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 2 

Abstract 12 

 13 

Understanding of the gene regulatory activity of enhancers is a major problem in regulatory biology. The 14 

nascent field of sequence-to-expression modelling seeks to create quantitative models of gene expression 15 

based on regulatory DNA (cis) and cellular environmental (trans) contexts. All quantitative models are 16 

defined partially by numerical parameters, and it is common to fit these parameters to data provided by 17 

existing experimental results. However, the relative paucity of experimental data appropriate for this task, 18 

and lacunae in our knowledge of all components of the systems, results in problems often being under-19 

specified, which in turn may lead to a situation where wildly different model parameterizations perform 20 

similarly well on training data. It may also lead to models being fit to the idiosyncrasies of the training 21 

data, without representing the more general process (overfitting).  22 

 23 

In other contexts where parameter-fitting is performed, it is common to apply regularization to reduce 24 

overfitting. We systematically evaluated the efficacy of three types of regularization in improving the 25 

generalizability of trained sequence-to-expression models. The evaluation was performed in two types of 26 

cross-validation experiments: one training on D. melanogaster data and predicting on orthologous 27 

enhancers from related species, and the other cross-validating between four D. melanogaster neurogenic 28 

ectoderm enhancers, which are thought to be under control of the same transcription factors. We show 29 

that training with a combination of noise-injection, L1, and L2 regularization can drastically reduce 30 

overfitting and improve the generalizability of learned sequence-to-expression models. These results 31 

suggest that it may be possible to mitigate the tendency of sequence-to-expression models to overfit 32 

available data, thus improving predictive power and potentially resulting in models that provide better 33 

insight into underlying biological processes.   34 
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Introduction 35 

Enhancers [1], [2], also called cis-regulatory modules or ‘CRMs’ in some contexts, are ~1 Kbp long 36 

sequences that harbor DNA binding sites for one or more TFs that act together to regulate a gene’s 37 

expression pattern [3]–[6]. Discovery of enhancer locations genome-wide and characterization of their 38 

regulatory activities are major problems in regulatory genomics today. A sequence-to-expression model 39 

(S2E model) is a function that maps an enhancer’s sequence to the regulated gene’s expression level in a 40 

cellular condition, given the relevant TF expression levels in that condition. It is thus an approach to the 41 

enhancer activity prediction problem. While current efforts at gene regulatory network (GRN) 42 

reconstruction [7]–[11] are dedicated primarily to identifying relevant regulatory inputs to a gene (and 43 

hence to its enhancers), an S2E model focuses on quantitative modeling, e.g., determining the input-44 

output function at such a resolution that consequences of small changes to the inputs can be predicted, 45 

or explaining quantitative variations of a single gene’s expression across many cellular contexts. That is, 46 

S2E modeling builds upon the qualitative and discrete view afforded by GRNs, to provide quantitative 47 

predictions of gene expression.  48 

 49 

One of the most promising paradigms of S2E modeling today is that represented by thermodynamics-50 

based models [12]–[19]. The hallmark of these models is that they use the language of statistical 51 

thermodynamics to map molecular interactions involving proteins and DNA to gene expression levels. In 52 

previous work, authors have developed [19] and applied [20], [21] the thermodynamics-based model 53 

named ‘GEMSTAT’ to understanding the cis-regulatory code of developmental enhancers in Drosophila. 54 

GEMSTAT examines the three major components involved in regulating transcription: (a) DNA sequence 55 

(the enhancer), (b) TF molecules, and (c) the basal transcriptional machinery or “BTM”. It estimates 56 

binding site affinities from sequence using a position weight matrix (PWM) description of each TF’s binding 57 

specificity. It uses a single free parameter per TF to convert binding site affinities to their binding 58 

constants, and another free parameter to model the activation or repression strength of the TF. Thus, it 59 

uses only two free parameters per TF (and optional additional parameters for any cooperative binding 60 

mechanisms to be included in the model). This is in contrast to commonly used GRN reconstruction 61 

methods [22] that employ one free parameter per TF-gene pair and rely heavily on regularization to 62 

prevent over-fitting.  63 

 64 

In recent work, Samee et al. [23] showed how GEMSTAT can be used to model expression data on a single 65 

