

1 **Randomized lasso associates freshwater lake-system specific bacterial taxa with**
2 **heterotrophic production through flow cytometry**

3

4 **Running Title:** Linking taxa with production through flow cytometry

5

6 Peter Rubbens^{1*#}, Marian L. Schmidt^{23*#}, Ruben Props⁴, Bopaiah A. Biddanda⁵, Nico Boon⁴,
7 Willem Waegeman¹, Vincent J. Denef²

8

9 *Peter Rubbens and Marian L. Schmidt contributed equally to this work.

10 #Corresponding author: marschmi@umich.edu, peter.rubbens@ugent.be

11

12 ¹KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University,
13 Coupure Links 653, B-9000, Gent, Belgium;

14 ²Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North
15 University Ave., Ann Arbor, MI 48109, USA;

16 ³Current address: Department of Integrative Biology, University of Texas at Austin, 2506
17 Speedway, Austin, Texas 78712, USA;

18 ⁴CMET, Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653,
19 B-9000, Gent, Belgium;

20 ⁵Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive,
21 Muskegon, MI 49441, USA

22 Abstract

23 High- (HNA) and low-nucleic acid (LNA) bacteria are two operational groups identified by flow
24 cytometry (FCM) in aquatic systems. HNA cell density often correlates strongly with
25 heterotrophic production, while LNA cell density does not. However, which taxa are specifically
26 associated with these groups, and by extension, productivity has remained elusive. Here, we
27 addressed this knowledge gap by using a machine learning-based variable selection approach
28 that integrated FCM and 16S rRNA gene sequencing data collected from 14 freshwater lakes
29 spanning a broad range in physicochemical conditions. There was a strong association between
30 bacterial heterotrophic production and HNA absolute cell abundances ($R^2 = 0.65$), but not with
31 the more abundant LNA cells. This solidifies findings, mainly from marine systems, that HNA
32 and LNA could be considered separate functional groups, the former contributing a
33 disproportionately large share of carbon cycling. Taxa selected by the models could predict HNA
34 and LNA absolute cell abundances at all taxonomic levels, with the highest performance at the
35 OTU level. Selected OTUs ranged from low to high relative abundance and were mostly lake
36 system-specific (89.5%-99.2%). A subset of selected OTUs was associated with both LNA and
37 HNA groups (12.5%-33.3%) suggesting either phenotypic plasticity or within-OTU genetic and
38 physiological heterogeneity. These findings may lead to the identification of systems-specific
39 putative ecological indicators for heterotrophic productivity. Generally, our approach allows for
40 the association of OTUs with specific functional groups in diverse ecosystems in order to
41 improve our understanding of (microbial) biodiversity-ecosystem functioning relationships.

42 **Importance**

43 A major goal in microbial ecology is to understand how microbial community structure
44 influences ecosystem functioning. Research is limited by the ability to readily culture most
45 bacteria present in the environment and the difference in bacterial physiology *in situ* compared to
46 in laboratory culture. Various methods to directly associate bacterial taxa to functional groups in
47 the environment are being developed. In this study, we applied machine learning methods to
48 relate taxonomic data obtained from marker gene surveys to functional groups identified by flow
49 cytometry. This allowed us to identify the taxa that are associated with heterotrophic productivity
50 in freshwater lakes and indicated that the key contributors were highly system-specific, regularly
51 rare members of the community, and that some could switch between being low and high
52 contributors. Our approach provides a promising framework to identify taxa that contribute to
53 ecosystem functioning and can be further developed to explore microbial contributions beyond
54 heterotrophic production.

55

56 **Keywords**

57 bacterioplankton, 16S rRNA, flow cytometry, machine learning, variable selection, aquatic
58 microbiology, heterotrophic productivity

59 **Introduction**

60 A key goal in the field of microbial ecology is to understand the relationship between microbial
61 diversity and ecosystem functioning. However, it is challenging to associate bacterial taxa to
62 specific ecosystem processes. Marker gene surveys have shown that natural bacterial
63 communities are extremely diverse and the presence of a taxon does not imply its activity. The
64 taxa observed in these surveys may have low metabolic potential, be dormant, or have recently
65 died (1, 2). An additional hurdle is that the current standard unit of measure for microbial
66 taxonomic analysis is relative abundance. This results in a negative correlation bias (3), which
67 makes it difficult to quantitatively associate specific microbial taxa with microbial ecosystem
68 functions using traditional correlation measures (4). Therefore, in order to ultimately model and
69 predict bacterial communities, new methodologies, which integrate different data types, are
70 needed to associate bacterial taxa with ecosystem functions (5).

