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Abstract

Motivation: Several algorithms have been developed that use high throughput sequencing technol-
ogy to characterize structural variations. Most of the existing approaches focus on detecting relatively
simple types of SVs such as insertions, deletions, and short inversions. In fact, complex SVs are of crucial
importance and several have been associated with genomic disorders. To better understand the contri-
bution of complex SVs to human disease, we need new algorithms to accurately discover and genotype
such variants. Additionally, due to similar sequencing signatures, inverted duplications or gene conver-
sion events that include inverted segmental duplications are often characterized as simple inversions; and
duplications and gene conversions in direct orientation may be called as simple deletions. Therefore,
there is still a need for accurate algorithms to fully characterize complex SVs and thus improve calling
accuracy of more simple variants.
Results: We developed novel algorithms to accurately characterize tandem, direct and inverted inter-
spersed segmental duplications using short read whole genome sequencing data sets. We integrated these
methods to our TARDIS tool, which is now capable of detecting various types of SVs using multiple se-
quence signatures such as read pair, read depth and split read. We evaluated the prediction performance
of our algorithms through several experiments using both simulated and real data sets. In the simulation
experiments, using a 30× coverage TARDIS achieved 96% sensitivity with only 4% false discovery rate.
For experiments that involve real data, we used two haploid genomes (CHM1 and CHM13) and one
human genome (NA12878) from the Illumina Platinum Genomes set. Comparison of our results with
orthogonal PacBio call sets from the same genomes revealed higher accuracy for TARDIS than state of
the art methods. Furthermore, we showed a surprisingly low false discovery rate of our approach for
discovery of tandem, direct and inverted interspersed segmental duplications prediction on CHM1 (less
than 5% for the top 50 predictions).
Availability: TARDIS source code is available at https://github.com/BilkentCompGen/tardis, and a
corresponding Docker image is available at https://hub.docker.com/r/alkanlab/tardis/
Contact: fhormozd@ucdavis.edu and calkan@cs.bilkent.edu.tr

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/393694doi: bioRxiv preprint 

https://github.com/BilkentCompGen/tardis
https://hub.docker.com/r/alkanlab/tardis/
fhormozd@ucdavis.edu
calkan@cs.bilkent.edu.tr
https://doi.org/10.1101/393694
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction

Genomic differences between individuals of the same species, or among different species, range from single
nucleotide variation (SNVs) [22] to small insertion/deletions (indels) [26] up to 50 bp, structural variation
(SVs) [2] that affect >50 bp, and larger chromosomal aberrations [28]. Among these types of variants,
SNVs were extensively and systematically studied since the introduction of microarrays, which can also be
used to genotype short indels [22]. SVs, especially copy number variations (CNVs), were first identified
using BAC arrays [33, 31], and then oligonucleotide array comparative genomic hybridization [34, 9] and
SNV microarrays by analyzing allele frequencies[23, 10]. Chromosomal aberrations such as trisomy, or large
translocations (e.g., Philadelphia chromosome [32]) can be tested using fluorescent in-situ hybridization [28].

Fine scale SV discovery was made possible using fosmid-end sequencing [44], and later indels were
identified at breakpoint level using whole genome shotgun (WGS) sequencing data [26]. However, both
approaches used the Sanger sequencing technology, which is prohibitively expensive to scale to analyze
thousands of genomes. High throughput sequencing arose as a cost effective alternative [35] to characterize
SVs first using the Roche/454 platform [18], and then Illumina [3, 12, 45, 25, 20, 36, 1, 45].

The 1000 Genomes Project, launched in 2008, used the HTS platforms to catalog SNVs, indels, and
SVs in the genomes of 2,504 human individuals [41]. Many algorithms were developed that use one of four
basic sequence signatures to discover SVs, namely read depth, read pair, split reads, and assembly [24, 2],
however, most of these tools focus on characterizing only a few types of SVs. More modern SV callers such
as DELLY [30], LUMPY [19], SV-Bay [17], TIDDIT [11], and TARDIS [37] integrate multiple sequencing
signatures to identify a broader range of SVs such as deletions, novel insertions, inversions, and mobile
element insertions. However, there is still a need for accurate algorithms to characterize several forms of
complex SVs, such as tandem or interspersed segmental duplications (SDs) [8, 7]. Note that read depth
based methods can identify the existence of SDs [3, 39], but cannot detect the location of the new copies of
the duplications. Only SV-Bay [17] and TIDDIT [11] are capable of reporting duplication insertion location
using read pair information.

Here we describe novel algorithms to accurately characterize both tandem and interspersed SDs using
short read HTS data. Our algorithms make use of multiple sequence signatures to find approximate locations
for the duplication insertion breakpoints. We integrated our methods into the TARDIS tool [37] therefore
extending its capability to simultaneously detect various types of SVs. We test the new version of TARDIS
using both simulated and real data sets. We show that TARDIS achieves 96% sensitivity with only 4%
false discovery rate (FDR) in simulation experiments. We also used real WGS data sets generated from
two haploid genomes (i.e., CHM1 [15] and CHM13 [38]). Comparison of our predictions with de novo
assemblies generated using long reads from the same DNA resources [38] revealed ¡5% false discovery rate
for the duplications with high score.

The algorithms we describe in this manuscript are among the first methods to discover the insertion
locations of segmental duplications using high throughput sequencing data. Coupled with the previously
documented capability of TARDIS to identify deletions, novel and mobile element insertions, and inversions,
we are one more step closer towards a comprehensive characterization of SVs in high throughput sequenced
genomes.
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2 Methods

2.1 Motivation

The 1000 Genomes Project provides a catalog of SVs in the genomes of 2,504 individuals from many
populations [40]. The project primarily focused on characterizing deletions, insertions, and mobile element
transpositions, however, it also generated a set of inversion calls. A careful analysis shows that a substantial
fraction of the predicted inversions are in fact complex rearrangements that include duplications, inverted
duplications, and deletions within an inverted segment (Figure 1). This is because the read pair signatures
that signal such complex SVs are exactly the same as shown in Fig. 2. Therefore, any algorithm based on read
pair (and/or split read) signature may incorrectly classify these complex events as simple inversions, unless
it tries to characterize all such events simultaneously, with additional probabilistic models to differentiate
events that show themselves with the same signature.

