁𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠
,      (1)  285 

 286 

where bmax is the maximum benefit if all resources were redirected, and Ne_sat is the minimum 287 

amount of effector protein needed to achieve this. Similarly, in environment 2  288 

 289 

𝐵𝐵(𝑡𝑡) = �
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑒𝑒(𝑡𝑡)
𝑁𝑁𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

, 𝑁𝑁𝑒𝑒(𝑡𝑡) < 𝑁𝑁𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠
0, 𝑁𝑁𝑒𝑒(𝑡𝑡) ≥ 𝑁𝑁𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

.      (2) 290 

 291 

We set Ne_sat to 10,000 molecules, which is about the average number of molecules of a 292 

metabolism-associated protein per cell in yeast41. Without loss of generality given that fitness is 293 

relative, we set bmax to 1.  294 

 295 

A second contribution to fitness comes from the cost of gene expression C(t) (Fig. 1B, middle). 296 

We make this cost proportional to the total protein production rate. We estimate a fitness cost 297 

of gene expression of 2×10-6 per protein molecule translated per minute, based on the cost of 298 

expressing a non-toxic protein in yeast42 (see Supplementary Text Section 7 for details).  299 

 300 

We simulate gene expression for 90 minutes plus the duration of the burn-in (Fig. 3). A “cellular 301 

fitness” in a given environment is calculated as the average instantaneous fitness B(t)-C(t) over 302 

the 90 minutes. We consider environment 2 to be twice as common as environment 1 (a 303 
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“signal” should be for an uncommon event rather than the default), and take the corresponding 304 

weighted average. 305 

 306 

Evolutionary simulation 307 

 308 

We simulate a novel version of origin-fixation (weak-mutation-strong-selection) evolutionary 309 

dynamics, i.e. the population contains only one resident genotype at any time, and mutant 310 

genotypes are either rejected or chosen to be the next resident (Fig. 1C). Despite the fact that 311 

our mutant acceptance rule (see below) was chosen to maximize computational efficiency, our 312 

model usually takes 10 CPUs 1-3 days to complete an evolutionary simulation; modeling a 313 

heterogeneous population is clearly out of the question. We note that genetic homogeneity 314 

entails ignoring some important population genetic phenomena. First, if there were 315 

recombination, heterogeneity would favor mutations that combine well with a range of other 316 

genotypes. Second, clonal interference would shift evolution toward beneficial mutations of 317 

larger effect43 (an effect we can mimic by modifying the value 10-8 in the equation below). Third, 318 

polymorphic populations would evolve mutational robustness44. None of these three effects 319 

seems a priori likely to change our conclusions, although the possibility cannot be ruled out. 320 

 321 

Estimators 𝐹𝐹� of genotype fitness are averages of the cellular fitness values of 200 322 

developmental replicates per environment in the case of the mutant, plus an additional 800 323 

should it be chosen to be the next resident. The mutant replaces the resident if 324 

 325 

𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 − 𝐹𝐹�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
|𝐹𝐹�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|

≥ 10−8. 326 

 327 
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This differs from Kimura’s45 equation for fixation probability, but captures the flavor of genetic 328 

drift. Genetic drift allows slightly deleterious mutations to occasionally fix, and beneficial 329 

mutations to sometimes fail to do so, even as the probability of fixation is monotonic with 330 

fitness. This is also achieved by our procedure, because of stochastic deviations of 𝐹𝐹� from true 331 

genotype fitness. The number of developmental replicates captures the flavor of effective 332 

population size.  333 

  334 

Note that it is possible, especially at the beginning of an evolutionary simulation, for relative 335 

fitness to be paradoxically negative. This occurs when a randomly initialized genotype does not 336 

express the effector (garnering no fitness benefit), but does express other genes (accruing a cost 337 

of expression); this combination makes fitness negative. In this rare case, for simplicity, we use 338 

the absolute value of 𝐹𝐹� on the denominator. 339 

 340 

If 2,000 successive mutants are all rejected, the simulation is terminated; upon inspection, we 341 

found that these resident genotypes had evolved to not express the effector in either 342 

environment. We refer to each change in resident genotype as an evolutionary step. We stop 343 

the simulation after 50,000 evolutionary steps; at this time, most replicate simulations seem to 344 

have reached a fitness plateau (Fig. S3); we analyze all replicates except those terminated early. 345 

To reduce the frequency of early termination in the case where the signal was not allowed to 346 

directly regulate the effector, we used a burn-in phase selecting on a more accessible 347 

intermediate phenotype (see Supplementary Text Section 10). In this case, burn-in occurred for 348 

1,000 evolutionary steps, followed by the usual 50,000 evolutionary steps with selection for the 349 

phenotype of interest (Fig. S3, right panels). Most replicates found a stable fitness plateau 350 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/393884doi: bioRxiv preprint 

https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

within 10,000 evolutionary steps, although some replicates were temporarily trapped at a low 351 

fitness plateau (Fig. S3).   352 

 353 

Genotype Initialization 354 

 355 

We initialize genotypes with 3 activator genes, 3 repressor genes, and 1 effector gene. Cis-356 

regulatory sequences and consensus binding sequences contain As, Cs, Gs, and Ts sampled with 357 

equal probability. Rate constants associated with the expression of each gene are sampled from 358 

the distributions summarized in Table S1.  359 

 360 

Mutation 361 

 362 

A genotype is subjected to 5 broad classes of mutation, at rates summarized in Table S2 and 363 

justified in Supplementary Text Section 9. First are single nucleotide substitutions in the cis-364 

regulatory sequence; the resident nucleotide mutates into one of the other three types of 365 

nucleotides with equal probability. Second are single nucleotide changes to the consensus 366 

binding sequence of a TF, with the resident nucleotide mutated into recognizing one of the 367 

other three types with equal probability. Both of these types of mutation can affect the number 368 

and strength of TFBSs. 369 

 370 

Third are gene duplications or deletions. Because computational cost scales steeply (and non-371 

linearly) with network size, we do not allow effector genes to duplicate once there are 5 copies, 372 

nor TF genes to duplicate once the total number of TF gene copies is 19. We also do not allow 373 

the signal, the last effector gene, nor the last TF gene to be deleted.  374 
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 375 

Fourth are mutations to gene-specific expression parameters. Most of these (L, rAct_to_Int, 376 

rprotein_syn, rmRNA_deg, and rprotein_deg) apply to both TFs and effector genes, while mutations to the 377 

gene-specific values of Kd(0) apply only to TFs. Each mutation to L increases or decreases it by 1 378 

codon, with equal probability unless L is at the upper or lower bound. Effect sizes of mutations 379 

to the other five parameters are modeled in such a way that mutation would maintain specified 380 

log-normal stationary distributions for these values, in the absence of selection or arbitrary 381 

bounds (see Supplementary Text Section 9 for details). Upper and lower bounds (Supplementary 382 

Text Section 9) are used to ensure that selection never drives these parameters to unrealistic 383 

values.  384 

 385 

Fifth is conversion of a TF from being an activator to being a repressor, and vice versa. The signal 386 

is always an activator, and does not evolve. 387 

 388 

Importantly, this scheme allows for divergence following gene duplication. When duplicates 389 

differ due only to mutations of class 4, i.e. protein function is unchanged, we refer to them as 390 

“copies” of the same gene, encoding “protein variants”. Mutations in classes 2 and 5 can create 391 

a new protein. 392 

 393 

Table S3 summarizes the tendencies of different mutation types to be accepted, and to 394 

contribute to evolution. Acceptance rates are high, indicative of substantial nearly neutral 395 

evolution, in which slightly deleterious mutations are fixed and subsequently compensated for.  396 

  397 

Results 398 
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Functional AND-gated C1-FFLs evolve readily under selection for filtering out a short spurious 399 

signal  400 

 401 

We begin by simulating the easiest case we can devise to allow the evolution of C1-FFLs for their 402 

purported function of filtering out short spurious signals. The signal is allowed to act directly on 403 

the effector, after which all that needs to evolve is a single activating TF between the two, as 404 

well as AND-logic for the effector (Fig. 2, top left; see “Transcriptional regulation” in the Model 405 

Overview for how AND-logic evolution is handled). We score network motifs at the end of a set 406 

period of evolution (see Supplemental Text Section 11 for details), further classifying evolved 407 

C1-FFLs into subtypes based on the presence of non-overlapping TFBSs (Fig. 2). The adaptive 408 

hypothesis predicts the evolution of the C1-FFL subtype with AND-regulatory logic, which 409 

requires the effector to be stimulated both by the signal and by the slow TF. While all 410 

evolutionary replicates show large increases in fitness, the extent of improvement varies 411 

dramatically, indicating whether or not the replicate was successful at evolving the phenotype 412 

of interest rather than becoming stuck at an alternative locally optimal phenotype (Fig. 4A). 413 

AND-gated C1-FFLs frequently evolve in replicates that reach high fitness outcomes, but not 414 

replicates that reach lower fitness (Fig. 4B). 415 
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Figure 4. AND-gated C1-FFLs are associated with a successful response to selection for filtering 416 

out short spurious signals. (A) Distribution of fitness outcomes across replicate simulations, 417 

calculated as the average fitness over the last 10,000 steps of the evolutionary simulation. We 418 

divide genotypes into a low-fitness group (blue) and a high-fitness group (red) using as a 419 

threshold an observed gap in the distribution. (B) High fitness replicates are characterized by the 420 

presence of an AND-gated C1-FFL. “Any logic” counts the presence of any of the seven subtypes 421 

shown in Fig. 2B. Because one TRN can contain multiple C1-FFLs of different subtypes, each of 422 

which are scored, the sum of the occurrences of all seven subtypes will generally be more than 423 

“Any logic”. See Supplementary Text Section 11 for details on the calculation of the y-axis. (C) 424 

The over-representation of AND-gated C1-FFLs becomes even more pronounced relative to 425 

alternative logic-gating when weak (two-mismatch) TFBSs are excluded while scoring motifs. 426 

Data are shown as mean±SE of the occurrence over replicate evolution simulations.  427 
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We also see C1-FFLs that, contrary to expectations, are not AND-gated. Non-AND-gated motifs 428 

are found more often in low fitness than high fitness replicates (Fig. 4B), indicating that the 429 

preference for AND-gates is associated with adaptation rather than mutation bias. However, 430 

some non-AND-gated motifs are still found even in the high fitness replicates. This is because 431 

motifs and their logic gates are scored on the basis of all TFBSs, even those with two 432 

mismatches and hence low binding affinity. Unless these weak TFBSs are deleterious, they will 433 

appear quite often by chance alone. A random 8-bp sequence has probability �82� × 0.256 ×434 

0.752 = 0.0038 of being a two-mismatch binding site for a given TF. In our model, a TF has the 435 

potential to recognize 137 different sites in a 150-bp cis-regulatory sequence (taking into 436 

account steric hindrance at the edges), each with 2 orientations. Thus, by chance alone a given 437 

TF will have 0.0038 × 137 × 2 ≈ 1 two-mismatch binding sites in a given cis-regulatory 438 

sequence (ignoring palindromes for simplicity), compared to only ~0.1 one-mismatch TFBSs. 439 

Non-AND-gated C1-FFLs mostly disappear when two-mismatch TFBSs are excluded, but the 440 

AND-gated C1-FFLs found in high fitness replicates do not (Fig. 4C). 441 

 442 

To confirm the functionality of these AND-gated C1-FFLs, we mutated the evolved genotype in 443 

two different ways (Fig. 5A) to remove the AND regulatory logic. As expected, this lowers fitness 444 

in the presence of the short spurious signal but increases fitness in the presence of constant 445 

signal, with a net reduction in fitness (Fig. 5B). This is consistent with AND-gated C1-FFLs 446 

representing a tradeoff, by which a more rapid response to a true signal is sacrificed in favor of 447 

the greater reliability of filtering out short spurious signals. 448 
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 449 

Figure 5. Destroying the AND-logic of a C1-FFL removes its ability to filter out short spurious 450 

signals. (A) For each of the n = 25 replicates in the high fitness group in Fig. 4, we perturbed the 451 

AND-logic in two ways, by adding one binding site of either the signal or the slow TF to the cis-452 

regulatory sequence of the effector gene. (B) For each replicate, the fitness of the original motif 453 

(blue) or of the perturbed motif (red or orange) was averaged across the subset of evolutionary 454 

steps with an AND-gated C1-FFL and lacking other potentially confounding motifs (see 455 

Supplementary Text Section 11 for details). Destroying the AND-logic slightly increases the 456 

ability to respond to the signal, but leads to a larger loss of fitness when short spurious signals 457 

are responded to. Fitness is shown as mean±SE over replicate evolutionary simulations. 458 

