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| Abstract

2 Genotypic resistance interpretation systems for the prediction and interpretation of HIV-1
3 antiretroviral resistance are an important part of the clinical management of HIV-1 infection.
4 Current interpretation systems are generally hosted on remote webservers that enable clinical
5 laboratories to generate resistance predictions easily and quickly from patient HIV-1 sequences
6 encoding the primary targets of modern antiretroviral therapy. However they also potentially
7 compromise a health provider’s ethical, professional, and legal obligations to data security,
8 patient information confidentiality, and data provenance. Furthermore, reliance on web-based
9 algorithms makes the clinical management of HIV-1 dependent on a network connection. Here,
10 we describe the development and validation of sierra-local, an open-source implementation of

11 the Stanford HIVdb genotypic resistance interpretation system for local execution, which aims

12 to resolve the ethical, legal, and infrastructure issues associated with remote computing. This
13 package reproduces the HIV-1 resistance scoring by the web-based Stanford HIVdb algorithm
14 with a high degree of concordance (99.997%) and a higher level of performance than current
15 methods of accessing HIVdb programmatically.

INTRODUCTION

16 Genotype-based prediction of human immunodeficiency virus type 1 (HIV-1) drug resistance is an
17 important component for the routine clinical management of HIV-1 infection [1, 2]. Detecting the
18 presence of viruses carrying mutations that confer drug resistance enables physicians to select an

19 optimal drug combination for that patient’s treatment regimen. Furthermore, genotyping by bulk

# Corresponding author, apoon42 @uwo.ca


https://doi.org/10.1101/393207
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/393207; this version posted November 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

20 sequencing is a cost-effective alternative to the direct measurement of drug resistance from cultur-
21 ing virus isolates in a laboratory [3]. Provided access to affordable bulk sequencing at an accredited
22 laboratory for clinical microbiology, the interpretation of HIV-1 sequence variation is the primary
23 obstacle to utilizing resistance genotyping for HIV-1 care. Fortunately, there are several HIV-1
2« drug resistance interpretation algorithms that can be accessed at no cost through web applications
25 or services hosted by remote network servers, such as the Standard University HIV Drug Resis-
26 tance Database (HIVdb) [4], Agence Nationale de Recherche sur le SIDA (ANRS) AC11 [5], and
27 Rega Institute [6] algorithms. The Stanford HIVdb interpretation system can be accessed either
2s through a web browser at http://hivdb.stanford.edu/hivdb or programmatically through its Sierra
20 Web Service [7], which requires the transmission of an HIV-1 sequence from a local computer
s over the network to the remote server. This is a convenient arrangement for clinical laboratories
31 because there is no need to install any specialized software, web browsers are ubiquitous and most
sz users are familiar with submitting web forms.

33 On the other hand, there are a number of disadvantages to accessing interpretation systems over
s a network connection. First, HIV-1 sequences are sensitive patient information, not only because
35 infection with HIV-1 remains a highly stigmatized condition, but also because sequence data have
s been used as evidence in the criminal prosecution of individuals for engaging in sexual intercourse
a7 without disclosing their infection status, leading to virus transmission [8]. Once sequence data
ss have been transmitted to a remote server, one cedes all control over data security. Preventing the
s onward distribution of the data and deleting the data once the analysis is complete, for instance,
s 1s entirely the responsibility of the system administrators of the host server. Furthermore, unless
41 the host server employs a secure transfer protocol, the unencrypted data are transmitted in the
42 clear between a number of intermediary web servers, exposing these data to a ‘man-in-the-middle’
43 attack [9].

4 Second, the algorithm hosted on the server is effectively a black box — one has no insight
s into how resistance predictions are generated. Even if a version of the algorithm has been released

4 into the public domain, one cannot be certain that the exact same algorithm was applied to their
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47 transmitted data. Importantly, different versions of a given algorithm can output significantly dif-
45 ferent resistance predictions, with the general trend being an increase in both resistance scores and
a9 predicted resistance levels [10]. In addition to contributing to inconsistencies in algorithm outputs,
so this makes it difficult to track data provenance, i.e., the historical record of data processing, that
st has become recognized as a critical gap in the workflows of clinical laboratories. For instance, the
s2 College of American Pathologists recently issued new accreditation requirements stipulating that
ss  clinical laboratories must track the specific version of software programs used to process patient
s« data [11]. Thus, a reliance on web-based systems creates significant issues for the reproducibility
ss and quality assurance of clinical workflows. The Stanford HIVdb web service (Sierra [7]), for
ss instance, automatically utilizes the most recent version of the HIVdb algorithm. While this con-
s7 straint ensures that users employ the most up-to-date algorithm, it also introduces hidden changes
ss to clinical pipelines, which may have been locally validated on older versions of the algorithm.

