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Abstract

Understanding of the gene regulatory activity of enhancers is a major problem in regulatory biology. The
nascent field of sequence-to-expression modelling seeks to create quantitative models of gene expression
based on regulatory DNA (cis) and cellular environmental (trans) contexts. All quantitative models are
defined partially by numerical parameters, and it is common to fit these parameters to data provided by
existing experimental results. However, the relative paucity of experimental data appropriate for this task,
and lacunae in our knowledge of all components of the systems, results in problems often being under-
specified, which in turn may lead to a situation where wildly different model parameterizations perform
similarly well on training data. It may also lead to models being fit to the idiosyncrasies of the training

data, without representing the more general process (overfitting).

In other contexts where parameter-fitting is performed, it is common to apply regularization to reduce
overfitting. We systematically evaluated the efficacy of three types of regularization in improving the
generalizability of trained sequence-to-expression models. The evaluation was performed in two types of
cross-validation experiments: one training on D. melanogaster data and predicting on orthologous
enhancers from related species, and the other cross-validating between four D. melanogaster neurogenic
ectoderm enhancers, which are thought to be under control of the same transcription factors. We show
that training with a combination of noise-injection, L1, and L2 regularization can drastically reduce
overfitting and improve the generalizability of learned sequence-to-expression models. These results
suggest that it may be possible to mitigate the tendency of sequence-to-expression models to overfit
available data, thus improving predictive power and potentially resulting in models that provide better

insight into underlying biological processes.
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Introduction

Enhancers [1], [2], also called cis-regulatory modules or ‘CRMs’ in some contexts, are ~1 Kbp long
sequences that harbor DNA binding sites for one or more TFs that act together to regulate a gene’s
expression pattern [3]-[6]. Discovery of enhancer locations genome-wide and characterization of their
regulatory activities are major problems in regulatory genomics today. A sequence-to-expression model
(S2E model) is a function that maps an enhancer’s sequence to the regulated gene’s expression level in a
cellular condition, given the relevant TF expression levels in that condition. It is thus an approach to the
enhancer activity prediction problem. While current efforts at gene regulatory network (GRN)
reconstruction [7]—[11] are dedicated primarily to identifying relevant regulatory inputs to a gene (and
hence to its enhancers), an S2E model focuses on quantitative modeling, e.g., determining the input-
output function at such a resolution that consequences of small changes to the inputs can be predicted,
or explaining quantitative variations of a single gene’s expression across many cellular contexts. That is,
S2E modeling builds upon the qualitative and discrete view afforded by GRNSs, to provide quantitative

predictions of gene expression.

One of the most promising paradigms of S2E modeling today is that represented by thermodynamics-
based models [12]-[19]. The hallmark of these models is that they use the language of statistical
thermodynamics to map molecular interactions involving proteins and DNA to gene expression levels. In
previous work, authors have developed [19] and applied [20], [21] the thermodynamics-based model
named ‘GEMSTAT to understanding the cis-regulatory code of developmental enhancers in Drosophila.
GEMSTAT examines the three major components involved in regulating transcription: (a) DNA sequence
(the enhancer), (b) TF molecules, and (c) the basal transcriptional machinery or “BTM”. It estimates
binding site affinities from sequence using a position weight matrix (PWM) description of each TF's binding
specificity. It uses a single free parameter per TF to convert binding site affinities to their binding
constants, and another free parameter to model the activation or repression strength of the TF. Thus, it
uses only two free parameters per TF (and optional additional parameters for any cooperative binding
mechanisms to be included in the model). This is in contrast to commonly used GRN reconstruction
methods [22] that employ one free parameter per TF-gene pair and rely heavily on regularization to

prevent over-fitting.