 459 

Adaptive motifs are constrained not only in their topology and regulatory logic, but also in the 460 

parameter space of their component genes. In particular, there is selection for rapid synthesis of 461 

both effector and TF proteins, as well as rapid degradation of effector mRNA and protein (Table 462 

S4). Fast effector degradation reduces the transient expression induced by the short spurious 463 

signal (Fig. S2).  464 

 465 
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 466 

Figure 6. Selection for filtering out short spurious signals is the primary cause of C1-FFLs. TRNs 467 

are evolved under different selection conditions, and we score the probability that at least one 468 

C1-FFL is present (Supplementary Text Section 11). Weak (two-mismatch) TFBSs are included (A) 469 

or excluded (B) during motif scoring. Data are shown as mean±SE over evolutionary replicates. 470 

C1-FFL occurrence is similar for high-fitness and low-fitness outcomes in control selective 471 

conditions (Fig. S4), and so all evolutionary outcomes were combined. “Spurious signal filter 472 

required (high fitness)” uses the same data as in Fig. 4.  473 

 474 

To test the extent to which AND-gated C1-FFLs are a specific response to selection to filter out 475 

short spurious signals, we simulated evolution under three negative control conditions: 1) no 476 
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selection, i.e. all mutations are accepted to become the new resident genotype; 2) no spurious 477 

signal, i.e. selection to express the effector under a constant “ON” signal and not under a 478 

constant “OFF” signal; 3) harmless spurious signal, i.e. selection to express the effector under a 479 

constant “ON” environment whereas effector expression in the “OFF” environment with short 480 

spurious signals is neither punished nor rewarded beyond the cost of unnecessary gene 481 

expression. AND-gated C1-FFLs evolve much less often under all three negative control 482 

conditions (Fig. 6), showing that their prevalence is a consequence of selection for filtering out 483 

short spurious signals, rather than a consequence of mutational bias and/or simpler forms of 484 

selection. C1-FFLs that do evolve under control conditions tend not to be AND-gated (Fig. 6A), 485 

and mostly disappear when weak TFBSs are excluded during motif scoring (Fig. 6B).  486 

 487 

Diamond motifs are an alternative adaptation in more complex networks 488 

 489 

In real biological situations, sometimes the source signal will not be able to directly regulate an 490 

effector, and must instead operate via a longer regulatory pathway involving intermediate TFs46. 491 

In this case, even if the signal itself takes the idealized form shown in Fig. 3, its shape after 492 

propagation may become distorted by the intrinsic processes of transcription. Motifs are under 493 

selection to handle this distortion.  494 

 495 

To enforce indirect regulation, we ran simulations in which the signal was only allowed to bind 496 

to the cis-regulatory sequences of TFs and not of effector genes. The fitness distribution of the 497 

evolutionary replicates has no obvious gaps (Fig. S5), so we compared the highest fitness, lowest 498 

fitness, and median fitness replicates. In agreement with results when direct regulation is 499 
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allowed, genotypes of low and medium fitness contain few AND-gated C1-FFLs, while high 500 

fitness genotypes contain many more (Fig. 7B, left and right). 501 

 502 

While visually examining the network context of these C1-FFLs, we discovered that many were 503 

embedded within AND-gated “diamonds”. In a diamond, the signal activates the expression of 504 

two genes that encode different TFs, and the two TFs activate the expression of an effector gene 505 

(Fig. 7A middle). When one of the two TF genes activates the other, then a C1-FFL is also 506 

present among the same set of genes; we call this topology a “FFL-in-diamond” (Fig. 7A right), 507 

and the prevalence of this configuration drew our attention toward diamonds. This led us to 508 

discover that AND-gated diamonds also occurred frequently without AND-gated C1-FFLs, in the 509 

configuration we call “isolated diamonds” (Fig. 7A middle). Note that it is in theory possible, but 510 

in practice uncommon, for diamonds to be part of more complex conjugates. Systematically 511 

scoring the AND-gated isolated diamond motif confirmed its high occurrence (Fig. 7B and C, 512 

middle).  513 
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 514 

 515 

 516 

Figure 7. Both AND-gated C1-FFLs and AND-gated diamonds (A) are associated with high 517 
fitness in complex networks under selection to filter out short spurious signals. Out of 160 518 
simulations (Fig. S5), we took the 30 with the highest fitness (H), the 30 with the lowest fitness 519 
(L), and 30 of around median fitness (M). AND-gated motifs are scored while including weak 520 
TFBSs in the effectors’ cis-regulatory regions, near-AND-gated motifs are those scored only 521 
when these weak TFBSs are excluded. It is possible for the same genotype to contain one of 522 
each, resulting in overlap between the red AND-gated columns and the dotted near-AND-gated 523 
columns. Weak TFBSs upstream in the TRN, i.e. not in the effector, are shown both included (B) 524 
and excluded (C). See Supplementary Text Section 11 for y-axis calculation details. Error bars 525 
show mean±SE of the proportion of evolutionary steps containing the motif in question, across 526 
replicate evolutionary simulations. 527 
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An AND-gated C1-FFL integrates information from a short/fast regulatory pathway with 528 

information from a long/slow pathway, in order to filter out short spurious signals. A diamond 529 

achieves the same end of integrating fast and slowly transmitted information via differences in 530 

the gene expression dynamics of the two regulatory pathways, rather than via topological length 531 

(Fig. 8). The fast and slow pathways could be distinguished in a number of ways, e.g. by the 532 

slope at which the transcription factor concentration increases or the time at which it exceeds a 533 

threshold or plateaus. We found it convenient to identify the “fast TF” as the one with the 534 

higher protein degradation rate. Specifically, we use the geometric mean of the protein 535 

degradation rate over gene copies of a TF in order to differentiate the two TFs. The parameter 536 

values of the fast TF are more evolutionarily constrained than those of the slow TF (Table S5). In 537 

particular, there is selection for rapid degradation of the fast TF protein and mRNA (Table S5). 538 

Isolated AND-gated C1-FFLs also show pronounced selection for the TF in the fast pathway to 539 

have rapid protein degradation (Table S6). 540 

 541 
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 542 

Figure 8. The two intermediate TFs in an AND-gated “diamond” motif have different 543 

expression dynamics and propagate the signal at different speeds. Expression of the two TFs in 544 

one representative genotype from the one high-fitness evolutionary replicate in Fig. 7B that 545 

evolved an AND-gated isolated diamond is shown. Each TF is a different protein, and each is 546 

encoded by 3 gene copies, shown separately in color, with the total in thick black. The 547 

expression of one TF plateaus faster than that of the other; this is characteristic of the AND-548 

gated diamond motif, and leads to the same functionality as the AND-gated C1-FFL.  549 

 550 

But mutational biases make it difficult to evolve very fast-degrading mRNA and protein. And 551 

even when they do evolve, fast degradation keeps the fast TF at low concentrations. To 552 

compensate, the fast TF must overcome mutational bias to also evolve high binding affinity and 553 

rapid protein synthesis (Table S5, Table S6). 554 
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 555 

Note that a simple transcriptional cascade, signal -> TF -> effector, has also been found 556 

experimentally to filter out short spurious signals when the intermediate TF is rapidly degraded, 557 

dampening the effect of a brief signal47. Two such transcriptional cascades involving different 558 

intermediate TFs form a diamond, so the utility of a single cascade is a potential explanation for 559 

the high prevalence of double-cascade diamonds. However, in this case we would have no 560 

reason to expect marked differences in expression dynamics between the two TFs, as illustrated 561 

in Fig. 8 and Table S5. Enrichment for AND-gates (Fig. 7) indicates selection to integrate 562 

information from the two cascades. On the other hand, we do find some non-AND-gated 563 

diamonds, and these might best be considered as cascades. Inspection of their parameter values 564 

reveals that in these diamonds, both TFs have fast-degrading mRNAs and proteins so that both 565 

TFs shut down rapidly once signal is turned off. This makes such diamonds less vulnerable to 566 

spurious signals, reducing the need for the AND gate. The difficulty of evolving not just one but 567 

two fast-degrading high-affinity TFs likely explains why non-AND-gated diamonds are rare. As 568 

we will see in the next section, these non-AND-gated diamonds are nevertheless scored as AND-569 

gated when weak TFBSs are excluded.  570 

 571 

Weak TFBSs can change how adaptive motifs are scored even when they do not change 572 

function 573 

 574 

Results depend on whether we include weak TFBSs when scoring motifs. Weak TFBSs can either 575 

be in the effector’s cis-regulatory region, affecting how the regulatory logic is scored, or in TFs 576 

upstream in the TRN, affecting only the presence or absence of motifs. When a motif is scored 577 

as AND-gated only when two-mismatch TFBSs in the effector are excluded, we call it a “near-578 
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AND-gated” motif. Recall from Fig. 2 that effector expression requires two TFs to be bound, with 579 

only one TFBS of each type creating an AND-gate. When a second, two-mismatch TFBS of the 580 

same type is present, we have a near-AND-gate. TFs may bind so rarely to this weak affinity TFBS 581 

that its presence changes little, making the regulatory logic still effectively AND-gated. A near-582 

AND-gated motif may therefore evolve for the same adaptive reasons as an AND-gated one. Fig. 583 

7B and C shows that both AND-gated and near-AND-gated motifs are enriched in the higher 584 

fitness genotypes. 585 

 586 

When we exclude upstream weak TFBSs while scoring motifs, FFL-in-diamonds are no longer 587 

found, while the occurrence of isolated C1-FFLs and diamonds increases (Fig. 7C). This makes 588 

sense, because adding one weak TFBS, which can easily happen by chance alone, can convert an 589 

isolated diamond or C1-FFL into a FFL-in-diamond (added between intermediate TFs, or from 590 

signal to slow TF, respectively).  591 

 592 

AND-gated isolated C1-FFLs appear mainly in the highest fitness outcomes, while AND-gated 593 

isolated diamonds appear in all fitness groups (Fig. 7C), suggesting that diamonds are easier to 594 

evolve. 25 out of 30 high-fitness evolutionary replicates are scored as having a putatively 595 

adaptive AND-gated or near-AND-gated motif in at least 50% of their evolutionary steps when 596 

upstream weak TFBSs are ignored (close to addition of bars in Fig. 7C, because these two AND-597 

gated motifs rarely coexist in a high-fitness genotype).  598 

 599 

Just as for the AND-gated C1-FFLs evolved under direct regulation and analyzed in Fig. 5, 600 

perturbation analysis supports an adaptive function for AND-gated C1-FFLs and diamonds 601 

evolved under indirect regulation (Fig. 9A.i, 9B.i). Breaking the AND-gate logic of these motifs by 602 
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adding a (strong) TFBS to the effector cis-regulatory region reduces the fitness under the 603 

spurious signal but increases it under the constant “ON” beneficial signal, resulting in a net 604 

decrease in the overall fitness.  605 

 606 

If we add a weak (two-mismatch) TFBS instead, this converts an AND-gated motif to a near-AND-607 

gated motif. This lowers fitness only when the extra link is from the slow TF to the effector, and 608 

not when the extra link is from the fast TF to the effector (Fig. 9A.ii, 9B.ii).   609 
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Figure 9. Perturbation analysis shows that AND-gated C1-FFLs (A) and diamonds (B) filter out 610 

short spurious signals. We add a strong TFBS (i) or a two-mismatch TFBS (ii) or (iii); the latter 611 

creates near-AND-gated motifs. Allowing the effector to respond to the slow TF alone slightly 612 

increases the ability to respond to the signal, but leads to a larger loss of fitness when effector 613 

expression is undesirable. Allowing the effector to respond to the fast TF alone does so only 614 

when the conversion uses a strong TFBS not a two-mismatch TFBS. (A) We perform the 615 

perturbation on 8 of the 18 high-fitness replicates from Fig.7B that evolved an AND-gated C1-616 

FFL. (B) (i) and (ii) are based on 4 of the 26 high-fitness replicates that evolved an AND-gated 617 

diamond in Fig. 7B, (iii) is based on 15 of the 37 replicates that evolved an AND-gated diamond 618 

in response to selection for signal recognition in the absence of an external spurious signal (Fig. 619 

10B). Replicate exclusion was based on the co-occurrence of other motifs with the potential to 620 

confound results (see Supplementary Text Section 12 for details). Fitness is shown as mean±SE 621 

of over replicate evolutionary simulations, calculated as described for Fig. 5.  622 
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Indeed, these extra links are tolerated during evolution too. If we take the 16 high-fitness 623 

replicates that contain a near-AND-gated C1-FFL in at least 1% of the evolutionary steps, then 624 

for 15 replicates of the 16, at least 88% of the near-AND-gated C1-FFLs in each of the 15 625 

replicates are only near-AND-gated because of extra weak TFBSs for the fast TF. In the remaining 626 