59 Third, dependence on a web resource may cause problems when the laboratory cannot access
so the host server, either due to local or regional network outages, or because the host server is mal-
st functioning or offline. In our experience, the web servers hosting the more popular HIV drug
2 resistance interpretation algorithms such as the Stanford HIVdb database are reliable and well-
ss maintained. However, it is not unusual for other web-based algorithms to be relocated or go offline
s« when the developers move to other institutions or lack the resources to maintain the service.

65 One of the important features of the Stanford HIVdb algorithm is that it is regularly updated and
es released into the public domain in a standardized XML-based interchange format — the Algorithm
e7 Specification Interface version 2 (ASI2) format [12] — that was formulated and published by
es the same developers in conjunction with the Frontier Science Foundation. Here, we describe the
s implementation and validation of sierra-local, an open-source Python package for local execution
70 of the HIVdb algorithm in the ASI2 format. This package utilizes, but does not require, a network
71 connection to synchronize its local ASI2 file and reference data with the latest releases on the
72 Stanford HIVdb web server. Our objective was to release a lightweight alternative to transmitting

73 HIV-1 sequences to the HIVdb web server that minimizes the number of software dependencies,
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7+ and that produces the exact same interpretations as the Sierra web service for all available HIV-1

75 sequences in the Stanford database.

MATERIALS AND METHODS

76 Data Collection. We obtained the entirety of the genotype-treatment correlation datasets available
77 through the Stanford HIV Drug Resistance Database (HIVdb [13]) on May 7 2018. These data
78 included nucleotide sequences of 105,694 protease (PR) isolates, 112,723 reverse-transcriptase
79 (RT) isolates, and 12,332 integrase (IN) isolates for a total of 230,749 sequences. In addition
s to sequence data, each record comprised of a list of the specific antiretrovirals (ARVs) that each
s1 isolate had been exposed to in vivo prior to collection, the region and year of collection, and
g2 subtype as determined by the Stanford University HIV Drug Resistance Database’s HIV Subtyping
ss Program. After screening for empty and invalid data, the resulting dataset contained 103,711 PR
s« entries, 110,222 RT entries, and 11,769 IN entries totalling 226,702 records. In addition, we
ss retrieved 7 population-based HIV-1 pol datasets from Genbank using the NCBI PopSet interface
ss  (http://www.ncbi.nlm.nih.gov/popset). These datasets were selected from the most recent uploads
s7 of substantial numbers of HIV-1 sequences covering the regions encoding both PR and RT, and

ss representing a diversity of HIV-1 subtypes and sampling locations around the world.

ss Local HIVdb Algorithm Implementation. The team at Stanford HIVdb have created a Python
o0 tool, SierraPy (https://github.com/hivdb/sierra-client/tree/master/python), that serves as a comm-
o1 and-line interface (CLI) for HIVdb. SierraPy does not process sequences directly, however, and
o2 only serves as a front-end for the HIVdb Sierra GraphQL Web Service (https://hivdb.stanford.
ss edu/graphql) [7]. Its reliance on an active network connection to offload sequence processing to
s« a remote server does not fulfill the usage gap we aim to address with sierra-local. To fill this
o5 gap, a system that provides a complete interface to a local version of the algorithm is needed.
o6 This local algorithm is first obtained as a publicly available HIVdb ASI2 file, which encodes both
o7 the algorithm for resistance scoring sequences and annotations describing relevant drug resistance

es mutations (DRMs) and ARVs of interest [12]. In short, it serves as a container for the core of the
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9o HIVdb resistance interpretation system which is not directly usable in a data-processing pipeline,
100 as it is essentially only a descriptive XML defining the rules by which sequences should be scored.
101 In the existing HIVdb pipeline, a Java-based interpreter generator called SableCC is used to com-
102 pile an algorithm interpreter from the HIVdb ASI2 file, but we have not been able to find any such
10s compiler in Python. The usage of SableCC in our local implementation of the Stanford algorithm
104 would introduce further dependencies and obfuscate the clear relationship between the algorithm
15 file and how local interpretations are generated. Hence, in light of the need for a Python-based
16 local interpreter for the ASI2 format, we developed a regular expressions-based keyword-parsing
107 method by which sierra-local locally compiles an executable model in Python directly from the
s local algorithm file. This method iterates through the HIVdb algorithm as an XML tree object in
100 Python 3 and extracts the information encoded within using ASI2 keywords defined by the ASI2
110 Document Type Definition (DTD). sierra-local then uses this method to calibrate the model by
111 assigning the drug clause definitions, drug class lists, resistance level interpretations, DRM com-
12 ments, and complex drug-DRM scoring conditions to a set of dictionary and list objects. Once

