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Abstract

High- (HNA) and low-nucleic acid (LNA) bacteria are two operational groups identified by flow
cytometry (FCM) in aquatic systems. HNA cell density often correlates strongly with
heterotrophic production, while LNA cell density does not. However, which taxa are specifically
associated with these groups, and by extension, productivity has remained elusive. Here, we
addressed this knowledge gap by using a machine learning-based variable selection approach
that integrated FCM and 16S rRNA gene sequencing data collected from 14 freshwater lakes
spanning a broad range in physicochemical conditions. There was a strong association between
bacterial heterotrophic production and HNA absolute cell abundances (R? = 0.65), but not with
the more abundant LNA cells. This solidifies findings, mainly from marine systems, that HNA
and LNA could be considered separate functional groups, the former contributing a
disproportionately large share of carbon cycling. Taxa selected by the models could predict HNA
and LNA absolute cell abundances at all taxonomic levels, with the highest performance at the
OTU level. Selected OTUs ranged from low to high relative abundance and were mostly lake
system-specific (89.5%-99.2%). A subset of selected OTUs was associated with both LNA and
HNA groups (12.5%-33.3%) suggesting either phenotypic plasticity or within-OTU genetic and
physiological heterogeneity. These findings may lead to the identification of systems-specific
putative ecological indicators for heterotrophic productivity. Generally, our approach allows for
the association of OTUs with specific functional groups in diverse ecosystems in order to

improve our understanding of (microbial) biodiversity-ecosystem functioning relationships.
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Importance

A major goal in microbial ecology is to understand how microbial community structure
influences ecosystem functioning. Research is limited by the ability to readily culture most
bacteria present in the environment and the difference in bacterial physiology in situ compared to
in laboratory culture. Various methods to directly associate bacterial taxa to functional groups in
the environment are being developed. In this study, we applied machine learning methods to
relate taxonomic data obtained from marker gene surveys to functional groups identified by flow
cytometry. This allowed us to identify the taxa that are associated with heterotrophic productivity
in freshwater lakes and indicated that the key contributors were highly system-specific, regularly
rare members of the community, and that some could switch between being low and high
contributors. Our approach provides a promising framework to identify taxa that contribute to
ecosystem functioning and can be further developed to explore microbial contributions beyond

heterotrophic production.

Keywords

bacterioplankton, 16S rRNA, flow cytometry, machine learning, variable selection, aquatic

microbiology, heterotrophic productivity
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Introduction

A key goal in the field of microbial ecology is to understand the relationship between microbial
diversity and ecosystem functioning. However, it is challenging to associate bacterial taxa to
specific ecosystem processes. Marker gene surveys have shown that natural bacterial
communities are extremely diverse and the presence of a taxon does not imply its activity. The
taxa observed in these surveys may have low metabolic potential, be dormant, or have recently
died (1, 2). An additional hurdle is that the current standard unit of measure for microbial
taxonomic analysis is relative abundance. This results in a negative correlation bias (3), which
makes it difficult to quantitatively associate specific microbial taxa with microbial ecosystem
functions using traditional correlation measures (4). Therefore, in order to ultimately model and
predict bacterial communities, new methodologies, which integrate different data types, are

needed to associate bacterial taxa with ecosystem functions (5).

One such advance is the use of flow cytometry (FCM), which has been used extensively to study
aquatic microbial communities (6-8). This single-cell technology partitions individual microbial
cells into phenotypic groups based on their observable optical characteristics. Most commonly,
cells are stained with a nucleic acid stain (e.g. SYBR Green I) and upon analysis assigned to
either a low nucleic acid (LNA) or a high nucleic acid (HNA) group (9-12). HNA cells differ
from LNA cells in both a considerable increase in fluorescence due to cellular nucleic acid
content and scatter intensity due to cell morphology. The HNA group is thought to contribute
more, whereas the LNA population has been considered to contribute less to productivity of a
microbial community (6, 13-15). This is based on positive linear relationships between HNA

abundance and (a) bacterial heterotrophic production (BP) (10, 14-17), (b) bacterial activity
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82  measured using the dye 5-cyano-2,3-ditolyl tetrazolium chloride (18, 19), (c) phytoplankton
83  abundance (20), and (d) dissolved organic carbon concentrations (21). Additionally, growth rates
84  are higher for HNA than LNA cells (13, 16, 22) and HNA cells accrue cell damage significantly
85  faster than the LNA cells under temperature (23) and chemical oxidant stress (24). In contrast,
86  LNA bacterial growth rates are positively correlated with temperature and negatively correlated
87  with chlorophyll a (25). However, it is important to note that LNA cells are often smaller than
88  HNA cells (12, 25-27) and therefore LNA cells could have similar amino acid incorporation
89  rates compared to HNA cells when evaluating biomass-specific production (12).
90
91  Here we used a data-driven approach to associate the dynamics of individual taxa with those of
92  the LNA and HNA groups in freshwater lakes by adopting a machine learning variable selection
93  strategy. We applied two variable selection methods, the Randomized Lasso (RL) (28) and the
94  Boruta algorithm (29) to associate individual taxa with HNA and LNA cell abundances. These
95  methods extend on traditional machine learning algorithms (i.e. the Lasso and Random forest
96 algorithm for the RL and Boruta algorithm, respectively) by making use of resampling and
97  randomization. These extensions are needed as (a) the Lasso algorithm is not suited for
98 compositional data because the regression coefficients have an unclear interpretation, and single
99 variables may be selected when correlated to other variables (30), and (b) Random Forest
100  algorithms can be biased towards correlated variables (31), which is an intrinsic issue with
101 relative abundance data (3). The extended methods allow the user to either assign a probability of
102  selection (RL) or statistically decide which taxa to select (Boruta).

