

1 **Induction of the BIM Short Splice Variant**

2 **Sensitizes Proliferating NK Cells to IL-15**

3 **Withdrawal**

4 Benedikt Jacobs*†, Aline Pfefferle¶, Dennis Clement*†, Jodie P. Goodridge*†,

5 Michelle L. Saetersmoen*†, Susanne Lorenz‡§, Merete Thune Wiiger*†, Karl-Johan

6 Malmberg*†¶

7

8 **Affiliations**

9 *The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine,
10 University of Oslo, 0318 Oslo, Norway. †Department of Cancer Immunology,
11 Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway.
12 ‡Department of Tumor Biology, Norwegian Radium Hospital, Oslo University
13 Hospital, 0310 Oslo, Norway.

14 §Genomics Core Facility, Department of Core Facilities, Norwegian Radium
15 Hospital, Oslo University Hospital, 0310 Oslo, Norway.

16 ¶Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska
17 Institutet, 14186 Stockholm, Sweden.

18

19

20 **Correspondence**

21 Corresponding author: Prof. Karl-Johan Malmberg, k.j.malmberg@medisin.uio.no or
22 kalle.malmberg@ki.se, phone: +47 45390926

23

24

25 * This work was supported by grants from the Swedish Research Council, the
26 Swedish Children's Cancer Society, the Swedish Cancer Society, the Tobias
27 Foundation, the Karolinska Institutet, the Wenner-Gren Foundation, the Norwegian
28 Cancer Society, the Norwegian Research Council, the South-Eastern Norway
29 Regional Health Authority and the KG Jebsen Center for Cancer Immunotherapy. BJ
30 was funded by a Mildred Scheel postdoctoral scholarship from the Dr. Mildred Scheel
31 Foundation for Cancer Research of the German Cancer Aid Organization.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **Abstract**

48 Adoptive transfer of allogeneic NK cells holds great promise for cancer
49 immunotherapy. There is a variety of protocols to expand NK cells *in vitro*, most of
50 which are based on stimulation with cytokines alone or in combination with feeder
51 cells. Although IL-15 is essential for NK cell homeostasis *in vivo*, it is commonly
52 used at supra-physiological levels to induce NK cell proliferation *in vitro*. As a result,
53 adoptive transfer of such IL-15 addicted NK cells is associated with cellular stress due
54 to sudden cytokine withdrawal. Here, we describe a dose-dependent addiction to IL-
55 15 during *in vitro* expansion, leading to caspase-3 activation and profound cell death
56 upon IL-15 withdrawal. NK cell addiction to IL-15 was tightly linked to the BCL-
57 2/BIM ratio, which rapidly dropped during IL-15 withdrawal. Furthermore, we
58 observed a proliferation-dependent induction of BIM short (BIM S), a highly pro-
59 apoptotic splice variant of BIM, in IL-15 activated NK cells. These findings shed new
60 light on the molecular mechanisms involved in NK cell apoptosis following cytokine
61 withdrawal and may guide future NK cell priming strategies in a cell therapy setting.

62

63

64

65

66

67

68

69

70 **Introduction**

71 Natural killer (NK) cells are commonly referred to as innate lymphocytes that
72 display strong cytolytic potential in the absence of prior sensitization (1). However,
73 the acquisition of functional potential is dependent on exposure to homeostatic
74 cytokines as illustrated by the priming of naïve NK cells through trans-presentation of
75 IL-15 by dendritic cells (2, 3). Cytokine stimulation rapidly induces enhanced effector
76 function in NK cells (4-6), suggesting that all NK cells have an intrinsic ability to
77 reach a cytolytic phenotype given sufficient stimulation. This holds true even from the
78 early stages of differentiation in the complete absence of both positive and negative
79 receptor input (7). The most important homeostatic cytokine during NK cell
80 development and for survival in the periphery is IL-15 (8-10). IL-15 induces robust
81 NK cell proliferation, NK cell differentiation, up-regulation of granzyme B and
82 increases effector responses, including cytokine production and degranulation (5, 7,
83 11, 12).

84 The multi-faceted role that IL-15 plays in NK cell homeostasis, activation and
85 differentiation has been linked to the induction of different downstream pathways
86 dependent on the cytokine concentration (13). Whereas low doses of IL-15 induced
87 the STAT5 pathway, ensuring development and survival, high doses induced the
88 mammalian target of rapamycin (mTOR). mTOR activation increased the cell's
89 metabolic activity, switching from primarily utilizing oxidative phosphorylation to
90 glycolysis, a process termed metabolic reprogramming (14). This switch in energy
91 source was necessary to maintain effector potential.

92 In the clinical setting, cytokines are used to prime NK cells for adoptive cell
93 therapy to enhance cytolytic potential and to ensure sufficient numbers through the
94 induction of proliferation. Supra-physiological levels of various cytokines, including

95 IL-2, IL-15, IL-12 and IL-18 and combinations thereof, are often used during *in vitro*
96 expansion (15). However, due to severe side effects, these high doses of cytokines
97 cannot be administrated to patients to further support expansion *in vivo* (16-19).
98 Consequently, NK cells experience a strong reduction in cytokine concentration upon
99 adoptive transfer, which can severely affect their functional potential, survival and
100 long-term engraftment (20). Although we largely lack immunobiological correlates of
101 good outcomes in NK cell trials, a common denominator for success appears to be *in*
102 *vivo* persistence and expansion of donor-derived NK cells (21). In high-risk or
103 refractory acute myeloid leukemia (AML) patients treated with IL-2 activated,
104 haploidentical NK cells, persistence and expansion of donor NK cells were associated
105 with higher rates of complete remission and increased progression-free survival (22,
106 23). Furthermore, in refractory non-Hodgkin-lymphoma patients, the response to
107 adoptive NK cell therapy has been linked to levels of endogenous IL-15 at the day of
108 NK cell infusion (19). The need for *in vivo* expansion of adoptively transferred NK
109 cells highlights the importance of understanding the mechanisms regulating NK cell
110 homeostasis and the cell fate after sudden deprivation of high cytokine
111 concentrations.

112 Recently Mao Y. et al., reported that NK cells primed with a short pulse of IL-
113 15 were better at surviving and sustaining cytolytic activity upon cytokine withdrawal
114 compared to IL-2 primed NK cells (20). IL-15 has been shown to enhance NK cell
115 survival through the complex interaction of BCL-2 family members (24). Indeed, the
116 improved survival in IL-15 primed NK cells compared to those primed with IL-2 was
117 linked to STAT5-dependent up-regulation of BCL-2, while the sustained cytolytic
118 activity upon cytokine withdrawal was attributed to enhanced mTOR signaling upon
119 IL-15 priming. However, it remains unclear how prolonged exposure to IL-15 and

120 induction of proliferation influence the expression and dynamic balance of pro- and
121 antiapoptotic molecules in discrete NK cell subsets. The BCL-2 family members can
122 be divided into 3 groups, the anti-apoptotic, pro-apoptotic effector and BH3-only
123 proteins, which together effectively control the intrinsic apoptosis pathway. The anti-
124 apoptotic BCL-2 family members (MCL-1, A1, BCL-XL and BCL-2 itself) inhibit
125 apoptosis by binding pro-apoptotic proteins, like the BH 3-only proteins BIM, NOXA
126 or PUMA (25). These pro-apoptotic BH3-only proteins can either directly or
127 indirectly (by reducing the availability of anti-apoptotic proteins) activate the pro-
128 apoptotic effector proteins BAX and BAK (26). Once these two major players of the
129 intrinsic apoptosis pathway are activated, they oligomerize and permeabilize the outer
130 mitochondrial membrane leading to the release of cytochrome c into the cytoplasm
131 and subsequently to the activation of executor caspases (27).

132 Here, we investigated the dynamic regulation of pro- and anti-apoptotic
133 molecules during IL-15 induced proliferation/activation and subsequent withdrawal.
134 Our data reveal a dose-dependent addiction to IL-15 that correlated with the degree of
135 proliferation achieved during the *in vitro* expansion phase. This addiction resulted in
136 increased susceptibility to apoptosis upon sudden IL-15 withdrawal and correlated
137 with an altered expression of anti- and pro-apoptotic BCL-2 family members. In
138 particular, we found that the highly pro-apoptotic BIM short (BIM S) splice variant
139 accumulated in NK cells exposed to high concentrations of IL-15, suggesting a
140 mechanism by which these cells are prone to rapid apoptosis. These results shed new
141 light on the molecular mechanism of cytokine addiction in human NK cells following
142 IL-15 driven expansion.

143

144

145 **Materials and Methods**

146 *Reagents and cell lines*

147 Antibodies were purchased for CD57 FITC/ PE, Streptavidin BV785, BCL-2 AF647
148 from BioLegend, for CD3 V500, CD14 V500, CD19 V500, anti-IgM BV650, MCL-1
149 purified from BD Bioscience, for CD56 ECD from Beckman Coulter, for CD57
150 functional grade purified from eBioscience, for BIM AF647, BCL-XL AF647 from
151 Cell Signaling Technologies and for NKG2A PE-Vio770, KIR2D biotin, KIR3DL1/2
152 biotin from Miltenyi Biotec. The MCL-1 purified antibody was labeled with an
153 AF647 antibody labeling kit from Life Technologies accordingly to the kit's
154 instructions. The BCL-2 family member inhibitors ABT-199 and ABT-737 were
155 purchased from Santa Cruz BioTechnologies and the MCL-1 inhibitor Maritoclax
156 from Tocris. Pacific Orange and Blue Succinimidyl Ester were bought from Thermo
157 Fisher Scientific. The pan-caspase (Z-VAD-FMK) and caspase-8 (Z-IETD-FMK)
158 inhibitors were purchased from R&D Systems. K562 cell line from ATCC was
159 cultured in RPMI 1640 media with antibiotics (penicillin/streptomycin; Sigma) and
160 10% heat-inactivated fetal calf serum (Sigma) at 37°C.