1 replicate, 93% of the near-AND-gated C1-FFLs have extra weak TFBSs specific for each of the 627 

TFs (and are therefore scored as OR-gated). In this last replicate, the two TFs in these OR-gated 628 

C1-FFLs have high and similar protein degradation rates, reducing the need for an AND gate for 629 

reasons discussed earlier. We similarly examine high-fitness replicates that, when upstream 630 

weak TFBSs are excluded, contain a near-AND-gated diamond in at least 1% of the evolutionary 631 

steps. In 15 of these 24 evolutionary replicates, the near-AND regulatory logic is in most 632 

evolutionary steps due to an extra weak TFBS of the fast TF, in 8 replicates (all of them OR-633 

gated, like the OR-gated C1-FFL already discussed) it is due to weak TFBSs for each of the TFs, 634 

and in only 1 replicate is it due to an extra TFBS for the slow TF. For the latter two categories, 635 

both TFs in near-AND-gated diamonds have high and similar protein degradation rates. By 636 

chance alone, fast and slow TF should be equally likely to contribute the weak TFBS that makes a 637 

motif near-AND-gated rather than AND-gated. This expected 50:50 ratio can be rejected from 638 

our observed 15:0 and 15:1 ratios with 𝑝𝑝 =  3 × 10−5 and 𝑝𝑝 = 3 × 10−4, respectively 639 

(cumulative binomial distribution, one-sided test). This non-random occurrence of weak TFBSs 640 

creating near-AND-gates illustrates how even weak TFBSs can be shaped by selection against 641 

some (but not all) motif-breaking links.  642 

 643 

AND-gated isolated diamonds also evolve in the absence of external spurious signals 644 

 645 
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We simulated evolution under the same three control conditions as before, this time without 646 

allowing the signal to directly regulate the effector. In the “no spurious signal” and “harmless 647 

spurious signal” control conditions, motif frequencies are similar between low and high fitness 648 

genotypes (Fig. S6, Fig. S7), and so our analysis includes all evolutionary replicates. When weak 649 

(two-mismatch) TFBSs are excluded, AND-gated isolated C1-FFLs are seen only after selection 650 

for filtering out a spurious signal, and not under other selection conditions (Fig. 10A). However, 651 

AND-gated isolated diamonds also evolve in the absence of spurious signals, indeed at even 652 

higher frequency (Fig. 10B). Results including weak TFBSs are similar (Fig. S8).  653 

 654 

Figure 10. Selection for filtering out a short spurious signal is the primary way to evolve AND-655 

gated isolated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of 656 

spurious signals (B). The selection conditions are the same as in Fig. 6, but we do not allow the 657 

signal to directly regulate the effector. When scoring motifs, we exclude all two-mismatch 658 

TFBSs; more comprehensive results are shown in Fig. S8. Many non-AND-gated diamonds have 659 

the “no regulation” logic in Fig. 2, perhaps as an artifact created by the duplication and 660 

divergence of intermediate TFs; we excluded them from the “Any logic” and “Non-AND-gated” 661 

tallies in (B). See Supplementary Text Section 11 for the calculation of y-axis. Data are shown as 662 

mean±SE over evolutionary replicates. We reused data from Fig. 7 for “Spurious signal filter 663 

required (high fitness)”. 664 
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Perturbing the AND-gate logic in these isolated diamonds reduces fitness via effects in the 665 

environment where expressing the effector is deleterious (Fig. 9B.iii). Even in the absence of 666 

external short spurious signals, the stochastic expression of intermediate TFs might effectively 667 

create short spurious signals when the external signal is set to “OFF”. It seems that AND-gated 668 

diamonds evolve to mitigate this risk, but that AND-gated C1-FFLs do not. The duration of 669 

internally generated spurious signals has an exponential distribution, which means that the 670 

optimal filter would be one that does not delay gene expression48. The two TFs in an AND-gated 671 

diamond can be activated simultaneously, but they must be activated sequentially in an AND-672 

gated C1-FFL; the shorter delays possible with AND-gated diamonds might explain why only 673 

diamonds and not FFLs evolve to filter out intrinsic noise in gene expression.  674 

 675 

Discussion 676 

 677 

Adaptive nature of AND-gated C1-FFLs 678 

 679 

There has never been sufficient evidence to satisfy evolutionary biologists that motifs in TRNs 680 

represent adaptations for particular functions. Critiques by evolutionary biologists to this 681 

effect13-23 have been neglected, rather than answered, until now. While C1-FFLs can be 682 

conserved across different species49-52, this does not imply that specific “just-so” stories about 683 

their function are correct. In this work, we study the evolution of AND-gated C1-FFLs, which are 684 

hypothesized to be adaptations for filtering out short spurious signals3. Using a novel and more 685 

mechanistic computational model to simulate TRN evolution, we found that AND-gated C1-FFLs 686 

evolve readily under selection for filtering out a short spurious signal, and not under control 687 

conditions. Our results support the adaptive hypothesis about C1-FFLs. 688 
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 689 

AND-gated C1-FFLs express an effector after a noise-filtering delay when the signal is turned on, 690 

but shut down expression immediately when the signal is turned off, giving rise to a “sign-691 

sensitive delay”3, 7. Rapidly switching off has been hypothesized to be part of their selective 692 

advantage, above and beyond the function of filtering out short spurious signals48. We intended 693 

to select only for filtering out a short spurious signal, and not for fast turn-off; specifically, we 694 

expected effector expression to evolve a delay equal to the duration of the spurious signal. 695 

However, evolved solutions still expressed the effector in the presence of short spurious signals 696 

(Fig. S2), and thus benefitted from rapidly turning off this spurious expression. In other words, 697 

we effectively selected for both delayed turn-on and rapid turn-off, despite our intent to only 698 

select for the former. 699 

 700 

It is difficult to distinguish adaptations from “spandrels”8. Standard procedure is to look for 701 

motifs that are more frequent than expected from some randomized version of a TRN2, 53. For 702 

this method to work, this randomization must control for all confounding factors that are non-703 

adaptive with respect to the function in question, from patterns of mutation to a general 704 

tendency to hierarchy – a near-impossible task. Our approach to a null model is not to 705 

randomize, but to evolve with and without selection for the specific function of interest. This 706 

meets the standards of evolutionary biology for inferring the adaptive nature of a motif13-23. 707 

 708 

Technical lessons learned 709 

 710 

Previous studies have also attempted to evolve adaptive motifs in a computational TRN, 711 

successfully under selection for circadian rhythm and for multiple steady states54, and 712 
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unsuccessfully under selection to produce a sine wave in response to a periodic pulse23. Other 713 

studies have evolved adaptive motifs in a mixed network of transcriptional regulation and 714 

protein-protein interaction55-57. Our successful simulation might offer some methodological 715 

lessons, especially a focus on high-fitness evolutionary replicates, which was done by us and by 716 

Burda et al.54 but not by Knabe et al.23.  717 

 718 

Knabe et al.23 suggested that including a cost for gene expression may suppress unnecessary 719 

links and thus make it easier to score motifs. However, when we removed the cost of gene 720 

expression term (𝐶𝐶(𝑡𝑡) = 0 in Supplementary Section 8), AND-gated C1-FFLs still evolved in the 721 

high-fitness genotypes under selection for filtering out a spurious signal (Fig. S9). In our model, 722 

removing the cost of gene expression did not, via permitting unnecessary links, conceal motifs.  723 

 724 

While simplified relative to reality, our model is undeniably complicated. An important question 725 

is which complications are important for what. One complication is our nucleotide-sequence-726 

level model of cis-regulatory sequences. This has the advantage of capturing weak TFBSs, 727 

realistic turnover, and other mutational biases. The disadvantage is that calculating the 728 

probabilities of TF binding is computationally expensive and scales badly with network size. 729 

Future work might design a more schematic model of cis-regulatory sequences to improve 730 

computation while still capturing realistic mutation biases. A second complication of our 731 

approach is the stochastic simulation of gene expression. This is essential for our question, 732 

because intrinsic noise in gene expression can mimic the effects of a spurious signal, but may be 733 

less important in other scenarios, e.g. where the focus is on steady state behavior. 734 

 735 

The ubiquity of weak TFBSs complicates motif scoring 736 
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 737 

Our model, while complex for a model and hence capable of capturing intrinsic noise, is 738 

inevitably less complex than the biological reality. However, we hope to have captured key 739 

phenomena, albeit in simplified form. One key phenomenon is that TFBSs are not simply present 740 

vs. absent but can be strong or weak, i.e. the TRN is not just a directed graph, but its 741 

connections vary in strength. Our model, like that of Burda et al.54 in the context of circadian 742 

rhythms, captures this fact by basing TF binding affinity on the number of mismatch deviations 743 

from a consensus TFBS sequence. While in reality, the strength of TF binding is determined by 744 

additional factors, such as broader nucleic context and cooperative behavior between TFs 745 

(reviewed in Inukai et al.58), these complications are unlikely to change the basic dynamics of 746 

frequent appearance of weak TFBSs and greater mutational accessibility of strong TFBSs from 747 

weak TFBSs than de novo. Similarly, AND-gating can be quantitative rather than qualitative59, a 748 

phenomenon that weak TFBSs in our model provide a simplified version of. 749 

 750 

Core links in adaptive motifs almost always involve strong not weak TFBSs. However, weak (two-751 

mismatch) TFBSs can create additional links that prevent an adaptive motif from being scored as 752 

such. Some potential additional links are neutral while others are deleterious; the observed links 753 

are thus shaped by this selective filter, without being adaptive. Note that there have been 754 

experimental reports that even weak TFBSs can be functionally important60, 61; these might, 755 

however, better correspond to 1-mismatch TFBSs in our model than two-mismatch TFBSs. 756 

Ramos et al.61 and Crocker et al.60 identified their “weak” TFBSs in comparison to the strongest 757 

possible TFBS, not in comparison to the weakest still showing affinity above baseline. 758 

 759 

Different solutions for filtering out short spurious signals 760 
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 761 

A striking and unexpected finding of our study was that AND-gated diamonds evolved as an 762 

alternative motif for filtering out short spurious external signals, and that these, unlike FFLs, 763 

were also effective at filtering out intrinsic noise. Multiple motifs have previously been found 764 

capable of generating the same steady state expression pattern21; here we find multiple motifs 765 

for a much more complex function. 766 

 767 

Diamonds are not overrepresented in the TRNs of bacteria2 or yeast62, but are overrepresented 768 

in signaling networks (in which post-translational modification plays a larger role)63, and in 769 

neuronal networks1. In our model, we treated the external signal as though it were a 770 

transcription factor, simply as a matter of modeling convenience. In reality, signals external to a 771 

TRN are by definition not TFs (although they might be modifiers of TFs). This means that our 772 

indirect regulation case, in which the signal is not allowed to directly turn on the effector, is the 773 

most appropriate one to analyze if our interest is in TRN motifs that mediate contact between 774 

the two. Note that if under indirect regulation we were to score the signal as not itself a TF, we 775 

would observe adaptive C1-FFLs but not diamonds, in agreement with the TRN data. However, 776 

this TRN data might miss functional diamond motifs that spanned levels of regulatory 777 

organization, i.e. that included both transcriptional and other forms of regulation. The greatest 778 

chance of finding diamonds within TRNs alone come from complex and multi-layered 779 

developmental cascades, rather than bacterial or yeast64. Multiple interwoven diamonds are 780 

hypothesized to be embedded with multi-layer perceptrons that are adaptations for complex 781 

computation in signaling networks65. 782 

 783 
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Previous work has also identified alternatives to AND-gated C1-FFLs. Specifically, in mixed 784 

networks of transcriptional regulation and protein-protein interactions, FFLs did not evolve 785 

under selection for delayed turn-on (as well as rapid turn-off)57. Indeed, even when a FFL 786 

topology was enforced, with only the parameters allowed to evolve, two alternative motifs 787 

remained superior57. However, one alternative motif, which the authors called “positive 788 

feedback” is essentially still an AND-gated C1-FFL, specifically one in which the intermediate TF 789 

expression is also AND-gated, requiring both itself and the signal for upregulation. The other is a 790 

cascade in which the signal inhibits the expression of an intermediate TF protein that represses 791 

the expression of the effector. The cost of constitutive expression of the intermediate TF in the 792 

absence of the signal was not modeled57, giving this cascade an unrealistic advantage. 793 