103
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104  We gathered samples from three types of lake systems (i) a set of oligo- to eutrophic small inland
105 lakes, (ii) a short residence time mesotrophic freshwater estuary lake (Muskegon Lake), and (iii)
106  a large oligotrophic Great Lake (Lake Michigan), all located in Michigan, USA. We then used
107 the RL and Boruta algorithms to associate specific bacterial taxa to HNA and LNA FCM

108 functional groups, and via the observed HNA-productivity relationship, to functioning. To

109 validate the RL-based association with the HNA and/or LNA group, we correlated taxon

110  abundances with specific regions within the FCM fingerprint at finer resolution (i.e. bins)

111 without prior knowledge of the HNA/LNA groups. Furthermore, we tested for phylogenetic

112 conservation of HNA and LNA functional groups using the probabilities from the RL output and

113  for the association between the selected taxa and productivity.
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114  Results

115  Study lakes are dominated by LNA cells

116  The inland lakes (6.3 x 108 cells/mL) and Muskegon Lake (6.0 x 10° cell/mL) had significantly
117  higher total cell abundances than Lake Michigan (1.7 x 108 cell/mL; p = 2.7 x 10%4). Across all
118  lakes, the mean proportion of HNA cell counts (HNAcc) to total cell counts was much lower
119  (30.4 £ 9%) compared to the mean proportion of LNA cell counts (LNAcc; 69.6 = 9%). Through
120  ordinary least squares regression, there was a strong correlation between HNAcc and LNAcc
121  across all data (R? = 0.45, P = 2 x 10%*; Figure 1A), however, only Lake Michigan (R? = 0.59, P
122  =5x10") and Muskegon Lake (R? = 0.44, P= 2 x 10°) had significant correlations when the
123 three ecosystems were considered separately.

124

125  HNA cell counts and heterotrophic bacterial production are strongly correlated

126 For mesotrophic Muskegon Lake, there was a strong correlation between total bacterial

127  heterotrophic production and HNAcc (R? = 0.65, P = 1e-05; Figure 1B), no correlation between
128  BPand LNAcc (R? =0.005, P = 0.31; Figure 1C), and a weak correlation between heterotrophic
129  production and total cell counts (R? = 0.18, P = 0.03; Figure 1D). There was a positive (HNA)
130  and negative (LNA) correlation between the fraction of HNA or LNA to total cells and

131 productivity, however, the relationship was weak and not significant (R>= 0.14, P = 0.057).

132

133 Association of OTUs to HNA and LNA groups by Randomized Lasso

134  The relevance of specific OTUs for predicting FCM functional group abundance was assessed
135  using the Randomized Lasso (RL), which assigns a score between 0 (unimportant) to 1 (highly

136  important) to each taxon in function of the target variable: HNAcc or LNAcc. To assess the
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137  predictive power of a subset of OTUs based on the RL, we iteratively removed the OTUs with
138  the lowest RL score in a recursive variable elimination scheme. RZ,, a goodness-of-fit measure
139  using the R? of how well a set of selected OTUs predicts HNAcc or LNAcc compared to true
140  values using cross-validation, increased when lower-ranked OTUs were removed (moving from
141  right to left on Figure 2). The increase was gradual for the inland lakes (Figure 2A) and

142  Muskegon Lake (Figure 2C) but was abrupt for Lake Michigan (Figure 2B). The proportion of
143  taxathat resulted in the highest R2, (see solid (HNA) and dotted (LNA) lines in Figure 2) was
144 10.2% of all taxa for HNA and 17.7% for LNA for the inland lakes, 4.0% for HNA and 3.0% for
145  LNA for Lake Michigan, and 21.1% for both HNA and LNA in Muskegon Lake. Lake Michigan
146  differed the most from other lake systems, having the lowest RZ,, a sharp increase in R2, as

147  OTUs were eliminated, and a considerably lower number of OTUs that were retained (13 for
148  HNAcc, 10 for LNAcc). No relationship could be established between rankings of variable

149  selection methods and the relative abundance of individual OTUs (Figure S1). HNAcc and

150  LNAcc could be predicted with equivalent performance to relative HNA and LNA proportions,
151  yet the increase between initial and optimal performance was larger (Figure S2). The final

152  predictive performance was higher when relative OTU abundances were transformed using the
153  CLR-transformation (Figure S3).

154

155  OTU-level predictions outperform other taxonomic levels

156  RZ, values were considerably higher than zero on all taxonomic levels, indicating that our results
157  were consistent across all taxonomic levels and that different levels can be related to changes in
158  HNAcc and LNAcc. While the OTU level resulted in the best prediction of HNAcc and LNAcc

159  (Figure 3), each individual OTU had a lower RL score compared to other taxonomic levels,
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160  which on average became lower as the taxonomic level decreased (Figure S4). The fraction of
161  variables (i.e. taxa) that could be removed to reach the maximum R%, decreased as the

162  taxonomic level became less resolved.

163

164  Validation of RL OTU selection results using the Boruta algorithm and Kendall tau statistic
165  Venn diagrams were constructed to visualize consistency in the number of OTUs that were

166  selected according to the RL method, the Boruta algorithm, and individual correlations with
167 HNAcc and LNAcc via the Kendall rank correlation coefficient (Figure S5). The Kendall rank
168  correlation coefficient selected the most OTUs, followed by the RL, and then the Boruta

169 algorithm (except for HNAcc in Lake Muskegon; Figure S5). The Boruta algorithm selects

170  relevant variables based on the importance of the most permuted variable as retrieved from

171  multiple Random Forest models (see materials and methods). The Boruta algorithm ranks

172  selected OTUs as ‘1, tentative OTUs as ‘2°, and all other OTUs have lower ranks, depending on
173  the stage in which they were eliminated. The fraction of selected OTUs was always smaller than
174 1% across lake systems and functional groups (Figure S6). All methods agreed on only a small
175  subset of OTUs.

176

177  For each lake system individually, the top RL-scored OTU for HNAcc was also selected by the
178  Boruta algorithm, whereas both methods only agreed for Lake Michigan LNAcc (Table 1).