71

72 One such advance is the use of flow cytometry (FCM), which has been used extensively to study
73 aquatic microbial communities (6–8). This single-cell technology partitions individual microbial
74 cells into phenotypic groups based on their observable optical characteristics. Most commonly,
75 cells are stained with a nucleic acid stain (*e.g.* SYBR Green I) and upon analysis assigned to
76 either a low nucleic acid (LNA) or a high nucleic acid (HNA) group (9–12). HNA cells differ
77 from LNA cells in both a considerable increase in fluorescence due to cellular nucleic acid
78 content and scatter intensity due to cell morphology. The HNA group is thought to contribute
79 more, whereas the LNA population has been considered to contribute less to productivity of a
80 microbial community (6, 13–15). This is based on positive linear relationships between HNA
81 abundance and (a) bacterial heterotrophic production (BP) (10, 14–17), (b) bacterial activity

82 measured using the dye 5-cyano-2,3-ditoly tetrazolium chloride (18, 19), (c) phytoplankton
83 abundance (20), and (d) dissolved organic carbon concentrations (21). Additionally, growth rates
84 are higher for HNA than LNA cells (13, 16, 22) and HNA cells accrue cell damage significantly
85 faster than the LNA cells under temperature (23) and chemical oxidant stress (24). In contrast,
86 LNA bacterial growth rates are positively correlated with temperature and negatively correlated
87 with chlorophyll a (25). However, it is important to note that LNA cells are often smaller than
88 HNA cells (12, 25–27) and therefore LNA cells could have similar amino acid incorporation
89 rates compared to HNA cells when evaluating biomass-specific production (12).

90

91 Here we used a data-driven approach to associate the dynamics of individual taxa with those of
92 the LNA and HNA groups in freshwater lakes by adopting a machine learning variable selection
93 strategy. We applied two variable selection methods, the Randomized Lasso (RL) (28) and the
94 Boruta algorithm (29) to associate individual taxa with HNA and LNA cell abundances. These
95 methods extend on traditional machine learning algorithms (*i.e.* the Lasso and Random forest
96 algorithm for the RL and Boruta algorithm, respectively) by making use of resampling and
97 randomization. These extensions are needed as (a) the Lasso algorithm is not suited for
98 compositional data because the regression coefficients have an unclear interpretation, and single
99 variables may be selected when correlated to other variables (30), and (b) Random Forest
100 algorithms can be biased towards correlated variables (31), which is an intrinsic issue with
101 relative abundance data (3). The extended methods allow the user to either assign a probability of
102 selection (RL) or statistically decide which taxa to select (Boruta).

103

104 We gathered samples from three types of lake systems (i) a set of oligo- to eutrophic small inland
105 lakes, (ii) a short residence time mesotrophic freshwater estuary lake (Muskegon Lake), and (iii)
106 a large oligotrophic Great Lake (Lake Michigan), all located in Michigan, USA. We then used
107 the RL and Boruta algorithms to associate specific bacterial taxa to HNA and LNA FCM
108 functional groups, and via the observed HNA-productivity relationship, to functioning. To
109 validate the RL-based association with the HNA and/or LNA group, we correlated taxon
110 abundances with specific regions within the FCM fingerprint at finer resolution (*i.e.* bins)
111 without prior knowledge of the HNA/LNA groups. Furthermore, we tested for phylogenetic
112 conservation of HNA and LNA functional groups using the probabilities from the RL output and
113 for the association between the selected taxa and productivity.

114 **Results**

115 ***Study lakes are dominated by LNA cells***

116 The inland lakes (6.3×10^6 cells/mL) and Muskegon Lake (6.0×10^6 cell/mL) had significantly
117 higher total cell abundances than Lake Michigan (1.7×10^6 cell/mL; $p = 2.7 \times 10^{-14}$). Across all
118 lakes, the mean proportion of HNA cell counts (HNAcc) to total cell counts was much lower
119 ($30.4 \pm 9\%$) compared to the mean proportion of LNA cell counts (LNAcc; $69.6 \pm 9\%$). Through
120 ordinary least squares regression, there was a strong correlation between HNAcc and LNAcc
121 across all data ($R^2 = 0.45$, $P = 2 \times 10^{-24}$; **Figure 1A**), however, only Lake Michigan ($R^2 = 0.59$, P
122 $= 5 \times 10^{-11}$) and Muskegon Lake ($R^2 = 0.44$, $P = 2 \times 10^{-9}$) had significant correlations when the
123 three ecosystems were considered separately.

124

125 ***HNA cell counts and heterotrophic bacterial production are strongly correlated***

126 For mesotrophic Muskegon Lake, there was a strong correlation between total bacterial
127 heterotrophic production and HNAcc ($R^2 = 0.65$, $P = 1e-05$; **Figure 1B**), no correlation between
128 BP and LNAcc ($R^2 = 0.005$, $P = 0.31$; **Figure 1C**), and a weak correlation between heterotrophic
129 production and total cell counts ($R^2 = 0.18$, $P = 0.03$; **Figure 1D**). There was a positive (HNA)
130 and negative (LNA) correlation between the fraction of HNA or LNA to total cells and
131 productivity, however, the relationship was weak and not significant ($R^2 = 0.14$, $P = 0.057$).