 794 

The importance of dynamics and intrinsic noise 795 

 796 

Most previous research on C1-FFLs has used an idealized implementation (e.g. a square wave) of 797 

what a short spurious signal entails4, 48, 66. In real networks, noise arises intrinsically in a greater 798 

diversity of forms, which our model does more to capture. Even when a “clean” form of noise 799 

enters a TRN, it subsequently gets distorted with the addition of intrinsic noise67. Intrinsic noise 800 

is ubiquitous and dealing with it is an omnipresent challenge for selection. Indeed, we see 801 

adaptive diamonds evolve to suppress intrinsic noise, even when we select in the absence of 802 

extrinsic spurious signals. 803 

 804 

The function of a motif relies ultimately on its dynamic behavior, with topology merely a means 805 

to that end. To create two pathways that regulate the effector in different speeds, the C1-FFL 806 

motif uses a pair of short and long pathways, but these also correspond to fast-degrading and 807 
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slow-degrading TFs. This same function was achieved entirely non-topologically in our 808 

adaptively evolved diamond motifs. This agrees with other studies showing that topology alone 809 

is not enough to infer activities such as spurious signal filtering from network motifs 68-70.  810 
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Table S1. Major model parameters  22 

Parameter  Values[1] Bounds[2] References 
Length of cis-regulatory sequence 150 bp  (Yuan et al. 2005) 
Length of TF recognition sequence 8 bp  (Wunderlich & Mirny 2009) 
Length occupied by a TF on each side of recognition sequence 3 bp  (Zhu & Zhang 1999) 

Dissociation constant between TF and perfect TFBS, Kd(0)  10U(-9,-6) mole/liter[3]  (0, 10-5)  (Park et al. 2004; Nalefski et al. 
2006) 

Dissociation constant between TF and non-specific DNA, Kd(3) 10-5 M  (Maerkl & Quake 2007) 
Base rate of transition from Repressed to Intermediate  0.15 min-1  (Katan-Khaykovich & Struhl 2002) 

Maximum transition rate from Repressed to Intermediate  0.92 min-1  (Katan-Khaykovich & Struhl 2002; 
Brown et al. 2013) 

Base rate of transition from Intermediate to Repressed 0.67 min-1  (Katan-Khaykovich & Struhl 2002) 

Maximum transition rate from Intermediate to Repressed  4.11 min-1  
Chosen to give same dynamic 

range and Repressed to 
Intermediate 

Base rate of transition from Intermediate to Active  0.025 min-1  (Brown et al. 2013) 
Maximum transition rate from Intermediate to Active  3.3 min-1  (Brown et al. 2013) 

Transition rate from Active to Intermediate, rAct_to_Int 10N(1.27, 0.226) min-1[4] [0.59, 64.7]  
(Guillemette et al. 2005; 

Pelechano et al. 2010; Brown et 
al. 2013) 

Length of gene, L 10N(2.568, 0.34) codons [50, 5000]  (SGD Project) 
Rate of transcription initiation, rmax_transc_init 6.75 min-1  (Brown et al. 2013) 

Speed of transcription elongation 600 codon/min  (Dujon 1996; Larson et al. 2011; 
Hocine et al. 2013) 

Time for transcribing UTRs and for terminating transcription 1 min  (Dujon 1996; Larson et al. 2011; 
Hocine et al. 2013) 

Rate of mRNA degradation, rmRNA_deg 10N(-1.49, 0.267) min-1 [7.5×10-4, 0.54]  (Wang et al. 2002) 
Speed of translation elongation 330 codon/min  (Siwiak et al. 2010) 
Translation initiation time 0.5 min  (Siwiak et al. 2010) 

Protein synthesis rate, rprotein_syn  
10N(0.322, 0.416) molecule 

mRNA-1 min-1 [4.5×10-3, 61.4]  (Siwiak et al. 2010) 

Rate of protein degradation, rprotein_deg 10N(-1.88, 0.561) min-1 [3.0×10-6, 0.69]  (Belle et al. 2006) 
Saturation concentration of effector protein, Ne_sat 10,000 molecules/cell  (Ghaemmaghami et al. 2003) 
Fitness cost of protein expression for a gene with L = 102.568, 
ctransl  

2×10-6 (molecules/min)-1  (Ghaemmaghami et al. 2003; 
Kafri et al. 2016) 

Maximum number of effector gene copies 5   
Maximum number of TF gene copies, excluding the signal 19   

1 Parameters in bold can be altered by mutation, and the table shows the distributions from which their initial values are 
sampled. Estimation of Ne_sat is described in the Methods; estimation of the other parameters is described in the 
Supplementary Text (Sections 1, 2 – 7, and 8).  
2 Same units as the parameter values. Parentheses mean the parameter cannot take the boundary values; square 
brackets mean it can. We also use these bounds to constrain mutation (see Section 9).  
3 The uniform distribution is denoted U(min, max).  
4 The normal distribution is denoted N(mean, SD).  
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Table S2. Mutation rates and effect sizes 23 

Mutation Relative rate  Effect of mutation[1] 

Single nucleotide substitution 5.25×10-8 per gene  

Gene deletion 1.5×10-7 per gene[2]  

Gene duplication 1.5×10-7 per gene[2]  

Mutation to consensus sequence of a TF 3.5×10-9 per gene  
Mutation to TF identity (activator vs. repressor) 3.5×10-9 per gene  

Mutation to Kd(0) 3.5×10-9 per gene k = 0.5, µ = -5[2], σ = 0.776 

Mutation to L  1.2×10-11 per codon   

Mutation to rprotein_syn   9.5×10-12 per codon k = 0.5, µ = 0.021[2], σ = 0.760 

Mutation to rprotein_deg
 9.5×10-12 per codon k = 0.5, µ = -1.88, σ = 0.739 

Mutation to rAct_to_Int
 9.5×10-12 per codon  k = 0.5, µ = 1.57[2], σ = 0.773 

Mutation to rmRNA_deg 9.5×10-12 per codon  k = 0.5, µ = -1.19, σ = 0.396 

1 Mutation to these quantitative rates takes the form log10𝑥𝑥′ = log10𝑥𝑥 + Normal(𝑘𝑘(𝜇𝜇 − log10𝑥𝑥),𝜎𝜎), where x is the 24 
original value of the rate and x’ is the value after mutation. See Section 9 for details.  25 
2 The value of this parameter is different during burn-in. See Section 9 for details.26 
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 Probability that mutation of this type 
is accepted, given it occurs 

Probability that an accepted mutation is of 
this type, given that it is accepted 

 First 1000 evol. steps Last 1000 evol. steps First 1000 evol. steps Last 1000 evol. steps 
Substitution 0.34 ± 0.01 0.35 ± 0.00 0.180 ± 0.005 0.213 ± 0.008 

Deletion 0.27 ± 0.01 0.21 ± 0.01 0.360 ± 0.003 0.345 ± 0.005 
Duplication 0.34 ± 0.01 0.32 ± 0.01 0.368 ± 0.003 0.343 ± 0.005 

TF recognition seq. 0.30 ± 0.02 0.19 ± 0.02 0.009 ± 0.001 0.005 ± 0.000 
𝒓𝒓𝑨𝑨𝑨𝑨𝑨𝑨_𝒕𝒕𝒕𝒕_𝑰𝑰𝑰𝑰𝑰𝑰 0.33 ± 0.02 0.25 ± 0.01 0.012 ± 0.001 0.010 ± 0.001 
𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎_𝒅𝒅𝒅𝒅𝒅𝒅 0.34 ± 0.02 0.27 ± 0.01 0.014 ± 0.001 0.016 ± 0.002 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒔𝒔𝒔𝒔𝒔𝒔 0.32 ± 0.02 0.23 ± 0.01 0.013 ± 0.001 0.013 ± 0.001 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒅𝒅𝒅𝒅𝒅𝒅 0.35 ± 0.01 0.26 ± 0.01 0.014 ± 0.001 0.015 ± 0.002 
𝑲𝑲𝒅𝒅(𝟎𝟎) 0.28 ± 0.02 0.21 ± 0.02 0.006 ± 0.000 0.005 ± 0.001 

TF identity 0.29 ± 0.01 0.29 ± 0.02 0.008 ± 0.000 0.008 ± 0.001 
Locus length 0.33 ± 0.01 0.36 ± 0.01 0.017 ± 0.001 0.026 ± 0.002 

 28 

Table S3. Summary of mutations that replaced the resident genotype. Data is shown as mean 29 

± SE over the 45 evolutionary replicates under selection for filtering out a spurious signal, with 30 

the signal allowed to regulate the effector directly. Without selection, each mutation would 31 

have probability 50% of replacing the resident; selection reduces this to around one in three at 32 

the beginning of the simulation, down to around one in four at the end. This high rate of 33 

accepting mutations after fitness has plateaued suggests significant nearly neutral evolution, i.e. 34 

that slightly deleterious mutations fix and are then compensated for. The estimated selection 35 

coefficient need only be 10-8 for a mutant to replace the resident, which can be easily occur for a 36 

slightly deleterious mutation through the error in fitness estimation (see Evolution Simulation in 37 

the main text). Single nucleotide substitutions are particularly prone to nearly neutral evolution, 38 

whereas changes to the consensus sequence recognized by a TF are under stronger stabilizing 39 

selection. Deletion and duplication mutations are the most common forms of substitution not 40 

because they are more likely to be accepted, but because they occur at higher mutation rates.  41 
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 Signal TFs Effector 
 Vn / Vs Ms / Mn Vn / Vs Ms / Mn Vn / Vs Ms / Mn 

𝒓𝒓𝑨𝑨𝑨𝑨𝑨𝑨_𝒕𝒕𝒕𝒕_𝑰𝑰𝑰𝑰𝑰𝑰 NA NA 0.89  0.18 8.26 0.13 
𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎_𝒅𝒅𝒅𝒅𝒅𝒅 NA NA 2.09 0.98 13.4 2.55 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒔𝒔𝒔𝒔𝒔𝒔 NA NA 1.51 8.03 43.1 62.4 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒅𝒅𝒅𝒅𝒅𝒅 NA NA 1.28 0.56 7.23 12.5 
𝑲𝑲𝒅𝒅(𝟎𝟎) 0.68 0.002 0.67 0.009 NA NA 

Locus length NA NA 1.01 0.72 2.07 0.79 
 43 

Table S4. Evolutionary constraint on parameters in AND-gated C1-FFLs. Adaptive AND-gated 44 

C1-FFLs are taken from the 25 high-fitness replicates evolved for filtering out a spurious signal, 45 

where the signal directly regulates the effector. For each replicate, we sample one of the last 46 

10,000 evolutionary time steps, and then sample one AND-gated C1-FFL in that genotype, 47 

should there be more than one (or resample a time step for that replicate, if there are none). 48 

We then take the variance Vs of each C1-FFL parameter value across the 25 replicates. We 49 

repeat this sampling process 100 times (using the same 25 replicates) and take the mean in 50 

order to obtain a better estimator of the variance in each parameter value. We compare this by 51 

a comparable variance Vn given no selection. We obtain these from 30 evolutionary replicates 52 

under no selection (from Fig. 6), sampling parameter values from the signal, from one TF gene 53 

copy, and from one effector gene, without the requirement for C1-FFL presence. Variances are 54 

calculated for log-transformed parameter values, except for locus length. For locus length, we 55 

use the coefficient of variation rather than variance, i.e. we divide both variances by the square 56 

of the average locus length. The table also shows the how the parameter values Ms in adaptive 57 

AND-gated C1-FFLs differ from the expected value Mn given no selection. Ms and Mn are 58 

calculated as arithmetic means for locus length and as geometric means for all other 59 

parameters. The variance ratio is greater than 1 (indicating constraint), for all parameters except 60 

Kd(0), where the ratio of mean parameter values indicates that Kd(0) is nevertheless subject to 61 

strong directional selection. Effectors are more constrained than TFs, likely because the former 62 

are less redundant, having evolved fewer gene copies (4.7 on average for effectors vs. 8.6 for 63 

TFs). High degradation rates of effector mRNA and protein suggest selection to shorten the 64 

impact of transient expression in response to a short spurious signal (Fig. S2). High degradation 65 

rates of effector mRNA and protein are also seen in Tables S5 and S6.   66 
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 Signal Fast TFs Slow TFs Effector 
 Vn / Vs Ms / Mn Vn / Vs Ms / Mn Vn / Vs Ms / Mn Vn / Vs Ms / Mn 