In recent work, Samee et al. [23] showed how GEMSTAT can be used to model expression data on a single

gene (or enhancer), reveal underlying mechanisms at a quantitative level, and make accurate predictions
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about the effect of minor sequence changes such as mutating TF binding sites. Unfortunately, they found
that even the modest number of free parameters in GEMSTAT (~2 per TF, implying ~10 parameters in a
typical model using five TFs) leaves the data-fitting problem as largely unconstrained, opening the door
for over-fitting. They addressed this problem by generating an ensemble of parameterizations (assignment
of values to free parameters) that are consistent with the available data, rather than opting for the single
best parameterization as is typically done [19] with such modeling approaches. Ensemble modeling of cis-
regulatory sequences, as proposed in [23], embodies the view that the biologist investigating a gene’s
expression control should be aware of all possible explanations of how the sequence encodes that control.
Each parameterization of GEMSTAT is a possible explanation, which should be entertained until evidence

to the contrary emerges from additional experiments [24].

In this work, we investigate a complementary approach to tackling the problem of over-parameterization
in S2E modeling. We noted that the model ensembles reported by Samee et al. [23] often made erroneous
predictions on distant orthologs of the enhancer sequences that they were trained on, a sign of potential
over-fitting. We therefore explored different regularization techniques to soften the search topology of
parameterizations when constructing an ensemble of S2E models from sparse available data. We adopted
‘noise-injection’ [25], L2 regularization, and L1 regularization, individually or in combination, and showed
that the resulting ensembles of S2E models have greater predictive accuracy than those trained without

regularization, when tested on unseen sequences.
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89 RESULTS

90 Overview

91 The GEMSTAT model maps an enhancer’s sequence to target gene’s expression level in a set of cellular
92 contexts, given the concentration levels of a fixed set of relevant TFs in those contexts. The model has
93 free parameters that are fit to training data, which must include the inputs (sequence and TF
94  concentrations) as well as outputs (target gene expression levels) of the model. The GEMSTAT
95 implementation begins with an assignment of values to all free parameters, and optimizes it to improve
96 the goodness-of-fit between model predictions and training data. We adopted the ensemble modeling
97  approach of our previous work, where the numeric optimization of parameters is carried out multiple
98 times, each time using a different initial parameterization. To systematically and quantitatively judge the
99  utility of regularization for sequence-to-expression modeling, we implemented a workflow (Figure 1) as

100 follows:

101 1. A set of random initial parameterizations (points in the parameter space) are chosen, using
102 appropriate ranges for each parameter, as selected in [23].

103 2. Each of these initial parameterizations is refined, i.e., optimized by GEMSTAT’s parameter fitting
104 algorithm, both with and without regularization. Two ensembles of optimized parameterizations
105 are thus obtained, differing only in the use of regularization during optimization. Parameter fitting
106 is done using training data (enhancer sequence, TF concentrations, gene expression) from D.
107 melanogaster.

108 3. Each parameterization in each ensemble is then used to predict the expression profile driven by
109 a different enhancer, called the ‘test’ enhancer, with the goal of testing the model’s
110 generalizability. TF concentration data used in making predictions are left unchanged in this test.
111 A goodness-of-fit score is computed in the form of an ‘RMSE’ (root mean squared error) between
112 the known expression profile driven by the test enhancer and that predicted by the model using
113 that enhancer’s sequence.

114 4. The RMSE scores from these two ensembles of models are compared via a t-test.

115 In the remaining sections, we describe how we used the above strategy to demonstrate the advantages

116  of using regularization during construction of GEMSTAT model ensembles. All of our tests involved
117  enhancers that endogenously drive expression in a non-uniform ‘pattern’ along the dorso-ventral (D/V)
118  axis of the early Drosophila embryo. The training and test data thus included TF concentration (input) and
119  gene expression (output) levels at uniformly spaced points, called ‘bins’, along the D/V axis.