132

133 ***Association of OTUs to HNA and LNA groups by Randomized Lasso***

134 The relevance of specific OTUs for predicting FCM functional group abundance was assessed
135 using the Randomized Lasso (RL), which assigns a score between 0 (unimportant) to 1 (highly
136 important) to each taxon in function of the target variable: HNAcc or LNAcc. To assess the

137 predictive power of a subset of OTUs based on the RL, we iteratively removed the OTUs with
138 the lowest RL score in a recursive variable elimination scheme. R_{CV}^2 , a goodness-of-fit measure
139 using the R^2 of how well a set of selected OTUs predicts HNAcc or LNAcc compared to true
140 values using cross-validation, increased when lower-ranked OTUs were removed (moving from
141 right to left on **Figure 2**). The increase was gradual for the inland lakes (**Figure 2A**) and
142 Muskegon Lake (**Figure 2C**) but was abrupt for Lake Michigan (**Figure 2B**). The proportion of
143 taxa that resulted in the highest R_{CV}^2 (see solid (HNA) and dotted (LNA) lines in **Figure 2**) was
144 10.2% of all taxa for HNA and 17.7% for LNA for the inland lakes, 4.0% for HNA and 3.0% for
145 LNA for Lake Michigan, and 21.1% for both HNA and LNA in Muskegon Lake. Lake Michigan
146 differed the most from other lake systems, having the lowest R_{CV}^2 , a sharp increase in R_{CV}^2 as
147 OTUs were eliminated, and a considerably lower number of OTUs that were retained (13 for
148 HNAcc, 10 for LNAcc). No relationship could be established between rankings of variable
149 selection methods and the relative abundance of individual OTUs (**Figure S1**). HNAcc and
150 LNAcc could be predicted with equivalent performance to relative HNA and LNA proportions,
151 yet the increase between initial and optimal performance was larger (**Figure S2**). The final
152 predictive performance was higher when relative OTU abundances were transformed using the
153 CLR-transformation (**Figure S3**).
154

155 ***OTU-level predictions outperform other taxonomic levels***

156 R_{CV}^2 values were considerably higher than zero on all taxonomic levels, indicating that our results
157 were consistent across all taxonomic levels and that different levels can be related to changes in
158 HNAcc and LNAcc. While the OTU level resulted in the best prediction of HNAcc and LNAcc
159 (**Figure 3**), each individual OTU had a lower RL score compared to other taxonomic levels,

160 which on average became lower as the taxonomic level decreased (**Figure S4**). The fraction of
161 variables (*i.e.* taxa) that could be removed to reach the maximum R_{CV}^2 decreased as the
162 taxonomic level became less resolved.

163

164 ***Validation of RL OTU selection results using the Boruta algorithm and Kendall tau statistic***

165 Venn diagrams were constructed to visualize consistency in the number of OTUs that were
166 selected according to the RL method, the Boruta algorithm, and individual correlations with
167 HNAcc and LNAcc via the Kendall rank correlation coefficient (**Figure S5**). The Kendall rank
168 correlation coefficient selected the most OTUs, followed by the RL, and then the Boruta
169 algorithm (except for HNAcc in Lake Muskegon; **Figure S5**). The Boruta algorithm selects
170 relevant variables based on the importance of the most permuted variable as retrieved from
171 multiple Random Forest models (*see materials and methods*). The Boruta algorithm ranks
172 selected OTUs as ‘1’, tentative OTUs as ‘2’, and all other OTUs have lower ranks, depending on
173 the stage in which they were eliminated. The fraction of selected OTUs was always smaller than
174 1% across lake systems and functional groups (**Figure S6**). All methods agreed on only a small
175 subset of OTUs.

176

177 For each lake system individually, the top RL-scored OTU for HNAcc was also selected by the
178 Boruta algorithm, whereas both methods only agreed for Lake Michigan LNAcc (**Table 1**).
179 Across all lake systems, OTU060 (Proteobacteria;Sphingomonadales;alfIV_unclassified) was the
180 only OTU selected across all lake systems (LNAcc-associated). As Random Forest regressions
181 are the base method of the Boruta algorithm, we compared the predictive power of Boruta
182 selected OTUs to those of all OTUs using Random Forest regression. For all lake systems and

183 functional groups, the performance increased when only Boruta-selected OTUs were included in
184 the model (**Figure S7**). Lasso predictions, in which OTUs were selected according to the RL,
185 were better as opposed to Random Forest predictions in which OTUs were selected according to
186 the Boruta algorithm (**Figure S7**).

187

188 Although all methods only agreed on a minority of OTUs, we can still formulate a number of
189 general conclusions across these methods: (1) the selected OTUs were mostly lake systems
190 specific, (2) a small fraction of OTUs was needed to predict changes in community composition,
191 (3) selected OTUs were associated with absolute HNA or LNA abundance, (4) top RL-ranked
192 HNA-associated OTUs were also selected according to the Boruta algorithm and (5) when the
193 RL and Boruta both agreed on an OTU it was always significantly correlated with both HNAcc
194 or LNAcc.

195

196 ***HNA- and LNA-associated OTUs differed across lake systems***

197 RL-selected OTUs were mostly assigned to either the HNA or LNA groups and there was
198 limited correspondence across lake systems between the selected OTUs (**Figure 4**). 1.5%-1.9%
199 of the OTUs selected for Lake Michigan were also associated with HNAcc or LNAcc for the
200 inland lakes or Muskegon Lake. This amount was higher for the shared OTUs between the inland
201 lakes and Lake Muskegon, but still only amounted to 6.0% (HNAcc) or 10.5% (LNAcc) of all
202 common OTUs. For OTUs selected in all three freshwater environments, RL scores were lake
203 ecosystem specific, with only a significant similarity between the Inland lakes and Muskegon
204 lake for HNAcc ($r = 0.21$, $P = 0.0042$; **Figure S8**). The Boruta algorithm selected mostly OTUs
205 that were unique both for the lake system and FCM group (**Figure S9**).