179  Across all lake systems, OTUO060 (Proteobacteria;Sphingomonadales;alflVV_unclassified) was the
180 only OTU selected across all lake systems (LNAcc-associated). As Random Forest regressions
181  are the base method of the Boruta algorithm, we compared the predictive power of Boruta

182  selected OTUs to those of all OTUs using Random Forest regression. For all lake systems and
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183  functional groups, the performance increased when only Boruta-selected OTUs were included in
184  the model (Figure S7). Lasso predictions, in which OTUs were selected according to the RL,
185  were better as opposed to Random Forest predictions in which OTUs were selected according to
186  the Boruta algorithm (Figure S7).

187

188  Although all methods only agreed on a minority of OTUs, we can still formulate a number of
189  general conclusions across these methods: (1) the selected OTUs were mostly lake systems

190  specific, (2) a small fraction of OTUs was needed to predict changes in community composition,
191  (3) selected OTUs were associated with absolute HNA or LNA abundance, (4) top RL-ranked
192  HNA-associated OTUs were also selected according to the Boruta algorithm and (5) when the
193  RL and Boruta both agreed on an OTU it was always significantly correlated with both HNAcc
194  or LNAcc.

195

196  HNA- and LNA-associated OTUs differed across lake systems

197  RL-selected OTUs were mostly assigned to either the HNA or LNA groups and there was

198 limited correspondence across lake systems between the selected OTUs (Figure 4). 1.5%-1.9%
199  of the OTUs selected for Lake Michigan were also associated with HNAcc or LNAcc for the
200 inland lakes or Muskegon Lake. This amount was higher for the shared OTUs between the inland
201  lakes and Lake Muskegon, but still only amounted to 6.0% (HNAcc) or 10.5% (LNAcc) of all
202  common OTUs. For OTUs selected in all three freshwater environments, RL scores were lake
203  ecosystem specific, with only a significant similarity between the Inland lakes and Muskegon
204 lake for HNAcc (r = 0.21, P = 0.0042; Figure S8). The Boruta algorithm selected mostly OTUs

205  that were unique both for the lake system and FCM group (Figure S9).

10
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206

207  The Bacteroidetes, Betaproteobacteria, Alphaproteobacteria, and Verrucomicrobia contributed
208  54% of the 258 OTUs selected by the RL (Figure 5). Most selected OTUs belonging to these
209  four phyla were associated with the LNA group (41-52% of selected OTUs), less than one third
210  with the HNA group (14-30% of selected OTUs), and the remainder were selected as associated
211  with both the LNA and HNA groups (23-36% of selected OTUs). In Muskegon Lake, OTU173
212  (Bacteroidetes;Flavobacteriales;bacll-A) was selected as the major HNA-associated taxon while
213  OTU29 (Bacteroidetes;Cytophagales;baclll-B) had the highest RL score for LNA OTUs. In Lake
214 Michigan, OTU25 (Bacteroidetes;Cytophagales;baclll-A), was selected as the major HNA-

215  associated taxon while OTU168 (Alphaproteobacteria:Rhizobiales:alfVI1) was selected as a
216  major LNA-associated taxon. For the inland lakes, OTU369

217  (Alphaproteobacterial;Rhodospirillales;alf\V111) was the major HNA-associated OTU while the
218  OTU555 (Deltaproteobacteria;Bdellovibrionaceae;OM27) was the major LNA-associated taxon.
219  Most OTUs were selected for Muskegon Lake (153 OTUs; compared to 136 OTUs from the
220  Inland Lakes and 20 OTUs from Lake Michigan) and 33% of these OTUs were associated with
221  both FCM groups.

222

223  Association with HNA and LNA is not phylogenetically conserved

224 To evaluate how much evolutionary history explains whether a selected taxon was associated
225  with the HNA and/or LNA group(s), we calculated Pagel’s A, Blomberg’s K, and Moran’s 1,
226  which are different measures for testing whether there was a phylogenetic conservation of these
227  traits. No phylogenetic signal was detected when using Pagel’s A with either using FCM

228  functional group as a discrete variable (i.e. associating an OTU with HNA, LNA, or Both or in

11
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229  relation to the HNA RL score, which is a continuous variable (lambda = 0.16; P = 1) (Figure 5).
230  However, there was a significant phylogenetic signal for the LNA RL score (p = 0.003, A =

231  0.66), suggesting a stronger phylogenetic structure in the LNA group compared to the HNA
232 group. This significant result in the LNA group was not found when other measures of

233  phylogenetic signal were considered (Blomberg’s K (HNA: p = 0.63; LNA: p = 0.54), and

234 Moran’s I (HNA: p = 0.88; LNA: p = 0.12)).

235

236  Flow cytometry fingerprints confirm associated taxa and reveal more complex relationships
237  between taxonomy and flow cytometric features

238  To confirm the association of the final selected OTUs with the HNA and LNA groups, and

239  resolve how HNA and LNA groups correspond to OTU-level clustering of cells on the FCM
240  fingerprints, we calculated the correlation between the density of individual small regions (i.e.
241  “bins”) in the flow cytometry data with the relative abundances of the OTUs. Note that (i) as
242  these values denote correlations, they do not indicate actual presence, and (ii) the threshold that
243  was used to manually make the distinction between HNAcc and LNAcc (i.e. dotted line in

244 Figure 6) lies very close to the border between the two regions of positive and negative

245  correlation. OTU25 correlated with bins that when aggregated corresponded to almost the entire
246  HNA region, whereas OTU173 was limited to bins corresponding to the bottom of the HNA
247  region (Figure 6). In contrast, OTU369 was positively correlated to bins situated in both the
248  LNA and HNA regions of the cytometric fingerprint, highlighting results from Figure 4 where
249  OTU369 was selected for both HNA and LNA.