54%
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7%
5%

Simple inversion

Inverted duplication

Inversion and deletion

Multiple deletions 

and inversion
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Figure 1: Relative abundance of complex SVs among the inversion calls reported in the 1000 Genomes
Project [40]. 54% of predicted inversions are in fact inverted duplications and only 20% are correctly
predicted as simple inversions.
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Figure 2: Read pair sequence signatures of inversions, deletions and segmental duplications. The grey
arrows show read pairs that span a structural variant breakpoint, and green (left panel) and purple (right
panel) arrows show the corresponding map location and orientation of these reads on the reference genome.
Note that the read pair signatures for inversions and inverted duplications are exactly the same. Similarly,
deletions and direct duplications show the same read pair signature. Therefore read pair based algorithms
may incorrectly identify inverted segmental duplications as simple inversions. This problem also exists for
incorrectly predicting simple deletions while the true underlying variant is a duplication in direct orientation.
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2.2 Read pair and split read clustering

TARDIS uses a combination of read pair, read depth and split read sequencing signatures to discover
SVs [37]. TARDIS formulation is based on algorithms we developed earlier using maximum parsimony [12,
14] objective function. The proposed approach has two main steps: First clustering read pairs and split
reads that signal each specific type of SV, and second apply a strategy to select a subset of clusters as
predicted SV. In this paper we extend TARDIS to characterize a complex set of SVs, which are incorrectly
categorized by state of the art methods for SV discovery. Specifically the methods we present here will
advance our capability in discovery of duplication based SVs. Furthermore, our new methods
are capable of separating inversions from more complex events of inverted duplications and are also able to
predict the insertion locations of the new copies of segmental duplications. We would argue that considering
these more complex types of SV is crucial in improving the accuracy of predicting other types of SVs. We
therefore modified TARDIS to calculate a likelihood score for each SV provided the observed read pair,
read depth and split read signatures. Figure 3 summarizes the read pair signatures that TARDIS uses
to find tandem in direct orientation and interspersed duplications in both direct and inverted orientation.
Although not shown on the figure for simplicity, similar rules are required for split reads that signal the
same types of SVs (Supplementary Figure 1).

2.2.1 Maximal valid clusters

Our approach for discovery of SVs is based on first produced maximal valid clusters for every type of SVs.
We have previously described algorithms to calculate maximal valid clusters for deletions, inversions, and
mobile element insertions [12, 13, 14, 37]. A valid cluster is defined as a set of discordant paired-end read
alignments that support the same structural variants. In another words, a valid cluster indicates the set of
discordant paired-end read mappings that explain the same potential structural variant. More formally, a
valid cluster is a set of alignments of discordant read pairs and/or split reads (denoted as rpi) that support
the same particular SV event shown as

V Clusi = {rp1, rp2, . . . , rpn}

A maximal valid cluster is a valid cluster which no additional discordant paired-end reads can be added to
it such that it still remains a valid cluster. Note that, we and others have previously developed methods
to efficiently generate all maximal clusters for inversions, deletions, and insertions. In this section we
provide new methods to find maximum valid clusters for tandem and interspersed (both direct and inverted)
duplications.

There are a set of rules that each rpi should satisfy in order to support the cluster, V Clusi, based on
the type of SV.

Inverted duplications : We assume the fragment sizes for read pairs are in the range [δmin, δmax], and
we denote the insertion breakpoint of the duplication as PBr and the locus of the duplicated sequence
is [PL, PR] (Figure 3A). We scan the genome from beginning to end, and we consider each position as a
potential duplication insertion breakpoint PBr. We consider all sets of read pairs where both mates map to
the same strand (i.e., +/+ and −/−) within interval [PBr − δmax, PBr] and [PBr, PBr + δmax] respectively
as clusters that potentially signal an inverted duplication.

Interspersed direct duplications : We create the valid clusters in a way similar to the inverted du-
plications, with the exception of the required read mapping properties. For direct duplications we require
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Figure 3: Read pair sequence signatures used in TARDIS to characterize A) interspersed duplications in
inverted orientation, B) interspersed duplications in direct orientation, and C) tandem duplications. PBr
denotes the breakpoint location of each variant, and PL and PR are the left and right (i.e., proximal and
distal) coordinates of the duplicated segment. For each type of structural variation, we show two read pairs
from the donor genome (ri, rj). The read pairs are colored black and blue to facilitate easier tracking by
the reader. The alignments for read pair ri are shown on the reference as L(ri) and R(ri), which denote the
left (i.e., proximal) and right (i.e., distal) mapping locations of the end reads. Finally, δmin and δmax are
the minimum and maximum fragment lengths as inferred from the fragment size distribution in the aligned
data.

each mate of a read pair to map to opposing strands (i.e., +/− and −/+).

Tandem duplications : We also create the clusters for tandem duplications as shown in Figure 3. In the
case of tandem duplications, discordant read pairs and split reads map in opposing strands, where the read
mapping to the upstream location will map to the reverse strand, and the read mapping to downstream
will map to the forward strand (i.e., −/+).

Similar to the valid cluster formulation, a maximal valid cluster is a valid cluster that encompasses all
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the valid read pairs and split reads for the particular SV event (i.e., no valid superset exists). This can be
computed in polynomial time as follows:

1. We initially create maximal sets S = {S1, S2, ..., Sk} that harbors the read pair/split read alignments
Si = {rp1, rp2, ..., rpk}.

2. For interspersed duplications, we use an additional step to bring mappings in both forward-reverse and
reverse-forward (forward-forward and reverse-reverse for inverted duplications) orientations together
inside the same set.

3. For each maximal overlapping set Si found in step 1, we create all the overlapping maximal subsets
si. (This step is necessary only for detecting inversions and interspersed duplications)

4. Among all the sets si found in Step 3, remove any set that is a proper subset of another chosen set.

2.3 Probabilistic Model

As we describe above different types of SVs may generate similar discordant read pair signatures (Figure 2).
We therefore developed a probabilistic model that makes use of the read depth signature to assign a
likelihood score to each potential SV. Our new probabilistic model has the ability to distinguish different
types of SVs with the same read pair signature.