120
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121  Training with Noise Injection Improves the Cross-Species Predictive Accuracy of GEMSTAT
122 Models

123  We reasoned that a robust GEMSTAT model ought to correctly predict the gene expression profile driven
124 by an enhancer using the given TF concentrations profiles as well as slightly perturbed versions of the
125  concentration profiles. This reflected our intuition that the ‘true’ model should not make drastically
126 different predictions in the face of minor fluctuations in TF concentrations. Therefore, we modified the
127  parameter fitting procedure by creating multiple copies of the training data set, injecting ‘noise’ into the
128  inputs of all but one of these copies, and training models on the full collection of training data thus
129  generated. We refer to this as training with ‘noise-injection’ [25], [26].

130

131  The data set modeled in this first test was the wild-type expression of the ind gene in the early D.
132  melanogaster embryo. This developmental gene has a well-known enhancer that drives expression
133 restricted to the neuroectodermal region along the D/V axis of the blastoderm stage embryo. The ind
134  enhancer was the subject of extensive ensemble modeling in previous work [23], and is known to be
135 regulated by the TFs Dorsal (DL), Zelda (ZLD), Twist (TWI), Snail (SNA) and Capicua (CIC), whose
136  concentration/expression profiles along the D/V axis are also known (see Figure 2A and Methods).

137

138  Toevaluate the efficacy of noise injection for learning robust GEMSTAT models, we trained two ensembles
139  of models — one with noise-injection and the other without — on the ind dataset from [23], following the
140  workflow described in the previous section. Two thousand and one hundred initial parameterizations
141  were randomly generated, and each was refined two ways using the GEMSTAT optimization procedure,
142  either on the original training data, or on an expanded data set where the original is supplemented 20
143 noise-injected copies. The two resulting ensembles of optimized models were then compared for
144  difference in their goodness-of-fit (RMSE) scores. This comparison was performed separately on the ind
145  enhancer obtained from D. melanogaster as well as its orthologs from nine other Drosophila species.
146  (Note that training data were exclusively from D. melanogaster, so evaluations on other species are on
147  unseen data.) The first column in Table 1 gives the p-values from a Welch’s t-test used for these
148  comparisons. As expected, the reduction of over-fitting resulted in worse fits on the training species, D.
149  melanogaster, and the very closely related D. simulans (not shown). On the more distant species, the
150 ensemble of models trained with noise-injection significantly outperformed that of traditionally trained
151 models for six of nine orthologs, was significantly worse for two orthologs, and statistically

152  indistinguishable for one ortholog.
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153

154  We also sought to confirm that noise-injection during training generates more generalizable models
155  compared to the ensemble of high accuracy models trained by Samee et al. [23]. The first column of Table
156 2 compares the 2100 models obtained by us using noise-injection (as above) against the 2128 best models
157  reported by Samee et al. [23]. Performance was significantly better on nearly every ortholog except for
158  the most closely related species, where it is expected to be worse (see Supplementary Figure S4). Results
159  for D. grimshawi were not significantly different. In D. virilis, the ensemble of models from Samee et al.
160  [23] predicted no expression at all, while most noise-trained models reproduce a correctly located stripe
161  of ind expression (Figure 2B and Supplementary Figures S1 through S5 ).

162

163 In a related exercise, we took the ensemble of models from [23] and used them as initial
164  parameterizations for one round of additional refinement, both with and without noise-injection. As
165 shownin the second column of Table 2 performance was better with statistical significance for six of nine
166  orthologs, which included five of the six most diverged species from D. melanogaster. This provides
167  further evidence that noise-injection leads to models that are better able to predict the regulatory
168  function of more distantly related test enhancers. Visually, the outputs of these models (Supplementary
169 Figure S1) show that the models from [23], after refinement without regularization, tend to predict overly
170  wideind stripes. (This is also true of the models taken directly from that paper, without any regularization;
171  Supplementary Figure S4.) For instance, see ensemble predictions in column 1 of Supplementary Figure
172 S5, species D. pseudoobscura (‘PSE’) and D. persimilis (‘PER’). Predictions made by ensembles obtained
173  with regularization also predict break into two classes, one of which fits the true expression pattern
174  accurately while the other appears overly wide. On D. grimshawi it is very hard to see much difference in
175  the two sets of predictions. This shows that noise-injection based regularization used alone can improve
176  the generalizability of trained models.