161

162 *NK cell isolation and culture*

163 Buffy coats from random healthy blood donors were purchased from the Oslo
164 University Hospital Blood bank with donor informed consent. Using density gravity
165 centrifugation (Lymphoprep; Axis-Shield) and fretted spin tubes (Sepmate, Stemcell
166 Technologies) peripheral blood mononuclear cells (PBMCs) were isolated and used
167 for NK cell isolation. NK cells were isolated from PBMCs using a NK cell isolation
168 kit and an AutoMACS Pro Separator (Miltenyi Biotec). Freshly isolated NK cells

169 were labeled with the CellTrace™ Violet or CFSE™ dye for cell proliferation
170 analysis according to the kit's instructions (Molecular Probes). CTV-/CFSE -labeled
171 NK cells were culture in RMPI 1640 media (Sigma) with antibiotics
172 (penicillin/streptomycin; Sigma) and 10% human, heat-inactivated AB serum (Trina
173 Bioreaktives) plus 10 or 1 ng/ml IL-15 (Miltenyi Biotec) for 6 days at 37°C. On day 2
174 and 4 the medium was replaced with fresh medium and IL-15. After 6 days cells were
175 harvested, washed and counted. Cells were either used for analysis or incubated
176 further for up to 48h in medium with or without the prior IL-15 dose at 37°C.

177

178 *Flow Cytometry staining*

179 Freshly isolated or IL-15 treated NK cells were stained in staining buffer (PBS + 2%
180 fetal calf serum (FCS) + 2 mM EDTA) with various antibody combinations and a
181 dead-cell marker (LIVE/DEAD® Fixable Near-IR or Aqua Dead cell stain kit; Life
182 Technologies). Cells were fixed afterwards in 2-4% paraformaldehyde (PFA) and
183 either directly analyzed at a LSRII flow cytometer instrument (Becton Dickinson) or
184 stained for intracellular proteins after permeabilization with 100% methanol at -20°C.

185 Data was analyzed using the FlowJo V10.0.8 software (TreeStar). The gating strategy
186 is illustrated in supplementary figure 1A+B.

187

188 *Barcoding and BCL-2 family member staining*

189 In order to improved staining quality of intracellular proteins and to reduce the
190 amount of antibodies used, differently treated NK cells were labeled after methanol
191 permeabilization with a unique dilution combination of the two dyes pacific blue and
192 orange (Life Technologies). Afterwards cells were collected together and stained for

193 various surface markers and intracellular BCL-2 family member proteins. An example
194 of the gating strategy for IL-15 treated NK cells, which have been stained with BCL-2
195 is illustrated in supplementary figure 1C. In order to compare the expression intensity
196 of BCL-2 family members between different NK cell donors across multiple
197 experiments, the MFI values were normalized to NK cells isolated from a reference
198 donor included in each fluorescent barcoding experiment.

199

200 *Analyzing NK cell proliferation*

201 To analyze the increase in NK cell numbers upon IL-15 treatment, their numbers were
202 measured at the start of the IL-15 treatment and after 6 days. FlowCountTM
203 Fluorospheres (BeckmanCoulter) were used to calculate the NK cell numbers per μ l
204 and a ratio between the NK cell numbers on day 6 and at the start of the IL-15
205 treatment was calculated. The analysis for fold change in NK cell numbers upon
206 continuous IL-15 treatment after 6 days or IL-15 withdrawal was done accordingly.

207 To analyze the degree of cell proliferation during the 6 day IL-15 treatment, CTV-
208 /CFSE-dilution was measured on day 6 by flow cytometry. Afterwards the replication

209 index (fold expansion over culture time of proliferating cells; $RI = \frac{\sum_1^i N_i}{\sum_1^i N_i}$ with $i =$
210 generation number and $N_i =$ number of events in generation i) was calculated (28).

211

212 *Measuring Caspase-3 activity*

213 NK cells were cultured for a duration of 6 days with 10 or 1 ng/ml IL-15 followed by
214 a varying period of continued culture (up to 48 hours) with or without the prior IL-15
215 dose. 1 hour before the end of the culture the caspase-3 inhibitor DEVD-FMK

216 conjugated to FITC (Caspase-3 active FITC staining kit; Abcam) was added to the
217 culture to label cells with active caspase-3 activity. Cells were harvested and stained
218 for NK cell surface marker and analyzed by flow cytometry.

219

220 *Western Blotting*

221 NK cells were harvested, washed twice with ice-cold PBS and lysed in 50-100 µl
222 RIPA buffer plus protease/phosphatase inhibitors (Thermo Fisher Scientific) for 15'
223 on ice and then stored at -80°C. Protein lysates were thawed and the protein
224 concentration was evaluated using a Pierce BCA protein assay kit (Thermo Fisher
225 Scientific). Protein lysates were cooked at 90°C for 5' with NuPage® LDS sample
226 buffer (Thermo Fisher Scientific). 10 µg protein were loaded onto a NuPAGE®
227 Novex® Bis-Tris 12% MiniGel (Life Technologies) and run for 45-60' at 150 V.
228 Afterwards, a wet blotting transfer was done onto a 0,2 µm PVDF membrane (Life
229 Technologies) for 90' at 4°C and 100 V. The membrane was blocked for 1h in TBST
230 buffer (1x TBS + 0,1% TWEEN 20) plus 5% BSA and incubated with the BIM
231 antibody (Clone: C34C5; 1:1000; Cell Signaling Technologies) overnight. Next day,
232 the membrane was washed 3x with TBST buffer and incubated for 1 h at room
233 temperature with an anti-rabbit HRP antibody (1:3000; Dako). The membrane was
234 washed 3x with TBST buffer, visualized with a Pierce ECL western blotting substrate
235 (Thermo Fisher Scientific) at a Chemidoc machine (BioRad) and acquired with the
236 Image Quant software. The staining for Actin B was done accordingly. The analysis
237 was performed using ImageJ (NIH).

238

239 *Peggy Sue™ instrument*

240 To analyze BCL-2 family members in sorted NK cells, capillary electrophoresis and
241 immunodetection of proteins were performed in the Simple Western system Peggy
242 SueTM using the 2-40 kDa size separation kit. Cells were lysed in RIPA buffer plus
243 protease/phosphatase inhibitors (Thermo Fisher Scientific) for 15' on ice and stored at
244 -80°C. Protein lysates were thawed and the protein concentration was evaluated using
245 a Pierce BCA protein assay kit (Thermo Fisher Scientific). For each sample 0.2
246 mg/ml protein lysates were used. Primary antibodies were diluted 1:50, and ready-
247 made secondary antibodies were used from Protein Simple. Protein lysates and
248 reagents were pipetted into a 384 well plate, centrifuged at 2000x g for 5' and put into
249 the Peggy SueTM machine. Experimental set-up and data analysis were done using the
250 Compass software (Protein Simple).

251

252 *RNA sequencing*

253 Freshly isolated NK cells and 5 day IL-15 stimulated NK cells were sorted into three
254 subsets (NKG2A⁺KIR⁻CD57⁻, NKG2A⁻KIR⁺CD57⁻, NKG2A⁻
255 KIR⁺CD57⁺CD38^{low}/NKG2C⁺) using a FacsAria (BD) at 4°C. Day 5 cells were
256 further sorted into proliferating cells (generation 1) using CellTrace Violet staining.
257 RNA was isolated and the library was prepared using the Illumina NeoPrep Library
258 preparation system. NextSeq(Illumina) (single read, 75base pairs) was used for
259 sequencing and Bowtie (version 2.0.5.0) and Tophat (version 2.0.6) were used to
260 carry out the read alignment. Cufflinks (version 2.1.1) was used to estimate the
261 transcript abundance. FKPM values from the individual subsets were pooled for a
262 global analysis comparing baseline (day 0) to proliferating (day 5). The log2 fold
263 change and adjusted p value were used for visualization in the volcano plot.

264 *Statistical analysis*

265 For the comparison of single matched groups or populations a Wilcoxon test was
266 used. A Wilcoxon signed rank test was performed when calculating the statistical
267 significance of a given median to a hypothetical value. For comparing multiple
268 matched groups with each other, a one- or two-way ANOVA test was done. Statistical
269 significance: ns indicates not significant, * p<0.05; **p<0,01, ***p<0,001,
270 ****p<0,0001. Analysis was performed using the GraphPad Prism software.

271

272

273

274

275

276

277

278

279

280 **Results**

281 *High-dose IL-15 skews NK cells towards a more immature phenotype*

282 To study the molecular consequences of cytokine-withdrawal, primary human NK
283 cells were stimulated with either high- (10 ng/ml) or low-dose (1 ng/ml) IL-15 for 6
284 days *in vitro*. After 6 days, NK cell numbers increased significantly in high-dose IL-
285 15 treated cells (Figure 1A), reflected in a stronger CTV dilution and higher
286 replication index than those treated with low-dose IL-15 (Figure 1B-C). NK cells can
287 be divided into various subsets based on their expression of NKG2A, KIRs and
288 CD57, which define their level of differentiation (6). Although treatment with both
289 concentrations of IL-15 increased the fraction of NKG2A⁺ NK cells and decreased the
290 fraction of the more differentiated CD57⁺ NK cells, this effect was more pronounced
291 in high-dose IL-15 treated NK cells. Furthermore, high-dose IL-15 treatment resulted
292 in a dramatic increase in the NKG2A⁺KIR⁺CD57⁻ subset fraction (Figure 1D).
293 Together, these initial experiments established a platform for studying the effect of
294 cytokine withdrawal in discrete NK cell subsets based on their degree of prior
295 activation.

296

297 *Strongly proliferating NK cells are more susceptible to IL-15 withdrawal*

298 To monitor the effect of IL-15 withdrawal after NK cell expansion, isolated NK cells
299 were pretreated for 6 days with high- or low-dose IL-15. Subsequently, cells were
300 harvested and put into culture again for 48 h with the either the same IL-15
301 concentration as before or with IL-15 being completely withdrawn (Figure 2A). The
302 effect of continued IL-15 treatment versus IL-15 withdrawal was investigated by
303 calculating the fold change in NK cell numbers before and after the additional 48 h

304 incubation period for each treatment condition. As expected, continued IL-15
305 treatment for 48 h resulted in increased NK cell numbers, which were significantly
306 higher if cells were pretreated with high- compared to low-dose IL-15. In contrast,
307 NK cell numbers decreased in a dose-dependent manner 48 h after cytokine
308 withdrawal (Figure 2B). Furthermore, we observed a significant correlation between
309 the decrease in NK cell numbers upon IL-15 withdrawal and the replication index
310 after the initial 6 days of IL-15 stimulation (Figure 2C).

311 Next, we addressed whether NK cell differentiation influenced the
312 susceptibility to IL-15 withdrawal. To this end, we analyzed the relative change in
313 NK cell numbers of four discrete NK cell subsets at various stages of differentiation,
314 following cytokine stimulation and withdrawal. In line with their differential intrinsic
315 potential for proliferation (6), the decrease in NK cell numbers following cytokine-
316 deprivation was more pronounced in NKG2A⁺KIR⁺CD57⁻ and NKG2A⁺KIR⁻CD57⁻
317 than in more differentiated NKG2A⁻KIR⁺CD57^{+/} NK cells (Figure 2D).