250

251

12
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252  Proteobacteria and rare taxa correlate with productivity measurements

253  The Kendall rank correlation coefficient was calculated between CLR-transformed abundances
254  of individual OTUs and productivity measurements. OTU481 was the sole OTU that correlated
255  with productivity after a multiple testing correction (Kendall's tau-b = -0.67, P = 0.00003, P_adj
256  =0.016), but had a low RL score (0.022) for HNAcc and was not selected according to the

257  Boruta algorithm. Of the top 10 OTUs selected for HNAcc according to the RL, three were still
258  significantly associated with productivity (OTU614: P = 0.0064; OTU412, P = 0.044; OTUA487,
259 P =0.014), but not when corrected for multiple hypothesis testing. Some OTUs that had a high
260  RL score also had a positive response to productivity measurements, though they were

261 insignificant after multiple testing correction. At the phylum level, only Proteobacteria were
262  significantly correlated to productivity measurements (Kendall's tau = 0.49, P =0.002, P_adj =

263 0.05).

264  Discussion

265  Our study furthers the integration of functional and genotypic information to determine the

266  complex relationships between microbial diversity and ecosystem functioning. Our results

267  confirmed previous findings that flow cytometric operational groups are distinct functional

268  groups having divergent correlations with heterotrophic productivity. Using two machine

269 learning based variable selection strategies, we could associate bacterial taxa identified by 16S
270  rRNA gene sequencing to these two functional groups in three types of freshwater lake systems
271  inthe Great Lakes region. We revealed that (i) HNA and LNA cell abundances were best

272  predicted by a small subset of OTUs that were unique to each lake type, (ii) some OTUs were
273  included in the best model for both HNA and LNA abundance, (iii) there was no phylogenetic

274  conservation of HNA and LNA group association and (iv) freshwater FCM fingerprints display

13
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275  more complex patterns related to OTUs and productivity compared to the traditional dichotomy
276  of HNA and LNA.

277

278  Although high-nucleic acid cell counts (HNAcc) and low-nucleic acid cell counts (LNAcc) were
279  correlated with each other, only the association between bacterial heterotrophic production (BP)
280 and HNAcc was strong and significant. This is in line with previous reports, though past studies
281  have focused on the proportion of HNA rather than absolute cell abundances and are strongly
282  biased towards marine systems. For example, Bouvier et al. (11) found a correlation between the
283  fraction of HNA cells and BP within a large dataset of 640 samples across various freshwater to
284  marine environments (Pearson's r = 0.49), whereas a study off the coast of the Antarctic

285  Peninsula found a moderate correlation (R? = 0.36; (17)). Another study in the Bay of Biscay
286  also found this association (R? = 0.16; (15)), however, the authors attributed this difference to be
287  related to cell size and not due to the activity of HNA. Notably, these studies were predominantly
288  testing the association of marine HNA groups. The high correlation coefficients observed in our
289  study may indicate a strong coupling between freshwater carbon cycling and HNA group

290 abundance in freshwater lake systems. Consequently, this suggests an important role of HNA
291  bacteria in the disproportionately large role that freshwater systems in the global carbon cycle
292  (32). It has to be noted that our study only evaluated bacterial heterotrophic production using
293 leucine amino acid incorporation, which biases our analyses against bacterial groups that cannot
294  import or assimilate this compound (33). Finally, as our correlations with proportional HNA
295  group abundances also indicated less strong correlations than with absolute HNAcc, we suggest
296  absolute HNAcc should be used to best predict and study heterotrophic bacterial production.

297

14
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298  Similar to other microbiome studies that use machine learning, only a minority of OTUs were
299  needed to predict the phenotype of interest, with low predictive power of each single OTU, but
300 strong predictive capacity of the selected group of OTUs (17, 34-36). Both the RL and Boruta
301 algorithm have been applied to microbiome studies before, for example in the selection of genera
302 in the human microbiome associated with BMI (37), salivary pH and lysozyme activity (38), and
303 inrelation to multiple sclerosis (39) or with differing diets during primate pregnancy (40). The
304  Boruta algorithm has also recently been proposed as one of the top-performing variable selection
305 methods that make use of Random Forests (41). Despite the power of these approaches,

306 improvements can be made when attempting to integrate different types of data. For example,
307  16S rRNA gene sequencing still faces the hurdles of DNA extraction (42) and 16S copy number
308 bias (43). Moreover, detection limits are different for FCM (expressed in the number of cells)
309 and 16S rRNA gene sequencing (expressed in the number of gene counts or relative abundance),
310 therefore creating data that may be different in resolution.

311

312  The selection of different sets of HNA and LNA OTUs across the three freshwater systems

313 indicates that different taxa underlie the universally observed HNA and LNA functional groups
314  across aquatic systems. This is perhaps not surprising as it has been shown that there is strong
315  species sorting in lake systems (44, 45), shaping community composition through diverging

316  environmental conditions between the lake systems presented here (46). This high system

317  specificity also explains the low RL scores for individual OTUs, as the spatial and temporal

318  dynamics of an OTU diverged strongly across systems. For example, an OTU that has an RL
319  score of 0.5 implies that on average it will only be chosen one out of two times in a Lasso model.

320
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321  Some OTUs were associated with both HNAcc and LNAcc. There are multiple possible

322  explanations for this: (a) In line with scenario 1 from Bouvier et al (11), cells transition from
323  active growth (primarily HNA) to death or a dormant state (primarily LNA), depending on

324  variable conditions over the spatiotemporal gradients sampled in this study. A large fraction of
325  cells (40-95%) in aquatic systems has indeed been inferred to be dormant (47—49), in line with
326  the predominance of LNA cells. (b) The same OTU may occur in both HNA and LNA groups
327  due to phenotypic plasticity, which is more in line with scenario 4 from Bouvier et al (11).

328  Bacterial phenotypic plasticity in size and morphology has been observed (50), and agrees with
329  suggestions that HNA and LNA groups correspond to cells of differing size (12, 15, 27). (c) The
330 association of taxa to LNA and HNA can also mean that these taxonomic groups thrive within
331 either high or low productivity ecosystems and not necessarily that they are responsible for the
332  change in productivity. (d) Finally, OTU level grouping of bacterial taxa can disguise genomic
333 and corresponding phenotypic heterogeneity (51-54), which may be an alternate explanation for
334  inconsistent associations between OTUs and FCM functional groups.