gene (or enhancer), reveal underlying mechanisms at a quantitative level, and make accurate predictions 66 
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about the effect of minor sequence changes such as mutating TF binding sites. Unfortunately, they found 67 

that even the modest number of free parameters in GEMSTAT (~2 per TF, implying ~10 parameters in a 68 

typical model using five TFs) leaves the data-fitting problem as largely unconstrained, opening the door 69 

for over-fitting. They addressed this problem by generating an ensemble of parameterizations (assignment 70 

of values to free parameters) that are consistent with the available data, rather than opting for the single 71 

best parameterization as is typically done [19] with such modeling approaches. Ensemble modeling of cis-72 

regulatory sequences, as proposed in [23], embodies the view that the biologist investigating a gene’s 73 

expression control should be aware of all possible explanations of how the sequence encodes that control. 74 

Each parameterization of GEMSTAT is a possible explanation, which should be entertained until evidence 75 

to the contrary emerges from additional experiments [24]. 76 

 77 

In this work, we investigate a complementary approach to tackling the problem of over-parameterization 78 

in S2E modeling. We noted that the model ensembles reported by Samee et al. [23] often made erroneous 79 

predictions on distant orthologs of the enhancer sequences that they were trained on, a sign of potential 80 

over-fitting. We therefore explored different regularization techniques to soften the search topology of 81 

parameterizations when constructing an ensemble of S2E models from sparse available data. We adopted 82 

‘noise-injection’ [25], L2 regularization, and L1 regularization, individually or in combination, and showed 83 

that the resulting ensembles of S2E models have greater predictive accuracy than those trained without 84 

regularization, when tested on unseen sequences. 85 

 86 

 87 

  88 
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RESULTS 89 

Overview 90 

The GEMSTAT model maps an enhancer’s sequence to target gene’s expression level in a set of cellular 91 

contexts, given the concentration levels of a fixed set of relevant TFs in those contexts. The model has 92 

free parameters that are fit to training data, which must include the inputs (sequence and TF 93 

concentrations) as well as outputs (target gene expression levels) of the model. The GEMSTAT 94 

implementation begins with an assignment of values to all free parameters, and optimizes it to improve 95 

the goodness-of-fit between model predictions and training data. We adopted the ensemble modeling 96 

approach of our previous work, where the numeric optimization of parameters is carried out multiple 97 

times, each time using a different initial parameterization. To systematically and quantitatively judge the 98 

utility of regularization for sequence-to-expression modeling, we implemented a workflow (Figure 1) as 99 

follows: 100 

1. A set of random initial parameterizations (points in the parameter space) are chosen, using 101 

appropriate ranges for each parameter, as selected in [23].  102 

2. Each of these initial parameterizations is refined, i.e., optimized by GEMSTAT’s parameter fitting 103 

algorithm, both with and without regularization. Two ensembles of optimized parameterizations 104 

are thus obtained, differing only in the use of regularization during optimization. Parameter fitting 105 

is done using training data (enhancer sequence, TF concentrations, gene expression) from D. 106 

melanogaster. 107 

3. Each parameterization in each ensemble is then used to predict the expression profile driven by 108 

a different enhancer, called the ‘test’ enhancer, with the goal of testing the model’s 109 

generalizability. TF concentration data used in making predictions are left unchanged in this test. 110 

A goodness-of-fit score is computed in the form of an ‘RMSE’ (root mean squared error) between 111 

the known expression profile driven by the test enhancer and that predicted by the model using 112 

that enhancer’s sequence. 113 

4. The RMSE scores from these two ensembles of models are compared via a t-test.  114 

In the remaining sections, we describe how we used the above strategy to demonstrate the advantages 115 

of using regularization during construction of GEMSTAT model ensembles. All of our tests involved 116 

enhancers that endogenously drive expression in a non-uniform ‘pattern’ along the dorso-ventral (D/V) 117 

axis of the early Drosophila embryo. The training and test data thus included TF concentration (input) and 118 

gene expression (output) levels at uniformly spaced points, called ‘bins’, along the D/V axis.  119 

 120 
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Training with Noise Injection Improves the Cross-Species Predictive Accuracy of GEMSTAT 121 