177

178 L1 and L2 Regularization also improve model generalizability

179 L1- and L2-regularization are two commonly used techniques, that help avoid over-fitting of
180 models to small data sets. We evaluated these two regularization schemes in the same manner
181 as noise-injection was evaluated above. That is, a set of randomly selected models was refined
182  using that particular regularization scheme and goodness-of-fit scores were compared to those

183  from refinement without regularization. The results are shown in Table 1, second and third
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184  columns. We observed that models fit without regularization often predict overly wide stripes or
185 even ectopic expression for cross-validation species (Supplementary Figures S2, S3), while
186  models refined from the same random starting points under regularization more often produce
187  tighter stripes and less often predict ectopic expression. When using L2 regularization, 8 of 9
188  cross-validation tests showed a better distribution of RMSE scores with statistical significance.
189  For L1, 7 of 9 tests showed significantly better performance for the ensemble trained with
190 regularization. Intriguingly, models trained with either regularization scheme, as well as those
191 trained using noise-injection, showed significantly worse prediction (compared to models from
192  the default training procedure) on the D. grimshawi ortholog (Table 1, last row). This shows that

193 L1 and L2 based regularization can be used to improve the generalizability of trained models.
194

195 A combination of noise-injection, L1, and L2 regularization improves fitting for other

196  dorsal/ventral patterning enhancers.

197

198 We next tested the advantage of regularization during model-training using a different set of
199 enhancers — those associated with four other D/V patterning genes present in the neurogenic
200 ectoderm; Rhomboid (rho), Vein (vn), Ventral Nervous System Defective (vnd), and Brinker (brk).
201  Here, we trained models using one of these four enhancers and tested predictions on the other
202  three, functionally related enhancers in the same species, rather than on orthologs of the training
203  enhancer. At the blastoderm stage in Drosophila embryonic development, the four chosen
204  enhancers are all regulated by the same set of patterning inputs, i.e., the TFs Dorsal (Dl), Twist
205  (Twi), and Snail (Sna). Their patterns are mostly similar (Figure 3), with some offset, but their
206  enhancer sequences are completely different. An important use of GEMSTAT, and sequence-to-
207  expression modeling in general, is to generate models that not only predict accurately, but do so
208 by gaining insight into the true biological process taking place. An ability to generalize to
209 completely different sequences is more indicative of such a model than is the ability to make
210 predictions on similar sequences, e.g., orthologs.

211
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212  Table 3 shows the results of four separate training/cross-validation tests. In each, we trained
213  GEMSTAT models on a single enhancer and compared the accuracy of predictions made by
214  traditional versus regularization-trained ensembles on each of the other three enhancers. Noise-
215 injection was used, with L1 regularization only used for cooperativity terms. This was because
216  there is little prior knowledge of which TF pairs should be cooperative, and since L1 promotes
217  sparsity, we should see extraneous cooperativities eliminated. Every test-case in Table 3 shows
218  statistically significant improvement of results when using regularization. As can be seen in
219  Supplementary Figures S6-S9, the improvements are often visually striking. In particular,
220  predictions for the rho enhancer (with models trained on any of the other three enhancers) show
221  a drastic improvement (see Supplementary Figures S7-S9, top row). At cross-validation time,
222 traditionally trained models show a strong sensitivity to very small non-zero values of one input.
223 This results in misplaced spikes in predicted rho expression, for nearly all of the traditionally
224  trained models. These spikes are either strongly mitigated, or entirely absent in the predictions
225  from regularization trained models. This shows that a combination of noise-injection, L1, and L2
226  based regularization can improve cross-validation to non-orthologous enhancers.