2.3.1 Likelihood model

Assume the set of maximum valid clusters SV = {S1, S2, . . . , Sn} is observed in the sequenced sample.
TARDIS keeps track the following information for each maximum valid cluster Si for 1 ≤ i ≤ n:

• observed read depth and read pair information (di, pi), i.e. di is the total observed read depth, and
pi is the number of discordantly mapped read pairs.

• potential duplicated or deleted or inverted region (αi, βi).

• potential breakpoint γi.

• potential SV type.

Assuming observed read depth and number of discordant read pairs follow a Poisson distribution, λ > 0,

Poisson(λ, x) =
λxe−λ

x!

here, λ is the expected number of read depth or read pairs, and x is the observed number of read depth or
read pairs respectively. However, the expected read depth or read pairs for some events might be zero, we
approximate the probability by,

Poisson(0, x) ≈ Poisson(ε, x)

for a small ε > 0 (e.g. ε = 0.01 for read depth and ε = 0.001 for read pairs).

For each cluster Si, we define a random variable statei ∈ {0, 1, 2} in which the state of Si is homozygous
if statei = 2, heterozygous if statei = 1, and no event if statei = 0. We also define a random variable typei,
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which represents the SV type for Si. Given statei = k and typei = δ, the likelihood of Si can be calculated
as:

Li(δ, k) = P (Si | δ, k)

= P ( read depth of Si | δ, k) · P ( read pairs of Si | δ, k)

= Poisson(di, λd) · Poisson(pi, λp)

=
λdid e

−λd

di!
· λ

pi
p e−λp

pi!

where λd is the expected read depth of Si given typei = δ, statei = k and λp is the expected read pairs of
Si given typei = δ, statei = k.

We calculate λd based on (typei, statei) and the expected read depth within the region (αi, βi) normalized
with respect to its G+C content using a sliding window of size 100 bp, denoted by Ed[(αi, βi)]. We calculate
λp based on the (typei, statei) and the expected number of discordantly mapped read pairs around the
potential breakpoint γi, denoted by Ep[γi]. For instance, if an event is categorized as homozygous deletion,
we expect to see almost no read depth inside the potential deleted region (αi, βi), and the expected number
of discordantly mapped read pairs should be approximately the expected number of reads containing the
potential breakpoint, i.e Ep[γj ]. For heterozygous deletion events, we expect to see half of the number of read
depths and half of the expected number of discordantly mapped read pairs. We also calculate the likelihood
score of no event at the potential region given that is categorized as deletion. For this case, we expect to
see the expected number of read depths in that potential region and zero discordantly mapped read pairs.
Similarly, the value for λd, λp can be approximately for inversion and duplications. Table 1 shows the value
for λd, λp for each (typei, statei) using Ed[(αi, βi)] and Ep[γi]. Note that even though the formulation for
λd, λp are the same for all types of duplications, the likelihood score will be different because the potential
regions (αi, βi) are different based on the categorized type of the event being considered. Furthermore, the
read-pair support and signature will be different for each type of duplication which is the key in resolving
the type of duplication.

Table 1: Formulation for λd and λp for maximum valid cluster Si

SV Type State λd λp

Deletion
homozygous 0.01 Ep[γi]
heterozygous 0.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.001

Inversion
homozygous Ed[(αi, βi)] Ep[γi]
heterozygous Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.001

Inverted Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.001

Direct Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.001

Tandem Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.001
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2.3.2 SV weight

For each potential SV we calculate a score to represent how likely a SV prediction is correct given the
observed signature. Note that, for each SV, we calculate the likelihood considering homozygous state and
heterozygous state separately.

We define the score as ratio of log of likelihoods of the putative SV being true given the observed data
over it being false. Note that we use log function to avoid numerical errors. Even those the standard
approach is to use logarithm of the ratio, we heuristically use the ratio to make sure that the scores are
positive, which will work better for the set cover approximation algorithm we will use in the next step.

The score of potential SV Si is defined as follows:

score(Si) =
max (logLi(δi, k = 1), logLi(δi, k = 2))

logLi(δi, k = 0)

where δi is the potential SV type of Si. Again, k = 0, 1, 2 implies that the state of Si is no event,
heterozygous, homozygous respectively.

2.3.3 Multi-mapping reads

We have previously showed that a greedy approach motivated by weighted-set cover problem performs well
in discovery of SVs with multiple mapping of the reads [12]. It guaranties an O(log(n)) approximation. We
therefore utilize a similar iterative greedy approach here as minimum weighted-set cover. More formally, at
each step we select the set with the lowest ratio of SV score (score(Si)) and number of uncovered discordant
paired end-reads being covered by that SV (pi)

weight(Si) =
score(Si)

pi

and continues this iterative process.

3 Results

3.1 Simulation

In order to evaluate performance of our SV detection algorithms, we generated a simulated genome first
using VarSim [27]. VarSim “inserts” previously known real genomic variants into a given reference segment.
Although it supports deletions, inversions, and tandem duplications, it does not yet simulate interspersed
segmental duplications. Therefore we developed a new simulator called CNVSim to additionally simulate
interspersed duplications in both direct and inverted duplication.

In total, we simulated SVs of lengths selected uniformly random between 500 bp and 10 Kbp. For
inverted duplications and interspersed direct duplications, the distance from the new paralog to the original
copy is chosen uniformly random between 5,000 bp and 50 Kbp. All segments are sampled randomly from the
well-defined (i.e., no assembly gaps) regions in the reference genome, and guaranteed to be non-overlapping.
Each simulated SV can be in homozygous or heterozygous state.

Based on the human reference genome (GRCh37), we simulated total of 1,200 SVs including 700 dele-
tions, 579 inversions, 200 tandem duplications, 200 inverted duplications, and 200 interspersed direct du-
plications. We then simulated WGS data at four depth of coverages 10×, 20×, 30×, 60× using wgsim
(https://github.com/lh3/wgsim). We mapped the reads back to the human reference genome (GRCh37)
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using BWA-MEM [21]. Finally we obtained structural variation call sets using TARDIS, DELLY [30],
LUMPY [19], TIDDIT [11], and SoftSV [4].