113 populated, this model serves as the framework for sequence resistance scoring.

114 Sequence Pre-Processing and Validation. Prior to scoring, the HIVdb Sierra Web Service per-
ns  forms several pre-processing and validation steps on submitted query sequences and identified
1e mutation sites found within sequences. We emulated these steps to maximize fidelity to the HIVdb
117 pipeline, including sequence alignment, gene identification, mutation site classification, sequence
11s  trimming, sequence subtyping, and sequence validation. These pre-processing steps can be consid-
19 ered parts of the algorithm involved in generating resistance prediction scores that are not included

120 and distributed in the HIVdb ASI2 file.

121 Sequence Alignment. Of particular importance in these steps is sequence alignment. HIVdb uti-
122 lizes NucAmino [14] to initially align and identify amino acid mutations in each query sequence.
123 This nucleotide-to-amino acid alignment program is optimized for viral gene sequences, and was
124 developed by the HIVdb developers in the Go language. However, in practice, NucAmino does

125 not return the aligned sequences themselves; instead it only returns a list of mutations relative to
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126 the consensus subtype B amino acid sequence and general sequence metadata, e.g., the aligned
127 start and end coordinates of the query sequence relative to HIV-1 pol. If sierra-local does not
128 align the query viral sequences exactly as how HIVdb would, the mutations identified relative to
120 the consensus subtype B sequence would not be identical in all cases. Since these mutations serve
130 as the basis for resistance predictions, an identical alignment process is of the utmost importance
131 1n maintaining fidelity to HIVdb Sierra. Thus, we decided to incorporate the NucAmino align-
122 ment program as a dependency, rather than substituting a more integrated native implementation in
133 Python. sierra-local calls a pre-compiled NucAmino binary as a Python subprocess with default
134 settings to execute this pre-processing step. We used NucAmino version 0.1.3 for our validation
135 experiments. The optional JSON output from NucAmino was captured in Python by redirecting

136 the standard output stream from the subprocess.

137 Gene Identification. A critical part of resistance scoring is knowing which gene products encoded
1s by HIV-1 pol (protease, RT and integrase) are present in the sequence being analyzed. To map
130 the query sequence to these targets, we compared the aligned start and end positions returned by
120 NucAmino to the HXB2 reference positions. For consistency with the HIVdb pipeline, amino
141 acids were renumbered relative to the start position of the corresponding gene product (PR, RT

142 and IN).

13 Mutation Site Classification. In the process of mutation site classification, each amino acid mu-
144 tation site identified by NucAmino was further categorized as an insertion, deletion, or mixture
145 using the original nucleotide sequence as a reference for amino acid translation. For consistency,
16 we ported a Java method from the Sierra algorithm for determining nucleotide codon translation
147 ambiguity to Python. Each site of interest identified by NucAmino on the aligned and translated
s query sequence generated a list of characters representing possible encoded amino acids at that site.
129 Associating mutation sites with more than one encoded amino acid allows for a ‘fuzzy’ matching
150 of a single sequence to multiple scoring conditions sharing the same residue position but different
151 mutations. In certain cases, ‘highly ambiguous’ sites encoding more than four possible amino acids

152 —made possible due to the presence of ambiguous nucleotides such as ‘R’ (A/G), ‘B’ (C/G/T), and
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1sa ‘N’ (A/T/C/G) — were flagged as ‘ambiguous’ and represented with a translation of ‘X’.