206
207 The Bacteroidetes, Betaproteobacteria, Alphaproteobacteria, and Verrucomicrobia contributed
208 54% of the 258 OTUs selected by the RL (**Figure 5**). Most selected OTUs belonging to these
209 four phyla were associated with the LNA group (41-52% of selected OTUs), less than one third
210 with the HNA group (14-30% of selected OTUs), and the remainder were selected as associated
211 with both the LNA and HNA groups (23-36% of selected OTUs). In Muskegon Lake, OTU173
212 (Bacteroidetes;Flavobacteriales;bacII-A) was selected as the major HNA-associated taxon while
213 OTU29 (Bacteroidetes;Cytophagales;bacIII-B) had the highest RL score for LNA OTUs. In Lake
214 Michigan, OTU25 (Bacteroidetes;Cytophagales;bacIII-A), was selected as the major HNA-
215 associated taxon while OTU168 (Alphaproteobacteria:Rhizobiales:alfVII) was selected as a
216 major LNA-associated taxon. For the inland lakes, OTU369
217 (Alphaproteobacterial;Rhodospirillales;alfVIII) was the major HNA-associated OTU while the
218 OTU555 (Deltaproteobacteria;Bdellovibrionaceae;OM27) was the major LNA-associated taxon.
219 Most OTUs were selected for Muskegon Lake (153 OTUs; compared to 136 OTUs from the
220 Inland Lakes and 20 OTUs from Lake Michigan) and 33% of these OTUs were associated with
221 both FCM groups.

222
223 ***Association with HNA and LNA is not phylogenetically conserved***
224 To evaluate how much evolutionary history explains whether a selected taxon was associated
225 with the HNA and/or LNA group(s), we calculated Pagel's λ , Blomberg's K , and Moran's I ,
226 which are different measures for testing whether there was a phylogenetic conservation of these
227 traits. No phylogenetic signal was detected when using Pagel's λ with either using FCM
228 functional group as a discrete variable (*i.e.* associating an OTU with HNA, LNA, or Both or in

229 relation to the HNA RL score, which is a continuous variable (lambda = 0.16; P = 1) (**Figure 5**).
230 However, there was a significant phylogenetic signal for the LNA RL score (p = 0.003, λ =
231 0.66), suggesting a stronger phylogenetic structure in the LNA group compared to the HNA
232 group. This significant result in the LNA group was not found when other measures of
233 phylogenetic signal were considered (Blomberg's K (HNA: p = 0.63; LNA: p = 0.54), and
234 Moran's I (HNA: p = 0.88; LNA: p = 0.12)).

235

236 ***Flow cytometry fingerprints confirm associated taxa and reveal more complex relationships***
237 ***between taxonomy and flow cytometric features***

238 To confirm the association of the final selected OTUs with the HNA and LNA groups, and
239 resolve how HNA and LNA groups correspond to OTU-level clustering of cells on the FCM
240 fingerprints, we calculated the correlation between the density of individual small regions (*i.e.*
241 “bins”) in the flow cytometry data with the relative abundances of the OTUs. Note that (i) as
242 these values denote correlations, they do not indicate actual presence, and (ii) the threshold that
243 was used to manually make the distinction between HNAcc and LNAcc (*i.e.* dotted line in
244 **Figure 6**) lies very close to the border between the two regions of positive and negative
245 correlation. OTU25 correlated with bins that when aggregated corresponded to almost the entire
246 HNA region, whereas OTU173 was limited to bins corresponding to the bottom of the HNA
247 region (**Figure 6**). In contrast, OTU369 was positively correlated to bins situated in both the
248 LNA and HNA regions of the cytometric fingerprint, highlighting results from **Figure 4** where
249 OTU369 was selected for both HNA and LNA.

250

251

252 ***Proteobacteria and rare taxa correlate with productivity measurements***

253 The Kendall rank correlation coefficient was calculated between CLR-transformed abundances

254 of individual OTUs and productivity measurements. OTU481 was the sole OTU that correlated

255 with productivity after a multiple testing correction (Kendall's tau-b = -0.67, P = 0.00003, P_adj

256 = 0.016), but had a low RL score (0.022) for HNAcc and was not selected according to the

257 Boruta algorithm. Of the top 10 OTUs selected for HNAcc according to the RL, three were still

258 significantly associated with productivity (OTU614: P = 0.0064; OTU412, P = 0.044; OTU487,

259 P = 0.014), but not when corrected for multiple hypothesis testing. Some OTUs that had a high

260 RL score also had a positive response to productivity measurements, though they were

261 insignificant after multiple testing correction. At the phylum level, only Proteobacteria were

262 significantly correlated to productivity measurements (Kendall's tau = 0.49, P = 0.002, P_adj =

263 0.05).