Models 122 

We reasoned that a robust GEMSTAT model ought to correctly predict the gene expression profile driven 123 

by an enhancer using the given TF concentrations profiles as well as slightly perturbed versions of the 124 

concentration profiles. This reflected our intuition that the ‘true’ model should not make drastically 125 

different predictions in the face of minor fluctuations in TF concentrations. Therefore, we modified the 126 

parameter fitting procedure by creating multiple copies of the training data set, injecting ‘noise’ into the 127 

inputs of all but one of these copies, and training models on the full collection of training data thus 128 

generated. We refer to this as training with ‘noise-injection’ [25], [26]. 129 

 130 

The data set modeled in this first test was the wild-type expression of the ind gene in the early D. 131 

melanogaster embryo. This developmental gene has a well-known enhancer that drives expression 132 

restricted to the neuroectodermal region along the D/V axis of the blastoderm stage embryo. The ind 133 

enhancer was the subject of extensive ensemble modeling in previous work [23], and is known to be 134 

regulated by the TFs Dorsal (DL), Zelda (ZLD), Twist (TWI), Snail (SNA) and Capicua (CIC), whose 135 

concentration/expression profiles along the D/V axis are also known (see Figure 2A and Methods).  136 

 137 

To evaluate the efficacy of noise injection for learning robust GEMSTAT models, we trained two ensembles 138 

of models – one with noise-injection and the other without – on the ind dataset from [23], following the 139 

workflow described in the previous section. Two thousand and one hundred initial parameterizations 140 

were randomly generated, and each was refined two ways using the GEMSTAT optimization procedure, 141 

either on the original training data, or on an expanded data set where the original is supplemented 20 142 

noise-injected copies. The two resulting ensembles of optimized models were then compared for 143 

difference in their goodness-of-fit (RMSE) scores. This comparison was performed separately on the ind 144 

enhancer obtained from D. melanogaster as well as its orthologs from nine other Drosophila species. 145 

(Note that training data were exclusively from D. melanogaster, so evaluations on other species are on 146 

unseen data.) The first column in Table 1 gives the p-values from a Welch’s t-test used for these 147 

comparisons. As expected, the reduction of over-fitting resulted in worse fits on the training species, D. 148 

melanogaster, and the very closely related D. simulans (not shown). On the more distant species, the 149 

ensemble of models trained with noise-injection significantly outperformed that of traditionally trained 150 

models for six of nine orthologs, was significantly worse for two orthologs, and statistically 151 

indistinguishable for one ortholog.  152 
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 153 

We also sought to confirm that noise-injection during training generates more generalizable models  154 

compared to the ensemble of high accuracy models trained by Samee et al. [23]. The first column of Table 155 

2 compares the 2100 models obtained by us using noise-injection (as above) against the 2128 best models 156 

reported by Samee et al. [23]. Performance was significantly better on nearly every ortholog except for 157 

the most closely related species, where it is expected to be worse (see Supplementary Figure S4). Results 158 

for D. grimshawi were not significantly different. In D. virilis, the ensemble of models from Samee et al. 159 

[23] predicted no expression at all, while most noise-trained models reproduce a correctly located stripe 160 

of ind expression (Figure 2B and Supplementary Figures S1 through S5 ).  161 

 162 

In a related exercise, we took the ensemble of  models from [23] and used them as initial 163 

parameterizations for one round of additional refinement, both with and without noise-injection. As 164 

shown in the second column of Table 2 performance was better with statistical significance for six of nine 165 

orthologs, which included five of the six most diverged species from D. melanogaster. This provides 166 

further evidence that noise-injection leads to models that are better able to predict the regulatory 167 

function of more distantly related test enhancers. Visually, the outputs of these models (Supplementary 168 

Figure S1) show that the models from [23], after refinement without regularization, tend to predict overly 169 

wide ind stripes. (This is also true of the models taken directly from that paper, without any regularization; 170 

Supplementary Figure S4.) For instance, see ensemble predictions in column 1 of Supplementary Figure 171 