335

336  We found no clear phylogenetic conservation of association to HNAcc or LNAcc. This is in
337  contrast to a recent study that found a clear signal at the phylum level across different aquatic
338  systems (27). However, lake water samples were an exception to the general trend. In addition, it
339 s notable that Proctor et al. (27) separated HNA and LNA cells based on cell size (where HNA
340  cells were defined at approximately >0.4 um and LNA cells were approximately 0.2-0.4 pm,
341  based on 50-90% removal of HNA cells after filtering using a 0.4 um filter), while our study
342  separated these FCM functional groups on the basis of fluorescence intensity alone. A more

343  direct estimation of phylogenetic conservation that directly combines cell sorting of HNA or
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344  LNA cells and sequencing, such as the approach of Vila-Costa et al. (55), will be needed to

345  resolve these contrasting results. Considering the correlations between FCM-based phenotypic
346  diversity and sequencing-based taxonomic diversity (56, 57), there clearly is a link between

347  taxonomy and the structure in microbial cytometry data (17). However, the HNA/LNA

348  dichotomy is too unresolved, as our correlation analysis between smaller regions in the

349  cytometric fingerprint and the highly-ranked OTUs revealed a more complex relationship. This
350 agrees with recent research, in which more than two FCM operational groups in aquatic systems
351  were identified (17, 58, 59)7).

352

353  The Boruta algorithm and RL scores agreed on a small subset of OTUs, including the top-ranked
354  HNA OTU for all lake systems according to RL, which motivates further investigation of the
355  ecology of these OTUs. While little detailed information on the identities and ecology of HNA
356 and LNA freshwater lake bacterial taxa exists, several studies identified Bacteroidetes among the
357  most prominent HNA taxa, which is in line with our findings. Independent research by Vila-
358 Costa et al. (55) found that the HNA group was dominated by Bacteroidetes in summer samples
359  from the Mediterranean Sea, Read et al. (19) showed that HNA abundances correlated with

360  Bacteroidetes, and Schattenhofer et al. (60) reported that the Bacteroidetes accounted for the
361  majority of HNA cells in the North Atlantic Ocean. In Muskegon Lake, OTU173 was the

362  dominant HNA taxon and is a member of the Order Flavobacteriales (bacll-A). The bacll group
363 is a very abundant freshwater bacterial group and has been associated with senescence and

364  decline of an intense algal bloom (61), suggesting their potential for bacterial production. Bacll-
365 A has also made up ~10% of the total microbial community during cyanobacterial blooms,

366  reaching its maximum density immediately following the bloom (62). In Lake Michigan,
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367 OTU25, a member of the Bacteroidetes Order Cytophagales known as baclll-A, was the top

368 HNA OTU. However, much less is known about this specific group of Bacteroidetes. Though,
369  the bacll-A/baclll-A group has been strongly associated with more heterotrophically productive
370  headwater sites (compared to higher order streams) from the River Thames, showing a negative
371  correlation in rivers with dendritic distance from the headwaters, indicating that these taxa may
372  contribute more to productivity (19). In the inland lakes, OTU369 was the major HNA taxon and
373 s associated with the Alphaproteobacteria Order Rhodospirillales (alfV111), which to our

374 knowledge is a group with very little information available in the literature. In contrast to our
375  findings of Bacteroidetes and Alphaproteobacterial HNA selected OTUs, Tada & Suzuki (63)
376  found that the major HNA taxon from an oceanic algal culture was from the Betaproteobacteria

377  whereas LNA OTUs were within the Actinobacteria phylum.

378 Conclusions

379  We integrated flow cytometry (FCM) and 16S rRNA gene amplicon sequencing data to associate
380 bacterial taxa with productivity in freshwater lake systems. Our results on a diverse set of

381  freshwater lake systems indicate that the taxa associated with HNA and LNA functional groups
382  are lake-specific, and that association with these functional groups is not phylogenetically

383  conserved. With this study, we show the potential and limitations of integrating flow cytometry-
384  derived in situ functional information with sequencing data using machine learning approaches.
385  This integration of data enhances our insights into which taxa may contribute to ecosystem

386  functioning in aquatic bacterial communities. While these data-driven hypotheses will need

387  further verification, the method is promising considering the wide application of FCM in aquatic

388  environments, its recent application in other sample matrices (e.g., faeces (64), soils (65), and
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389  wastewater sludge (66)), and the introduction of novel stains to delineate operational groups

390 based on phenotypic traits (67).

391 Materials and Methods

392  Data collection and DNA extraction, sequencing and processing

393 Inthis study, we used a total of 173 samples collected from three types of lake systems described
394  previously (46), including: (a) 49 samples from Lake Michigan (2013 & 2015), (b) 62 samples
395  from Muskegon Lake (2013-2015; one of Lake Michigan’s estuaries), and (¢) 62 samples from
396  twelve inland lakes in Southeastern Michigan (2014-2015). For more details on sampling, please
397 seeFigure 1 and the Field Sampling, DNA extraction, and DNA sequencing and processing

398  sections within Chiang et al. (46). In all cases, water for microbial biomass samples were

399  collected and poured through a 210 um and 20 pum bleach sterilized nitex mesh and sequential in-
400 line filtration was performed using 47 mm polycarbonate in-line filter holders (Pall Corporation,
401  Ann Arbor, MI, USA) and an E/S portable peristaltic pump with an easy-load L/S pump head
402  (Masterflex®, Cole Parmer Instrument Company, Vernon Hills, IL, USA) to filter first through a
403 3 um isopore polycarbonate (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) and

404  second through a 0.22 um Express Plus polyethersulfone membrane filters (47 mm diameter,
405  Millipore, MA, USA). The current study only utilized the 3 - 0.22 pum fraction for analyses.