264 **Discussion**

265 Our study furthers the integration of functional and genotypic information to determine the

266 complex relationships between microbial diversity and ecosystem functioning. Our results

267 confirmed previous findings that flow cytometric operational groups are distinct functional

268 groups having divergent correlations with heterotrophic productivity. Using two machine

269 learning based variable selection strategies, we could associate bacterial taxa identified by 16S

270 rRNA gene sequencing to these two functional groups in three types of freshwater lake systems

271 in the Great Lakes region. We revealed that (i) HNA and LNA cell abundances were best

272 predicted by a small subset of OTUs that were unique to each lake type, (ii) some OTUs were

273 included in the best model for both HNA and LNA abundance, (iii) there was no phylogenetic

274 conservation of HNA and LNA group association and (iv) freshwater FCM fingerprints display

275 more complex patterns related to OTUs and productivity compared to the traditional dichotomy
276 of HNA and LNA.

277
278 Although high-nucleic acid cell counts (HNAcc) and low-nucleic acid cell counts (LNAcc) were
279 correlated with each other, only the association between bacterial heterotrophic production (BP)
280 and HNAcc was strong and significant. This is in line with previous reports, though past studies
281 have focused on the proportion of HNA rather than absolute cell abundances and are strongly
282 biased towards marine systems. For example, Bouvier et al. (11) found a correlation between the
283 fraction of HNA cells and BP within a large dataset of 640 samples across various freshwater to
284 marine environments (Pearson's $r = 0.49$), whereas a study off the coast of the Antarctic
285 Peninsula found a moderate correlation ($R^2 = 0.36$; (17)). Another study in the Bay of Biscay
286 also found this association ($R^2 = 0.16$; (15)), however, the authors attributed this difference to be
287 related to cell size and not due to the activity of HNA. Notably, these studies were predominantly
288 testing the association of marine HNA groups. The high correlation coefficients observed in our
289 study may indicate a strong coupling between freshwater carbon cycling and HNA group
290 abundance in freshwater lake systems. Consequently, this suggests an important role of HNA
291 bacteria in the disproportionately large role that freshwater systems in the global carbon cycle
292 (32). It has to be noted that our study only evaluated bacterial heterotrophic production using
293 leucine amino acid incorporation, which biases our analyses against bacterial groups that cannot
294 import or assimilate this compound (33). Finally, as our correlations with proportional HNA
295 group abundances also indicated less strong correlations than with absolute HNAcc, we suggest
296 absolute HNAcc should be used to best predict and study heterotrophic bacterial production.

297

298 Similar to other microbiome studies that use machine learning, only a minority of OTUs were
299 needed to predict the phenotype of interest, with low predictive power of each single OTU, but
300 strong predictive capacity of the selected group of OTUs (17, 34–36). Both the RL and Boruta
301 algorithm have been applied to microbiome studies before, for example in the selection of genera
302 in the human microbiome associated with BMI (37), salivary pH and lysozyme activity (38), and
303 in relation to multiple sclerosis (39) or with differing diets during primate pregnancy (40). The
304 Boruta algorithm has also recently been proposed as one of the top-performing variable selection
305 methods that make use of Random Forests (41). Despite the power of these approaches,
306 improvements can be made when attempting to integrate different types of data. For example,
307 16S rRNA gene sequencing still faces the hurdles of DNA extraction (42) and 16S copy number
308 bias (43). Moreover, detection limits are different for FCM (expressed in the number of cells)
309 and 16S rRNA gene sequencing (expressed in the number of gene counts or relative abundance),
310 therefore creating data that may be different in resolution.

311
312 The selection of different sets of HNA and LNA OTUs across the three freshwater systems
313 indicates that different taxa underlie the universally observed HNA and LNA functional groups
314 across aquatic systems. This is perhaps not surprising as it has been shown that there is strong
315 species sorting in lake systems (44, 45), shaping community composition through diverging
316 environmental conditions between the lake systems presented here (46). This high system
317 specificity also explains the low RL scores for individual OTUs, as the spatial and temporal
318 dynamics of an OTU diverged strongly across systems. For example, an OTU that has an RL
319 score of 0.5 implies that on average it will only be chosen one out of two times in a Lasso model.

320

321 Some OTUs were associated with both HNAcc and LNAcc. There are multiple possible
322 explanations for this: (a) In line with scenario 1 from Bouvier et al (11), cells transition from
323 active growth (primarily HNA) to death or a dormant state (primarily LNA), depending on
324 variable conditions over the spatiotemporal gradients sampled in this study. A large fraction of
325 cells (40-95%) in aquatic systems has indeed been inferred to be dormant (47–49), in line with
326 the predominance of LNA cells. (b) The same OTU may occur in both HNA and LNA groups
327 due to phenotypic plasticity, which is more in line with scenario 4 from Bouvier et al (11).
328 Bacterial phenotypic plasticity in size and morphology has been observed (50), and agrees with
329 suggestions that HNA and LNA groups correspond to cells of differing size (12, 15, 27). (c) The
330 association of taxa to LNA and HNA can also mean that these taxonomic groups thrive within
331 either high or low productivity ecosystems and not necessarily that they are responsible for the
332 change in productivity. (d) Finally, OTU level grouping of bacterial taxa can disguise genomic
333 and corresponding phenotypic heterogeneity (51–54), which may be an alternate explanation for
334 inconsistent associations between OTUs and FCM functional groups.