𝒓𝒓𝑨𝑨𝑨𝑨𝑨𝑨_𝒕𝒕𝒕𝒕_𝑰𝑰𝑰𝑰𝑰𝑰 NA NA 1.49 0.44 1.15 0.18 6.64 0.1 
𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎_𝒅𝒅𝒅𝒅𝒅𝒅 NA NA 5.27 8.21 1.07 0.81 7.99 2.34 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒔𝒔𝒔𝒔𝒔𝒔 NA NA 2.10 16.2 1.09 4.96 139 57.8 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒅𝒅𝒅𝒅𝒅𝒅 NA NA 12.5 45.3 1.53 0.99 25.7 11.3 
𝑲𝑲𝒅𝒅(𝟎𝟎) 0.65 0.005 0.30 0.004 0.18 0.007 NA NA 

Locus length NA NA 3.43 0.47 3.40 0.47 5.97 0.74 
 67 

Table S5. Evolutionary constraint on parameters in isolated AND-gated diamonds. Vn, Vs, Mn, 68 

and Ms are defined in the same way as in Table S4, and are calculated from 18 high-fitness 69 

evolutionary replicates (Fig. 7B) in which isolated AND-gated diamonds occur in at least 100 of 70 

the last 10,000 evolutionary steps. Because they occur at low rates, we sample 50 times per 71 

evolutionary replicate, instead of 100 times as in Tables S4 and S6. There is more constraint on 72 

fast TFs than on slow TFs. The fast TFs usually have more gene copies than the slow TFs, 73 

therefore redundancy is not the reason for this difference in constraint. As seen for the C1-FFLs 74 

in Table S4, effectors are more constrained than either TF, Kd(0) shows strong selection for high 75 

affinity combined with high variance, and effectors evolve rapid degradation. Fast TFs exhibit 76 

not just fast protein degradation (which was used for their identification), but also fast mRNA 77 

degradation.  78 
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 Signal Signal-regulated TFs TF-regulated TFs Effector 
 Vn / Vs Ms / Mn Vn / Vs Ms / Mn Vn / Vs Ms / Mn Vn / Vs Ms / Mn 

𝒓𝒓𝑨𝑨𝑨𝑨𝑨𝑨_𝒕𝒕𝒕𝒕_𝑰𝑰𝑰𝑰𝑰𝑰 NA NA 2.16 0.33 1.03 0.26 6.81 0.13 
𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎_𝒅𝒅𝒅𝒅𝒅𝒅 NA NA 10.8 8.5 1.40 0.74 12.4 2.36 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒔𝒔𝒔𝒔𝒔𝒔 NA NA 4.34 24.9 2.35 9.83 119 58.6 
𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒅𝒅𝒅𝒅𝒅𝒅 NA NA 73.6 49.4 1.50 0.34 34.1 9.92 
𝑲𝑲𝒅𝒅(𝟎𝟎) 0.51 0.005 0.29 0.009 0.24 0.002 NA NA 

Locus length NA NA 2.52 0.71 2.45 0.71 3.35 0.73 
 79 

Table S6. Evolutionary constraint on parameters in isolated AND-gated C1-FFLs. Vn, Vs, Mn, and 80 

Ms are defined in the same way as in Table S4, and are calculated from 12 high-fitness 81 

evolutionary replicates (Fig. 7B) evolved when the signal cannot directly regulate the effector, 82 

and in which isolated AND-gated C1-FFLs occur in at least 1,000 out of the last 10,000 83 

evolutionary steps. Note that the signal-regulated TFs, which are identified via network 84 

topology, also have high protein degradation rates, as is used to identify their fast TF 85 

counterparts in diamonds – they can thus be seen as a kind of fast TF. Consistent with results on 86 

C1-FFLs when direct regulation is allowed (Table S4) and results on isolated AND-gated 87 

diamonds (Table S5), effectors are more constrained than signal-regulated (fast) TFs, which are 88 

more constrained than TF-regulated (slow) TFs, despite an opposite trend in gene copy number. 89 

Note that selection promotes fast mRNA and protein degradation in fast TFs, but promotes slow 90 

degradation of slow TFs; this result is also found more weakly in Table S5. 91 

92 
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Supplementary Figures 93 

 94 

Fig. S1. Feed-forward loops come in eight subtypes. TF A and TF B can activate (indicated by 95 

arrows) or repress (indicated by bars) expression of the effector C as well as other TFs. Auto-96 

regulation is allowed, but not shown. Following Milo et al. (2002), we exclude the case in which 97 

A and B regulate one another, rather than treating this case as two overlapping FFLs. C stands 98 

for coherent and I for incoherent.  99 
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 100 

Fig. S2 Examples of evolved phenotypes under selection for filtering out a short spurious 101 

signal. The figure shows trajectories of the effector protein in one randomly chosen high-fitness 102 

replicate (red) and one randomly chosen low-fitness replicate (blue), as defined in Fig. 4A. The 103 

genotype of the final evolutionary step is used, and other genotypes were confirmed to behave 104 

similarly. Each genotype is illustrated by 5 replicate developmental simulations in each of the 105 

two environments. The high-fitness genotype has a longer delay followed by more rapid 106 

response given a consistent signal, with this longer delay reducing but not eliminating effector 107 

expression given a short spurious signal. The signal is allowed to directly regulate the effector in 108 

these simulations. The burn-in period is not shown, with developmental time zero 109 

corresponding to the moment the signal is turned on. Among developmental replicates of the 110 

same genotype, the concentration at a given time usually has an approximately log-normal 111 

distribution, but in environment 2 the distribution has two modes after the spurious signal turns 112 

off. One mode corresponds to expression at the basal rate, the other to a burst of expression 113 

that has yet to turn off. Because of this bimodality, we plot sample trajectories rather than 114 

mean concentration over many replicates.  115 
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 116 
Fig. S3 Representative fitness trajectories under selection to filter out short spurious signals. 117 

Left panels: The signal is allowed to directly regulate the effector genes. Panels 1 and 3 118 

correspond to the two genotypes shown in Fig. S2. Right panels: the signal cannot directly 119 

regulate the effector genes. Average fitness (black) is a weighted average of the blue and red 120 

trajectories, with environment 2 (where the signal is spurious) being considered twice as 121 

common as environment 1 (where the signal is sustained and real). When the signal cannot 122 

directly regulate the effector genes, evolutionary simulations begins with a burn-in phase that 123 

lasts 1000 evolutionary steps (see Evolutionary Simulation in the Main Text). We show the burn-124 

in phase in undiluted color, and dilute color after burn-in. Most replicates quickly reach a stable 125 

fitness plateau (first and third rows). Certain replicates can be temporarily trapped at a low 126 

fitness plateau (second and third rows on the left).  127 
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 128 

Fig. S4 Genotypes evolved under control selective conditions: (A) “no spurious signal”, and (B) 129 

“harmless spurious signal”. There is no clear evidence of a multimodal distribution of fitness 130 

outcomes among replicates (left), and C1-FFLs occur equally in the 10 genotypes of the highest 131 

fitness vs. the 10 genotypes of the lowest fitness (right), and so the entire distribution (left) was 132 

used to produce Fig. 6. Data are shown as mean±SE over evolutionary replicates.  133 
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 134 

Fig. S5 Fitness distribution of 258 evolutionary replicates under selection for filtering out short 135 

spurious signals, when the signal cannot directly regulate the effector. The fitness of a 136 

replicate is the average genotype fitness over the last 10,000 evolutionary steps. Colors indicate 137 

replicates analyzed elsewhere.  138 
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 139 

Fig. S6 Evolution when responding to a spurious signal is harmless, when the signal is not 140 

allowed to directly regulate the effector. (A) Fitness distribution of 50 replicate simulations. 141 

The occurrence of both (B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 142 

genotypes with the highest fitness vs. in 10 genotypes with the lowest fitness. Weak (two-143 

mismatch) TFBSs are included when scoring motifs. Data are shown as mean±SE over replicates. 144 

Isolated C1-FFLs rarely evolve under this condition, therefore their occurrence is not plotted.  145 
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 146 

Fig. S7 Evolution when there is no spurious signal, when the signal is not allowed to directly 147 

regulate the effector. (A) Fitness distribution of 46 replicate simulations. The occurrence of both 148 

(B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 genotypes with the highest 149 

fitness vs. in the 10 genotypes with the lowest fitness. Weak (two-mismatch) TFBSs are included 150 

when scoring motifs. Data are shown as mean±SE over replicates. Isolated C1-FFLs rarely evolve 151 

under this condition, therefore their occurrence is not plotted.  152 
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Fig. S8 Selection for filtering out a short spurious signal is the primary way to evolve AND-153 

gated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of spurious 154 

signals (B). The signal is not allowed to directly regulate the effector, and the right panels of (A) 155 

and (B) are identical to Fig. 10. When scoring motifs, we either include (left) or exclude (right) all 156 

two-mismatch TFBSs in the cis-regulatory sequences of intermediate TF genes and effector 157 

genes. We excluded “no regulation” (Fig. 2) diamonds from the “Any logic” and “Non-AND-158 

gated” tallies in (B); this was necessary because of their high occurrence due to duplication and 159 

divergence of intermediate TFs. See Section 11 for the calculation of y-axis. Data are shown as 160 

mean±SE over evolutionary replicates. 161 
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 162 

Fig. S9 After removing cost of gene expression, AND-gated C1-FFLs are still associated with a 163 

successful response to selection for filtering out a short spurious signal. The signal can directly 164 

regulate the effector genes. (A) We arbitrarily divide the 36 replicate simulations into high-165 

fitness (red) and low-fitness (blue) groups. (B) The high-fitness replicates still evolve AND-gated 166 

C1-FFLs. Bars are mean±SE of the occurrence over replicate evolutionary simulations.   167 
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Supporting Text 168 

1. TF binding 169 

Transcription of each gene is controlled by TFBSs present within a 150-bp cis-regulatory region, 170 

corresponding to a typical yeast nucleosome-free region within a promoter (Yuan et al. 2005). 171 

The perfect TFBS for a typical yeast TF has information content equivalent to 13.8 bits 172 

(Wunderlich & Mirny 2009); this means that in a simplified model of binding where only one of 173 

the four nucleotides is a good match at each site, ~7 bp are recognized as an optimal consensus 174 

binding site. Maerkl & Quake (2007) reported that the TFBSs of two yeast TFs, Pho4p and Cbf1p, 175 

can have up to 2 mismatched sites within their 6 bp consensus binding sequence, while still 176 

binding the TF above background levels (Maerkl & Quake 2007). Our model therefore tracks 177 

TFBSs with up to 2 mismatches. This low information content implies a higher density of TFBSs 178 

within our cis-regulatory regions than our algorithm was able to handle, so we instead assigned 179 

each TF an 8-bp consensus sequence. Two TFs cannot simultaneously occupy overlapping 180 

stretches (Fig. S10), which we assume extend beyond the recognition sequence to occupy a total 181 

of 14 bp (Zhu & Zhang 1999); this captures competitive binding. The consequences of hindrance 182 

between TFBSs for the regulation of effector gene expression are shown in Fig. 2.  183 

  184 

 185 

Fig. S10 TFs (white boxes) recognize 8 bp (red) sites while occupying and thus excluding other 186 

TFs from a 14 bp long space. TFs are assumed to bind in either orientations (Sharon et al. 2012). 187 

The sequence on the left allows simultaneous binding but that on the right does not. 188 
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 189 

We denote the dissociation constant of a TFBS with m mismatches as Kd(m). Sites with m>3 190 

mismatches are assumed to still bind at a background rate equal to m=3 mismatches, with 191 

dissociation constant Kd(3) = 10-5 mole/liter (Maerkl & Quake 2007) for all TFs. We assume that 192 

each of the last three base pairs makes an equal and independent additive contribution ΔGbp < 0 193 

to the binding energy (Benos et al. 2002): although not always true, this approximates average 194 

behavior well (Maerkl & Quake 2007). We ignore cooperativity in binding. Dissociation constants 195 

of eukaryotic TFs for perfect TFBSs can range from 10-5 mole/liter (Park et al. 2004) to 10-11 196 

mole/liter (Nalefski et al. 2006). We initialize each TF with its own value of log10(Kd(0)) sampled 197 

from a uniform distribution between -6 and -9, with mutation capable of further expanding this 198 

range, subject to Kd(0) < 10-5 mole/liter. Substituting m=0 and m=3 into 199 

 200 

∆𝐺𝐺𝑚𝑚 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾𝑑𝑑(𝑚𝑚) = ∆𝐺𝐺0 − min (𝑚𝑚, 3)∆𝐺𝐺𝑏𝑏𝑏𝑏, 201 

 202 

we can solve for ΔGbp and ∆𝐺𝐺0, and thus obtain Kd(1) and Kd(2) (the dissociation constants for 203 