227

228 DISCUSSION

229  The goal of this research is to improve the way sequence-to-expression models are fit to data.
230 Thatis atwo-pronged task. First, we would like to improve the generalization accuracy of learned
231  models. Learned models should be able to accurately predict the effects of mutation on
232  sequences (cis-input), and the effects of unseen mixes of TF levels (trans-input). Second, we
233 would like to improve the methods for model selection in the face of experimentally unknown
234  interactions between players. This paper focuses mainly on the first point, though it begins to lay
235  the groundwork for the second.

236

237 In Table 1 we present a basic evaluation of the two forms of regularization implemented here
238  versus traditional model refinement. In Table 2 we evaluate our ensemble refinement method

239  directly vis-"a-vis the final ensemble delivered by [23]. The comparisons reported in these two
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240  tables are based on model predictions on orthologs of the training enhancer. In contrast, Table 3
241  reports on comparisons based on cross-validation of enhancers within D. melanogaster, using
242  hyperparameters decided upon in the previous tests.

243

244  All experiments resulted in marked improvements of generalizability. For the vast majority of
245  cases, the ensemble refined with regularization outperforms the traditionally learned model with
246  great significance. Tuning parameters (hyperparameters) for noise-injection proved to be
247  relatively forgiving in the range of small values. Indeed, the first value we ever tried has turned
248  out to be the best over several (not shown) experiments. Selection of L1 and L2 parameters was
249  more difficult, and without enough data to perform a proper hyperparameter search, we settled
250 onvalues small enough not to have drastic effects on the model, again in an intuitive way. The
251  final set of experiments (Table 3) were run only once, with the hyperparameters decided uponin
252  previous experiments. Not only did regularized models perform best in every case in this
253  experiment, but in nearly every case a huge qualitative improvement is visually obvious.

254

255  With these three groups of experiments, we have shown strong evidence that improvement can
256 be madein the way that sequence-to-expression models are fit to data. We took a fundamentally
257  different approach to learning an ensemble of models than did Samee et al. [23]. In that work,
258  the authors sampled millions of model parameter vectors, filtering for those that best fit the
259  measured D. Melanogaster ind output. These were filtered, first for the 21000 models with the
260  best RMSE scores on D. Melanogaster ind, and then to 2128 models that passed perturbation
261  experiment filters. We suspect that the first filtering biases the models toward over-fitting the
262  ind curve. Though Samee et al. reported that the models fell within 42 of their compartments in
263  the model-parameter space, predicted curves for ortholog enhancers (SI, below) are all largely
264  the same. This leads us to further suspect that the traditional model fitting problem is
265  underspecified. Regularization offers a solution to the under-specification problem.

266

267 It may be noted that we discovered noise-injection ex-nihilo in an attempt to solve precisely the

268  problems of ill-conditioned solution finding which the existing literature addresses. As a result,

10
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269  we have created a naive implementation of noise-injection, itself an approximation to Tikhonov
270  regularization. Further review of the literature reveals that the Levenberg-Marquardt non-linear
271  least-squares optimization algorithm [27]-[31] directly implements Tikhonov regularization. In
272  the future we hope to include this optimizer in GEMSTAT itself, doing away with noise-injection
273  scripts.

274

275 MATERIALS AND METHODS
276

277  IND striping data

278  For ind (dorsal/ventral) [32] striping modeling, we took the datasets provided by the authors of
279  [23], and used them without modification. This dataset includes curves for inputs d/ (dorsal),
280  zld/vfl (zelda/vielfaltig), cic (capicua), sna (snail), vnd (ventral nervous system defective); output
281  ind (intermediate neuroblasts defective); and signaling kinase dpERK (doubly phosphorylated ERK
282  [33], [34]) - all from late cell-cycle 14. Each curve had 50 bins along the ventral/dorsal axis, with
283  bin 1 being ventralmost and bin 50 being dorsalmost. All curves were produced via experiments
284  in D. melanogaster. The data is presented in Figure 2. The dataset also included ind enhancers
285  from D. melanogaster and ten other Drosophilids. For orthologous enhancers, input and output
286  patterns were presumed to match those of D. melanogaster.