335
336 We found no clear phylogenetic conservation of association to HNAcc or LNAcc. This is in
337 contrast to a recent study that found a clear signal at the phylum level across different aquatic
338 systems (27). However, lake water samples were an exception to the general trend. In addition, it
339 is notable that Proctor et al. (27) separated HNA and LNA cells based on cell size (where HNA
340 cells were defined at approximately $>0.4 \mu\text{m}$ and LNA cells were approximately $0.2\text{--}0.4 \mu\text{m}$,
341 based on 50–90% removal of HNA cells after filtering using a $0.4 \mu\text{m}$ filter), while our study
342 separated these FCM functional groups on the basis of fluorescence intensity alone. A more
343 direct estimation of phylogenetic conservation that directly combines cell sorting of HNA or

344 LNA cells and sequencing, such as the approach of Vila-Costa et al. (55), will be needed to
345 resolve these contrasting results. Considering the correlations between FCM-based phenotypic
346 diversity and sequencing-based taxonomic diversity (56, 57), there clearly is a link between
347 taxonomy and the structure in microbial cytometry data (17). However, the HNA/LNA
348 dichotomy is too unresolved, as our correlation analysis between smaller regions in the
349 cytometric fingerprint and the highly-ranked OTUs revealed a more complex relationship. This
350 agrees with recent research, in which more than two FCM operational groups in aquatic systems
351 were identified (17, 58, 59)7).

352
353 The Boruta algorithm and RL scores agreed on a small subset of OTUs, including the top-ranked
354 HNA OTU for all lake systems according to RL, which motivates further investigation of the
355 ecology of these OTUs. While little detailed information on the identities and ecology of HNA
356 and LNA freshwater lake bacterial taxa exists, several studies identified Bacteroidetes among the
357 most prominent HNA taxa, which is in line with our findings. Independent research by Vila-
358 Costa et al. (55) found that the HNA group was dominated by Bacteroidetes in summer samples
359 from the Mediterranean Sea, Read et al. (19) showed that HNA abundances correlated with
360 Bacteroidetes, and Schattenhofer et al. (60) reported that the Bacteroidetes accounted for the
361 majority of HNA cells in the North Atlantic Ocean. In Muskegon Lake, OTU173 was the
362 dominant HNA taxon and is a member of the Order *Flavobacteriales* (bacII-A). The bacII group
363 is a very abundant freshwater bacterial group and has been associated with senescence and
364 decline of an intense algal bloom (61), suggesting their potential for bacterial production. BacII-
365 A has also made up ~10% of the total microbial community during cyanobacterial blooms,
366 reaching its maximum density immediately following the bloom (62). In Lake Michigan,

367 OTU25, a member of the Bacteroidetes Order *Cytophagales* known as bacIII-A, was the top
368 HNA OTU. However, much less is known about this specific group of Bacteroidetes. Though,
369 the bacII-A/bacIII-A group has been strongly associated with more heterotrophically productive
370 headwater sites (compared to higher order streams) from the River Thames, showing a negative
371 correlation in rivers with dendritic distance from the headwaters, indicating that these taxa may
372 contribute more to productivity (19). In the inland lakes, OTU369 was the major HNA taxon and
373 is associated with the Alphaproteobacteria Order Rhodospirillales (alfVIII), which to our
374 knowledge is a group with very little information available in the literature. In contrast to our
375 findings of Bacteroidetes and Alphaproteobacterial HNA selected OTUs, Tada & Suzuki (63)
376 found that the major HNA taxon from an oceanic algal culture was from the Betaproteobacteria
377 whereas LNA OTUs were within the Actinobacteria phylum.

378 **Conclusions**

379 We integrated flow cytometry (FCM) and 16S rRNA gene amplicon sequencing data to associate
380 bacterial taxa with productivity in freshwater lake systems. Our results on a diverse set of
381 freshwater lake systems indicate that the taxa associated with HNA and LNA functional groups
382 are lake-specific, and that association with these functional groups is not phylogenetically
383 conserved. With this study, we show the potential and limitations of integrating flow cytometry-
384 derived *in situ* functional information with sequencing data using machine learning approaches.
385 This integration of data enhances our insights into which taxa may contribute to ecosystem
386 functioning in aquatic bacterial communities. While these data-driven hypotheses will need
387 further verification, the method is promising considering the wide application of FCM in aquatic
388 environments, its recent application in other sample matrices (*e.g.*, faeces (64), soils (65), and

389 wastewater sludge (66)), and the introduction of novel stains to delineate operational groups
390 based on phenotypic traits (67).