406

407  DNA extractions and sequencing were performed as described in Chiang et al. (46). Fastq files
408  were submitted to NCBI sequence read archive under BioProject accession number

409 PRJINA414423 (inland lakes), PRINA412983 (Lake Michigan), and PRINA412984 (Muskegon
410  Lake). We analyzed the sequence data using MOTHUR V.1.38.0 (seed = 777; (Schloss et al.

411  2009) based on the MiSeq standard operating procedure and put together at the following link:
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412  https://github.com/rprops/Mothur_oligo_batch. A combination of the Silva Database (release

413  123; (68)) and the freshwater TaxAss 16S rRNA database and pipeline (69) was used for

414  classification of operational taxonomic units (OTUS).

415

416  For the taxonomic analysis, each of the three lake datasets were analyzed separately and treated
417  with an OTU abundance threshold cutoff of at least 5 sequences in 10% of the samples in the
418  dataset (similar strategy to (70)). For comparison of taxonomic abundances across samples, each
419  of the three datasets were then rarefied to an even sequencing depth, which was 4,491 sequences
420  for Muskegon Lake samples, 5,724 sequences for the Lake Michigan samples, and 9,037

421  sequences for the inland lake samples. Next, the relative abundance at the OTU level was

422  calculated using the transform_sample_counts() function in the phyloseq R package (71) by
423  taking the count value and dividing it by the sequencing depth of the sample. For all other

424 taxonomic levels, the taxonomy was merged at certain taxonomic ranks using the tax_glom()
425  function in phyloseq (71) and the relative abundance was re-calculated.

426

427  Heterotrophic bacterial production measurements

428  Muskegon Lake samples from 2014 and 2015 were processed for heterotrophic bacterial

429  production using the [®H] leucine incorporation into bacterial protein in the dark method (72, 73).
430 At the end of the incubation with [®H]-leucine, cold trichloroacetic acid-extracted samples were
431  filtered onto 0.2 um filters that represented the leucine incorporation by the bacterial community.
432  Measured leucine incorporation during the incubation was converted to bacterial carbon

433  production rate using a standard theoretical conversion factor of 2.3 kg C per mole of leucine

434 (73).
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435

436  Flow cytometry, measuring HNA and LNA

437  Inthe field, a total of 1 mL of 20 um filtered lake water were fixed with 5 pL of glutaraldehyde
438  (20% vol/vol stock), incubated for 10 minutes on the bench (covered with aluminum foil to

439  protect from light degradation), and then flash frozen in liquid nitrogen to later be stored in -
440  80°C freezer until later processing with a flow cytometer. Flow cytometry procedures followed
441  the protocol laid out in Props et al. (56), which also uses the samples presented in the current
442  study (Michigan and Muskegon samples). Samples were stained with SYBR Green | and

443  measured in triplicate. The lowest number of cells collected after denoising was 2342. HNA and
444 LNA groups were selected using the fixed gates introduced in Prest et al. (74) and plotted in
445  Figure S10. Cell counts were determined per HNA and LNA group and averaged over the three
446  replicates (giving rise to HNAcc and LNAcc). All cytometry data is available on the

447  FlowRepository database (75): inland lakes (ID:FR-FCM-ZY9J), Michigan and Muskegon

448  (ID:FR-FCM-ZYZN).

449

450 Data analysis

451  Processed data and analysis code for the following analyses can be found on the GitHub page for

452  this project at_https://deneflab.github.io/HNA LNA_productivity/.

453

454  HNA-LNA and HNA-Productivity Statistics and Regressions

455  We tested the difference in absolute number of cells within HNA and LNA functional groups
456  across running analysis of variance with a post-hoc Tukey HSD test (aov() and TukeyHSD();

457  stats R package; (76). In addition, we tested the association of HNA and LNA to each other and
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458  with productivity by running ordinary least squares regression with the Im() (stats R package;
459  (76)).

460

461 Ranking correlation

462  Ranking correlation between variables was calculated using the Kendall rank correlation

463  coefficient, using the kendalltau() function in Scipy (v1.0.0) or cor() in R (v3.2). The ‘tau-b’
464  implementation was used, which is able to deal with ties. Values range from -1 (strong

465  disagreement) to 1 (strong agreement). The same statistic was used to assess the similarity
466  between rankings of variable selection methods.

467

468  Centered-log ratio transform

469  First, following guidelines from Paliy & Shanker (77), Gloor et al. (3) and Quinn et al. (78),
470  relative abundances of OTUs were transformed using a centered log-ratio (CLR) transformation
471  before variable selection was applied. This means that the relative abundance x;of a taxa was

472  transformed according to the geometric mean of that sample, in which there are » taxa present:

p
2, = log(a:/([] #)7)
473 i=1 .

2
474  Zero values were replaced by o=1/p . This was done using the scikit-bio package

475  (www.scikit-bio.org, v0.4.1).

476

477  Lasso & stability selection
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478  Scores were assigned to taxa based on an extension of the Lasso estimator, which is called
479  stability selection (28). In the case of n samples, the Lasso estimator fits the following regression

480 model:

r
B = argmingeg, |ly — XB|3+ A 18]
481 =1

482  inwhich X denotes the abundance table, ¥ the target to predict, which either is HNA cell

483  abundances (HNAcc) or LNA cell abundances (LNAcc), & the weight of each variable and X is a
484  regularization parameter which controls the complexity of the model and prevents overfitting.
485  The Lasso performs an intrinsic form of variable selection, as the weights of certain variables
486  will be put to zero.