We included analysis of all types of SVs in our simulation and real data experiments following our
motivation we outlined in section 2.1 and Figures 1 and 2. We would like to reiterate that inability to call
interspersed segmental duplications results in higher false positives in both deletion and inversion discov-
ery. Through characterization of segmental duplications and integration of a read depth based probabilistic
model, TARDIS achieves better inversion and deletion discovery accuracy by correct classification of more
complex SV types. Further analysis on the simulations revealed that 95 of 773 deletions predicted by
LUMPY and 96 of 852 deletions predicted by DELLY are indeed interspersed duplications in direct orien-
tation. Similarly, 109 of 1,286 DELLY-predicted inversions were in fact inverted segmental duplications.

Finally, we simulated 10 large (up to 1 Mbp) segmental duplications in chromosome Y to assess the
power of TARDIS in detecting large duplications. TARDIS correctly identified 4/10 duplications of size
>63 Kb (Supplementary Table S1).

Table 2: Summary of simulation predictions by TARDIS, TIDDIT, LUMPY, SoftSV and DELLY.

SV Type Cov.
TARDIS TIDDIT LUMPY SoftSV DELLY

MISS FDR TPR MISS FDR TPR MISS FDR TPR MISS FDR TPR MISS FDR TPR

Deletion

10× 244 0.00 0.65 288 0.00 0.59 205 0.26 0.71 272 0.30 0.61 255 0.28 0.64
20× 113 0.00 0.84 226 0.00 0.68 125 0.25 0.82 135 0.32 0.81 124 0.27 0.82
30× 92 0.00 0.87 194 0.00 0.72 111 0.24 0.84 109 0.32 0.84 106 0.30 0.85
60× 76 0.01 0.89 185 0.00 0.74 96 0.24 0.86 97 0.33 0.86 99 0.31 0.86

Inversion

10× 108 0.03 0.81 119 0.45 0.79 121 0.00 0.79 121 0.00 0.79 140 0.41 0.76
20× 98 0.06 0.83 97 0.44 0.83 102 0.01 0.82 77 0.03 0.87 94 0.41 0.84
30× 88 0.06 0.85 101 0.44 0.83 98 0.01 0.83 65 0.03 0.89 87 0.43 0.85
60× 83 0.06 0.86 96 0.44 0.83 93 0.01 0.84 78 0.05 0.87 84 0.43 0.85

Duplication

10× 72 0.05 0.88 428 0.10 0.29 428 0.49 0.29 444 0.55 0.26 433 0.48 0.28
20× 28 0.05 0.95 422 0.09 0.30 412 0.50 0.31 410 0.55 0.32 429 0.50 0.29
30× 25 0.04 0.96 424 0.10 0.29 410 0.50 0.32 403 0.57 0.33 419 0.50 0.30
60× 19 0.09 0.97 422 0.08 0.30 408 0.50 0.32 401 0.60 0.33 414 0.50 0.31

We show the true positive rate/recall and false discovery rates (TPR and FDR) of TARDIS, TIDDIT, LUMPY, SoftSV
and DELLY at different depths of coverage from 10× to 60× for deletions (Del), inversions (Inv), and segmental dupli-
cations (Dup). Note that only TARDIS can predict interspersed segmental duplications, therefore other tools miss such
events. TARDIS consistently shows low FDR with comparable sensitivity. In our simulation, the length of each SV is
generated uniformly random between 500 bp and 10 Kbp. Note that the bold values for FDR and TPR represent the
best results among the five tools.

Table 2 shows the true positive rate (TPR) and false discovery rate (FDR) of TARDIS compared to
DELLY, LUMPY, TIDDIT and SoftSV on the simulated data. TARDIS achieved a substantially higher
TPR and a lower FDR for deletions and duplications overall. Additionally, its sensitivity is comparable
to LUMPY and SoftSV in terms of inversion predictions. (See Supplementary Figure 2 for precision-recall
curves of inversions and duplications.)

In these simulation experiments we used the default variables, which require at least 5 read pairs that
support the SV event. Although this cut off works well, it contributes to higher number of false positives
when the depth of coverage is high (Table 2). To demonstrate the effects of the values for this parameter,
we repeated the experiment with varying minimum number of read pair support values. We confirmed that
with higher values, we can reduce the FDR for high coverage genomes (Supplementary Table S2).

Furthermore, TARDIS can classify duplications into tandem, interspersed directed duplication and
inverted duplication. However, DELLY, LUMPY, TIDDIT and SoftSV are not designed to characterize
interspersed segmental duplications, therefore we cannot provide comparisons. Table 3 shows the TDR,
FDR, and the exact count of the number of True/False predictions for each type of segmental duplication.
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Table 3: Characterization of different types of segmental duplications using TARDIS on simulated data.

Duplication Type Coverage # SVs Missed True TPR False FDR

Inverted Interspersed Duplication

10× 200 15 185 0.93 7 0.04
20× 200 10 190 0.95 11 0.05
30× 200 12 188 0.94 15 0.07
60× 200 9 191 0.96 33 0.15

Direct Interspersed Duplication

10× 200 10 190 0.95 3 0.02
20× 200 7 193 0.97 0 0.00
30× 200 6 194 0.97 4 0.02
60× 200 5 195 0.98 9 0.04

Tandem Duplication

10× 200 47 153 0.77 21 0.12
20× 200 11 189 0.95 15 0.07
30× 200 7 193 0.97 10 0.05
60× 200 5 195 0.98 16 0.08

TARDIS can classify duplications into tandem, interspersed directed duplication and inverted duplication. However,
DELLY, LUMPY, TIDDIT and SoftSV are not designed to characterize these complex SVs. This table shows the true
positive rate (recall) and false discovery rate (TPR and FDR respectively) of TARDIS for each type of duplication.

3.2 Haploid genome analyses

As the first experiment with real data sets, we downloaded short read HTS data generated from two haploid
cell lines, namely CHM1 and CHM13 [16, 38]. We mapped the reads to human reference genome (GRCh37)
using BWA-MEM [21]. We also obtained call sets generated with PacBio data from the same genomes [6],
but here we use updated SV calls (Mark Chaisson, personal communication), which we use as the true
inversion set to compare with our predictions.