287

288 Neurogenic ectoderm striping system data

289  For other dorsal/ventral striping systems experiments, we collected data from http://dvex.org
290 [35], [36]. While this website was not currently active when this research was performed, and
291 has since been replaced with entirely different data, an archived versions of the website and
292  original data are available from http://archive.org. The last useful snapshot being from 2009
293  (https://web.archive.org/web/20090408093453/http://www.dvex.org/). This dataset includes

294  inputs d/ (dorsal), twi (twist), and sna (snail); outputs brk (brinker), rho (rhomboid), vn (vein), and
295 vnd (ventral nervous system defective), with outputs measured both for endogenous expression

296  and expression of a minimal reporter driven only by the enhancer (not shown, available above).

11
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297 The database contains curves created by integrating the luminance over multiple stripes of
298  confocal microscopy images, in addition to the individual bin values. Each image is registered to
299 thesna gradient and endogenous rho mRNA [35], [36]. Each curve has 1000 points, from 0 at the
300 ventral midline to 999 at the dorsal midline. In order to facilitate work at any number of D/V
301 samples, we fit spline functions to those curves, with semi-manually selected distribution of
302  knots, except for d/ (discussed next). While every attempt was made to get splines that produced
303 good curves, we did not force the curves to be perfectly smooth. This proved to be an important
304  test of our method. Splines then allowed for the data to be up- or down-sampled to any desired
305 number of bins.

306

307 Inthe case of d/, measured data does not cover the entire range of dl activity (there is a dl gradient
308 from the ventral-most to dorsal-most points). Additionally, even for the coordinates where dl
309 was measured, some of the tracks had missing data. To get an appropriate dl curve, we used a
310 finite element differential equation solution that models production, diffusion, degradation, and
311 the wraparound boundary implied by the 1-dimensional diffusion of d/. While technically it would
312  be activating factors that are diffused through the perivitelline space [37], this approximation
313 seems to fit the data well with only three parameters (effectively two, as at steady state,
314  production and degradation must balance each other). The parameters of this diffusion model
315  were fit with least squares to the region where data was available. The fit was nearly perfect, in
316  contrast to the fit via a Gaussian curve used in [23] (not shown).

317

318 Enhancersequences were taken from the RedFly database [38]. We used the enhancer “vnd NEE”
319 forvnd, “rho NEE” for rho, “vn NEE-long” for vn, and “brk NEE-long” for brk. As reflected by their
320 names, each of these sequences is known to drive expression during neurogenic ectoderm
321  formation.

322

323

324

12
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325 Noise injection pre-processor

326 Inorder to realize noise injection without altering existing software, we implemented a tool that
327 reads GEMSTAT input curves, copies the data bins, and applies noise. Output from this tool is in
328 the standard GEMSTAT format, allowing unaltered versions of GEMSTAT to be used. Parameters
329 tothetool are N, the number of copies to make of each bin (in addition to the original data); and
330 oo and o3, which control the noise. Each copied data point has Gaussian noise added, with
331 standard deviation o(y)=00 + 01y, Where y is the value of the curve in that bin. The noised input
332  value is lower-bounded at 0.0. (Many early experiments, not shown, revealed that o is
333  unnecessary and may be set to 0.0.) For noise-injected training points, Gaussian noise with
334  standard deviation 0.05 was added to normalized (max 1.0) input TF levels. Values falling below
335 zero were thresholded to 0.0. Processed curves contain all of the original bins of the curve,
336 augmented with N noised copies, thus for an input containing M bins, there will be (N +1)M
337  output bins, NM of which have noise applied.

338

339 Baking of effective cic levels

340 In [23], the authors calculated the effective concentrations of cic dynamically from the
341  concentrations of dpERK, according to the following formula:

342 [CIC]effective = [CICliotar - €xp {—Cicqas: - [APERK]}

343  This results in small variations where dpERK levels are low causing very large variations in

344  [CIC]effective - Our solution was to pre-calculate cic-attenuation before applying noise. We refer
345  to this process as “baking” the cic-attenuation, or simply “baking”. Baked inputs can be handled
346 by the base version (and the L1/L2 regularized version) of GEMSTAT, though it becomes
347 impossible to optimize the cic_att parameter.