S5,  species D. pseudoobscura (‘PSE’) and D. persimilis (‘PER’). Predictions made by ensembles obtained 172 

with regularization also predict break into two classes, one of which fits the true expression pattern 173 

accurately while the other appears overly wide. On D. grimshawi it is very hard to see much difference in 174 

the two sets of predictions. This shows that noise-injection based regularization used alone can improve 175 

the generalizability of trained models. 176 

 177 

L1 and L2 Regularization also improve model generalizability 178 

L1- and L2-regularization are two commonly used techniques, that help avoid over-fitting of 179 

models to small data sets. We evaluated these two regularization schemes in the same manner 180 

as noise-injection was evaluated above. That is, a set of randomly selected models was refined 181 

using that particular regularization scheme and goodness-of-fit scores were compared to those 182 

from refinement without regularization. The results are shown in Table 1, second and third 183 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/393835doi: bioRxiv preprint 

https://doi.org/10.1101/393835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

columns. We observed that models fit without regularization often predict overly wide stripes or 184 

even ectopic expression for cross-validation species (Supplementary Figures S2, S3), while 185 

models refined from the same random starting points under regularization more often produce 186 

tighter stripes and less often predict ectopic expression. When using L2 regularization, 8 of 9 187 

cross-validation tests showed a better distribution of RMSE scores with statistical significance. 188 

For L1, 7 of 9 tests showed significantly better performance for the ensemble trained with 189 

regularization. Intriguingly, models trained with either regularization scheme, as well as those 190 

trained using noise-injection, showed significantly worse prediction (compared to models from 191 

the default training procedure) on the D. grimshawi ortholog (Table 1, last row). This shows that 192 

L1 and L2 based regularization can be used to improve the generalizability of trained models. 193 

 194 

A combination of noise-injection, L1, and L2 regularization improves fitting for other 195 

dorsal/ventral patterning enhancers. 196 

 197 

We next tested the advantage of regularization during model-training using a different set of 198 

enhancers – those associated with four other D/V patterning genes present in the neurogenic 199 

ectoderm; Rhomboid (rho), Vein (vn), Ventral Nervous System Defective (vnd), and Brinker (brk). 200 

Here, we trained models using one of these four enhancers and tested predictions on the other 201 

three, functionally related enhancers in the same species, rather than on orthologs of the training 202 

enhancer. At the blastoderm stage in Drosophila embryonic development, the four chosen 203 

enhancers are all regulated by the same set of patterning inputs, i.e., the TFs Dorsal (Dl), Twist 204 

(Twi), and Snail (Sna). Their patterns are mostly similar (Figure 3), with some offset, but their 205 

enhancer sequences are completely different. An important use of GEMSTAT, and sequence-to-206 

expression modeling in general, is to generate models that not only predict accurately, but do so 207 

by gaining insight into the true biological process taking place. An ability to generalize to 208 

completely different sequences is more indicative of such a model than is the ability to make 209 

predictions on similar sequences, e.g., orthologs. 210 

 211 
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 9 

Table 3 shows the results of four separate training/cross-validation tests. In each, we trained 212 

GEMSTAT models on a single enhancer and compared the accuracy of predictions made by 213 

traditional versus regularization-trained ensembles on each of the other three enhancers. Noise-214 

injection was used, with L1 regularization only used for cooperativity terms. This was because 215 

there is little prior knowledge of which TF pairs should be cooperative, and since L1 promotes 216 

sparsity, we should see extraneous cooperativities eliminated. Every test-case in Table 3 shows 217 

statistically significant improvement of results when using regularization. As can be seen in 218 

Supplementary Figures S6-S9, the improvements are often visually striking. In particular, 219 

predictions for the rho enhancer (with models trained on any of the other three enhancers) show 220 

a drastic improvement (see Supplementary Figures S7-S9, top row). At cross-validation time, 221 

traditionally trained models show a strong sensitivity to very small non-zero values of one input. 222 

This results in misplaced spikes in predicted rho expression, for nearly all of the traditionally 223 

trained models. These spikes are either strongly mitigated, or entirely absent in the predictions 224 

from regularization trained models. This shows that a combination of noise-injection, L1, and L2 225 

based regularization can improve cross-validation to non-orthologous enhancers.  226 

 227 

DISCUSSION 228 

The goal of this research is to improve the way sequence-to-expression models are fit to data. 229 