We present the comparison of the inversion predictions made by TARDIS and two state of the art
methods LUMPY and DELLY in Figure 4. Note that we only consider inversions of length > 100 bp.
Figure 4) (a) & (b) show the comparison of TARDIS predictions with those of other tools on CHM1
and CHM13 respectively (We also present a similar comparison for deletion predictions in Supplementary
Figure 3). Overall, TARDIS achieves better accuracy. We also tested the highest scoring set (n=50) of
predicted inversions by each tool generated for the CHM1 genome. Briefly, we used a reference-guided de
novo assembly of PacBio reads generated from the same genome [6] and mapped the contigs to the loci of
interest. We show a receiver-operating-charasteristic-like plot that uses actual numbers of true and false
calls instead of rates (TPR/FDR) (Supplementary Figure 4). Here we observe that compared to LUMPY
and DELLY, TARDIS achieves better area under the curve. However, we note that the main reason for
DELLY and LUMPY curves being closer to that of TARDIS for low number of false calls is because there
were several predictions for which corresponding contigs did not exist in the assembled genome, therefore
omitted from this plot.

We provide the full set of the 50 highest scoring segmental duplications that TARDIS predicts in the
CHM1 genome together with in silico validation using the corresponding PacBio-based assembly (Table
4). Almost all of the predicted duplications, except one, were validated using long reads. We provide the
PacBio alignments of some of these events and top 20 highest scoring CHM13 predictions in Supplementary
Materials. Note that in most cases TARDIS assigned the correct subtype of duplications (inverted, direct
or tandem duplication) to the prediction. As expected, the highest number of segmental duplications in the
top 50 were tandem duplications (> 50% of all duplications).
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Table 4: 50 highest scoring segmental duplications predicted by TARDIS in the CHM1 genome.

Duplication TARDIS Validation Duplication TARDIS Validation
Insertion Locus Dup. Type Score (PacBio) Insertion Locus Dup. Type Score (PacBio)

chr11 63,701,552 - 63,702,044 Direct 0.000096 True chr2 37,928,294 - 38,101,823 Tandem 0.000073 N/A
chr3 194,546,158 - 194,546,552 Direct 0.000100 True chr20 60,032,848 - 60,033,403 Tandem 0.000080 True
chr5 143,512,369 - 143,512,967 Direct 0.000139 True chr5 3,323,855 - 3,324,309 Tandem 0.000106 N/A
chr2 240,640,651 - 240,641,122 Direct 0.000199 True chr7 2,554,464 - 2,554,791 Tandem 0.000111 True
chr20 2,359,605 - 2,360,003 Direct 0.000271 True chr12 110,099,340 - 110,099,746 Tandem 0.000117 True
chr9 112,285,747 - 112,286,145 Direct 0.000300 True chr6 168,052,194 - 168,052,468 Tandem 0.000117 True
chr8 2,215,143 - 2,215,392 Direct 0.000310 N/A chr1 207,097,489 - 207,097,910 Tandem 0.000123 True
chr18 69,711,702 - 69,712,115 Direct 0.000323 True chr16 86,008,734 - 86,009,147 Tandem 0.000127 True
chr17 46,615,512 - 46,615,903 Direct 0.000326 True chr17 80,317,607 - 80,318,019 Tandem 0.000127 N/A
chr6 160,877,582 - 160,878,047 Direct 0.000342 N/A chr10 127,513,435 - 127,513,672 Tandem 0.000129 True
chr2 125,052,915 - 125,053,261 Inverted 0.000088 True chr14 106,049,125 - 106,049,349 Tandem 0.000129 True
chr3 43,834,996 - 43,835,748 Inverted 0.000089 True chr6 44,012,338 - 44,012,957 Tandem 0.000129 True
chr14 67,171,710 - 67,172,020 Inverted 0.000092 True chr9 132,158,817 - 132,159,088 Tandem 0.000129 N/A
chr2 72,440,071 - 72,440,597 Inverted 0.000105 True chr12 13,164,470 - 13,164,800 Tandem 0.000136 True
chr9 107,816,537 - 107,817,079 Inverted 0.000140 True chr20 62,720,020 - 62,720,215 Tandem 0.000136 True
chr17 36,405,748 - 36,407,397 Inverted 0.000149 False chr10 132,974,754 - 132,975,320 Tandem 0.000144 True
chr1 114,645,858 - 114,646,155 Inverted 0.000235 True chr8 2,215,817 - 2,216,236 Tandem 0.000144 N/A
chr5 115,350,905 - 115,351,086 Inverted 0.000236 True chr9 34,681,581 - 34,681,899 Tandem 0.000194 True
chr12 71,532,699 - 71,533,378 Inverted 0.000245 True chr6 35,754,661 - 35,766,731 Tandem 0.000255 True
chr7 31,586,861 - 31,587,129 Inverted 0.000278 True chr20 62,123,612 - 62,124,210 Tandem 0.000257 True
chr18 11,511,287 - 11,511,480 Inverted 0.000280 True chr20 59,567,884 - 59,590,251 Tandem 0.000268 True

chr18 77,831,329 - 77,831,784 Tandem 0.000273 N/A
chrX 417,958 - 418,361 Tandem 0.000273 True
chr20 42,325,214 - 42,325,573 Tandem 0.000290 True
chr19 34,882,471 - 34,883,258 Tandem 0.000310 True
chr2 3,184,299 - 3,185,046 Tandem 0.000310 N/A
chr3 197,117,159 - 197,117,807 Tandem 0.000318 N/A

Here we list the insertion locations of the top 50 scoring segmental duplications in CHM1 genome. All predictions are sorted
by the SV score (lower is better). If the validation is N/A, that means the incorrect prediction from PacBio data, which will
be skipped in the comparison. TARDIS only gives one false call and three interspersed duplications that are wrongly assigned
to tandem duplications.

3.3 NA12878 genome

We also analyzed the WGS data generated from NA12878 using TARDIS for various types of SV discovery
and compared the results against state-of-the-art methods for inversion prediction. Similar to the simulation
and CHM1/13 results, TARDIS outperformed the tested methods for SV discovery (see Supplementary
Figure 16 for inversion comparison with a set of validated inversions on this sample).

More interestingly, we have found an example of a large inverted duplication in NA12878 sample which
we validated using available orthogonal PacBio data generated from the same sample (Figure 5). The
interesting point about this inverted duplication is that it is larger than 10 Kbp and the distance between
locus of insertion and the duplicated region is also larger, which shows a potential start of a new segmental
duplication.