348

349 Regularized GEMSTAT

350 We implemented L1 and L2 regularization in GEMSTAT. Some parameters can take separate
351 regularization strengths, for example, scaling parameters (\beta) and cooperativities can be

352 penalized separately from other parameters. The <code is available at
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https://github.com/UIUCSinhalab/GEMSTAT, currently in the ‘add_regularization’ branch, but

will be merged to the ‘master’ branch in due time.
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527

Noise-Injection L, regularization Lqregularization
D. sechellia Worse (0.324) Better (4.6e-67) Better (8.4e-39)
D. yakuba Better (3.9e-88) Better (1.6e-210) Better (4.9e-210)
D. erecta Better (3.1e-99) Better (5.2e-86) Better (5.1e-198)
D. ananassae Worse (1.7e-48) Better (6.0e-51) Better (3.2e-97)
D. pseusoobscura | Better (3.3e-195) Better (3.3e-87) Better (1.2e-157)
D. persimilis Better (1.8e-167) Better (7.0e-93) Better (7.8e-187)
D. mojavensis Better (3.0e-04) Better (8.7e-262) Better (0.0)
D. virilis Better (1.1e-70) Better (4.2e-128) Better (1.7e-222)
D. grimshawi Worse (2.6e-10) Worse (6.4e-118) Worse (2.1e-264)

528 Table 1: Statistical evaluation of the effect of regularization during training of models. Ensembles
529 trained on the D. melanogaster ind enhancer are evaluated on orthologs of the enhancer from
530 each of nine other species (rows, sorted according to divergence times from D. melanogaster).
531  ‘Better/worse’ indicates that an ensemble trained with a form of regularization has better/worse
532 fits vs an ensemble of models trained without regularization. Shown in parentheses are p-values
533  of Welch’s t-tests comparing RMSE (goodness of fit) scores of the two ensembles. Each of
534  columns 1-3 evaluates a different form of regularization. Column 1: Noise regularization with
535  N=20copiesand g, = 0.05 was used to train 2100 models from random starting points asin [23],
536 as described in the main text. Column 2: L,regularization was used to train 2100 models.
537  Analysis of noise-regularized models suggested that the scaling parameter contributed most to
538 improvement, so we fixed it to 1.0 to avoid giving the regularized method a simple advantage in
539 thisregard. Column 3: L regularization was tested in a test otherwise identical to that of column
540 2.

541

542
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543
544
545
Ab Initio Noise-Injection vs. | Refinement, with vs. without
final ensemble from Samee | Noise-Injection, with ensemble
et al. [23] from [23] as initialization
D. sechellia Worse (0.0e+00) Worse (0.0)
D. yakuba Better (5.1e-109) Better (4.0e-09)
D. erecta Better (2.0e-209) Worse (3.2e-09) *1
D. ananassae Better (0.0) Better (0.0)
D. pseusoobscura | Better (0.0) Better (2.3e-234)
D. persimilis Better (0.0) Better (5.5e-233)
D. mojavensis Better (0.0) Better (5.8e-232)
D. virilis Better (0.0) Better (1.1e-234) *2
D. grimshawi Better (insignificant) (0.947) | Worse (7.2e-150) *3
546

547  Table 2: Comparison of ensemble obtained by noise-regularization versus ensembles reported in
548 Samee et al. [23]. Evaluations and comparisons follow the same scheme as for Table 1 (also
549  explained in text). ‘Better/Worse’ indicates that an ensemble trained with noise-regularization
550 has better/worse fits, and p-values in parentheses are from Welch’s t-tests comparing RMSE
551  scores for the two ensembles of models. Column 1: The final 2128 models from [23] serve as a
552  baseline for evaluation of the 2100 models obtained from random starting points and refined by
553  noise-regularization (same ensemble as that evaluated in Table 1 column 1). A p-value of 0
554  indicates that the p-value computed by the statistical software was smaller than its minimum
555  possible p-value. Column 2: The final 2128 models from [23] were further refined for 1 epoch,
556  with and without noise regularization, and the two resulting ensembles were compared.