318 In summary, these data reveal a subset-dependent susceptibility to IL-15
319 withdrawal linked to their relative proliferative capacity.

320

321 *IL-15 withdrawal results in increased induction of apoptosis*

322 We examined if the observed loss in NK cell numbers was due to an increased rate of
323 apoptosis. To this end, we treated NK cells for 6 days with high-dose IL-15 and
324 analyzed the activation of caspase-3 during the subsequent additional 48 h incubation
325 period in the presence and absence of IL-15. Caspase-3 induction was evident after 48
326 h post cytokine withdrawal (Figure 3A), which is why we chose to perform all further
327 analyses at this time point. Whereas withdrawal of IL-15 from NK cells pretreated
328 with 10 ng/ml of IL-15 resulted in a significant increase in caspase-3 activation after

329 48 h, no withdrawal-induced caspase-3 activation was observed in NK cells pretreated
330 with 1 ng/ml of IL-15 (Figure 3B). Stratification of caspase-3 activation by
331 distinguishing between slowly (generation 0-1) and rapidly (generation 2+) cycling
332 NK cells (Figure 3C) revealed a more pronounced caspase-3 activation in rapidly
333 cycling NK cells (Figure 3D).

334

335 *Dose-depending up-regulation of BCL-2 family members upon IL-15 treatment*

336 To get an unbiased view on pro- and anti-apoptotic networks following stimulation of
337 NK cells with IL-15 we performed RNA sequencing analysis on NK cells at baseline
338 and after 5 days of IL-15 stimulation (Figure 4A). The most prominent up-regulation
339 was observed for *BIRC5*, a member of the inhibitor of apoptosis (IAP) family.
340 Alongside its anti-apoptotic characteristics, *BIRC5* is mainly involved in the
341 regulation of cell proliferation during chromosomal-microtubule attachment, spindle
342 assembly checkpoint and cytokinesis (29). Among the most significantly up regulated
343 genes observed was *BAX*, a core member of the intrinsic apoptosis pathway and
344 direct target of *BIM* (27). However, *BCL2*, which inhibits the apoptosis pathway at
345 the level of *BAX*, was also significantly up regulated, potentially balancing the pro-
346 apoptotic axis through *BIM/BAX* (Figure 4A and Supplementary Table 1).

347 Next, we analyzed the protein expression of anti-apoptotic *BCL-2*, *MCL-1*
348 and *BCL-XL* as well as pro-apoptotic *BIM* in primary human NK cells after 6 days of
349 IL-15 treatment. Upon IL-15 treatment NK cells up-regulated all three anti-apoptotic
350 proteins, but also *BIM* (Figure 4B). All four *BCL-2* family members were
351 significantly more up regulated in cells treated with high-dose IL-15 compared to
352 low-dose IL-15. Interestingly, whereas *MCL-1*, *BCL-XL* and *BIM* expression
353 increased with the number of cell divisions, *BCL-2* expression was highest in slowly

354 or non-dividing NK cells after incubation with high-dose IL-15 (Figure 4C-D). Next,
355 we incubated high-dose IL-15 pretreated NK cells for 48h without IL-15 in the
356 presence of different concentrations of BCL-2 (ABT-199) and BCL-2/BCL-XL (ABT-
357 737) inhibitors (Figure 4E-G). Whereas BCL-2 inhibition led to a negative influence
358 on NK cell survival during IL-15 withdrawal, MCL-1 inhibition with Maritocax had
359 no effect, even at high concentrations. Notably, as a control, Maritoclax decreased
360 MCL-1 levels and survival in K562 cells (Supplementary Figure 2A-B), but had only
361 modest effects on MCL-1 levels in NK cells (Supplementary Figure 2C). These data
362 indicate a crucial role for BCL-2 in protecting NK cells during IL-15 withdrawal and
363 suggest that this protection is more fragile in cells that have undergone multiple
364 rounds of cell division.

365

366 *Altered BCL-2/BIM ratio following IL-15 withdrawal*

367 Based on the observation that IL-15 induced a profound and dose-dependent up-
368 regulation of both pro- and anti-apoptotic proteins, we addressed whether the
369 susceptibility to IL-15 withdrawal in proliferating NK cells was linked to a selective
370 decrease in anti-apoptotic proteins. We found that the expression of all three anti-
371 apoptotic proteins decreased following 48 h of culture in the absence of IL-15 (Figure
372 5A). The effect was more pronounced in NK cells pretreated with high-dose IL-15.
373 Intriguingly, the expression of pro-apoptotic BIM also decreased 48h after IL-15
374 withdrawal, although not as prominent as BCL-2, leading to altered BCL-2/BIM
375 ratios (Figure 5B). The balance between anti- and pro-apoptotic proteins is critical for
376 the induction of apoptosis (30). We found that the BCL-2/BIM ratio was significantly
377 lower in rapidly dividing NK cells upon IL-15 stimulation and decreased further upon
378 IL-15 withdrawal, dropping to levels below those in resting NK cells (Figure 5C).

379 Thus, the altered balance between BCL-2 and BIM in highly proliferating NK cells
380 may contribute to the NK cell death observed after cytokine withdrawal.

381

382 *Treatment with high-dose IL-15 induces the expression of the BIM S splice variant*

383 Although the ratio BCL-2/BIM ratio in proliferating NK cells decreased to levels
384 below baseline, the effect of IL-15 withdrawal was rather subtle (Figure 5C).
385 Therefore, we next investigated the potential role of different BIM splice variants in
386 the enhanced susceptibility of highly activated NK cells to apoptosis. There are at
387 least 18 known BIM splice variants with various potential to induce apoptosis, of
388 which BIM extra long (BIM EL), BIM long (BIM L) and BIM S are the major ones
389 (31). In particular, BIM S has been shown to be more potent in inducing apoptosis
390 (32). Treatment with IL-15 led to an increase in all three BIM splice variants over 6
391 days, with BIM S demonstrating the strongest up-regulation, in particular in NK cells
392 exposed to higher concentrations of IL-15 (Figure 6A-B). To further evaluate the
393 influence of proliferation, we monitored the three splice variants in FACS sorted
394 proliferating and non-proliferating NK cells after 4 days of IL-15 stimulation using
395 the Peggy Sue instrument for protein analysis of small sample volumes (33). We
396 found that proliferating NK cells had a higher expression of the BIM S variant than
397 non-proliferating NK cells (Figure 6C). In contrast, no clear differences were
398 observed for the other two BIM variants when stratifying for the degree of
399 proliferation. Corroborating the flow cytometry data in Figure 4C, we found that
400 BCL-2 expression was lower in proliferating than in non-proliferating NK cells when
401 treated with high-dose IL-15 (Figure 6C). We then followed the expression of the
402 splice variants during IL-15 withdrawal and found that BIM S levels remained high
403 for 24 h before dropping to marginal levels (Figure 6D and Supplementary Figure

404 3A). This was paralleled with the amount of BCL-2 roughly halving by 24 h,
405 mirroring the flow cytometry data in Figure 5A. Together, these data suggest that the
406 unique sensitivity of proliferating NK cells to apoptosis is linked to a selective
407 accumulation of the toxic BIM S splice variant together with diminishing levels of
408 BCL-2.

409

410

411 **Discussion**

412 Understanding how cytokine-priming influences NK cell homeostasis *in vivo* and *in*
413 *vitro* is essential for the development of NK-cell based immunotherapies. The transfer
414 of highly activated *in vitro* expanded NK cells into a lymphopenic, pre-conditioned
415 host represents a critical phase due to the sudden change in cytokine concentration.
416 The degree to which the transfer itself leads to loss of function and cell death of
417 donor-derived NK cells is likely to depend on many factors. This includes the length
418 and extent of prior activation, the combination of cytokines used, and the
419 application/implementation of supportive systemic cytokine treatment regimes in the
420 patient. In this study we established a robust platform to study the fate of discrete NK
421 cell subsets following abrupt withdrawal of IL-15, mimicking a scenario where IL-15
422 activated and expanded NK cells are transferred into a patient.

423 During the course of viral infections, murine NK cells undergo expansion
424 followed by a contraction phase due to reduction in cytokine levels when the infection
425 resolves. Members of the BCL-2 family play a crucial role in regulating the fate of
426 immune cells during this process (34). We observed a dose-dependent and subset-
427 specific up-regulation of pro- and anti-apoptotic BCL-2 family members during IL-15
428 stimulation followed by a down-regulation upon IL-15 withdrawal. These results
429 corroborate previous reports in human (35) and murine NK cells (24) demonstrating
430 that IL-15 stimulation up-regulates anti-apoptotic proteins such as BCL-2 and MCL-1
431 in NK cells. In addition, we show that IL-15 withdrawal results in a decrease of BCL-
432 2 and MCL-1 in primary human NK cells, which has so far only been described in
433 murine NK cells (24). In human NK cells, up-regulation of BCL-2 during a short
434 stimulation with IL-15 was dependent on STAT5, but not mTOR, and was linked to
435 improved survival upon cytokine withdrawal *in vitro* and *in vivo* (20). In murine T

436 cells it has been reported that long-term surviving effector CD8⁺ T cells had higher
437 anti-apoptotic Bcl-2 protein levels compared to their short-lived counterparts, along
438 with higher levels of pro-apoptotic Bim (36). The increased Bcl-2 protein levels
439 enabled murine effector CD8⁺ T cells to tolerate the higher Bim levels. *In vivo*
440 administration of IL-7 or IL-15 into C57BL/6 mice infected with LCMV increased
441 Bim protein levels within effector CD8⁺ T cells, while inhibition of Bcl-2 resulted in
442 decreased Bim levels. These results suggested that Bcl-2 and Bim expression is
443 coordinated in murine T cells and that the Bcl-2 protein levels determinate the amount
444 of Bim protein levels a cell is able to tolerate. *Ex vivo* stimulation of murine NK cells
445 with IL-15 was found to down-regulate the expression of Bim via transcriptional
446 repression and increased proteasomal degradation (24). Upon IL-15 withdrawal, Bim
447 expression increased, leading to cell death in murine NK cells. Furthermore, several
448 groups demonstrated that changes in the Bcl-2/Bim ratio can render murine T and NK
449 cells sensitive to cell death (24, 36, 37). Specifically, studies in conditional knock-out
450 mice suggest that BCL-2 is a non-redundant survival protein for murine NK cells at
451 rest, whereas MCL-1 is the dominant survival protein during proliferation (38). The
452 importance of the BCL-2/BIM dynamics is supported by our findings in primary
453 human NK cells, since we observed a proliferation-dependent loss of BCL-2 during
454 IL-15 withdrawal, resulting in low BCL-2/BIM ratios and increased NK cell death.
455 While increased levels of MCL-1 and increased BCL-2/BIM ratios appear to protect
456 from apoptosis during ongoing proliferation, such highly “addicted” NK cells show a
457 drop in BCL-2/BIM ratios below the level of resting NK cells after IL-15 withdrawal.
458 Surprisingly, pharmacological inhibition of MCL-1 with Maritoclax showed minimal
459 effect on survival in our *in vitro* model whereas BCL-2 inhibition led to a near
460 complete cell death during IL-15 withdrawal.