That is a two-pronged task. First, we would like to improve the generalization accuracy of learned 230 

models. Learned models should be able to accurately predict the effects of mutation on 231 

sequences (cis-input), and the effects of unseen mixes of TF levels (trans-input). Second, we 232 

would like to improve the methods for model selection in the face of experimentally unknown 233 

interactions between players. This paper focuses mainly on the first point, though it begins to lay 234 

the groundwork for the second. 235 

 236 

In Table 1 we present a basic evaluation of the two forms of regularization implemented here 237 

versus traditional model refinement. In Table 2 we evaluate our ensemble refinement method 238 

directly vis-`a-vis  the final ensemble delivered by [23]. The comparisons reported in these two 239 
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 10 

tables are based on model predictions on orthologs of the training enhancer. In contrast, Table 3 240 

reports on comparisons based on cross-validation of enhancers within D. melanogaster, using 241 

hyperparameters decided upon in the previous tests. 242 

 243 

All experiments resulted in marked improvements of generalizability. For the vast majority of 244 

cases, the ensemble refined with regularization outperforms the traditionally learned model with 245 

great significance. Tuning parameters (hyperparameters) for noise-injection proved to be 246 

relatively forgiving in the range of small values. Indeed, the first value we ever tried has turned 247 

out to be the best over several (not shown) experiments. Selection of L1 and L2 parameters was 248 

more difficult, and without enough data to perform a proper hyperparameter search, we settled 249 

on values small enough not to have drastic effects on the model, again in an intuitive way. The 250 

final set of experiments (Table 3) were run only once, with the hyperparameters decided upon in 251 

previous experiments. Not only did regularized models perform best in every case in this 252 

experiment, but in nearly every case a huge qualitative improvement is visually obvious. 253 

 254 

With these three groups of experiments, we have shown strong evidence that improvement can 255 

be made in the way that sequence-to-expression models are fit to data. We took a fundamentally 256 

different approach to learning an ensemble of models than did Samee et al. [23]. In that work, 257 

the authors sampled millions of model parameter vectors, filtering for those that best fit the 258 

measured D. Melanogaster ind output. These were filtered, first for the 21000 models with the 259 

best RMSE scores on D. Melanogaster ind, and then to 2128 models that passed perturbation 260 

experiment filters. We suspect that the first filtering biases the models toward over-fitting the 261 

ind curve. Though Samee et al. reported that the models fell within 42 of their compartments in 262 

the model-parameter space, predicted curves for ortholog enhancers (SI, below) are all largely 263 

the same. This leads us to further suspect that the traditional model fitting problem is 264 

underspecified. Regularization offers a solution to the under-specification problem. 265 

 266 

It may be noted that we discovered noise-injection ex-nihilo in an attempt to solve precisely the 267 

problems of ill-conditioned solution finding which the existing literature addresses. As a result, 268 
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 11 

we have created a naïve implementation of noise-injection, itself an approximation to Tikhonov 269 

regularization. Further review of the literature reveals that the Levenberg-Marquardt non-linear 270 

least-squares optimization algorithm [27]–[31] directly implements Tikhonov regularization. In 271 

the future we hope to include this optimizer in GEMSTAT itself, doing away with noise-injection 272 

scripts. 273 

 274 

MATERIALS AND METHODS 275 

 276 

IND striping data 277 

For ind (dorsal/ventral) [32] striping modeling, we took the datasets provided by the authors of 278 

[23], and used them without modification. This dataset includes curves for inputs dl (dorsal), 279 

zld/vfl  (zelda/vielfaltig), cic (capicua), sna (snail), vnd (ventral nervous system defective); output 280 

ind (intermediate neuroblasts defective); and signaling kinase dpERK (doubly phosphorylated ERK 281 

[33], [34]) - all from late cell-cycle 14. Each curve had 50 bins along the ventral/dorsal axis, with 282 

bin 1 being ventralmost and bin 50 being dorsalmost. All curves were produced via experiments 283 

in D. melanogaster. The data is presented in Figure 2. The dataset also included ind enhancers 284 

from D. melanogaster and ten other Drosophilids. For orthologous enhancers, input and output 285 

patterns were presumed to match those of D. melanogaster. 286 

 287 

Neurogenic ectoderm striping system data 288 

For other dorsal/ventral striping systems experiments, we collected data from http://dvex.org 289 