557

558  *1 Scores of regularization-refined models are bimodal, with one mode clearly better and one
559 clearly worse.

560 *2 Models from [23] totally fail to predict any expression for this enhancer. Regularization-
561 trained models reproduce the ind stripe. Models refined from Samee et al. models are not as
562 good as those from ab initio fitting, but this might be explained by one using “baked” CIC
563  attenuation and the other not (see Methods).

564  *3 The right column is worse with statistical significance, but the effect-size is minor.

565

566

567

568

569

570

571

572

573
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Reduced dorsal
ectopic
prediction

Reduced ectopic
prediction

Reduced ectopic
prediction

Trained on Predict on
rho vn vnd brk
rho | X Better (1.2e-15) | Better (8.4e-32) | Better (1.4e-56)
Narrower band,
reduced ventral
ectopic
prediction
vn | Better (2.3e-21) | X Better (1.9e-113) | Better (7.6e-31)
Reduced dorsal
ectopic
prediction
vnd | Better (9.0e-19) | Better (8.5e-28) | X Better (1.5e-50)
Reduced dorsal (Smoother
ectopic prediction, SI1
prediction Fig S8)
brk | Better (1.3e-39) | Better (4.7e-15) | Better (2.6e-14) | X

Table 3: Comparison of ensembles obtained with and without noise-injection, using data on four
D/V patterning enhancers in D. melanogaster. Shown in parentheses in each cell are p-values for
Welch’s t-tests comparing RMSE scores of ensembles of 100 models trained on one enhancer
and cross-validated on three other D/V enhancers. Rows: Two ensembles, one with and one
without combined regularization, were trained on the enhancer listed in the ‘Trained on’ column.
The RMSE scores of the two ensembles’ predictions on each cross-validation enhancer (‘Predict
on’ columns) were compared with a Welch’s t-test, giving the p-values shown for the null
hypothesis that the ensembles have identical performance. In all cases, the ensemble trained
with regularization outperformed the traditionally trained ensemble with statistical significance.
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589  Figure 1. A schematic view of the process used to compare training with and without different
590 forms of regularization. First, an initial set of model parameters is created randomly. Then, that
591 setof parametersis used as starting points for model refinement under two different refinement
592 methods. One is the traditional refinement method, and the other is the traditional method
593 augmented with one or more forms of regularization. Finally, the goodness-of-fit values of the
594  two ensembles of models are compared on held-out data to determine if either ensemble
595 performs better with statistical significance.
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Figure 2. (A) All input and output curves from [23], used in evaluations involving the ind enhancer
and reported in Tables 1 and 2. Ind expression displayed as the heavy solid line. Transcription
factors are displayed as lines with markers. Effective CIC concentration (CIC*, plus signs) was
calculated as described here and in [23] with a cic_att parameter of 16.0. (B) Example ensemble
comparison for D.virilis, corresponding to Table 2, column 1. The first panel shows predictions
(green) from models trained under standard refinement, with ground-truth in blue. The second
panel shows predictions for models trained with noise-injection. The third panel displays a
comparison of the histograms of PGP scores [20] for standard and noise-injected models. The
fourth panel is the same comparing RMSE scores between the two ensembles. (C) Example
ensemble comparison for D.pseudoobscura, corresponding to Table 2, column 2. Semantics are
the same as panel B.
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Inputs and output for the neurogenic ectoderm enhancers
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618  Figure 3. All input and output curves from [35], [36], processed as described in Methods, and
619 used in evaluations reported in Table 3. Expression patterns are displayed as solid and dashed,
620 markerless lines. Transcription factors are displayed with markers, according to the legend.
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