461 An additional factor contributing to the susceptibility of rapidly proliferating
462 NK cells to IL-15 withdrawal was their differential expression of BIM splice isoforms
463 during IL-15 stimulation. The BIM protein is known to have at least 18 different
464 splice variants with different abilities to induce apoptosis (31). The activity of the two
465 variants BIM EL and L to induce apoptosis is regulated via phosphorylation at several
466 phosphorylation sites (39). In addition, both isoforms contain the dynein light (L)
467 chain-binding domain (DBD), enabling them to be sequestered by dynein on
468 microtubules (40). In response to apoptotic stimuli they are released from the
469 microtubules and become activated. In contrast, the BIM S splice variant is neither
470 controlled by posttranscriptional phosphorylation nor by binding to the microtubules.
471 Furthermore, it is able to directly bind BAX making it the most potent apoptosis
472 inducing BIM isoform (31). Here, we observed that IL-15 stimulation in general
473 increased the expression of all three major BIM variants, whereas high-dose IL-15
474 preferentially up-regulated the highly cytotoxic BIM S variant, particularly in cells
475 that had undergone extensive cell division. One explanation for this phenomenon
476 could be an increased production of reactive oxygen species (ROS) in proliferating
477 NK cells. It is known that upon murine NK cell expansion during MCMV infection,
478 proliferating NK cells accumulate increased levels of reactive oxidative species
479 (ROS) due to the accumulation of depolarized mitochondria. Removal of damaged
480 mitochondria/ROS via mitophagy was crucial for the survival of NK cells in this
481 model (41). ROS can influence the expression levels of BCL-2 and BIM. In T cells, it
482 has been shown that *in vivo* activation with staphylococcal enterotoxin B (SEB) leads
483 to decrease Bcl-2 levels in stimulated T cells and subsequently to cell death. Bcl-2
484 levels could be restored by blocking ROS production using the antioxidant
485 Mn(III)tetrakis(5,10,15,20-benzoic acid)porphyrin (MnTBAP) (30). In addition, it is

486 known that increased ROS levels are able to stimulate BIM expression via the ROS-
487 JNK-BIM pathway (42).

488 A recent study described the impact of distinct dose scheduling of high-dose
489 IL-15 stimulation on NK cells. Continuous treatment with high-dose IL-15 for 9 days
490 was more potent at inducing robust NK cell proliferation than IL-15 treatment for 9
491 days with a three-day lack of IL-15 (day 4-6). However, intermitting IL-15 treatment
492 resulted in improved survival and function of NK cells compared to continuous IL-15
493 treatment, which was linked to the induction of a cell cycle arrest genes and reduced
494 mitochondrial respiration due to mTOR signaling (43). Interestingly, cell cycle arrest
495 genes, including GADD45 and P53 are known to positively regulate the expression of
496 BIM, whereas P53 has a negative impact on BCL-2 expression levels (44, 45). In
497 human NK cells, mTOR signaling is tightly associated with proliferation (Pfefferle et
498 al., unpublished observation). Chronic AKT signaling, which is a downstream target
499 of mTOR signaling, leads to down-regulation of BCL-2 in T cells (46), which aligns
500 with the observation of a gradual decline in BCL-2 when cells undergo cell division,
501 as noted in the present study. On the contrary, mTOR signaling suppresses the
502 expression of BIM, since inhibition of mTOR signaling up-regulates BIM expression
503 in various cell types (47, 48). This differs from the observation in primary NK cells as
504 we noted a robust increase in BIM levels and in particular of the BIM S splice variant
505 in proliferating NK cells. Therefore, potential differences in mTOR signaling cannot
506 fully explain the increased susceptibility of high-dose IL-15 treated NK cells towards
507 IL-15 withdrawal.

508 In summary, our results reveal a subset and proliferation-dependent alteration
509 in BCL-2/BIM ratios with increased levels of the toxic BIM S splice variant. Together
510 these changes sensitize IL-15 addicted NK cells to cytokine withdrawal leading to

511 apoptosis. These insights may pave the way for gene-editing approaches aiming to
512 restore BCL-2/BIM ratios or interfering with BIM S or its downstream targets prior to
513 adoptive transfer to prolong the *in vivo* persistence of expanded NK cell products.
514 Alternatively, it may be possible to rescue the addicted phenotype by titrating the
515 level of IL-15 before *in vivo* infusion of the final cell therapy product.

516

517

518 **Acknowledgments**

519 We would like to thank Drs Johannes Landskron and June H. Myklebust for their kind
520 assistance in establishing the fluorescent bar coding technology and Dr Jai Rautala for
521 critical reading of the manuscript.

522

523 References

- 524 1. Kiessling, R., E. Klein, and H. Wigzell. 1975. "Natural" killer cells in the
525 mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia
526 cells. Specificity and distribution according to genotype. *European journal*
527 of *immunology* 5: 112-117.
- 528 2. Lucas, M., W. Schachterle, K. Oberle, P. Aichele, and A. Diefenbach. 2007.
529 Dendritic cells prime natural killer cells by trans-presenting interleukin
530 15. *Immunity* 26: 503-517.
- 531 3. Strowig, T., O. Chijioke, P. Carregal, F. Arrey, S. Meixlsperger, P. C. Ramer, G.
532 Ferlazzo, and C. Munz. 2010. Human NK cells of mice with reconstituted
533 human immune system components require preactivation to acquire
534 functional competence. *Blood* 116: 4158-4167.
- 535 4. Romee, R., E. S. Schneider, J. Leong, J. M. Chase, C. R. Keppel, S. R.P., M. A.
536 Cooper, and T. A. Fehniger. 2012. Cytokine activation induces human
537 memory-like NK cells. *Blood*.
- 538 5. Fehniger, T. A., S. F. Cai, X. Cao, A. J. Bredemeyer, R. M. Presti, A. R. French,
539 and T. J. Ley. 2007. Acquisition of murine NK cell cytotoxicity requires the
540 translation of a pre-existing pool of granzyme B and perforin mRNAs.
541 *Immunity* 26: 798-811.
- 542 6. Bjorkstrom, N. K., P. Riese, F. Heuts, S. Andersson, C. Fauriat, M. A.
543 Ivarsson, A. T. Bjorklund, M. Flodstrom-Tullberg, J. Michaelsson, M. E.
544 Rottenberg, C. A. Guzman, H. G. Ljunggren, and K. J. Malmberg. 2010.
545 Expression patterns of NKG2A, KIR, and CD57 define a process of
546 CD56dim NK-cell differentiation uncoupled from NK-cell education. *Blood*
547 116: 3853-3864.
- 548 7. Wagner, J. A., M. Rosario, R. Romee, M. M. Berrien-Elliott, S. E. Schneider, J.
549 W. Leong, R. P. Sullivan, B. A. Jewell, M. Becker-Hapak, T. Schappe, S.
550 Abdel-Latif, A. R. Ireland, D. Jaishankar, J. A. King, R. Vij, D. Clement, J.
551 Goodridge, K. J. Malmberg, H. C. Wong, and T. A. Fehniger. 2017.
552 CD56bright NK cells exhibit potent antitumor responses following IL-15
553 priming. *The Journal of clinical investigation* 127: 4042-4058.
- 554 8. Brilot, F., T. Strowig, S. M. Roberts, F. Arrey, and C. Munz. 2007. NK cell
555 survival mediated through the regulatory synapse with human DCs
556 requires IL-15Ralpha. *The Journal of clinical investigation* 117: 3316-
557 3329.
- 558 9. Huntington, N. D., N. Legrand, N. L. Alves, B. Jaron, K. Weijer, A. Plet, E.
559 Corcuff, E. Mortier, Y. Jacques, H. Spits, and J. P. Di Santo. 2009. IL-15
560 trans-presentation promotes human NK cell development and
561 differentiation in vivo. *The Journal of experimental medicine* 206: 25-34.
- 562 10. Castillo, E. F., S. W. Stonier, L. Frasca, and K. S. Schluns. 2009. Dendritic
563 cells support the in vivo development and maintenance of NK cells via IL-
564 15 trans-presentation. *Journal of immunology* 183: 4948-4956.
- 565 11. Rosario, M., B. Liu, L. Kong, L. I. Collins, S. E. Schneider, X. Chen, K. Han, E.
566 K. Jeng, P. R. Rhode, J. W. Leong, T. Schappe, B. A. Jewell, C. R. Keppel, K.
567 Shah, B. Hess, R. Romee, D. R. Piwnica-Worms, A. F. Cashen, N. L. Bartlett,
568 H. C. Wong, and T. A. Fehniger. 2016. The IL-15-Based ALT-803 Complex
569 Enhances Fc γ RIIIa-Triggered NK Cell Responses and In Vivo

570 Clearance of B Cell Lymphomas. *Clinical cancer research : an official*
571 *journal of the American Association for Cancer Research* 22: 596-608.

572 12. Post, M., A. Cuapio, M. Osl, D. Lehmann, U. Resch, D. M. Davies, M. Bilban,
573 B. Schlechta, W. Eppel, A. Nathwani, D. Stoiber, J. Spanholtz, E. Casanova,
574 and E. Hofer. 2017. The Transcription Factor ZNF683/HOBIT Regulates
575 Human NK-Cell Development. *Frontiers in immunology* 8: 535.

576 13. Marcais, A., J. Cherfils-Vicini, C. Viant, S. Degouve, S. Viel, A. Fenis, J.
577 Rabilloud, K. Mayol, A. Tavares, J. Bienvenu, Y. G. Gangloff, E. Gilson, E.
578 Vivier, and T. Walzer. 2014. The metabolic checkpoint kinase mTOR is
579 essential for IL-15 signaling during the development and activation of NK
580 cells. *Nature immunology* 15: 749-757.