15« Sequence Trimming. Leading and trailing regions in each sequence containing a minimum pro-
155 portion (30%) of ‘low quality’ sites — defined as sequenced sites that are highly ambiguous, stop
156 codons, unusual mutations, or frameshifts — with at least one of these sites every 15 residues were
157 trimmed prior to resistance scoring. Based on our inspection of the Sierra source code, we defined
158 a site as sequenced if the codon does not have more than one unknown nucleotide. Sites further
1so qualified as ‘unusual mutations’ if they were indicative of APOBEC-mediated G-to-A hypermu-
10 tation [15] or if the highest frequency of that mutation in the pooled untreated and treated viruses
1s1  for that specific group M subtype was less than 0.1% in the Stanford University HIV Drug Resis-
12 tance Database. We configured the sierra-local installation process to obtain a local copy of the
s reference data for APOBEC-mediated G-to-A hypermutations in HIV-1 pol and for other HIV-1
1s4 mutation prevalences from the Stanford HIVdb server, and to automatically update this local copy

165 to accommodate changes in these reference data over time.

16 Sequence Subtyping. The previously discussed trimming step requires that sequences be subtyped
17 in order to determine the frequency of mutations in subtype-specific pooled untreated and treated
e viruses. We wrote a Python implementation of HIVdb’s HIV Subtyping Program, which cate-
189 gorizes submitted sequences as a pure subtype, a circulating recombinant form (CRF), a unique
170 recombinant form (URF), non-group M HIV-1, or HIV-2. This process calculates uncorrected
171 pairwise distances (the proportion of nucleotide differences) between submitted nucleotide se-
172 quences and a set of 200 different subtype-specific reference sequences. Because the HIVdb HIV
173 Subtyping Program is very simple and does not perform phylogenetic analysis or bootstrapping,
174 1ts results may not be as accurate as more sophisticated systems more commonly used such as
175 the Rega Institute HIV-1 Automated Subtyping Tool [4]. Comparing interpretation systems, it
176 has been suggested that ANRS AC11, HIVdb, and Rega demonstrate discordances that may be
177 subtype-dependent [16, 17]. Yet, current genotypic resistance interpretation systems, including
178 Stanford HIVdb, are subtype-agnostic within themselves, meaning that they do not offer differen-

179 tial resistance penalty scoring based on the subtype identified. Thus, other than being used to trim
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180 submitted sequences, the subtyping in this system does not significantly influence HIV-1 sequence

181 interpretation.

1.2 Resistance Scoring. The HIVdb algorithm begins the scoring process by assessing each se-
183 quence’s potential resistance to 22 commonly-used ARVs independently by searching for ARV-
184 specific mutation conditions present in the query sequence. ARV-specific mutation conditions
1ss encode and define the circumstances in which a mutation in a particular gene has been shown to
1ss Influence resistance, and quantifies this resistance with an integer penalty score. Each of these
1e7 mutation conditions are associated with one or more specified amino acid changes at one or more
188 particular positions, the ARV of interest, and the gene of interest in HIV-1 pol targeted by the ARV.
1o For a mutation condition’s resistance score to be counted, all of these criteria must be fulfilled.

190 sierra-local iterates over the ARV-specific mutation conditions corresponding to the gene re-
191 gions detected in the query sequence. HIVdb Sierra also validates sequences and returns a list of
122 validation problems found in each sequence. A sequence is invalidated or flagged as a query if: no
1.3 genes are found; the sequence is a reverse complement; the genes have not been aligned properly;
14 1t 1S too short based on gene-specific minimum cutoff nucleotide lengths; it is trimmed at the 5° or
195 3’ ends due to low-quality leading or trailing sites; an indel is longer than 30 base pairs; invalid
196 ‘NA’ characters are found; one or more stop codons are found; too many ‘unusual mutations’ as
157 previously described are found; the virus is subtyped as HIV-2; the number of APOBEC mutations
198 1S two or greater; the number of APOBEC mutations at drug resistance positions (DRPs) is one or
190 greater; or if the count of frameshifts, unusual insertions, and unusual deletions together is positive.

200 We emulated these validation steps in our pipeline to maximize parity with Sierra.

201 Algorithm Output Generation. Once all queries are pre-processed, scored, and otherwise anno-
202 tated, sierra-local writes these results into a JSON (JavaScript Object Notation) format that mimics
203 the standard output format of the HIVdb Sierra Web Service. For the sake of brevity and simplic-
204 ity, we decided to have sierra-local omit the ‘pretty pairwise’ sequence output found in Sierra’s
20s standard output. This output format usually contains a numerical sequence of all residue positions,

206 a reference amino acid sequence, an aligned nucleotide sequence, and a mutation-only list. These
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207 data are not critical to a rapid genotypic interpretation system and may be omitted without detri-
208 ment to the central aim. Furthermore, their exclusion from the results leads to a five-fold reduction

200 1n the results file size, which may be significant when processing large batches of sequences.