[35], [36]. While this website was not currently active when this research was performed, and 290 

has since been replaced with entirely different data, an archived versions of the website and 291 

original data are available from http://archive.org. The last useful snapshot being from 2009 292 

(https://web.archive.org/web/20090408093453/http://www.dvex.org/). This dataset includes 293 

inputs dl (dorsal), twi (twist), and sna (snail); outputs brk (brinker), rho (rhomboid), vn (vein), and 294 

vnd (ventral nervous system defective), with outputs measured both for endogenous expression 295 

and expression of a minimal reporter driven only by the enhancer (not shown, available above). 296 
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The database contains curves created by integrating the luminance over multiple stripes of 297 

confocal microscopy images, in addition to the individual bin values. Each image is registered to 298 

the sna gradient and endogenous rho  mRNA [35], [36]. Each curve has 1000 points, from 0 at the 299 

ventral midline to 999 at the dorsal midline. In order to facilitate work at any number of D/V 300 

samples, we fit spline functions to those curves, with semi-manually selected distribution of 301 

knots, except for dl (discussed next). While every attempt was made to get splines that produced 302 

good curves, we did not force the curves to be perfectly smooth. This proved to be an important 303 

test of our method. Splines then allowed for the data to be up- or down-sampled to any desired 304 

number of bins. 305 

 306 

In the case of dl, measured data does not cover the entire range of dl activity (there is a dl gradient 307 

from the ventral-most to dorsal-most points). Additionally, even for the coordinates where dl 308 

was measured, some of the tracks had missing data. To get an appropriate dl curve, we used a 309 

finite element differential equation solution that models production, diffusion, degradation, and 310 

the wraparound boundary implied by the 1-dimensional diffusion of dl. While technically it would 311 

be activating factors that are diffused through the perivitelline space [37], this approximation 312 

seems to fit the data well with only three parameters (effectively two, as at steady state, 313 

production and degradation must balance each other). The parameters of this diffusion model 314 

were fit with least squares to the region where data was available. The fit was nearly perfect, in 315 

contrast to the fit via a Gaussian curve used in [23] (not shown). 316 

 317 

Enhancer sequences were taken from the RedFly database [38]. We used the enhancer “vnd NEE” 318 

for vnd, “rho NEE” for rho, “vn NEE-long” for vn, and “brk NEE-long” for brk. As reflected by their 319 

names, each of these sequences is known to drive expression during neurogenic ectoderm 320 

formation. 321 

 322 

 323 

 324 
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Noise injection pre-processor 325 

In order to realize noise injection without altering existing software, we implemented a tool that 326 

reads GEMSTAT input curves, copies the data bins, and applies noise. Output from this tool is in 327 

the standard GEMSTAT format, allowing unaltered versions of GEMSTAT to be used. Parameters 328 

to the tool are N , the number of copies to make of each bin (in addition to the original data); and 329 

σ0 and σ1, which control the noise. Each copied data point has Gaussian noise added, with 330 

standard deviation σ(y)=σ0 + σ1y, where y is the value of the curve in that bin. The noised input 331 

value is lower-bounded at 0.0. (Many early experiments, not shown, revealed that σ1 is 332 

unnecessary and may be set to 0.0.) For noise-injected training points, Gaussian noise with 333 

standard deviation 0.05 was added to normalized (max 1.0) input TF levels. Values falling below 334 

zero were thresholded to 0.0. Processed curves contain all of the original bins of the curve, 335 

augmented with N noised copies, thus for an input containing M bins, there will be (N +1)M  336 

output bins, NM  of which have noise applied.  337 

 338 

Baking of effective cic levels 339 

In [23], the authors calculated the effective concentrations of cic dynamically from the 340 

concentrations of dpERK, according to the following formula: 341 

[𝐶𝐼𝐶]%&&%'()*% = [𝐶𝐼𝐶](,(-. ⋅ exp	{−𝑐𝑖𝑐-(( ⋅ [𝑑𝑝𝐸𝑅𝐾]} 342 

This results in small variations where dpERK levels are low causing very large variations in 343 