581 14. Donnelly, R. P., R. M. Loftus, S. E. Keating, K. T. Liou, C. A. Biron, C. M.
582 Gardiner, and D. K. Finlay. 2014. mTORC1-dependent metabolic
583 reprogramming is a prerequisite for NK cell effector function. *Journal of*
584 *immunology* 193: 4477-4484.

585 15. Malmberg, K. J., E. Sohlberg, J. P. Goodridge, and H. G. Ljunggren. 2017.
586 Immune selection during tumor checkpoint inhibition therapy paves way
587 for NK-cell "missing self" recognition. *Immunogenetics* 69: 547-556.

588 16. Dutcher, J. P., S. Creekmore, G. R. Weiss, K. Margolin, A. B. Markowitz, M.
589 Roper, D. Parkinson, N. Ciobanu, R. I. Fisher, D. H. Boldt, and et al. 1989. A
590 phase II study of interleukin-2 and lymphokine-activated killer cells in
591 patients with metastatic malignant melanoma. *Journal of clinical oncology*
592 : official journal of the American Society of Clinical Oncology 7: 477-485.

593 17. Veluchamy, J. P., N. Kok, H. J. van der Vliet, H. M. W. Verheul, T. D. de Gruijl,
594 and J. Spanholtz. 2017. The Rise of Allogeneic Natural Killer Cells As a
595 Platform for Cancer Immunotherapy: Recent Innovations and Future
596 Developments. *Frontiers in immunology* 8: 631.

597 18. Fehniger, T. A., and M. A. Cooper. 2016. Harnessing NK Cell Memory for
598 Cancer Immunotherapy. *Trends in immunology* 37: 877-888.

599 19. Bachanova, V., D. Sarhan, T. E. DeFor, S. Cooley, A. Panoskalsis-Mortari, B.
600 R. Blazar, J. M. Curtsinger, L. Burns, D. J. Weisdorf, and J. S. Miller. 2018.
601 Haploididentical natural killer cells induce remissions in non-Hodgkin
602 lymphoma patients with low levels of immune-suppressor cells. *Cancer*
603 *immunology, immunotherapy : CII* 67: 483-494.

604 20. Mao, Y., V. van Hoef, X. Zhang, E. Wennerberg, J. Lorent, K. Witt, L.
605 Masvidal, S. Liang, S. Murray, O. Larsson, R. Kiessling, and A. Lundqvist.
606 2016. IL-15 activates mTOR and primes stress-activated gene expression
607 leading to prolonged antitumor capacity of NK cells. *Blood* 128: 1475-
608 1489.

609 21. Berrien-Elliott, M. M., R. Romee, and T. A. Fehniger. 2015. Improving
610 natural killer cell cancer immunotherapy. *Current opinion in organ*
611 *transplantation* 20: 671-680.

612 22. Miller, J. S., Y. Soignier, A. Panoskalsis-Mortari, S. A. McNearney, G. H. Yun,
613 S. K. Fautsch, D. McKenna, C. Le, T. E. Defor, L. J. Burns, P. J. Orchard, B. R.
614 Blazar, J. E. Wagner, A. Slungaard, D. J. Weisdorf, I. J. Okazaki, and P. B.
615 McGlave. 2005. Successful adoptive transfer and in vivo expansion of
616 human haploididentical NK cells in patients with cancer. *Blood* 105: 3051-
617 3057.

618 23. Bachanova, V., S. Cooley, T. E. Defor, M. R. Verneris, B. Zhang, D. H.
619 McKenna, J. Curtsinger, A. Panoskaltsis-Mortari, D. Lewis, K. Hippen, P.
620 McGlave, D. J. Weisdorf, B. R. Blazar, and J. S. Miller. 2014. Clearance of
621 acute myeloid leukemia by haploidentical natural killer cells is improved
622 using IL-2 diphtheria toxin fusion protein. *Blood* 123: 3855-3863.

623 24. Huntington, N. D., H. Puthalakath, P. Gunn, E. Naik, E. M. Michalak, M. J.
624 Smyth, H. Tabarias, M. A. Degli-Esposti, G. Dewson, S. N. Willis, N.
625 Motoyama, D. C. Huang, S. L. Nutt, D. M. Tarlinton, and A. Strasser. 2007.
626 Interleukin 15-mediated survival of natural killer cells is determined by
627 interactions among Bim, Noxa and Mcl-1. *Nature immunology* 8: 856-863.

628 25. Czabotar, P. E., G. Lessene, A. Strasser, and J. M. Adams. 2014. Control of
629 apoptosis by the BCL-2 protein family: implications for physiology and
630 therapy. *Nature reviews. Molecular cell biology* 15: 49-63.

631 26. Doerflinger, M., J. A. Glab, and H. Puthalakath. 2015. BH3-only proteins: a
632 20-year stock-take. *The FEBS journal* 282: 1006-1016.

633 27. Pena-Blanco, A., and A. J. Garcia-Saez. 2018. Bax, Bak and beyond -
634 mitochondrial performance in apoptosis. *The FEBS journal* 285: 416-431.

635 28. Roederer, M. 2011. Interpretation of cellular proliferation data: avoid the
636 panglossian. *Cytometry. Part A : the journal of the International Society for
637 Analytical Cytology* 79: 95-101.

638 29. Altieri, D. C. 2015. Survivin - The inconvenient IAP. *Seminars in cell &
639 developmental biology* 39: 91-96.

640 30. Hildeman, D. A., T. Mitchell, B. Aronow, S. Wojciechowski, J. Kappler, and
641 P. Marrack. 2003. Control of Bcl-2 expression by reactive oxygen species.
642 *Proceedings of the National Academy of Sciences of the United States of
643 America* 100: 15035-15040.

644 31. Sionov, R. V., S. A. Vlahopoulos, and Z. Granot. 2015. Regulation of Bim in
645 Health and Disease. *Oncotarget* 6: 23058-23134.

646 32. O'Connor, L., A. Strasser, L. A. O'Reilly, G. Hausmann, J. M. Adams, S. Cory,
647 and D. C. Huang. 1998. Bim: a novel member of the Bcl-2 family that
648 promotes apoptosis. *The EMBO journal* 17: 384-395.

649 33. Harris, V. M. 2015. Protein detection by Simple Western analysis. *Methods
650 in molecular biology* 1312: 465-468.

651 34. Min-Oo, G., N. A. Bezman, S. Madera, J. C. Sun, and L. L. Lanier. 2014.
652 Proapoptotic Bim regulates antigen-specific NK cell contraction and the
653 generation of the memory NK cell pool after cytomegalovirus infection.
654 *The Journal of experimental medicine* 211: 1289-1296.

655 35. Pillet, A. H., J. Theze, and T. Rose. 2011. Interleukin (IL)-2 and IL-15 have
656 different effects on human natural killer lymphocytes. *Human
657 immunology* 72: 1013-1017.

658 36. Kurtulus, S., P. Tripathi, M. E. Moreno-Fernandez, A. Sholl, J. D. Katz, H. L.
659 Grimes, and D. A. Hildeman. 2011. Bcl-2 allows effector and memory CD8+
660 T cells to tolerate higher expression of Bim. *Journal of immunology* 186:
661 5729-5737.

662 37. Wojciechowski, S., P. Tripathi, T. Bourdeau, L. Acero, H. L. Grimes, J. D.
663 Katz, F. D. Finkelman, and D. A. Hildeman. 2007. Bim/Bcl-2 balance is
664 critical for maintaining naive and memory T cell homeostasis. *The Journal
665 of experimental medicine* 204: 1665-1675.

666 38. Viant, C., S. Guia, R. J. Hennessy, J. Rautela, K. Pham, C. Bernat, W. Goh, Y.
667 Jiao, R. Delconte, M. Roger, V. Simon, F. Souza-Fonseca-Guimaraes, S.
668 Grabow, G. T. Belz, B. T. Kile, A. Strasser, D. Gray, P. D. Hodgkin, B. Beutler,
669 E. Vivier, S. Ugolini, and N. D. Huntington. 2017. Cell cycle progression
670 dictates the requirement for BCL2 in natural killer cell survival. *The
671 Journal of experimental medicine* 214: 491-510.

672 39. Ley, R., K. E. Ewings, K. Hadfield, and S. J. Cook. 2005. Regulatory
673 phosphorylation of Bim: sorting out the ERK from the JNK. *Cell death and
674 differentiation* 12: 1008-1014.

675 40. Puthalakath, H., D. C. Huang, L. A. O'Reilly, S. M. King, and A. Strasser.
676 1999. The proapoptotic activity of the Bcl-2 family member Bim is
677 regulated by interaction with the dynein motor complex. *Molecular cell* 3:
678 287-296.

679 41. O'Sullivan, T. E., L. R. Johnson, H. H. Kang, and J. C. Sun. 2015. BNIP3- and
680 BNIP3L-Mediated Mitophagy Promotes the Generation of Natural Killer
681 Cell Memory. *Immunity* 43: 331-342.

682 42. Deng, L., M. Chen, M. Tanaka, Y. Ku, T. Itoh, I. Shoji, and H. Hotta. 2015.
683 HCV upregulates Bim through the ROS/JNK signalling pathway, leading to
684 Bax-mediated apoptosis. *The Journal of general virology* 96: 2670-2683.

685 43. Felices, M., A. J. Lenvik, R. McElmurry, S. Chu, P. Hinderlie, L. Bendzick, M.
686 A. Geller, J. Tolar, B. R. Blazar, and J. S. Miller. 2018. Continuous treatment
687 with IL-15 exhausts human NK cells via a metabolic defect. *JCI insight* 3.

688 44. Tong, T., J. Ji, S. Jin, X. Li, W. Fan, Y. Song, M. Wang, Z. Liu, M. Wu, and Q.
689 Zhan. 2005. Gadd45a expression induces Bim dissociation from the
690 cytoskeleton and translocation to mitochondria. *Molecular and cellular
691 biology* 25: 4488-4500.

692 45. Aubrey, B. J., G. L. Kelly, A. Janic, M. J. Herold, and A. Strasser. 2018. How
693 does p53 induce apoptosis and how does this relate to p53-mediated
694 tumour suppression? *Cell death and differentiation* 25: 104-113.

695 46. van Gorp, A. G., K. M. Pomeranz, K. U. Birkenkamp, R. C. Hui, E. W. Lam,
696 and P. J. Coffer. 2006. Chronic protein kinase B (PKB/c-akt) activation
697 leads to apoptosis induced by oxidative stress-mediated Foxo3a
698 transcriptional up-regulation. *Cancer research* 66: 10760-10769.