210 Validation Against HIVdb Sierra. We scored the entirety of the partitioned and filtered HIVdb
211 genotype—treatment correlation dataset as of May 7 2018 with both sierra-local and SierraPy (ver-
212 sion 0.2.1), storing all output results files from both programs. Validation was conducted using the
213 HIVdD version 8.5 algorithm on both platforms. Because the algorithm was updated to version
214 8.6.1 during the validation experiments, we used the newer version for the HIV-1 integrase data
215 sets since the update mostly affected the interpretation of mutations within this region. Subsequent
216 analysis of validation testing was conducted in R (version 3.4.4) [18] using the jsonlite package
217 (version 1.5) [19] to extract resistance scores and relevant meta-data from the JSON results files
218 from either program. For each sequence record, the resistance scores from the pipelines were com-
219 pared for identicality. Validation and mutational metadata for discordant cases were analyzed for
220 iterative refinement of the sierra-local scripts until a satisfactory level of concordance was attained.
221 Subsequently, we carried out a second set of validation experiments on longer HIV-1 pol (PR-RT)

222 sequence data sets under HIVdb algorithm version 8.7.

223 Performance Measurements. To quantify the speed of sierra-local in processing sequences, we
224 chose a random subsample of gene-specific batches balanced across the genes of HIV-1 pol in
225 our filtered genotype-treatment correlation dataset. This sampled dataset comprised of 9,673 PR
226 sequences, 10,000 RT sequences, and 9,720 IN sequences contained in 10 batches per gene. Each
227 gene-specific batch, roughly 10,000 sequences in size, was independently processed with both
228 sierra-local and SierraPy. This method was timed using the fime package in Python to determine
229 file run-times and the resulting processing speeds of each program, measured in sequences per

230 second.

231 Software Availability. The source code for sierra-local has been released under the GNU General

232 Public License (version 3) and may be obtained at http://www.github.com/PoonLab/sierra-local or
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233 from the Python Package Index (https://pypi.org/project/sierralocal). Detailed installation instruc-

23+ tions are provided on the GitHub website.

RESULTS AND DISCUSSION

235 Implementation. Distribution of the Stanford HIVdb algorithm in an XML-based interchange
236 format called the Algorithm Specification Interface version 2 (ASI2) enables a seamless approach
237 to updating the algorithm and algorithm version control. Despite the accessibility of the HIVdb
233 algorithm itself, the ASI2 file is necessary but not sufficient to generate resistance predictions. Ad-
239 ditional steps needed but not encoded by the algorithm file include: sequence alignment, sequence
200 quality control and validation, sequence trimming, sequence subtyping, and formatting of the re-
241 sults output file with resistance predictions and accessory meta-data. These processes comprise
2.2 the bulk of the functionality developed in sierra-local and are coordinated to generate resistance
2.3 predictions in a manner as identical as possible to HIVdb Sierra.

244 As new versions of HIVdb are released to reflect the growing knowledge of HIV resistance,
245 users may easily manually update their local copy of the algorithm with a provided Python script
26 (updater.py). We also provide the option to automatically update the algorithm to the most recently
247 released version at run-time. For example, three major updates to the HIVdb algorithm were
28 released to the public during the development of sierra-local. Our local copies of these files were
229 automatically retrieved by the sierra-local pipeline, but we also configured the pipeline to use
250 specific versions by setting the ‘-xml’ option. The option to choose between automatic updating or
251 freezing the algorithm to a specific version enables physicians and researchers to fulfill potential
252 version tracking and data provenance requirements. However, even with functionalities addressing
253 these obligations embedded in sierra-local, the health care provider still bears the responsibility
254 of operating with a knowledge of their software and algorithm versions and the changes between

255 these.

26 Concordance with HIVdb Sierra. Out of the 103,711 PR, the 111,222 RT, and the 11,769 IN

257 sequences (total 226,702) processed with both sierra-local and HIVdb SierraPy pipelines, the pre-

10
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28 dicted resistance scores and component subscores were completely identical in 226,696 (99.997%).
25 Of the 6 sequences that did not have identical scores for all ARVs between the pipelines, 3 were
260 PR sequences and 3 were RT (Table 1). The most frequent cause of discordance was the trimming
261 of nucleotides in the leading or trailing ends of the sequence on the basis of the prevalence of the
262 amino acid polymorphism in the corresponding HIV-1 subtype or ambiguous base calls.