4 Discussion

Characterization of structural variants using HTS data is a well-studied problem. Still, due to the difficulty
of accurately predicting complex variants, most of the current approaches mainly focus on specific forms of
SVs. In this paper we describe novel algorithms to detect complex SV events such as tandem, direct and
inverted interspersed segmental duplications simultaneously with simpler forms SV using whole genome
sequencing data. Our approach integrates multiple sequence signatures to identify and cluster potential
SV regions under the assumption of maximum parsimony. However, complex SV events usually generate
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Figure 4: Precision - Recall curves for the comparison of inversion predictions on CHM1 and CHM13
genomes. Overall TARDIS achieves better accuracy than the two other approaches tested. (a), (b) com-
parison of CHM1 and CHM13 predicted inversions using PacBio reads based on BLASR mappings.

similar signatures (i.e., inversion vs. inverted duplication), which make it difficult to differentiate particular
SV types. Therefore, we strengthened our method by using a probabilistic likelihood model to overcome
this obstacle by calculating a likelihood score for each SV.

Using simulated and real data sets, we showed that TARDIS outperforms state-of-the art methods in
terms of specificity for all types of SVs, and achieves considerably high true discovery rate for segmental
duplications with moderate time and memory requirements (See Supplementary Table S4 for a comparison
of different tools for CHM1 and NA12878 genomes.). It should be noted that it TARDIS is currently one of
the few methods that can classify duplications as tandem and interspersed in direct or inverted orientation
using HTS data. Additionally, it demonstrates comparable sensitivity in deletions and inversions.

Here we only focused on tandem duplications in direct orientation, although inverted tandem repeats
in genomes, or DNA palindromes, also exist especially in the human Y chromosome [5, 43]. However,
these DNA palindromes were incorporated in the human genome over millions of years of evolution, and
polymorphic inverted tandem duplication events are rare. Because of this, the mechanisms forming DNA
palindromes are not yet well-established and we are not aware of a resource of validated DNA palindrome
polymorphisms. We therefore ignore such variants in this study and we aim to address them in the future.

Future improvements in TARDIS will include addition of local assembly signature to help it achieve
better accuracy. Although simulation experiments demonstrated potential efficacy of TARDIS in segmental
duplication predictions, those that are generated from real genomes need to be experimentally verified to
fully understand the power and shortcomings of the TARDIS algorithm. We can then apply TARDIS to
thousands of genomes that were already sequenced as part of various projects, such as the 1000 Genomes
Project to advance our understanding of the SV spectrum in human genomes. Another possible direction
for TARDIS can be integration of new methods to better detect somatic structural variation detection,
which we can then apply to cancer genomes.
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Figure 5: a) Illumina read mapping information visualized using IGV[42]. Here the read pairs in the
NA12878 genome show typical inversion signature (red lines), where all reads map concordantly in CHM1
and CHM13 genomes, and a simple sketch of the alternative inverted duplication structure of the same
region. b) Dot plot matrix validation using PacBio data, which shows an inverted duplication. The whole
genome assembly shows an inverted duplication of a 12 Kb segment separated by 10 Kb. This region
demonstrates the case where read pair based clustering confuses an inverted duplication with a simple
inversion.
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This work was supported by a grant by a TÜBİTAK (215E172), and an EMBO Installation Grant (IG-2521)
to C.A., and an NSF grant (1528234) to F.H. The authors also acknowledge the Computational Genomics
Summer Institute funded by NIH grant GM112625 that fostered international collaboration among the
groups involved in this project.

Availability

TARDIS is available under BSD 3-clause license at https://github.com/BilkentCompGen/tardis, and
the CNVSim simulator is available at https://github.com/LeMinhThong/CNVSim. NA12878 WGS data set
can be downloaded from https://www.illumina.com/platinumgenomes.html. SRA IDs for CHM1 and
CHM13 are SRP044331 and SRP080317, respectively. GenBank assembly accession numbers for CHM1
and CHM13 assemblies are GCA 000306695.2 and GCA 000983455.2.

13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/393694doi: bioRxiv preprint 

https://github.com/BilkentCompGen/tardis
https://github.com/LeMinhThong/CNVSim
https://www.illumina.com/platinumgenomes.html
https://doi.org/10.1101/393694
http://creativecommons.org/licenses/by-nc/4.0/


References

[1] Alexej Abyzov, Alexander E. Urban, Michael Snyder, and Mark Gerstein. CNVnator: an approach to
discover, genotype, and characterize typical and atypical CNVs from family and population genome
sequencing. Genome Res, 21(6):974–984, Jun 2011.

[2] Can Alkan, Bradley P Coe, and Evan E Eichler. Genome structural variation discovery and genotyping.
Nat Rev Genet, 12(5):363–376, May 2011.

[3] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Fereydoun
Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur Mutlu, S. Cenk Sahinalp, Richard A
Gibbs, and Evan E Eichler. Personalized copy number and segmental duplication maps using next-
generation sequencing. Nat Genet, 41(10):1061–1067, Oct 2009.

[4] Christoph Bartenhagen and Martin Dugas. Robust and exact structural variation detection with paired-
end and soft-clipped alignments: SoftSV compared with eight algorithms. Briefings in Bioinformatics,
17:51–62, January 2016.

[5] Harrison Brand, Ryan L Collins, Carrie Hanscom, Jill A Rosenfeld, Vamsee Pillalamarri, Matthew R
Stone, Fontina Kelley, Tamara Mason, Lauren Margolin, Stacey Eggert, Elyse Mitchell, Jennelle C
Hodge, James F Gusella, Stephan J Sanders, and Michael E Talkowski. Paired-duplication signatures
mark cryptic inversions and other complex structural variation. American journal of human genetics,
97:170–176, July 2015.

[6] Mark J P. Chaisson, John Huddleston, Megan Y. Dennis, Peter H. Sudmant, Maika Malig, Fereydoun
Hormozdiari, Francesca Antonacci, Urvashi Surti, Richard Sandstrom, Matthew Boitano, Jane M.
Landolin, John A. Stamatoyannopoulos, Michael W. Hunkapiller, Jonas Korlach, and Evan E. Eichler.
Resolving the complexity of the human genome using single-molecule sequencing. Nature, 517:608–611,
Jan 2015.