487

488  Stability selection, when applied to the Lasso, is in essence an extension of the Lasso regression.
489 It implements two types of randomizations to assign a score to the variables, and is therefore also
490 called the Randomized Lasso (RL). The resulting RL score can be seen as the probability that a
491  certain variable will be included in a Lasso regression model (i.e., its weight will be non-zero
492  when fitted). When performing stability selection, the Lasso is fitted to B different subsamples of
493  the data of fraction /2, denoted as X' and corresponding y'. A second randomization is added by
494  introducing a weakness parameter «. In each model, the penalty A changes to a randomly chosen
495  value in the set [\ A/a] which means that a higher penalty will be assigned to a random subset

496  of the total amount of variables. The Randomized Lasso therefore becomes:

~ : - B’-
f(‘fj)/\ = ‘drgmillﬁe]]gp ‘ ‘y, - Xfa‘{))Hg + )\ Z /u—r',
497 =

498  where Wjis a random variable which is either o or 1. Next, the Randomized Lasso score (RL

499  score) is determined by counting the number of times the weight of a variable was non-zero for
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500 each of the B models and divided by B. Meinshausen and BiihImann (28) show that, under

501 stringent conditions, the number of falsely selected variables is controlled for the Randomized
502  Lasso when the RL score is higher than 0.5. If A is varied, one can determine the stability path,
503  which is the relationship between = and A for every variable. For our implementation, B = 500,
504 « = 0.5and the highest score was selected in the stability path for which A ranged from 10~*
505  until 10% logarithmically divided in 100 intervals. The RandomizedLasso() function from the
506 scikit-learn machine learning library was used ((79), v0.19.1).

507

508 Random Forests & Boruta

509 The Boruta algorithm is a wrapper algorithm that makes use of Random Forests as a base

510 classification or regression method in order to select all relevant variables in function of a

511  response variable (29). Similar to stability selection, the method uses an additional form of

512  randomness in order to perform variable selection. Random Forests are fitted to the data multiple
513 times. To remove the correlation to the response variable, each variable gets per iteration a so-
514  called shadow variable, which is a permuted copy of the original variable. Next, the Random
515  Forest algorithm is run with the extended set of variables, after which variable importances are
516 calculated for both original and shadow variables. The shadow variable that has the highest

517  importance score is used as reference, and every variable with significantly lower importance, as
518  determined by a Bonferroni corrected t-test, is removed. Likewise, variables containing an

519  importance score that is significantly higher are included in the final list of selected variables.
520  This procedure can be repeated until all original variables are either discarded or included in the
521 final set; variables that remain get the label ‘tentative’ (i.e., after all repetitions it is still not

522  possible to either select or discard a certain variable). We used the boruta_py package to
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523  implement the Boruta algorithm (https://github.com/scikit-learn-contrib/boruta_py). Random
524  Forests were implemented using RandomForestRegressor() function from scikit-learn (79),

525  v0.19.1. Random Forests were run with 200 trees, the number of variables considered at every
526  split of a decision tree was P/3 and the minimal number of samples per leaf was set to five. The
527 latter were based on default values for Random Forests in a regression setting (80). The Boruta
528 algorithm was run for 300 iterations, variables were selected or discarded at P < .05 after

529  performing Bonferroni correction.

530

531  Recursive variable elimination

532  Scores of the Randomized Lasso were evaluated using a recursive variable elimination strategy
533  (81). Variables were ranked according to the RL score. Next, the lowest-ranked variables were
534  eliminated from the dataset, after which the Lasso was applied to predict HNAcc and LNAcc
535  respectively. This process was repeated until only the highest-scored taxa remained. In this way,
536  performance of the Randomized Lasso was assessed from a minimal-optimal evaluation

537  perspective (82). In other words, the lowest amount of variables that resulted in the highest

538 predictive performance was determined.

539

540  Performance evaluation

541  In order to account for the spatiotemporal structure of the data, a blocked cross-validation

542  scheme was implemented (83). Samples were grouped according the site and year that they were
543  collected. This results in 5, 10 and 16 distinctive groups for the Michigan, Muskegon and Inland
544 lake systems respectively. Predictive models were optimized in function of the R? between

545  predicted and true values of held-out groups using a leave-one-group-out cross-validation
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546  scheme with the LeaveOneGroupOut() function. This results in a cross-validated R¢v value. For
547  the Lasso, A was determined using the lassoCV/() function, with setting eps=10~* and

548 n_alphas=400. The Random Forest object was optimized using a grid search where max_features
549  was chosen in the interval [1> v7: 2v/P; - P] (all variables) or [1: ---. 7| (Boruta selected variables)
550 and min_samples_leaf in the interval [1: - 5] using the GridSearchCV() function. The number
551  of decision trees (n_trees) was set to 200. All functions are part of scikit-learn ((79); v0.19.1)
552

553  Stability of the Randomized Lasso

554  Similarity of RL scores between lake systems and functional groups was quantified using the
555  Pearson correlation. This was done using the pearsonr() function in Scipy (v1.0.0).

556

557  Patterns of HNA and LNA OTUs across ecosystems and phylogeny

558  To visualize patterns of selected HNA and LNA OTUs across the three ecosystems, a heatmap
559  was created with the RL scores of each OTU from the Randomized Lasso regression that were
560  higher than specified threshold values. The heatmap was created with the heatmap.2() function
561 (gplots R package) using the euclidean distances of the RL scores and a complete linkage

562 hierarchical clustering algorithm (Figure 4).

563

564  Correlations between taxa and productivity measurements

565  The Kendall ranking correlation coefficient or Kendall's tau-b between productivity

566  measurements and individual abundances were calculated on the phylum and OTU level using

567  the kendalltau() function from Scipy (v1.0.0). P-values were corrected using Benjamini-
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568  Hochberg correction, reported as P_adj. This was done using the multitest() function from the
569  Python module Statsmodels ((84); v0.5.0).