699 47. Overall, S. A., I. R. van Driel, and P. A. Gleeson. 2016. Rapamycin results in
700 Bim-mediated loss of thymic regulatory T cells during development in
701 organ culture. *International immunology* 28: 513-518.

702 48. Lopez-Royuela, N., P. Balsas, P. Galan-Malo, A. Anel, I. Marzo, and J. Naval.
703 2010. Bim is the key mediator of glucocorticoid-induced apoptosis and of
704 its potentiation by rapamycin in human myeloma cells. *Biochimica et
705 biophysica acta* 1803: 311-322.

706

707

708

709

710

711 **Figure legends**

712 **Figure 1**

713 **A)** The fold increase in cell number of freshly isolated NK cell between the start (day
714 0) and after 6 days of high- (10 ng/ml) or low-dose (1 ng/ml) IL-15 treatment (n ≥ 6).

715 **B)** Representative histogram of the CTV-dilution in NK cells treated for 6 days with
716 high- or low-dose IL-15.

717 **C)** Based on the NK cell numbers and their CTV-dilution after 6 days of IL-15
718 treatment (high- vs. low-dose), a *replication index* (fold expansion of dividing cells)
719 was calculated for both treatment groups (n = 14).

720 **D)** Pie charts of the distribution of different NK cell subsets based on their expression
721 of NKG2A, KIR and CD57 after isolation from peripheral blood and after 6 days of
722 high- or low-dose IL-15 treatment.

723 Significance were calculated using a Wilcoxon test (p-values: * <0,05; ***<0,001).

724

725 **Figure 2**

726 **A)** Illustration of *in vitro* NK cell treatment with IL-15 stimulation and withdrawal.
727 NK cells were isolated from healthy donors and cultured with high- (10 ng/ml) or
728 low-dose (1 ng/ml) IL-15 for 6 days. Cells were then harvested, washed, counted and
729 put back into culture with (full line) or without (dashed line) the prior IL-15 dose for
730 an additional 48 h.

731 **B)** NK cells were treated for 6 days with high- (10 ng/ml) or low-dose (1 ng/ml) IL-
732 15, harvested and put into fresh media with (+) or without (-) the prior IL-15 dose for
733 48 h. Fold change in NK cell numbers after the additional 48 h treatment (+/- IL-15)
734 compared to numbers at day 6 (n = 15). Significance was calculated using a Wilcoxon

735 signed rank test (stars alone), while a Wilcoxon test was used (stars above line) to
736 calculate the significance between samples pretreated with high- or low-dose IL-15.

737 **C)** A correlation between the decrease in NK cell numbers upon 48 h of IL-15
738 withdrawal and their replication index (fold expansion of dividing cells) after 6 days
739 of high- (10 ng/ml) or low-dose (1 ng/ml) IL-15 treatment was calculated (n = 14).
740 Correlation between fold change of NK cell numbers and their replication index was
741 calculated using a spearman r test.

742 **D)** The fold decrease in NK cell numbers after 48 h of IL-15 withdrawal was
743 calculated for four discrete NK cell subsets, which had undergone prior treated of
744 high-dose IL-15 for 6 days (n = 14). Significance of the fold change of NK cell
745 numbers between different NK cell subsets was calculated using a Friedman test (p-
746 values: ** <0,01; ***<0,001; ****<0,0001).

747

748 **Figure 3**

749 **A)** NK cells were pretreated with high-dose IL-15 for 6 days, harvested and then
750 culture for up to 48 h with or without high-dose IL-15. At the indicated time points
751 NK cells were analyzed for the percentage of active caspase-3 positive cells (n = 8).

752 **B)** NK cells were treated for 6 days with high- (10 ng/ml) or low-dose (1 ng/ml) IL-
753 15, harvested and incubated for additional 48 h with (+) or without (-) the prior IL-15
754 dose. At the end of the 48 h treatment the percentage of active caspase-3 positive NK
755 cells was measured (n = 8).

756 **C)** Representative histogram of the CTV-dilution in NK cells treated for 6 days with
757 high- (10 ng/ml) or low-dose (1 ng/ml) IL-15. A gate was created around slowly (0-1
758 cell divisions) and rapidly cycling cells (≥ 2 cell divisions).

759 **D)** NK cells were treated for 6 days with high- (10) or low-dose (1) IL-15 and
760 incubated for additional 48 h without IL-15. The percentage of active Caspase-3
761 positive cells was evaluated for rapidly and slowly cycling NK cells (n = 8).
762 Significance were calculated using a Wilcoxon test (p-values: * $<0,05$; ** $<0,01$).
763

764 **Figure 4**

765 **A)** Global RNA-sequencing analysis comparing baseline to proliferating NK cells
766 after 5 days of IL-15 stimulation. Anti- and pro-apoptotic genes that were
767 significantly differentially expressed (cutoff > 1.5) are highlighted in blue or red,
768 respectively (n=3).

769 **B-D)** NK cells were treated for 6 days with high- (10 ng/ml) or low-dose (1 ng/ml)
770 IL-15 and the fold increase of the expression of different anti- (BCL-2, MCL-1, BCL-
771 XL) and pro-apoptotic (BIM) proteins between day 6 and the beginning of the IL-15
772 treatment were plotted. The fold increase was calculated for bulk NK cells and for
773 dividing NK cells treated with high- or low-dose IL-15 (n = 7). Significance were
774 calculated using a Wilcoxon test.

775 **E-G)** NK cells were treated for 6 days with high-dose IL-15 and afterwards incubated
776 without IL-15 for additional 48 h in the presence of different concentrations of a
777 BCL-2 (ABT-199; **E**), BCL-2/BCL-XL (ABT-737; **F**) or a MCL-1-inhibitor
778 (Maritoclax; **G**). The fold decrease in NK cell numbers between 48 h after and before
779 IL-15 withdrawal was evaluated (n = 5). Two experiments were excluded from the
780 analysis due to a missing effect of IL-15 withdrawal within the control samples.
781 Significance of the fold decrease in NK cell numbers upon IL-15 withdrawal in the
782 presence of different inhibitors was calculated between the individual inhibitor
783 concentrations and the control using a Friedman test (p-values: * $<0,05$; ** $<0,01$).

784 **Figure 5**

785 **A)** NK cells were treated for 6 days with high- (10 ng/ml) or low-dose (1 ng/ml) IL-
786 15 and then incubated for additional 48 h without IL-15. The fold decrease of the
787 expression of different anti- (BCL-2, MCL-1, BCL-XL) and pro-apoptotic (BIM)
788 proteins after 48 h compared to the beginning of IL-15 withdrawal was plotted for
789 bulk NK cells (n = 7). Significance was calculated using a Wilcoxon test.

790 **B-C)** The BCL-2/BIM ratio was calculated for freshly isolated NK cells (dotted line)
791 and for NK cells after 6 days of high- (10 ng/ml) or low-dose (1 ng/ml) IL-15
792 treatment or after 48 h of IL-15 withdrawal. Results were plotted for bulk (**B**) and for
793 rapidly vs. slowly cycling (**C**) NK cells (n = 7). The increase or decrease of the BCL-
794 2/BIM ratio compared to resting NK cells (**B-C**), was calculated using a Wilcoxon
795 signed rank test (stars alone), while differences within the ratio between differently
796 treated NK cells was calculated using a Friedman test (stars on line).

797

798 **Figure 6**

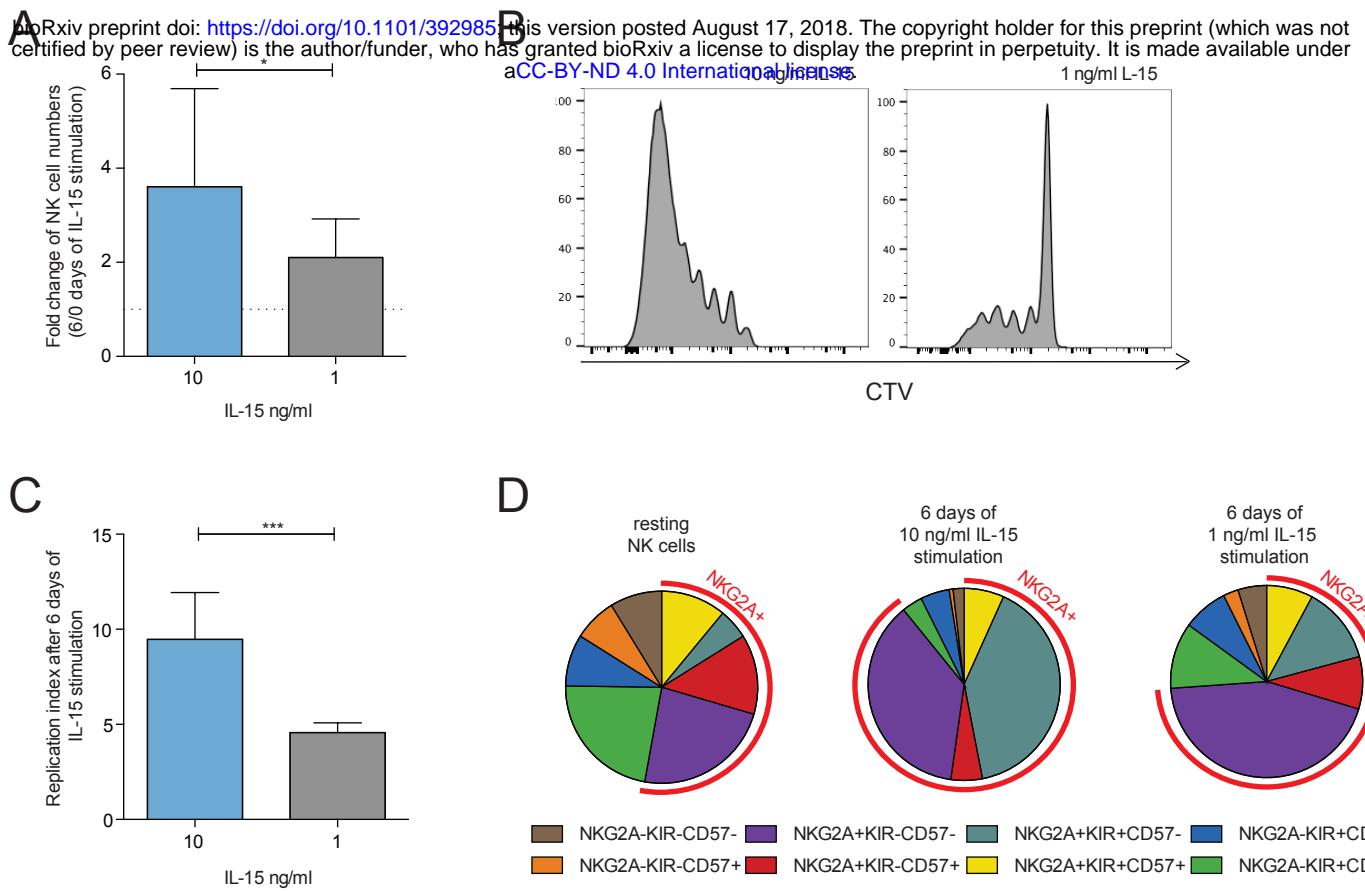
799 **A)** A representative western blot analysis for the expression of BIM splice variants in
800 freshly isolated NK cells (day 0) and NK cell treated for 2, 4 or 6 days with high- (10)
801 or low-dose (1) IL-15. Actin was used as a loading control.