TFBS with one and two mismatches, respectively).  204 

 205 

Because TFs bind non-specifically to DNA at a high background rate, each nucleosome-free 206 

stretch of 14 bp can be considered to be a non-specific binding site (NSBS). A haploid S. 207 

cerevisiae genome is 12 Mb, 80% of which is wrapped in nucleosomes (Lee et al. 2007), yielding 208 

approximately 106 potential non-specific binding sites (NSBSs). In a yeast nucleus of volume 209 

3×10-15 liters, the NSBS concentration is of order 10-4 mole/liter. To find the concentration of 210 

free TF [TF] in the nucleus given a total nucleic TF concentration of CTF, we consider  211 

 212 
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𝐾𝐾𝑑𝑑 =
[binding_site][TF]
[binding_site ∙ TF], 213 

 214 

in the context of NSBSs, substitute [TF∙NSBS] with CTF - [TF], and solve for 215 

 216 

[TF] = 𝐾𝐾𝑑𝑑(3)
𝐾𝐾𝑑𝑑(3)+[NSBS]𝐶𝐶𝑇𝑇𝑇𝑇 = 10−5

10−5+10−4
𝐶𝐶𝑇𝑇𝑇𝑇 ≈ 0.1𝐶𝐶𝑇𝑇𝑇𝑇. 217 

 218 

Thus, about 90% of total TFs are bound non-specifically, leaving about 10% free. The relatively 219 

small number of specific TFBSs is not enough to significantly perturb the proportion of free TFs, 220 

and so for the specific TFBSs with m<3 that are of interest in our model, we simply use 𝐾𝐾𝑑𝑑� (m) = 221 

10Kd(m) to account for the reduction in the amount of available TF due to non-specific binding. 222 

We also convert 𝐾𝐾𝑑𝑑�  from the units of mole/liter in which Kd is estimated empirically to the more 223 

convenient molecules/nucleus. The rescaling factor r for which 𝐾𝐾𝑑𝑑� (in molecule/nucleus) = 𝑟𝑟𝐾𝐾𝑑𝑑�  224 

(in mole/liter) is 3×10-15 liter/nucleus × 6.02×1023 molecule/mole = 1.8×109 molecule cell-1 liter 225 

mole-1. Taken together, 𝐾𝐾𝑑𝑑� (molecule/nucleus) = 10rKd (mole/liter), where the factor 10 accounts 226 

for non-specific TF binding. 227 

 228 

2. TF occupancy 229 

Here we calculate the probability that there are A activators and R repressors bound to a given 230 

cis-regulatory region at a given moment in developmental time. First we note that if we consider 231 

TF i binding to TFBS j in isolation from all other TFs and TFBSs, Eq. S1 gives us probability of 232 

being bound: 233 

 234 

𝑃𝑃𝑏𝑏(𝑗𝑗) = 1 − 𝑃𝑃𝑢𝑢(𝑗𝑗) = 𝐶𝐶𝑖𝑖
𝐾𝐾𝑑𝑑�+𝐶𝐶𝑖𝑖

.       (S1) 235 
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 236 

Let 𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑛𝑛) be a term proportional (for a given value of 𝑛𝑛) to the combined probability of all binding 237 

configurations in which exactly A activators and R repressors are bound to the first n binding 238 

sites along the cis-regulatory sequence. We calculate 𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑛𝑛) recursively, considering one 239 

additional TFBS at each step. Note that if two different TFs bind to exactly the same location on 240 

a cis-regulatory region, we treat this as two TFBSs, not as one, and treat first one and then the 241 

other in our recursive algorithm. 242 

 243 

Consider the case where the (n+1)th binding site belongs to an activator. The case where this 244 

activator is not bound contributes 𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑛𝑛)𝑃𝑃𝑢𝑢(𝑛𝑛 + 1) to 𝑃𝑃𝐴𝐴,𝑅𝑅

(𝑛𝑛+1). If it is bound, then we must also 245 

take into account that the (n+1)th binding site overlaps (partially or completely) with the last 246 

𝐻𝐻 ≥ 0 sites, and so contributes 𝑃𝑃𝐴𝐴−1,𝑅𝑅
(𝑛𝑛−𝐻𝐻)𝑃𝑃𝑏𝑏(𝑛𝑛 + 1)∏ 𝑃𝑃𝑢𝑢(𝑗𝑗)𝑛𝑛

𝑗𝑗=𝑛𝑛−𝐻𝐻+1 . Taken together,  247 

 248 

𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑛𝑛+1) = 𝑃𝑃𝐴𝐴,𝑅𝑅

(𝑛𝑛)𝑃𝑃𝑢𝑢(𝑛𝑛 + 1) + 𝑃𝑃𝐴𝐴−1,𝑅𝑅
(𝑛𝑛−𝐻𝐻)𝑃𝑃𝑏𝑏(𝑛𝑛 + 1)∏ 𝑃𝑃𝑢𝑢(𝑗𝑗).𝑛𝑛

𝑗𝑗=𝑛𝑛−𝐻𝐻+1   249 

 250 

Similarly, if the (n+1)th site belongs to a repressor, we have 251 

 252 

𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑛𝑛+1) = 𝑃𝑃𝐴𝐴,𝑅𝑅

(𝑛𝑛)𝑃𝑃𝑢𝑢(𝑛𝑛 + 1) + 𝑃𝑃𝐴𝐴,𝑅𝑅−1
(𝑛𝑛−𝐻𝐻)𝑃𝑃𝑏𝑏(𝑛𝑛 + 1)∏ 𝑃𝑃𝑢𝑢(𝑗𝑗).𝑛𝑛

𝑗𝑗=𝑛𝑛−𝐻𝐻+1   253 

 254 

By definition, 𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑛𝑛) = 0 for binding configurations that are impossible, e.g. those with negative A 255 

or negative R. We initialize the recursion at n = 0, where the only valid binding configuration is 256 

for A = R = 0, i.e. 𝑃𝑃0,0
(0) = 1. At n = 1, 𝑃𝑃0,0

(1) ∝ 𝑃𝑃𝑢𝑢(1), and if the binding site belongs to an activator, 257 

𝑃𝑃1,0
(1) ∝ 𝑃𝑃𝑏𝑏(1); otherwise, 𝑃𝑃0,1

(1) ∝ 𝑃𝑃𝑏𝑏(1). For N = 1, the two probabilities sum to 1 and 258 
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normalization is unnecessary. For higher values of N= NA+NR TFBSs, we normalize 𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑁𝑁) at the 259 

end of the recursion by dividing by ∑ ∑ 𝑃𝑃𝐴𝐴,𝑅𝑅
(𝑁𝑁)𝑁𝑁𝑅𝑅

𝑅𝑅=0
𝑁𝑁𝐴𝐴
𝐴𝐴=0  to get the probability of binding 260 

configurations that include exactly A activators and R repressors. 261 

 262 

3. rAct_to_Int 263 

Transcription initiation over an interval of time rtransc_init is proportional to the proportion of time 264 

spent in the Active state. Assuming a steady state between Repressed, Intermediate, and Active 265 

states, as a function of current TF concentrations, we have: 266 

 267 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡_𝐴𝐴𝐴𝐴𝐴𝐴
𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡_𝐴𝐴𝐴𝐴𝐴𝐴+𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴_𝑡𝑡𝑡𝑡_𝐼𝐼𝐼𝐼𝐼𝐼

𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼_𝑜𝑜𝑜𝑜_𝐴𝐴𝐴𝐴𝐴𝐴 ,      (S2) 268 

 269 

where PInt_or_Act is the probability a gene is at Intermediate or Active. We set rmax_transc_init (the rate 270 

of transcription given 100% Active state) to 6.75 min-1, based on the corresponding rate when a 271 

model of the PHO5 promoter is fit to data (Brown et al. 2013). In this model fit, the 272 

constitutively expressed PHO5 promoter is free of nucleosomes 80% of the time, i.e. PInt_or_Act = 273 

0.8. We take these two values as universal for constitutively expressed genes, and assume that 274 

variation in rAct_to_Int is responsible for variation in rtransc_init. To identify a set of constitutively 275 

expressed genes, we identified 225 genes that have mRNA production rate of at least 0.5 276 

molecule min-1 from genome-wide measurements (Pelechano et al. 2010); this threshold 277 

corresponds to low H2A.Z occupancy (Guillemette et al. 2005). We set rtransc_init to the production 278 

rate of mRNA of these 225 genes, and solve for gene-specific rAct_to_Int from Eq. S2. We fit the 279 

solutions to a log-normal distribution and arrive at 10N(1.27, 0.226) min-1.  280 

 281 
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To initialize values of rAct_to_Int for each gene, we sample from this distribution. We also set lower 282 

and upper bounds for allowable values; if either the initial sample or subsequent mutation put 283 

rAct_to_Int beyond these bounds, we set the value of rAct_to_Int to equal to boundary value. We set 284 

the lower bound for rAct_to_Int at 0.59 min-1, half the minimum of the values inferred from the set 285 

of 225 genes. To set an upper bound, we use the low H2A.Z occupancy bound of rtransc_init = 0.5, 286 

which gives a solution of 32.34 min-1; we double this to set the upper bound as 64.7 min-1. 287 

 288 

4. Transcription delay times 289 

Yeast protein lengths fit a log-normal distribution of 10N(2.568, 0.34) amino acids (from the 290 

Saccharomyces Genome Database (SGD Project), excluding mitochondrial proteins). We sample 291 

ORF length L from this distribution. To constrain the values of L, we set a lower bound of 50 292 

amino acids and an upper bound of 5000 amino acids; the longest protein in SGD is 4910 amino 293 

acids. If either initialization or mutation put L beyond these bounds, we set the value of L to the 294 

boundary value. 295 

 296 

With an mRNA elongation rate of 600 codon/min (Larson et al. 2011; Hocine et al. 2013), it takes 297 

L / 600 minutes to transcribe the ORF of an mRNA. Also including time for transcribing UTRs and 298 

for transcription termination, and ignoring introns for simplicity, it takes 290 seconds to 299 

complete transcription of the yeast GLT1 gene (Larson et al. 2011), whose ORF is 6.4kb. Putting 300 

the two together, we infer that transcribing the UTRs and terminating transcription takes 301 

around 1 minute for GLT1. Generalizing to assume that transcribing UTRs and terminating 302 

transcription takes exactly 1 minute for all genes, producing an mRNA from a gene of length L 303 

takes 1 + L / 600 minutes.  304 

 305 
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5. Translation delay times and rprotein_syn 306 

We model a second delay between the completion of a transcript and the production of the first 307 

protein from it. The delay comes from a combination of translation initiation and elongation; it 308 

ends when the mRNA is fully loaded with ribosomes all the way through to the stop codon and 309 

the first protein is produced. We ignore the time required for mRNA splicing; introns are rare in 310 

yeast (Dujon 1996). mRNA transportation from nucleus to cytosol, which is likely diffusion-311 

limited (Niño et al. 2013; Smith et al. 2015), is fast even in mammalian cells (Mor et al. 2010) let 312 

alone much smaller yeast cells, and the time it takes is also ignored. The median time in yeast 313 

for initiating translation is 0.5 minute (Table 1 in Siwiak et al. 2010), and the genomic average 314 

peptide elongation rate is 330 codon/min (Siwiak et al. 2010). After an mRNA is produced, we 315 

therefore wait for 0.5 + L / 330 minutes, and then model protein production as continuous at a 316 

gene-specific rate rprotein_syn.  317 

 318 

To calculate rprotein_syn , we combine the gene-specific ribosome densities D along the mRNAs and 319 

the gene-specific peptide elongation rates E, both measured in yeast (Siwiak et al. 2010). The 320 

values of DE across yeast genes fit the log-normal distribution 10N(0.322, 0.416) molecule mRNA-1 321 

min-1; we initialize rprotein_syn for each gene by sampling from this distribution. We set the lower 322 

bound for rprotein_syn at half the minimum observed value of DE (4.5×10-3 molecule mRNA-1 min-1). 323 

The upper bound corresponds to an mRNA fully occupied by rapidly moving ribosomes. Each 324 

ribosome occupies about 10 codons (Siwiak et al. 2010), and the peptide elongation rate can be 325 

as high as 614 codon/min (Waldron et al. 1977). If ribosomes are packed closely together at 10 326 

codons apart, a protein comes off the end of production in the time taken to elongate 10 327 

codons, i.e. proteins are produced at 61.4 molecules per minute. If either initialization or 328 

mutation put rprotein_syn beyond these bounds, we set the value of rprotein_syn to the boundary value. 329 
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 330 

6. mRNA and protein decay rates 331 

We fit the log-normal distribution 10N(-1.49, 0.267) min-1 to yeast mRNA degradation rates (Wang et 332 

al. 2002), and initialize the mRNA degradation rate rmRNA_deg for each gene by sampling from this 333 

distribution. We set lower and upper bounds for rmRNA_deg at half the minimum and twice the 334 

maximum observed values (7.5×10-4 min-1 and 0.54 min-1), respectively. If either initialization or 335 

mutation put rmRNA_deg beyond these bounds, we set the value of rmRNA_deg to the boundary value. 336 