[7] Mark J.P. Chaisson, Ashley D. Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky, Tobias
Rausch, Eugene J. Gardner, Oscar Rodriguez, Li Guo, Ryan L. Collins, Xian Fan, Jia Wen, Robert E.
Handsaker, Susan Fairley, Zev N. Kronenberg, Xiangmeng Kong, Fereydoun Hormozdiari, Dillon Lee,
Aaron M. Wenger, Alex Hastie, Danny Antaki, Peter Audano, Harrison Brand, Stuart Cantsilieris, Han
Cao, Eliza Cerveira, Chong Chen, Xintong Chen, Chen-Shan Chin, Zechen Chong, Nelson T. Chuang,
Deanna M. Church, Laura Clarke, Andrew Farrell, Joey Flores, Timur Galeev, Gorkin David, Mad-
husudan Gujral, Victor Guryev, William Haynes-Heaton, Jonas Korlach, Sushant Kumar, Jee Young
Kwon, Jong Eun Lee, Joyce Lee, Wan-Ping Lee, Sau Peng Lee, Patrick Marks, Karine Valud-Martinez,
Sascha Meiers, Katherine M. Munson, Fabio Navarro, Bradley J. Nelson, Conor Nodzak, Amina Noor,
Sofia Kyriazopoulou-Panagiotopoulou, Andy Pang, Yunjiang Qiu, Gabriel Rosanio, Mallory Ryan,
Adrian Stutz, Diana C.J. Spierings, Alistair Ward, AnneMarie E. Welsch, Ming Xiao, Wei Xu, Cheng-
sheng Zhang, Qihui Zhu, Xiangqun Zheng-Bradley, Goo Jun, Li Ding, Chong Lek Koh, Bing Ren, Paul
Flicek, Ken Chen, Mark B. Gerstein, Pui-Yan Kwok, Peter M. Lansdorp, Gabor Marth, Jonathan
Sebat, Xinghua Shi, Ali Bashir, Kai Ye, Scott E. Devine, Michael Talkowski, Ryan E. Mills, Tobias
Marschall, Jan Korbel, Evan E. Eichler, and Charles Lee. Multi-platform discovery of haplotype-
resolved structural variation in human genomes. bioRxiv, 2017.

[8] M.J.P. Chaisson, R.K. Wilson, and E. E. Eichler. Genetic variation and the de novo assembly of human
genomes. Nature Reviews Genetics, 16:627–640, November 2015.

14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/393694doi: bioRxiv preprint 

https://doi.org/10.1101/393694
http://creativecommons.org/licenses/by-nc/4.0/


[9] Donald F Conrad, Dalila Pinto, Richard Redon, Lars Feuk, Omer Gokcumen, Yujun Zhang, Jan
Aerts, T. Daniel Andrews, Chris Barnes, Peter Campbell, Tomas Fitzgerald, Min Hu, Chun Hwa Ihm,
Kati Kristiansson, Daniel G Macarthur, Jeffrey R Macdonald, Ifejinelo Onyiah, Andy Wing Chun
Pang, Sam Robson, Kathy Stirrups, Armand Valsesia, Klaudia Walter, John Wei, Wellcome Trust
Case Control Consortium, Chris Tyler-Smith, Nigel P Carter, Charles Lee, Stephen W Scherer, and
Matthew E Hurles. Origins and functional impact of copy number variation in the human genome.
Nature, 464(7289):704–712, Apr 2010.

[10] Gregory M Cooper, Troy Zerr, Jeffrey M Kidd, Evan E Eichler, and Deborah A Nickerson. Sys-
tematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat Genet,
40(10):1199–1203, Oct 2008.

[11] Jesper Eisfeldt, Francesco Vezzi, Pall Olason, Daniel Nilsson, and Anna Lindstrand. TIDDIT, an effi-
cient and comprehensive structural variant caller for massive parallel sequencing data. F1000Research,
6:664, 2017.

[12] Fereydoun Hormozdiari, Can Alkan, Evan E Eichler, and S. Cenk Sahinalp. Combinatorial algorithms
for structural variation detection in high-throughput sequenced genomes. Genome Res, 19(7):1270–
1278, Jul 2009.

[13] Fereydoun Hormozdiari, Can Alkan, Mario Ventura, Iman Hajirasouliha, Maika Malig, Faraz Hach,
Deniz Yorukoglu, Phuong Dao, Marzieh Bakhshi, S. Cenk Sahinalp, and Evan E Eichler. Alu repeat
discovery and characterization within human genomes. Genome Res, 21(6):840–849, Jun 2011.

[14] Fereydoun Hormozdiari, Iman Hajirasouliha, Andrew McPherson, Evan E Eichler, and S. Cenk Sahi-
nalp. Simultaneous structural variation discovery among multiple paired-end sequenced genomes.
Genome Res, 21(12):2203–2212, Dec 2011.

[15] John Huddleston, Mark Jp Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra Hoekzema, David S
Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N Kronenberg, Laura Vives, Paul Peluso,
Matthew Boitano, Chen-Shin Chin, Jonas Korlach, Richard K Wilson, and Evan E Eichler. Discovery
and genotyping of structural variation from long-read haploid genome sequence data. Genome research,
November 2016.

[16] John Huddleston, Swati Ranade, Maika Malig, Francesca Antonacci, Mark Chaisson, Lawrence Hon,
Peter H. Sudmant, Tina A. Graves, Can Alkan, Megan Y. Dennis, Richard K. Wilson, Stephen W.
Turner, Jonas Korlach, and Evan E. Eichler. Reconstructing complex regions of genomes using long-
read sequencing technology. Genome Res, 24(4):688–696, Apr 2014.

[17] Daria Iakovishina, Isabelle Janoueix-Lerosey, Emmanuel Barillot, Mireille Regnier, and Valentina
Boeva. SV-Bay: structural variant detection in cancer genomes using a Bayesian approach with cor-
rection for GC-content and read mappability. Bioinformatics, 32:984–992, April 2016.