391 **Materials and Methods**

392 ***Data collection and DNA extraction, sequencing and processing***

393 In this study, we used a total of 173 samples collected from three types of lake systems described
394 previously (46), including: (a) 49 samples from Lake Michigan (2013 & 2015), (b) 62 samples
395 from Muskegon Lake (2013-2015; one of Lake Michigan's estuaries), and (c) 62 samples from
396 twelve inland lakes in Southeastern Michigan (2014-2015). For more details on sampling, please
397 see **Figure 1** and the *Field Sampling, DNA extraction, and DNA sequencing and processing*
398 sections within Chiang et al. (46). In all cases, water for microbial biomass samples were
399 collected and poured through a 210 µm and 20 µm bleach sterilized nitex mesh and sequential in-
400 line filtration was performed using 47 mm polycarbonate in-line filter holders (Pall Corporation,
401 Ann Arbor, MI, USA) and an E/S portable peristaltic pump with an easy-load L/S pump head
402 (Masterflex®, Cole Parmer Instrument Company, Vernon Hills, IL, USA) to filter first through a
403 3 µm isopore polycarbonate (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) and
404 second through a 0.22 µm Express Plus polyethersulfone membrane filters (47 mm diameter,
405 Millipore, MA, USA). The current study only utilized the 3 - 0.22 µm fraction for analyses.

406

407 DNA extractions and sequencing were performed as described in Chiang et al. (46). Fastq files
408 were submitted to NCBI sequence read archive under BioProject accession number
409 PRJNA414423 (inland lakes), PRJNA412983 (Lake Michigan), and PRJNA412984 (Muskegon
410 Lake). We analyzed the sequence data using MOTHUR V.1.38.0 (seed = 777; (Schloss et al.
411 2009) based on the MiSeq standard operating procedure and put together at the following link:

412 https://github.com/rprops/Mothur_oligo_batch. A combination of the Silva Database (release
413 123; (68)) and the freshwater TaxAss 16S rRNA database and pipeline (69) was used for
414 classification of operational taxonomic units (OTUs).

415

416 For the taxonomic analysis, each of the three lake datasets were analyzed separately and treated
417 with an OTU abundance threshold cutoff of at least 5 sequences in 10% of the samples in the
418 dataset (similar strategy to (70)). For comparison of taxonomic abundances across samples, each
419 of the three datasets were then rarefied to an even sequencing depth, which was 4,491 sequences
420 for Muskegon Lake samples, 5,724 sequences for the Lake Michigan samples, and 9,037
421 sequences for the inland lake samples. Next, the relative abundance at the OTU level was
422 calculated using the *transform_sample_counts()* function in the phyloseq R package (71) by
423 taking the count value and dividing it by the sequencing depth of the sample. For all other
424 taxonomic levels, the taxonomy was merged at certain taxonomic ranks using the *tax_grom()*
425 function in phyloseq (71) and the relative abundance was re-calculated.

426

427 ***Heterotrophic bacterial production measurements***

428 Muskegon Lake samples from 2014 and 2015 were processed for heterotrophic bacterial
429 production using the [³H] leucine incorporation into bacterial protein in the dark method (72, 73).
430 At the end of the incubation with [³H]-leucine, cold trichloroacetic acid-extracted samples were
431 filtered onto 0.2 μ m filters that represented the leucine incorporation by the bacterial community.
432 Measured leucine incorporation during the incubation was converted to bacterial carbon
433 production rate using a standard theoretical conversion factor of 2.3 kg C per mole of leucine
434 (73).

435

436 ***Flow cytometry, measuring HNA and LNA***

437 In the field, a total of 1 mL of 20 μ m filtered lake water were fixed with 5 μ L of glutaraldehyde
438 (20% vol/vol stock), incubated for 10 minutes on the bench (covered with aluminum foil to
439 protect from light degradation), and then flash frozen in liquid nitrogen to later be stored in -
440 80°C freezer until later processing with a flow cytometer. Flow cytometry procedures followed
441 the protocol laid out in Props et al. (56), which also uses the samples presented in the current
442 study (Michigan and Muskegon samples). Samples were stained with SYBR Green I and
443 measured in triplicate. The lowest number of cells collected after denoising was 2342. HNA and
444 LNA groups were selected using the fixed gates introduced in Prest et al. (74) and plotted in
445 **Figure S10**. Cell counts were determined per HNA and LNA group and averaged over the three
446 replicates (giving rise to HNAcc and LNAcc). All cytometry data is available on the
447 FlowRepository database (75): inland lakes (ID:FR-FCM-ZY9J), Michigan and Muskegon
448 (ID:FR-FCM-ZYZN).

449

450 **Data analysis**

451 Processed data and analysis code for the following analyses can be found on the GitHub page for
452 this project at https://deneflab.github.io/HNA_LNA_productivity/.

453

454 ***HNA-LNA and HNA-Productivity Statistics and Regressions***

455 We tested the difference in absolute number of cells within HNA and LNA functional groups
456 across running analysis of variance with a post-hoc Tukey HSD test (*aov()* and *TukeyHSD()*;
457 *stats* R package; (76). In addition, we tested the association of HNA and LNA to each other and

458 with productivity by running ordinary least squares regression with the *lm()* (*stats* R package;
459 (76)).

460

461 ***Ranking correlation***

462 Ranking correlation between variables was calculated using the Kendall rank correlation
463 coefficient, using the *kendalltau()* function in Scipy (v1.0.0) or *cor()* in R (v3.2). The ‘tau-b’
464 implementation was used, which is able to deal with ties. Values range from -1 (strong
465 disagreement) to 1 (strong agreement). The same statistic was used to assess the similarity
466 between rankings of variable selection methods.