 337 

Expressing the estimated half-lives of yeast proteins (Belle et al. 2006) in terms of protein 338 

degradation rates, they fit the log-normal distribution 10N(-1.88, 0.56) min-1; we initialize gene-339 

specific protein degradation rates rprotein_deg by sampling from this distribution. We ignore the 340 

additional reduction in protein concentration due to dilution as the cell grows and thus 341 

increases in volume. We set lower and upper bounds for rprotein_deg at half the minimum and twice 342 

the maximum observed degradation rate (3.0 × 10−6 min-1 and 0.69 min-1), respectively. If 343 

either initialization or mutation put rprotein_deg beyond these bounds, we set the value of rprotein_deg 344 

to the boundary value.  345 

 346 

7. Simulation of gene expression 347 

Our algorithm is part-stochastic, part-deterministic. We use a Gillespie algorithm (Gillespie 348 

1977) to simulate stochastic transitions between Repressed, Intermediate, and Active chromatin 349 

states, and to simulate transcription initiation and mRNA decay events. We refer to these as 350 

“Gillespie events”. The completion of transcription to produce a complete mRNA, and 351 

subsequent ribosomal loading onto the mRNA, are referred to as “fixed events” (they require 352 

fixed times of 1 + L / 600 minutes and 0.5 + L / 330 minutes, respectively). Scheduled changes in 353 
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the strength of the external signal are also fixed events. Protein production and degradation are 354 

described deterministically with ODEs, and updated frequently in order to recalculate TF 355 

concentrations and hence chromatic transition rates. Updates occur at the time of Gillespie and 356 

fixed events, and also in between. 357 

 358 

The total rate of all Gillespie events is 359 

 360 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅_𝑡𝑡𝑡𝑡_𝐼𝐼𝐼𝐼𝐼𝐼_𝑖𝑖 + ∑ (𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑅𝑅_𝑖𝑖 + 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼_𝑡𝑡𝑡𝑡_𝐴𝐴𝐴𝐴𝐴𝐴_𝑖𝑖)𝐼𝐼𝐼𝐼𝐼𝐼
𝑖𝑖 + ∑ (𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴_𝑡𝑡𝑡𝑡_𝐼𝐼𝐼𝐼𝐼𝐼_𝑖𝑖 + 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝐴𝐴𝐴𝐴𝐴𝐴

𝑖𝑖 +𝑅𝑅𝑅𝑅𝑅𝑅
𝑖𝑖361 

∑ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖 ,  362 

 363 

 364 

where Rep, Int, and Act are the numbers of gene copies in our haploid model that are in the 365 

Repressed, Intermediate, and Active chromatin states, respectively, and NmRNA_i is the number of 366 

completely transcribed mRNA molecules from gene i. We only simulate degradation of full 367 

transcribed mRNA, and not that of mRNA that are still being transcribed, because the latter are 368 

already captured implicitly by rmax_transc_init, which is based on mRNAs that complete transcription 369 

(Brown et al. 2013). Once an mRNA finishes transcription, it is subjected to degradation 370 

regardless of whether ribosome loading is complete.  371 

 372 

The waiting time ∆t before the next Gillespie event is  373 

 374 

∆𝑡𝑡 = 𝑥𝑥
𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

,  375 

 376 
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where x is random number drawn from an exponential distribution with mean 1. Which Gillespie 377 

event takes place next is sampled only if a different update does not happen first. If a fixed 378 

event is scheduled to happen first at Δt1 < Δt, we advance time by Δt1, update the state of the 379 

cell, and calculate a new rtotal’. Since the cellular activity has been going on with the old rate rtotal 380 

for Δt1, the remaining “labor” required to trigger the Gillespie event planned earlier is reduced. 381 

The new waiting time, Δt’, to trigger the planned Gillespie event is 382 

 383 

∆𝑡𝑡′ = 𝑥𝑥−𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎∆𝑡𝑡1
𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′

.  384 

 385 

Gene duplication creates 𝑛𝑛 ≥ 1 genes producing the same protein, where each copy i might 386 

have diverged in their production rate rprotein_syn_i and degradation rate rprotein_deg_i. Complete 387 

proteins are produced continuously once an mRNA molecule is fully loaded with ribosomes, 388 

which occurs 0.5 + L / 330 minutes after transcription is complete – the concentration of such 389 

molecules is denoted NmRNA_aft_delay_i(t). Total protein concentration obeys: 390 

 391 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ (𝑡𝑡) = ∑ �𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖(𝑡𝑡) − 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖(𝑡𝑡)�𝑛𝑛
𝑖𝑖 . (S3) 392 

 393 

Protein concentrations are updated using a closed-form integral of Eq. S3 394 

 395 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡1) = ∑ (𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖

𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖
+ (𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖(𝑡𝑡0) −𝑛𝑛

𝑖𝑖396 

𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠_𝑖𝑖𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖

𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖
)𝑒𝑒−𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖(𝑡𝑡1−𝑡𝑡0))      (S4) 397 

 398 
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with this expression updated every time a Gillespie or fixed event at time t1 changes the value of 399 

NmRNA_aft_delay_i. 400 

  401 

In between updates, values of PA, PR, PA_no_R, and PnotA_no_R, and hence chromatin transition rates, 402 

are calculated under the approximation of constant 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Additional updates, above and 403 

beyond fixed and Gillespie events, are performed in order to ensure that chromatin transition 404 

rates do not change too dramatically from one update to the next. We use a target of D = 0.01 405 

for the amount of change tolerated in the values of PA, PR, PA_no_R, and PnotA_no_R, in order to 406 

schedule updates after time ∆𝑡𝑡∗, which are triggered when neither a Gillespie event nor a fixed 407 

event occurs before this time has elapsed, i.e. when ∆𝑡𝑡∗ < ∆𝑡𝑡1 and ∆𝑡𝑡∗ < ∆𝑡𝑡. 408 

 409 

There is the greatest potential for large changes after an update that changes the value of 410 

NmRNA_aft_delay_i. In this case, we use Eq. S1 to solve for the time interval for which the probability 411 

that TF i would be bound to a single perfect and non-overlapping TFBS would change by D, by 412 

choosing Δt* > 0 that satisfies 413 

 414 

� 𝑁𝑁𝑖𝑖(𝑡𝑡)
𝑁𝑁𝑖𝑖(𝑡𝑡)+𝐾𝐾𝑑𝑑,𝑖𝑖

∗ (0)
− 𝑁𝑁𝑖𝑖(𝑡𝑡+∆𝑡𝑡∗)

𝑁𝑁𝑖𝑖(𝑡𝑡+∆𝑡𝑡∗)+𝐾𝐾𝑑𝑑,𝑖𝑖
∗ (0)

� = 𝐷𝐷.       (S5) 415 

 416 

A solution for Δt may not exist, e.g. if the concentration of TF i is decreasing but Pb(t2) < D. In 417 

such cases, we set ∆𝑡𝑡∗ to infinity. 418 

 419 

When the previous update does not change any NmRNA_aft_delay_i values, then we modify ∆𝑡𝑡∗ 420 

adaptively. Let d be the maximum of ΔPA, ΔPR, ΔPA_no_R, and ΔPnotA_no_R during the last update. We 421 

then schedule an update at 422 
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 423 

∆𝑡𝑡∗′ = 𝐷𝐷
𝑑𝑑
∆𝑡𝑡∗.         (S6) 424 

 425 

After an update that changes the value of NmRNA_aft_delay_i, we use the smaller value from Eqs. S5 426 

and S6. These additional update times are discarded and recalculated when a Gillespie or fixed 427 

event occurs first. 428 

 429 

In Fig. S11, we see that simulations rarely exceed our target of D=0.01, and do so only modestly. 430 

 431 

 432 

Fig. S11 Our updating algorithm is able to limit simulation errors. The distribution across 9,000 433 

simulations of the maximum value of d over the course of development. For each of the 45 434 

evolutionary replicates in Fig. 4, we run 200 simulations of development of the final evolved 435 

genotype. These genotypes were the outcome of evolution under selection for filtering out 436 

short spurious signals, in which direct regulation of the effector by the signal is not allowed. In 437 

environment 1 a genotype responds to a constant “ON” signal and in environment 2 it responds 438 

to a short spurious signal (Fig. 3). 439 

 440 
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8. Cost of gene expression 441 

The cost of gene expression comes from some combination of the act of expression and from 442 

the presence of the resulting gene product. Yeast cells with plasmids carrying fast-degrading 443 

GFP had as much growth impairment as those carrying wild-type GFP (Fig. 3 of Kafri et al. 2016), 444 

suggesting that the former cost dominates. Universal costs stemming from the act of gene 445 

expression include the consumption of energy (Wagner 2005; Wagner 2007) and the 446 

opportunity cost of not using ribosomes to make other gene products (Scott et al. 2014). While 447 

some costs arise from transcription (Kafri et al. 2016), we simplify our model by attributing all of 448 

the cost of expression to the act of translation. 449 

 450 

Kafri et al. (2016) reported that, in rich media, the growth rate of haploid yeast is reduced by 451 

about 1% when mCherry is expressed to about 2% of proteome. With bmax = 1 giving the growth 452 

rate of the yeast when mCherry is not expressed, we have the cost of gene expression equal to 453 

0.01. Next, we estimate the production rate of mCherry in Kafri et al. (2016) by assuming that 454 

mCherry is in steady state between production and dilution due to cell division; fluorescent 455 

proteins tend to be stable such that degradation can be ignored (Snapp 2009). Ghaemmaghami 456 

et al. (2003) estimated that a haploid yeast cell contains about 5×107 protein molecules, 2% of 457 

which are now mCherry. Over a 90 minute cell cycle in Kafri et al. (2016), about 5×105 mCherry 458 

molecule per cell need to be expressed in order to double in numbers. This yields a production 459 

rate of about 5×103 mCherry molecules per minute per cell. Because the total cost of gene 460 

expression is 0.01, the cost at a protein production rate of one mCherry molecule per minute 461 

per cell, 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, is 2×10-6. Long genes should be more expensive to express than short ones; for 462 

a gene of length L, we assume its cost of expression is 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡L / 370, where 370 is the geometric 463 

mean length of a yeast protein as described above in Section 4. Results using the length of 464 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/393884doi: bioRxiv preprint 

https://doi.org/10.1101/393884
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

mCherry instead, i.e. a slightly higher cost of expression of 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡L / 236, are unlikely to be 465 

significantly different. 466 

 467 

The overall cost of gene expression at time t, C(t) is: 468 

 469 

𝐶𝐶(𝑡𝑡) = 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(∑
𝐿𝐿𝑖𝑖

102.568 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑖𝑖𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖(𝑡𝑡)𝑛𝑛
1 +470 

∑ 𝐿𝐿𝑖𝑖
102.568

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑖𝑖
2

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖(𝑡𝑡))𝑛𝑛
1 .  471 

 472 

The second term represents transcripts that are on average half-loaded with ribosomes, and 473 

hence experiencing on average half the cost of translation. We integrate C(t) within segments of 474 

constant C(t) to obtain the overall cost of gene expression during a simulation.  475 

  476 

9. Mutation 477 

Because we use an origin-fixation approach, only the relative and not the absolute values of our 478 

mutation rates matter. In S. cerevisiae, the rates of small indels and of single nucleotide 479 

substitutions have been estimated as 0.2×10-10 per base pair and 3.3×10-10 per base pair, 480 

respectively (Lynch et al. 2008). Thus, cis-regulatory sequences are primarily shaped by single 481 

nucleotide substitutions. We do not model small indels in the cis-regulatory sequence, but 482 

increase the single nucleotide substitution up to 3.5×10-10 per base pair to compensate. This 483 

corresponds to a rate of 5.25×10-8 per 150 bp cis-regulatory sequence. 484 

 485 

Lynch et al. (2008) also report a rate of gene duplication of 1.5×10-6 per gene and of deletion of 486 

1.3×10-6 per gene (not including non-deletion-based loss of function mutations). These values 487 

turned out to swamp the evolution of TFBSs and hence significantly slow down our simulations, 488 
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so we chose values 10-fold lower, making both gene duplication and gene deletion occur at rate 489 

1.5×10-7 per gene. This preserves their numerical excess but reduces its magnitude. 490 