570

571  Phylogenetic tree construction and signal calculation

572  We calculated the best performing maximum likelihood tree using the GTR-CAT model (-gtr -
573  fastest) model of nucleotide substitution with FastTree (version 2.1.9 No SSE3; (85)) and

574  visualized using the interactive tree of life (iTOL) (86). Phylogenetic signal is a measure of the
575  dependence among a species’ trait values on their phylogenetic history (87). If the phylogenetic
576  signal is very strong, taxa belonging to similar phylogenetic groups (e.g. a Phylum) will share the
577  same trait (i.e. association with HNAcc or LNAcc). Alternatively, if the phylogenetic signal is
578  weak, taxa within a similar phylogenetic group will have different traits. The phylogenetic signal
579  was measured with both discrete (i.e. HNA, LNA, or both) and continuous traits (i.e. the RL
580  score) using the newick tree from FastTree. For the most part, Pagel’s lambda was used (88) to
581 test for phylogenetic signal and was calculated with the fitDiscrete() function from the geiger R
582  package (discrete trait; (89)) and the phylosig() function from the phytools R package

583  (continuous trait; (90)). The lambda value varies between 0 and 1, with 1 indicating complete
584  phylogenetic patterning and O representing no phylogenetic patterning, leading to a tree

585  collapsing into a single polytomy. was then used to model phylogenetic signal using Pagel’s
586  lambda, Blomberg’s K (phylosig() function from the phytools R package (90)), and Moran’s |
587  (abouheif.moran() function from the adephylo R package (91)).

588
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Figure 1: (A) Correlation between HNA cell counts and LNA cell counts across the three
freshwater lake ecosystems. (B-D) Muskegon Lake bacterial heterotrophic production and
its correlation with (B) HNA cell counts (HNAcc), (C) LNA cell counts, (LNAcc) and (D)
total cell counts. The grey area in plots A, B, and D represents the 95% confidence

intervals.
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Figure 2: RZ, in function of the number of OTUs, which were iteratively removed based on the

RL score and evaluated using the Lasso at every step. The solid (HNA) and dashed (LNA)
vertical lines corresponds to the threshold (i.e., number of OTUs) which resulted in a maximal
R%y. (A) Inland system (RZ, ,nqax = 0.92), HNAcc; (B) Lake Michigan (RZy ;qx = 0.53),

HNAcc; (C) Muskegon lake, HNAcC (REy max =

0.85); (D) Inland system, LNAcc (RZy max =

0.87); (E) Lake Michigan, LNAcc (Rg,,,max = 0.79; (F) Muskegon lake, LNAcc (Rgv,max =
0.91).
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Figure 3: Evaluation of HNA cell counts (HNAcc) and LNA cell counts (LNAcc) predictions
using the Lasso at all taxonomic levels for the Muskegon lake system, expressed in terms of R2,,,
using different subsets of taxonomic variables. Subsets were determined by iteratively

eliminating the lowest-ranked taxonomic variables based on the RL score.
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876  Figure 4: Hierarchical clustering of the RL score for the top 10 selected OTUs within each lake
877  system and FCM functional groups with the selected OTU (rows) across HNA and LNA groups
878  within the three lake systems (columns).

T ol

_ Otu0001
Otu0216
Otu0025
0Otu0242
Otu0081
Otu0359
Otu0539
Otu1568
Otu0249
0tu0330
Otu1092
Otu0369
Otu0717
Otu1668
Otu0044
Otu0664
0tu0792
Otu0192
Otu0246
Otu0511
Otu1533
Otu0269
Otu1301
Otu0637
Otu0555
Otu0093
Otu1086
Otu0073
Otu1118
[ o073
Otu0244
Otu0029
Otu0614
Otu0412
Otu0038
Otu0264
0tu0487
0Otu0088
Otu0905
Otu0267
Otu0136
Otu0210
Otu0030

W P

g“ o~ -g’b‘:\ -Q@f" e - 200
RN

879

39


https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/

880
881
882
883
884
885

886

bioRxiv preprint doi: https://doi.org/10.1101/392852; this version posted February 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Figure 5: Phylogenetic tree with all HNA and LNA selected OTUs from each of the three lake
systems with their (starting from the inside working to the outside) (i) phylum level taxonomic
classification, (i) HNA RL scores (i.e. HNA-Score), (iii) LNA RL scores (i.e. LNA-Score), and
(iv) and discrete association with HNA, LNA or both groups based on the RL score threshold
values (i.e. FCM-Group). Any OTU absent from a FCM group is white. The tree was rooted
using OTU1552.
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887  Figure 6: Correlation (Kendall’s tau-b) between the relative abundances of the top three OTUs
888  selected by the RL and the densities in the cytometric fingerprint. The fluorescence threshold
889  used to manually define HNA and LNA populations is indicated by the dotted line.
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891 Table 1: Top scored OTUs according to the RL per functional population and lake ecosystem. Selection according to the Boruta

892 algorithm is given in addition to the RL score. Descriptive statistics by means of the Kendall rank correlation coefficient have been

893  added with level of significance in function of the HNA/LNA population.

Lake
system

Inland

Michigan

Muskegon

894

Functional
group

HNA
LNA
HNA
LNA
HNA

LNA

OTU | RL | Boruta | Kendall | P-value | Kendall
score | selected

OTU
369
oTu
555
OTU
025
oTuU
168
OoTU
173
OTU
029

0.382

0.384

0.362

0.428

0.462

0.568

yes

no

yes

yes

yes

no

tau
(HNA)
-0.43
0.089
0.46
0.26
05

0.26

(HNA)
<0.001
N.S.
<0.001
0.0092
<0.001

0.0029

tau
(LNA)
-0.28
0.22
0.41
0.4
0.2

0.49

P-value
(LNA)

0.0012
0.011
<0.001
<0.001
0.019

<0.001

Phylum Class Order Family Genus
(species)
Proteobacteria | Alphaproteobacteria | Rhodospirrlalleles alfvili alfVIlI_ unclassified
Proteobacteria | Deltaproteobacteria | Bdellovibrionales | Bdellovibrionacea OM27_clade
Bacteroidetes Cytophagia Cytophagales baclll baclll-A
Proteobacteria | Alphaproteobacteria Rhizobiales alfvil alfV1l_unclassified
Bacteroidetes Flavobacteriia Flavobacteriales bacll bacll-A
Bacteroidetes Cytophagia Cytophagales baclll baclll-B
(Algor)
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