[CIC]effective . Our solution was to pre-calculate cic-attenuation before applying noise. We refer 344 

to this process as “baking” the cic-attenuation, or simply “baking”. Baked inputs can be handled 345 

by the base version (and the L1/L2 regularized version) of GEMSTAT, though it becomes 346 

impossible to optimize the cic_att parameter. 347 

 348 

Regularized GEMSTAT 349 

We implemented L1 and L2 regularization in GEMSTAT. Some parameters can take separate 350 

regularization strengths, for example, scaling parameters (\beta) and cooperativities can be 351 

penalized separately from other parameters. The code is available at 352 
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https://github.com/UIUCSinhaLab/GEMSTAT, currently in the ‘add_regularization’ branch, but 353 

will be merged to the ‘master’ branch in due time. 354 

 355 
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 527 

Table 1: Statistical evaluation of the effect of regularization during training of models. Ensembles 528 
trained on the D. melanogaster ind enhancer are evaluated on orthologs of the enhancer from 529 
each of nine other species (rows, sorted according to divergence times from D. melanogaster). 530 
‘Better/worse’ indicates that an ensemble trained with a form of regularization has better/worse 531 
fits vs an ensemble of models trained without regularization. Shown in parentheses are p-values 532 
of Welch’s t-tests comparing RMSE (goodness of fit) scores of the two ensembles. Each of 533 
columns 1-3 evaluates a different form of regularization.  Column 1: Noise regularization with 534 
N=20 copies and 𝜎? = 0.05 was used to train 2100 models from random starting points as in [23], 535 
as described in the main text.  Column 2: 𝐿D regularization was used to train 2100 models. 536 
Analysis of noise-regularized models suggested that the scaling parameter contributed most to 537 
improvement, so we fixed it to 1.0 to avoid giving the regularized method a simple advantage in 538 
this regard.  Column 3: 𝐿Eregularization was tested in a test otherwise identical to that of column 539 
2. 540 

 541 
  542 

 
 Noise-Injection 𝑳𝟐 regularization 𝑳𝟏regularization 
D. sechellia Worse (0.324) Better (4.6e-67) Better (8.4e-39) 
D. yakuba Better (3.9e-88) Better (1.6e-210) Better (4.9e-210) 
D. erecta Better (3.1e-99) Better (5.2e-86) Better (5.1e-198) 
D. ananassae Worse (1.7e-48) Better (6.0e-51) Better (3.2e-97) 
D. pseusoobscura Better (3.3e-195) Better (3.3e-87) Better (1.2e-157) 
D. persimilis Better (1.8e-167) Better (7.0e-93) Better (7.8e-187) 
D. mojavensis Better (3.0e-04) Better (8.7e-262) Better (0.0) 
D. virilis Better (1.1e-70) Better (4.2e-128) Better (1.7e-222) 
D. grimshawi Worse (2.6e-10) Worse (6.4e-118) Worse (2.1e-264) 
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 543 
 544 
 545 

 Ab Initio Noise-Injection vs. 
final ensemble from Samee 
et al. [23] 

Refinement, with vs. without 
Noise-Injection, with ensemble 
from [23] as initialization 

 

D. sechellia Worse (0.0e+00) Worse (0.0)  
D. yakuba Better (5.1e-109) Better (4.0e-09)  
D. erecta Better (2.0e-209) Worse (3.2e-09) *1 
D. ananassae Better (0.0) Better (0.0)  
D. pseusoobscura Better (0.0) Better (2.3e-234)  
D. persimilis Better (0.0) Better (5.5e-233)  
D. mojavensis Better (0.0) Better (5.8e-232)  
D. virilis Better (0.0) Better (1.1e-234) *2 
D. grimshawi Better (insignificant) (0.947) Worse (7.2e-150) *3 