263 We examined the distributions of sequence lengths and mixtures (ambiguous base calls) in
264 the database to determine whether the discordant cases might be explained by these factors. Of
265 the three discordant PR sequences, AY739171 contained an extremely large number of mixtures
266 (15). In addition, this sequence was derived from an HIV-1 group O infection. Only 0.42% of
267 PR sequences in the databases contained as many or more mixtures; the median [2.5% and 97.5%
268 quantiles] number of mixtures was 1 [0, 9]. The remaining two PR sequences were unusually
269 short, where the median length was 297 nt; the proportion of sequences with lengths shorter than
270 GU188744 and JQ028402 were 0.43% and 0.76%, respectively. Although sierra-local reported
271 non-zero resistance scores where SierraPy reported none, the scores were generally in the range
272 of susceptible to potential low-level resistance interpretations. Similarly, the three discordant RT
273 sequences were either short (overall median [quantiles] = 774 [588, 1680] nt) or contained substan-
27+ tial numbers of mixtures for sequences of comparable length (e.g., 4 [0, 19] mixtures for sequences
275 between 550 and 650 nt in length). In the latter case, however, neither KT745612 nor KC221011
276 contained a significantly excessive number of mixtures. These three RT sequences also resulted
277 in slighty more discordant resistance interpretations; for example, the d4T resistance score for
27 KC221011 was switched by sierra-local from intermediate to high-level resistance.

279 In addition, we ran both pipelines on six recently published sets of HIV-1 pol sequences com-
250 prising both PR and RT encoding regions. These data sets were selected to cover a diversity of
281 HIV-1 subtypes and locations around the world (Table 2). The major HIV-1 group M subtypes
252 A, B, C and D were represented in these data, as well as several circulating recombinant forms
283 (CRFs) such as CRFO7_BC, which is highly prevalent in East Asia. All resistance scores for all

2.4 1,006 sequences were completely concordant between the pipelines.

11
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Accession Gene Length (nt) Mixtures Reason Drug SierraPy sierra-local
AY739171 PR 279 15 No genes found

GU188744 PR 216 0 Sequence ATV/r 0 5

trimming, DRV/r 0 5

unusual FPV/r 0 10

mutations IDV/r 0 5

LPV/r 0 5

NFV 0 10

SQV/ir 0 5

TPV/r 0 10

JQ028402 PR 243 0 Sequence ATV/r 0 5

trimming FPV/r 0 5

IDV/r 0 5

NFV 0 15

SQV/r 0 5

KT745612 RT 630 10  Stop codon ABC 100 95

AZT 130 125

d4T 130 125

DDI 100 95

TDF 70 65

DQ297313 RT 564 0 Sequence ABC 0 5

trimming AZT 0 20

d4T 0 20

DDI 0 10

TDF 0 5

KC221011 RT 597 14 Sequence ABC 10 25

trimming AZT 25 50

d4T 35 60

DDI 45 65

TDF 10 25

Table 1 Discordant cases between SierraPy and sierra-local. Both pipelines were ap-
plied to the same database, comprising 103,711 PR, 110,222 RT and 11,769 IN records. We
observed a total of 3 discordant cases in PR, 3 cases in RT, and none in IN. For cases where
both pipelines generated resistance score predictions, we listed the discordant scores for the
respective drug names. Putative reasons for discordance were assessed from validation out-

puts.

12
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Country/region Sample Subtypes Sequence Accession Ref.
size length (nt) numbers
Brazil 103 B (100%) 1262.0 MF545238 —
MF545340
Ethiopia 67 C(97.0%),B (1.5%), A 1042.1 MH324937 -  [20]
(1.5%) MH325003
Guinea-Bissau 54 CRF02_AG (88.9%), A 1035.0 MH605452 —  [21]
(5.6%), CRF06_cpx (1.8%) MH605505
Hong Kong 284 C (36.0%), CRF07_BC 1157.8 MH757122 —
(36.0%), CRF02_AG (8.8%) MH757405
South Africa 212 C (100%) 1195.0 MH920641 -  [22]
MH920852
Tajikistan 146 A (97.3%), CRFO2_AG 1351.1 MH543115 -
(2.0%), CRF63_02A1 (0.7%) MH543260
Uganda 140 D (99.3%), CRF10_-CD 864.0 MH925538 -
(0.7%) MH925677

Table 2 Characteristics of HIV PR-RT population data sets. Sequence data were obtained
for an arbitrary selection of recent studies with HIV-1 pol sequences deposited in Genbank
that spanned both PR and RT. We processed the sequences through both SierraPy and sierra-
local to confirm that the pipelines obtained identical resistance scores. Subtypes listed were
obtained from the SierraPy pipeline; the subtype classifications obtained from sierra-local

were highly concordant (94.5% identical). CRF = circulating recombinant form.