802 **B)** NK cells were treated with high- (10 ng/ml) or low-dose (1 ng/ml) IL-15 for 6
803 days and the fold increase of the expression of different BIM splice variants after 6
804 days of IL-15 treatment compared to resting NK cells was evaluated (n = 6).

805 **C)** NK cells were treated with high-dose IL-15 for 4 days, FACS-sorted based on
806 their CFSE dilution into proliferating (at least one prior cell division) or non-
807 proliferating (no cell division) NK cells and then analyzed at a Peggy SueTM machine.

808 The fold change between the expressions of BIM splice variants or BCL-2 in non-
809 proliferating vs. proliferating NK cells was calculated (n = 10).

810 **D)** A representative western blot analysis for the expression of BIM splice variants
811 and BCL-2 after 0, 24 and 48 h of IL-15 withdrawal in NK cell pretreated with high-
812 dose (10) IL-15 for 6 days. Actin was used as a loading control.


813 Significance between NK cells treated with high- (10 ng/ml) or low-dose (1 ng/ml)
814 IL-15 for 6 days in the expression of the different BIM splice variants was calculated
815 using a Wilcoxon test (**B**). Significance between non- and proliferating NK cells (**C**)
816 for their expression of BIM splice variants and BCL-2 was calculated using Wilcoxon
817 signed rank test (p-values: ** <0,01; ***<0,001).

818

819

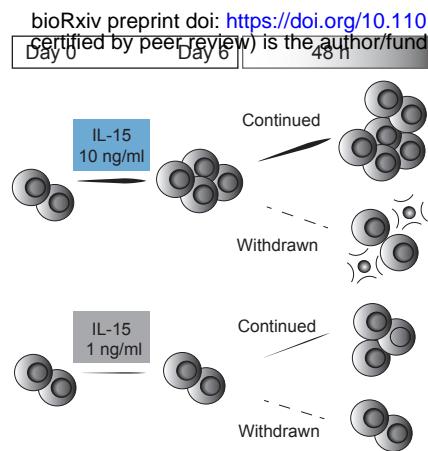

820

Figure 1

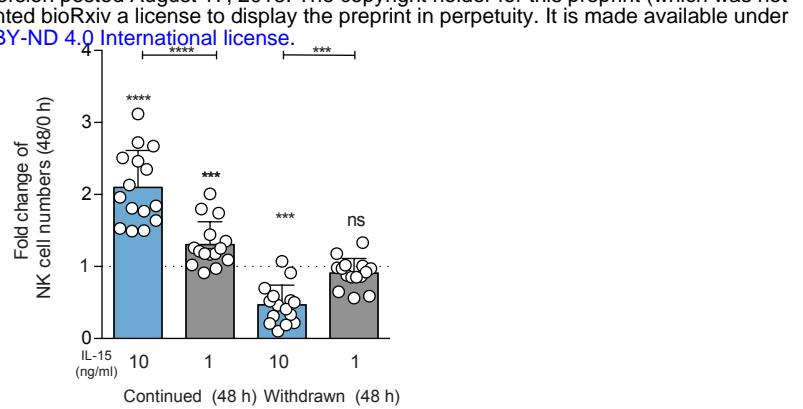
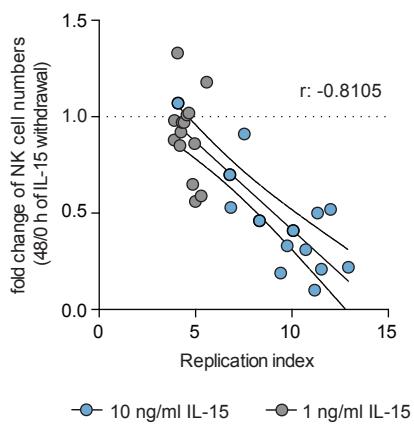
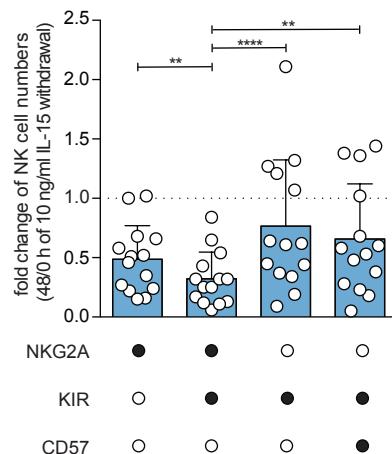


Figure 2

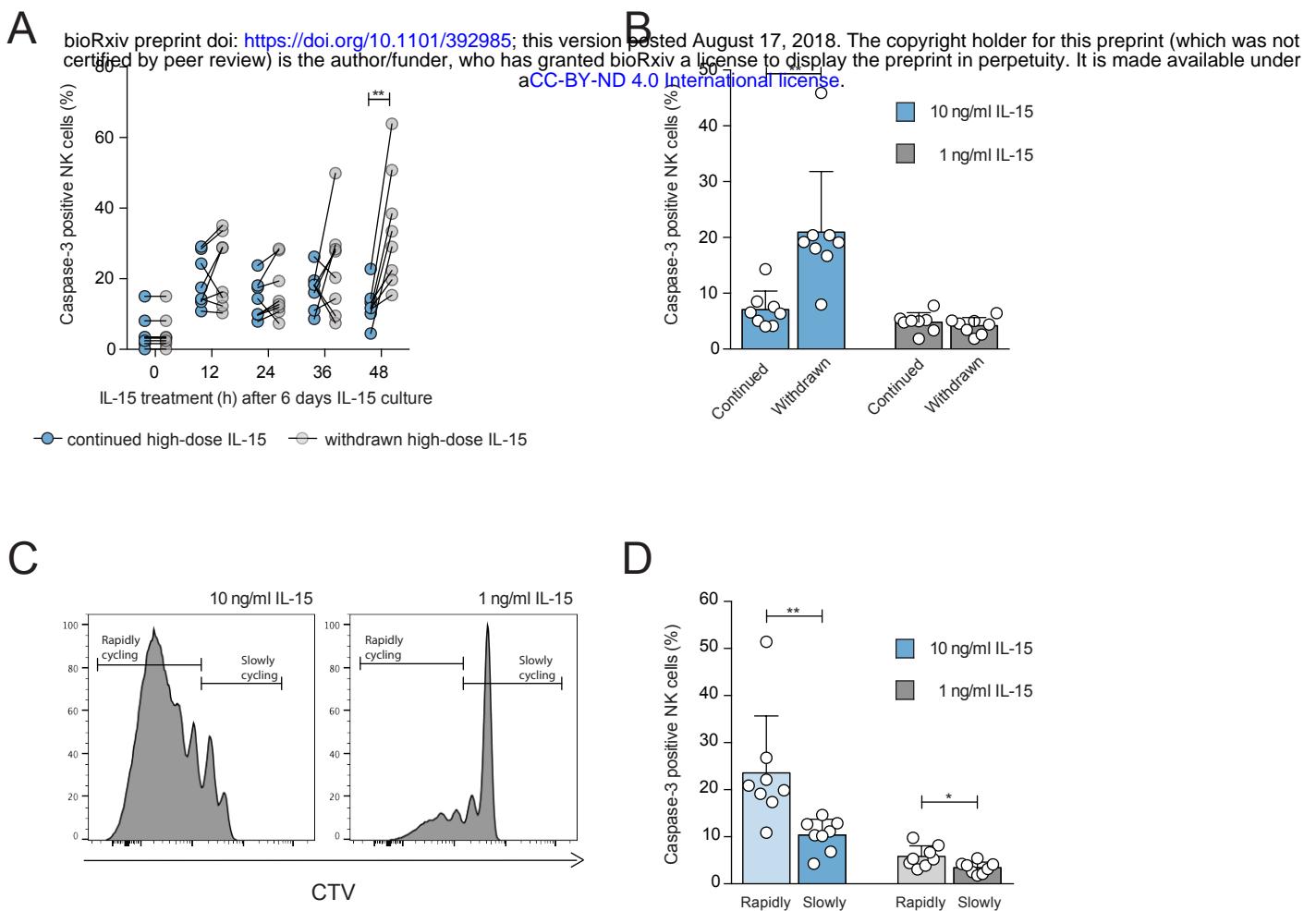
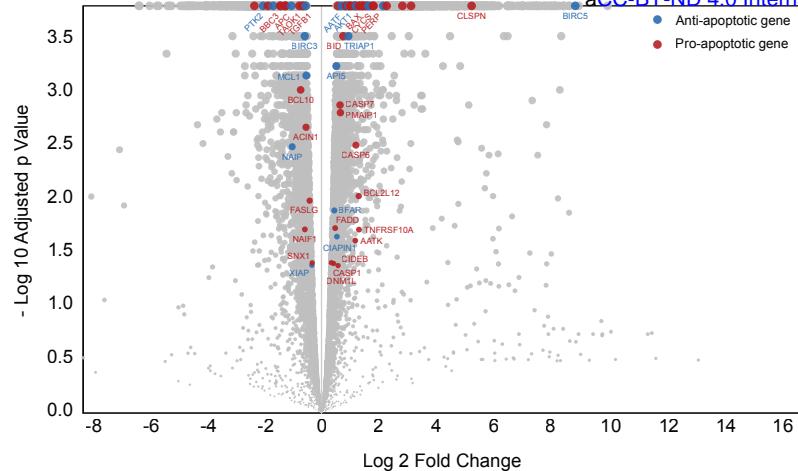