 491 

Our model contains 8 gene-specific parameters, namely L, rAct_to_Int, rprotein_deg, rprotein_syn, rmRNA_deg, 492 

the Kd(0) of a TF, whether a TF is an activator vs. repressor, and the consensus binding sequence 493 

of a TF. We assume mutations to L are caused by relatively neutral small indels, which we 494 

assume to be 20% of all small indels; mutation to L therefore occurs at rate 1.2×10-11 per codon, 495 

i.e. 1.2×10-11L for a gene of length L. For rAct_to_Int, we assume that it is altered by 10% of all the 496 

point mutations (single nucleotide substitution and small indels) to the core promoter of a gene. 497 

The length of a core promoter is about 100 bp and is relatively constant among genes (Roy & 498 

Singer 2015), yielding a mutation rate of rAct_to_Int of 3.5×10-9 per gene.  499 

 500 

The remaining 6 gene-specific parameter mutation rates are parameterized with lower accuracy 501 

due to lack to data; the principal decision is which to make dependent vs. independent of gene 502 

length. TF binding to DNA depends on particular peptide motifs whose length is likely 503 

independent of TF length, therefore we make mutation rates independent of gene length for 504 

mutations to Kd(0), to the consensus binding sequence of a TF, and to the activating vs 505 

repressing identity of a TF. We set the rate of each of the three mutation types to 3.5×10-9 per 506 

gene. In contrast, because the stability of an mRNA mainly depends on its codon usage (Cheng 507 

et al. 2017) and thus more codons means more opportunities for change, we assume the rate of 508 

mutation to rmRNA_deg does depend on gene length, as do mutations to protein stability rprotein_deg. 509 

rprotein_syn is determined by the density of ribosomes on mRNA and the elongation rate of 510 

ribosomes, and therefore is affected both by ribosome loading speed and by slow spots forming 511 

queues in the mRNA. Ribosome loading often relies on the 5’UTR of mRNA (Hinnebusch 2011), 512 
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and 5’UTR length is positively correlated with ORF length (Tuller et al. 2009). Slow-spots in 513 

mRNA can be due to secondary structure or to suboptimal codons, therefore are also more 514 

likely to appear by mutation to long mRNAs, so we assume the rate of mutation to rprotein_syn 515 

depends on gene length. We set the mutation rates of rprotein_deg, rprotein_syn, and rmRNA_deg each to 516 

9.5×10-12 per codon; in other words, each mutation rate is 3.5×10-9 for a yeast gene of average 517 

length (on a log-scale) 102.568 = 370 codons.  518 

 519 

rAct_to_Int, rprotein_syn, Kd(0), rprotein_deg, and rmRNA_deg evolve as quantitative traits. They are assumed to 520 

have, in the absence of selection, a log-normal stationary distribution with mean µ and standard 521 

deviation 𝜎𝜎, with values estimated below and listed in Table S2. Denote the values of a 522 

parameter as x before mutation and x’ after mutation; mutation takes the form: 523 

 524 

log10𝑥𝑥′ = log10𝑥𝑥 + Normal(𝑘𝑘(𝜇𝜇 − log10𝑥𝑥),𝜎𝜎),     (S7) 525 

 526 

where k controls the speed of regressing back to the stationary distribution; we set k = 0.5 for all 527 

5 parameters. To set values of µ, central tendency estimates of these five values (from Table S1) 528 

are adjusted according to our expectations about mutation bias. We assume a mutation bias 529 

toward faster mRNA degradation rmRNA_deg, faster rAct_to_Int (Decker & Hinton 2013; Roy & Singer 530 

2015), slower translation initiation rprotein_syn (Hinnebusch 2011), and larger Kd(0). We assume 531 

that the observed log-normal means of rmRNA_deg, rprotein_syn, and rAct_to_Int differ by 2-fold from the 532 

mean expected from mutational bias; for example, the mean of log10(rmRNA_deg) is -1.49, so the 533 

value of µ for rmRNA_deg is -1.49 + log10(2) = -1.19. We assume a larger bias for Kd(0), namely that 534 

mutation is likely to reduce the affinity of a TF for a TFBS down to non-specific levels. Thus, we 535 

set µ = log10(Kd(3)) = -5 for Kd(0); note that in this case µ is equal to one of the boundary values, 536 
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which will be hit far more often than during the evolution of other parameters. We assume that 537 

the observed central tendency estimate of protein stability does not depart from mutational 538 

equilibrium, therefore the value of µ for rprotein_deg is the mean of log10(rprotein_deg) =-1.88. 539 

 540 

The value of σ controls mutational effect size. We set the value of σ such that 1% of mutational 541 

changes from x=10µ go beyond the boundary values, for simplicity approximating by considering 542 

only the closer of the two boundary values on a log scale, i.e. we solve Eq. S8 for 𝜎𝜎: 543 

 544 

�𝑃𝑃
(µ + Normal(0,𝜎𝜎) ≥  log10𝑈𝑈) = 0.01,    if the upper bound U is closer 
𝑃𝑃(µ + Normal(0,𝜎𝜎) ≤  log10𝐿𝐿) = 0.01,   if the lower bound L is closer    (S8) 545 

 546 

For example, the upper and the lower bounds of rmRNA_deg are 0.54 min-1 and 7.5×10-4 min-1; on a 547 

log-scale, the upper bound is closer to 10µ = 10-1.19 min-1. Plugging these values in Eq. S8 and 548 

solving for σ, we have σ = 0.396. We set the values of σ for rprotein_syn, and rprotein_deg in the same 549 

way. However for rAct_to_Int, σ is set according to the lower bound, even though it is the more 550 

distant from 10µ, because otherwise a stable preinitiation complex will evolve too rarely. Under 551 

this high mutational variance, evolutionary outcomes at the two bounds are still only observed 552 

5% of the time. For Kd(0), because its upper bound is equal to 10µ, we set σ to 0.776, such that 553 

1% of mutations can change the values of Kd(0) by 100-fold or more. 554 

 555 

Mutant values of L, rAct_to_Int, rprotein_syn, rprotein_deg, and rmRNA_deg are constrained by the same 556 

bounds that constrain the initial values of these parameters (Sections 3-6). If a mutation 557 

increases the value of any of these 5 parameters to beyond the corresponding upper bound, we 558 

set the mutant value to the upper bound; similarly for a mutant value that is smaller than the 559 

lower bound of the corresponding parameter. For mutation to Kd(0), we resample if x’ ≥ Kd(3), 560 
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because otherwise the mutation effectively “deletes” the TF by reducing its affinity to non-561 

specific levels. 562 

 563 

10. Burn-in evolutionary simulation conditions 564 

When the signal is not allowed to regulate the effector genes directly, most simulations under 565 

selection either to filter out short spurious signals or for simple signal recognition in the absence 566 

of spurious signals rapidly found a local optimal solution in which effector genes are never 567 

expressed. This local optimum exists in part because we assume that the environment in which 568 

the effector is deleterious is twice as common as the environment in which it is beneficial (Fig. 569 

3). When the signal is not allowed to directly turn on the effector, then to escape this local 570 

optimum, at least one activator must be induced by the signal and then induce the effector. 571 

Such activators are rare when genotypes are randomly initialized. Making matters worse, 572 

mutation tends to reduce expression after initialization (see Section 9). 573 

 574 

To reduce the frequency of this problem, we added a burn-in stage to simulations in which the 575 

signal is not allowed to regulate the effector directly. During burn-in, we switch the frequencies 576 

of the two environments, so that selection to express the effector is stronger. We also change 577 

the mutational bias in rAct_to_Int, rprotein_syn, and Kd(0) to favor higher expression and stronger 578 

binding. For rAct_to_Int and rprotein_syn, we use 0.1 instead of 0.01 as the tolerated fraction of 579 

extreme mutations in Eq. S8. For Kd(0), we decrease µ from -5 to -7.5, biasing mutation toward 580 

the mean value at which we initialize (Table S1). Evolving an activator that can reliably turn on 581 

the effector when the signal is “ON” primarily relies on forming strong binding sites and 582 

appropriate kinetic constants in expression, assisted by the change in mutational bias above. To 583 

better focus the simulations on sampling appropriate mutations during the burn-in phase, we 584 
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reduce the rate of gene duplication and the rate of deletion to 5.25 × 10-9 per gene, and limit 585 

the maximum number of TF genes to 9 and that of effector genes to 2. Each simulation is run 586 

under burn-in conditions for 1000 steps, after which normal model settings and selection 587 

conditions are restored. The same burn-in mutational settings are used for the control selection 588 

conditions (no selection, no spurious signal, and harmless spurious signal). 589 

 590 

11. Quantifying occurrence of network motifs 591 

Scoring the presence of a C1-FFL motif (e.g. Fig. 4B) or diamond motif (e.g. Fig. 7) is based on 592 

scoring whether TF x regulates gene y. Gene duplication and divergence complicate this scoring, 593 

because different gene copies might encode functionally identical proteins, but one copy of 594 

gene y might have a TFBS for TF x and the other might not. For the purpose of scoring motifs, 595 

our algorithm begins by simply treating each gene copy as though it were a unique gene. 596 

 597 

Following Milo et al. (2002), a C1-FFL is scored if activating TF A can bind to the cis-regulatory 598 

sequence of activating TF B and to the effector, if B can also bind to that of the effector, and if B 599 

does not bind to that of A. Auto-regulation is allowed. We exclude C1-FFLs in which A and B 600 

encode the same TF or variants of the same TF. In the case of direct regulation, A can be the 601 

signal rather than a TF. C1-FFLs can then be subdivided into categories based on overlap 602 

between the TFBSs in the cis-regulatory region of the effector (Fig. 2).  603 

 604 

A diamond is scored if two signal-regulated activating TFs, A and B, do not bind to each other’s 605 

cis-regulatory region, but both bind to that of the effector. We allow auto-regulation and 606 

require A and B to not encode the same TF or variants of the same TF. 607 

 608 
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A FFL-in-diamond is scored if one signal-regulated activating TF A binds to the cis-regulatory 609 

region of another signal-regulated activating TF B, but B does not bind to that of A, and both A 610 

and B bind to that of the effector. Again, auto-regulation is allowed, and A and B must not 611 

encode the same TF or variants of the same TF. 612 

 613 

Occurrence within one evolutionary replicate is calculated as the fraction of the last 10,000 614 

evolutionary steps in which at least one motif of the type of interest is present. The mean and 615 

standard error of this occurrence metric is then calculated across replicates. 616 

 617 

12. Perturbing network motifs  618 

In Fig. 5 and Fig. 9, we add a TFBS to the cis-regulatory sequence of the effector gene, in order 619 

to destroy the AND-gate logic of an isolated C1-FFL or diamond. The new TFBS is chosen such 620 

that it does not overlap with any existing TFBSs, and has the same affinity as the strongest TFBS 621 

that is already present in the cis-regulatory sequence of the effector gene for the signal/fast TF 622 

(to convert from an AND-gate to signal-controlled/fast TF-controlled), or for the slow TF (to 623 

convert from an AND-gate to slow TF-controlled).  624 

 625 

When a TRN has multiple AND-gated motifs of interest, we convert all of them. A perturbation 626 

can also affect the logic of other, potentially non-AND-gated motifs in the same TRN (e.g. Fig. 627 

S12), making it hard to attribute the fitness effect to the AND-gate logic of the targeted motif. 628 

For this reason, we perform the perturbation analysis not on a single potentially problematic 629 

genotype, but on the last 10,000 evolutionary steps of an evolutionary simulation. Within those 630 

10,000 related genotypes, we exclude those that also contain other motifs that might influence 631 

our results. For simulations where the signal is allowed to directly regulate the effector, this 632 
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means excluding those with non-AND-gated C1-FFLs. For simulations where the signal is not 633 

allowed to directly regulate the effector, we exclude genotypes with either AND-gated or non-634 

AND-gated motifs other those of interest (e.g. if we intend to perturb AND-gated isolated C1-635 

FFLs, we exclude genotypes that also contain either an AND-gated isolated diamond or a non-636 

AND-gated C1-FFL). Both pre-perturbation fitness and post-perturbation fitness are averaged 637 

over the remaining genotypes. If no evolutionary step meets our requirement, we exclude the 638 

entire evolutionary simulation; this occurs only when the signal cannot directly regulate the 639 

effector genes. 640 

 641 

 642 

Fig. S12 Examples of confounding motifs in perturbation analysis. The TRN on the left contains 643 

a slow TF-controlled C1-FFL (S-B-E) and an AND-gated C1-FFL (S-C-E). To convert S-C-E into a 644 

signal-controlled C1-FFL, we need to add one TFBS for the signal to the cis-regulatory sequence 645 

of E. However, this change also makes S-B-E OR-gated, making it difficult to conclude whether it 646 

is the AND gate logic of S-B-E that matters for fitness.   647 
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