[18] Jan O Korbel, Alexander Eckehart Urban, Jason P Affourtit, Brian Godwin, Fabian Grubert,
Jan Fredrik Simons, Philip M Kim, Dean Palejev, Nicholas J Carriero, Lei Du, Bruce E Taillon,
Zhoutao Chen, Andrea Tanzer, A. C Eugenia Saunders, Jianxiang Chi, Fengtang Yang, Nigel P Carter,
Matthew E Hurles, Sherman M Weissman, Timothy T Harkins, Mark B Gerstein, Michael Egholm,
and Michael Snyder. Paired-end mapping reveals extensive structural variation in the human genome.
Science, 318(5849):420–426, Oct 2007.

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/393694doi: bioRxiv preprint 

https://doi.org/10.1101/393694
http://creativecommons.org/licenses/by-nc/4.0/


[19] Ryan M. Layer, Colby Chiang, Aaron R. Quinlan, and Ira M. Hall. LUMPY: a probabilistic framework
for structural variant discovery. Genome Biol, 15(6):R84, 2014.

[20] Seunghak Lee, Fereydoun Hormozdiari, Can Alkan, and Michael Brudno. MoDIL: detecting small
indels from clone-end sequencing with mixtures of distributions. Nat Methods, 6(7):473–474, Jul 2009.

[21] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv
preprint arXiv:1303.3997, 2013.

[22] G. T. Marth, I. Korf, M. D. Yandell, R. T. Yeh, Z. Gu, H. Zakeri, N. O. Stitziel, L. Hillier, P. Y.
Kwok, and W. R. Gish. A general approach to single-nucleotide polymorphism discovery. Nat Genet,
23(4):452–456, Dec 1999.

[23] Steven A. McCarroll, Tracy N. Hadnott, George H. Perry, Pardis C. Sabeti, Michael C. Zody, Jeffrey C.
Barrett, Stephanie Dallaire, Stacey B. Gabriel, Charles Lee, Mark J. Daly, David M. Altshuler, and
International HapMap Consortium . Common deletion polymorphisms in the human genome. Nat
Genet, 38(1):86–92, Jan 2006.

[24] Paul Medvedev and Michael Brudno. Ab Initio Whole Genome Shotgun Assembly with Mated Short
Reads, pp. 50–64. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[25] Paul Medvedev, Monica Stanciu, and Michael Brudno. Computational methods for discovering struc-
tural variation with next-generation sequencing. Nat Methods, 6(11 Suppl):S13–S20, Nov 2009.

[26] Ryan E Mills, Christopher T Luttig, Christine E Larkins, Adam Beauchamp, Circe Tsui, W. Stephen
Pittard, and Scott E Devine. An initial map of insertion and deletion (INDEL) variation in the human
genome. Genome Res, 16(9):1182–1190, Sep 2006.

[27] John C. Mu, Marghoob Mohiyuddin, Jian Li, Narges Bani Asadi, Mark B. Gerstein, Alexej Abyzov,
Wing H. Wong, and Hugo Y K. Lam. VarSim: a high-fidelity simulation and validation framework for
high-throughput genome sequencing with cancer applications. Bioinformatics, 31(9):1469–1471, May
2015.

[28] G Obe, P Pfeiffer, J R K Savage, C Johannes, W Goedecke, P Jeppesen, A T Natarajan, W Mart́ınez-
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Månér, Hillary Massa, Megan Walker, Maoyen Chi, Nicholas Navin, Robert Lucito, John Healy, James
Hicks, Kenny Ye, Andrew Reiner, T Conrad Gilliam, Barbara Trask, Nick Patterson, Anders Zetter-
berg, and Michael Wigler. Large-scale copy number polymorphism in the human genome. Science,
305(5683):525–528, Jul 2004.

[34] Andrew J Sharp, Sierra Hansen, Rebecca R Selzer, Ze Cheng, Regina Regan, Jane A Hurst, Helen
Stewart, Sue M Price, Edward Blair, Raoul C Hennekam, Carrie A Fitzpatrick, Rick Segraves, Todd A
Richmond, Cheryl Guiver, Donna G Albertson, Daniel Pinkel, Peggy S Eis, Stuart Schwartz, Samantha
J L Knight, and Evan E Eichler. Discovery of previously unidentified genomic disorders from the
duplication architecture of the human genome. Nat Genet, 38(9):1038–1042, Sep 2006.

[35] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nat Biotechnol, 26(10):1135–1145,
Oct 2008.

[36] Suzanne Sindi, Elena Helman, Ali Bashir, and Benjamin J Raphael. A geometric approach for classi-
fication and comparison of structural variants. Bioinformatics, 25:i222–i230, June 2009.

[37] Arda Soylev, Can Kockan, Fereydoun Hormozdiari, and Can Alkan. Toolkit for automated and rapid
discovery of structural variants. Methods, 129:3–7, 2017.

[38] Karyn Meltz Steinberg, Valerie A. Schneider, Tina A. Graves-Lindsay, Robert S. Fulton, Richa Agar-
wala, John Huddleston, Sergey A. Shiryev, Aleksandr Morgulis, Urvashi Surti, Wesley C. Warren,
Deanna M. Church, Evan E. Eichler, and Richard K. Wilson. Single haplotype assembly of the human
genome from a hydatidiform mole. Genome Res, 24(12):2066–2076, Dec 2014.

[39] Peter H Sudmant, Jacob O Kitzman, Francesca Antonacci, Can Alkan, Maika Malig, Anya Tsalenko,
Nick Sampas, Laurakay Bruhn, Jay Shendure, 1000 Genomes Project, and Evan E Eichler. Diversity
of human copy number variation and multicopy genes. Science, 330(6004):641–646, Oct 2010.

[40] Peter H. Sudmant, Swapan Mallick, Bradley J. Nelson, Fereydoun Hormozdiari, Niklas Krumm, John
Huddleston, Bradley P. Coe, Carl Baker, Susanne Nordenfelt, Michael Bamshad, Lynn B. Jorde,
Olga L. Posukh, Hovhannes Sahakyan, W. Scott Watkins, Levon Yepiskoposyan, M. Syafiq Abdullah,
Claudio M. Bravi, Cristian Capelli, Tor Hervig, Joseph T. S. Wee, Chris Tyler-Smith, George van
Driem, Irene Gallego Romero, Aashish R. Jha, Sena Karachanak-Yankova, Draga Toncheva, David
Comas, Brenna Henn, Toomas Kivisild, Andres Ruiz-Linares, Antti Sajantila, Ene Metspalu, Jüri
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