285 Increased Performance over HIVdb Sierra. Performance and hence, the speed, of software pack-
286 ages varies according to hardware, software, and input data characteristics. All development, test-
2s7 1ng, and validation was performed on a workstation running Ubuntu 18.04 LTS with an Intel Xeon
288 E5-1650 v4 hexa-core CPU at 3.60 GHz and 16 GB of DDR4-2400 RAM with a gigabit net-
280 work connection. sierra-local achieved mean [range] processing speeds of 47.08 sequences/second
200 (seq/s) [45.07, 48.49] for PR, 16.20 seq/s [14.01, 19.97] for RT, and 14.99 seq/s [14.79, 15.56] for
201 IN. A substantial fraction of processing time was consumed by subtyping. SierraPy, with the same
202 dataset as previously described, yielded mean processing speeds of 16.01 seq/s [12.88, 17.60] for
203 PR, 6.12 seq/s [4.83, 7.54] for RT, and 5.19 seq/s [5.05, 5.47] for IN. Although the size of sequence
204 batches used in this performance comparison likely is a factor in the results by virtue of file writing

205 and reading being done once per batch, the large batch size used minimizes the effect of these I/O
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206 processes on the overall runtime. Overall, sierra-local is able to process and return results for sub-
207 mitted query HIV-1 pol sequences roughly 3 times faster than SierraPy, depending on the nature of
208 the sequences and the type of local computing resources available. This result is in the expected di-
209 rection since local computing resources are able to be fully utilized, whereas SierraPy depends on
a0 server-side processing speed, server load, request balancing, as well as network speed and traffic.
st In this case, network speeds between SierraPy on the local workstation and HIVdb Sierra GraphQL
a2 Web Service were likely not a significant factor in the speed improvement results obtained. With
a3 slower network speeds and all other factors being equal, however, the relative processing speed of

s04 sierra-local to SierraPy can only be expected to increase.

ss Concluding remarks. The distribution of the HIVdb resistance genotyping algorithm in a stan-
aos dardized format (ASI [12] is an important resource for HIV-1 research and clinical management,
307 and an exemplary case of open science. sierra-local provides a convenient framework to generate
sos  HIV drug resistance predictions from ASI releases in a secure environment and confers full control
a9 over data provenance. The ability to apply ASI-encoded algorithms locally (offline) also makes
a0 this part of the laboratory workflow robust to network availabilty may be particularly important
a1 for laboratories situated in resource-limited settings. In addition, the relative processing speed
stz of sierra-local can confer an advantage for research applications requiring the analysis of large
a3 numbers of sequences. The emulation of an established genotype interpretation system to process
a1« unaligned nucleotide sequences and produce identical resistance predictions and data summaries
a5 1n a small, standalone package was not a trivial undertaking. Despite the relative simplificity of the
ste rules-based HIVdb algorithm, there were a large number of pre-processing and post-processing
a7 steps that were necessary to adapt to maximize concordance with the original system. We de-
sis veloped sierra-local with the aims of minimizing the number of additional programs that users
ate - would have to install for a local implementation. The only other presently available means for
a0 implementing for a completely independent instance of the HIVdb algorithm is by hosting an in-
a1 stance of the HIVdb Sierra Web Service itself, which was recently made possible with the release

a2 of the Sierra source code. This approach, however, requires the configuration of a web server,
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a3 the Apache Tomcat web container, and a large number of Java libraries (Apache Commons Lang,
a4  Apache Commons Math, Apache Commons IO, Apache Log4j, Google Guava, Google Gson, pro-
a5 tonpack, and GraphQL-Java). Furthermore, hosting a stable web service for the sole purpose of
a6 1ndependently generating clinical resistance predictions increases facility requirements for servers,
327 information technology support staff, and generally complicates an already complex workflow. We
a8 hope that making this lightweight, open-source implementation of the HIVdb ASI to the clinical
229 and research community will further democratize HIV drug resistance genotyping across providers

s of HIV care.
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