A

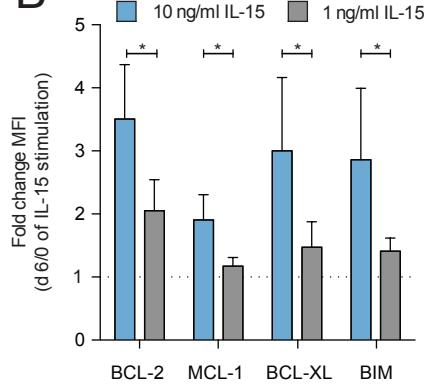

B

C

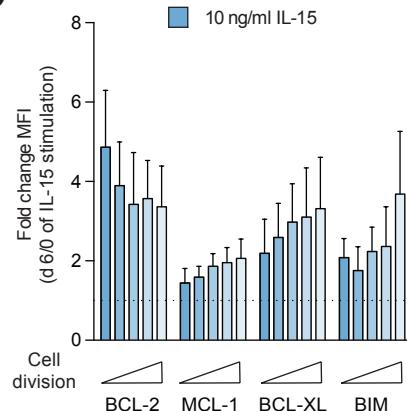
D

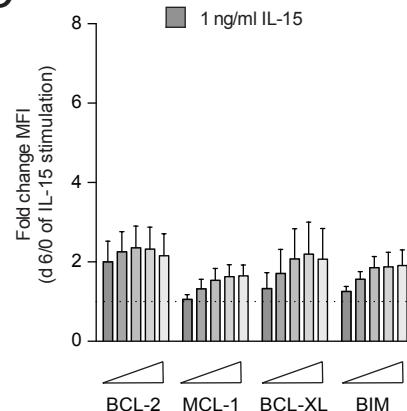
Figure 3

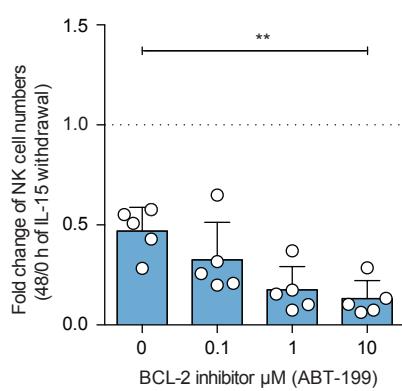



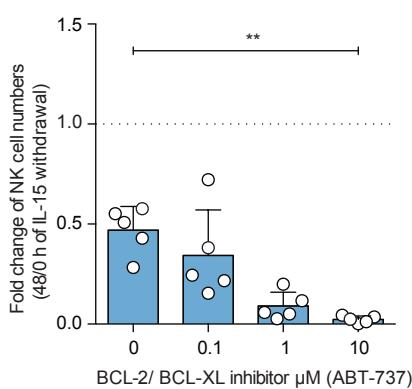

Figure 4

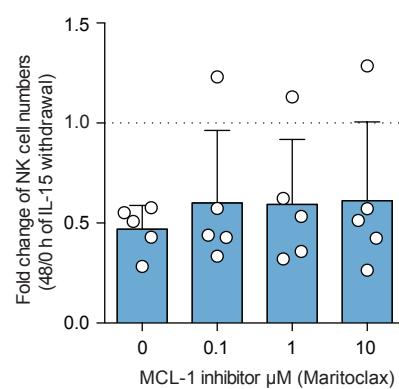
A

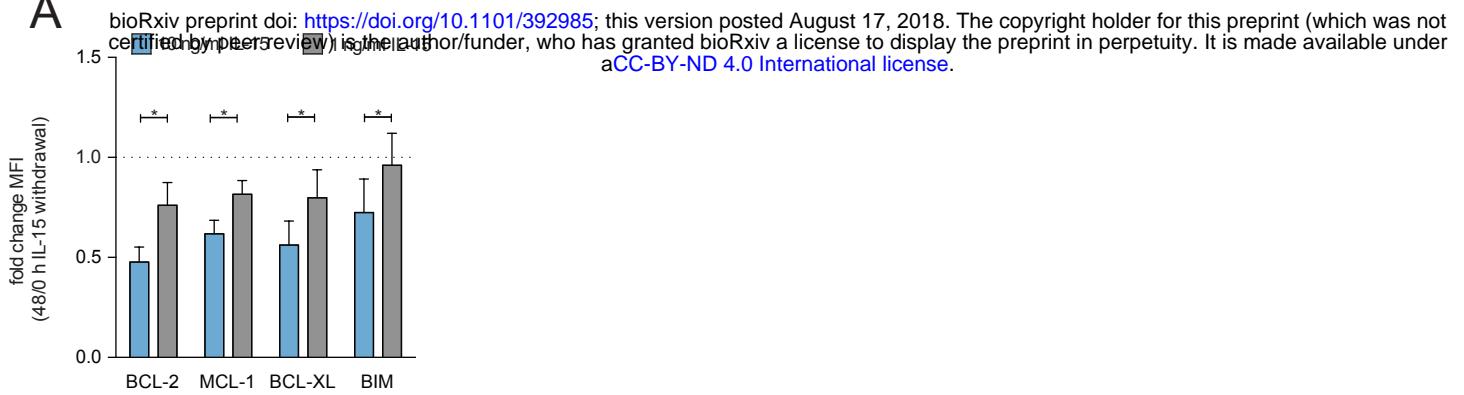
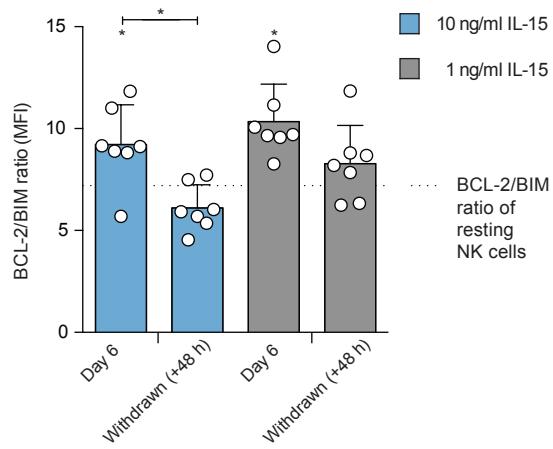
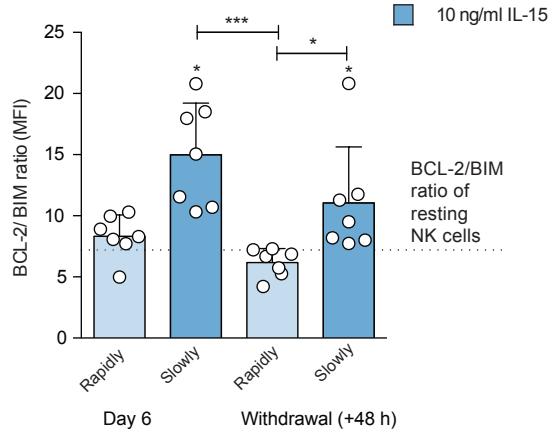

bioRxiv preprint doi: <https://doi.org/10.1101/392985>; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.


B


C


D


E




F

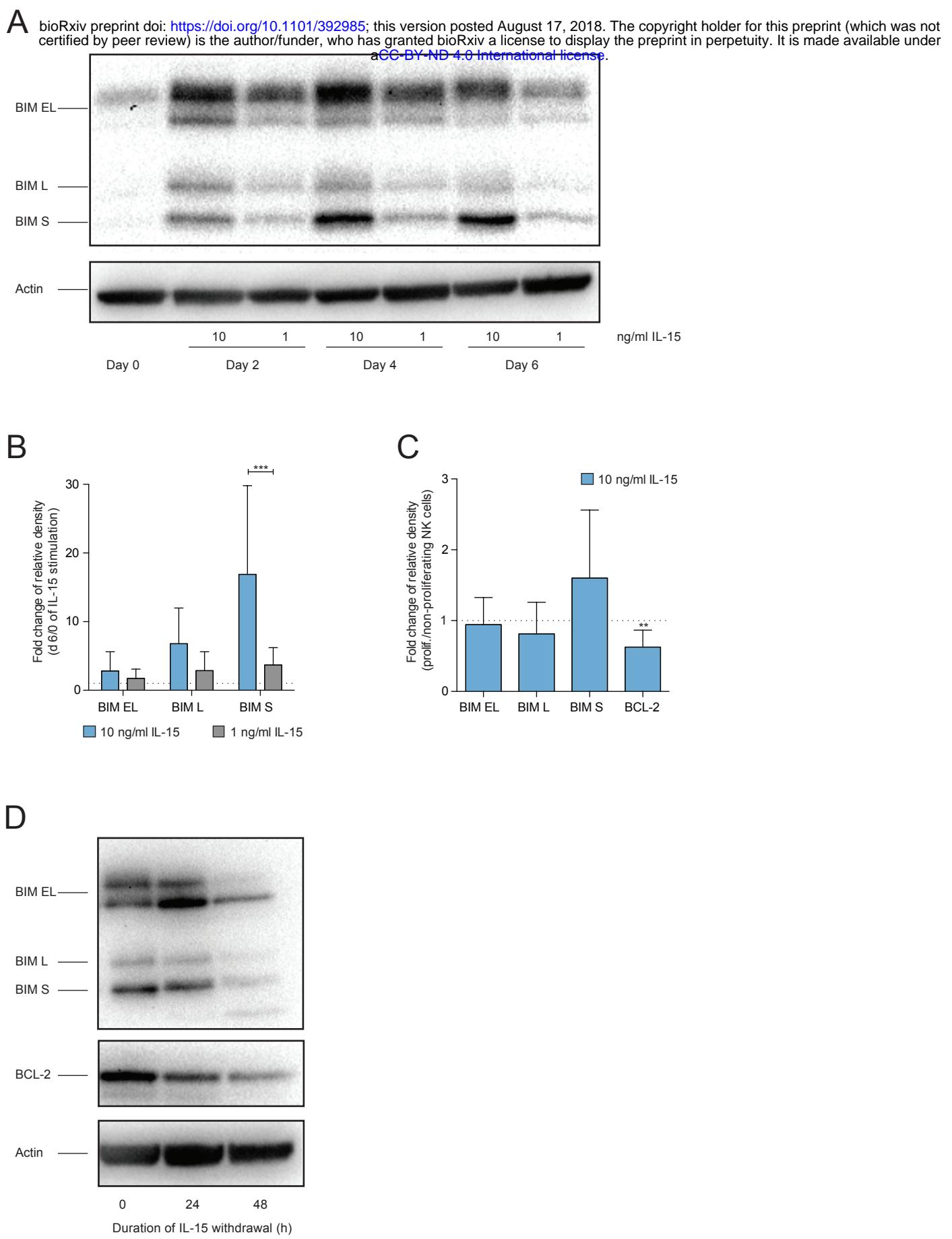

G

Figure 5

A**B****C**

Figure 6