 546 
Table 2: Comparison of ensemble obtained by noise-regularization versus ensembles reported in 547 
Samee et al. [23]. Evaluations and comparisons follow the same scheme as for Table 1 (also 548 
explained in text). ‘Better/Worse’ indicates that an ensemble trained with noise-regularization 549 
has better/worse fits, and p-values in parentheses are from Welch’s t-tests comparing RMSE 550 
scores for the two ensembles of models.  Column 1: The final 2128 models from [23] serve as a 551 
baseline for evaluation of the 2100 models obtained from random starting points and refined by 552 
noise-regularization (same ensemble as that evaluated in Table 1 column 1). A p-value of 0 553 
indicates that the p-value computed by the statistical software was smaller than its minimum 554 
possible p-value.  Column 2: The final 2128 models from [23] were further refined for 1 epoch, 555 
with and without noise regularization, and the two resulting ensembles were compared. 556 
 557 
*1 Scores of regularization-refined models are bimodal, with one mode clearly better and one 558 
clearly worse. 559 
*2 Models from [23] totally fail to predict any expression for this enhancer. Regularization- 560 
trained models reproduce the ind stripe. Models refined from Samee et al. models are not as 561 
good as those from ab initio fitting, but this might be explained by one using “baked” CIC 562 
attenuation and the other not (see Methods). 563 
*3 The right column is worse with statistical significance, but the effect-size is minor. 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
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 574 
 575 

Trained on Predict on 

rho vn vnd brk 

rho X Better (1.2e-15) 
 

 

Better (8.4e-32) 
Narrower band, 
reduced ventral 
ectopic 
prediction 

Better (1.4e-56) 
 

vn Better (2.3e-21) 
Reduced dorsal 
ectopic 
prediction 

X Better (1.9e-113) Better (7.6e-31) 

vnd Better (9.0e-19) 
Reduced dorsal 
ectopic 
prediction 

Better (8.5e-28) 
 

X 
(Smoother 
prediction, SI1 
Fig S8) 

Better (1.5e-50) 
 

brk Better (1.3e-39) 
Reduced dorsal 
ectopic 
prediction 

Better (4.7e-15) 
Reduced ectopic 
prediction 

Better (2.6e-14) 
Reduced ectopic 
prediction 

X 

 576 
Table 3: Comparison of ensembles obtained with and without noise-injection, using data on four 577 
D/V patterning enhancers in D. melanogaster. Shown in parentheses in each cell are p-values for 578 
Welch’s t-tests comparing RMSE scores of ensembles of 100 models trained on one enhancer 579 
and cross-validated on three other D/V enhancers. Rows: Two ensembles, one with and one 580 
without combined regularization, were trained on the enhancer listed in the ‘Trained on’ column. 581 
The RMSE scores of the two ensembles’ predictions on each cross-validation enhancer (‘Predict 582 
on’ columns) were compared with a Welch’s t-test, giving the p-values shown for the null 583 
hypothesis that the ensembles have identical performance. In all cases, the ensemble trained 584 
with regularization outperformed the traditionally trained ensemble with statistical significance. 585 
  586 
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 587 
 588 
Figure 1. A schematic view of the process used to compare training with and without different 589 
forms of regularization. First, an initial set of model parameters is created randomly. Then, that 590 
set of parameters is used as starting points for model refinement under two different refinement 591 
methods. One is the traditional refinement method, and the other is the traditional method 592 
augmented with one or more forms of regularization. Finally, the goodness-of-fit values of the 593 
two ensembles of models are compared on held-out data to determine if either ensemble 594 
performs better with statistical significance.  595 
 596 
 597 
 598 
 599 
 600 
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 602 
 603 
Figure 2. (A) All input and output curves from [23], used in evaluations involving the ind enhancer 604 
and reported in Tables 1 and 2. Ind expression displayed as the heavy solid line. Transcription 605 
factors are displayed as lines with markers. Effective CIC concentration (CIC*, plus signs) was 606 
calculated as described here and in [23] with a cic_att parameter of 16.0. (B) Example ensemble 607 
comparison for D.virilis, corresponding to Table 2, column 1. The first panel shows predictions 608 
(green) from models trained under standard refinement, with ground-truth in blue. The second 609 
panel shows predictions for models trained with noise-injection. The third panel displays a 610 
comparison of the histograms of PGP scores [20] for standard and noise-injected models. The 611 
fourth panel is the same comparing RMSE scores between the two ensembles. (C) Example 612 
ensemble comparison for D.pseudoobscura, corresponding to Table 2, column 2. Semantics are 613 
the same as panel B. 614 
 615 
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 616 
 617 
Figure 3. All input and output curves from [35], [36], processed as described in Methods, and 618 
used in evaluations reported in Table 3. Expression patterns are displayed as solid and dashed, 619 
markerless lines. Transcription factors are displayed with markers, according to the legend. 620 
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