467

468 ***Centered-log ratio transform***

469 First, following guidelines from Paliy & Shanker (77), Gloor et al. (3) and Quinn et al. (78),
470 relative abundances of OTUs were transformed using a centered log-ratio (CLR) transformation
471 before variable selection was applied. This means that the relative abundance x_i of a taxa was
472 transformed according to the geometric mean of that sample, in which there are p taxa present:

$$473 x'_i = \log(x_i / \left(\prod_{j=1}^p x_j \right)^{1/p})$$

474 Zero values were replaced by $\delta = 1/p^2$. This was done using the scikit-bio package
475 (www.scikit-bio.org, v0.4.1).

476

477 ***Lasso & stability selection***

478 Scores were assigned to taxa based on an extension of the Lasso estimator, which is called
479 *stability selection* (28). In the case of n samples, the Lasso estimator fits the following regression
480 model:

$$481 \hat{\beta}^\lambda = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2^2 + \lambda \sum_{j=1}^p |\beta_j|,$$

482 in which X denotes the abundance table, y the target to predict, which either is HNA cell
483 abundances (HNAcc) or LNA cell abundances (LNAcc), β the weight of each variable and λ is a
484 regularization parameter which controls the complexity of the model and prevents overfitting.
485 The Lasso performs an intrinsic form of variable selection, as the weights of certain variables
486 will be put to zero.

487
488 Stability selection, when applied to the Lasso, is in essence an extension of the Lasso regression.
489 It implements two types of randomizations to assign a score to the variables, and is therefore also
490 called the *Randomized Lasso* (RL). The resulting RL score can be seen as the probability that a
491 certain variable will be included in a Lasso regression model (*i.e.*, its weight will be non-zero
492 when fitted). When performing stability selection, the Lasso is fitted to B different subsamples of
493 the data of fraction $n/2$, denoted as X' and corresponding y' . A second randomization is added by
494 introducing a weakness parameter α . In each model, the penalty λ changes to a randomly chosen
495 value in the set $[\lambda, \lambda/\alpha]$, which means that a higher penalty will be assigned to a random subset
496 of the total amount of variables. The Randomized Lasso therefore becomes:

$$497 \hat{\beta}^\lambda = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \|y' - X'\beta\|_2^2 + \lambda \sum_{j=1}^p \frac{|\beta_j|}{w_j},$$

498 where w_j is a random variable which is either α or 1. Next, the Randomized Lasso score (RL
499 score) is determined by counting the number of times the weight of a variable was non-zero for

500 each of the B models and divided by B . Meinshausen and Bühlmann (28) show that, under
501 stringent conditions, the number of falsely selected variables is controlled for the Randomized
502 Lasso when the RL score is higher than 0.5. If λ is varied, one can determine the stability path,
503 which is the relationship between π and λ for every variable. For our implementation, $B = 500$,
504 $\alpha = 0.5$ and the highest score was selected in the stability path for which λ ranged from 10^{-3}
505 until 10^3 , logarithmically divided in 100 intervals. The *RandomizedLasso()* function from the
506 scikit-learn machine learning library was used ((79), v0.19.1).

507

508 ***Random Forests & Boruta***

509 The Boruta algorithm is a *wrapper* algorithm that makes use of Random Forests as a base
510 classification or regression method in order to select all relevant variables in function of a
511 response variable (29). Similar to stability selection, the method uses an additional form of
512 randomness in order to perform variable selection. Random Forests are fitted to the data multiple
513 times. To remove the correlation to the response variable, each variable gets per iteration a so-
514 called *shadow variable*, which is a permuted copy of the original variable. Next, the Random
515 Forest algorithm is run with the extended set of variables, after which variable importances are
516 calculated for both original and shadow variables. The shadow variable that has the highest
517 importance score is used as reference, and every variable with significantly lower importance, as
518 determined by a Bonferroni corrected t-test, is removed. Likewise, variables containing an
519 importance score that is significantly higher are included in the final list of selected variables.
520 This procedure can be repeated until all original variables are either discarded or included in the
521 final set; variables that remain get the label ‘tentative’ (i.e., after all repetitions it is still not
522 possible to either select or discard a certain variable). We used the boruta_py package to

523 implement the Boruta algorithm (https://github.com/scikit-learn-contrib/boruta_py). Random
524 Forests were implemented using *RandomForestRegressor()* function from scikit-learn (79),
525 v0.19.1. Random Forests were run with 200 trees, the number of variables considered at every
526 split of a decision tree was $p/3$ and the minimal number of samples per leaf was set to five. The
527 latter were based on default values for Random Forests in a regression setting (80). The Boruta
528 algorithm was run for 300 iterations, variables were selected or discarded at $P < .05$ after
529 performing Bonferroni correction.

530

531 ***Recursive variable elimination***

532 Scores of the Randomized Lasso were evaluated using a recursive variable elimination strategy
533 (81). Variables were ranked according to the RL score. Next, the lowest-ranked variables were
534 eliminated from the dataset, after which the Lasso was applied to predict HNAcc and LNAcc
535 respectively. This process was repeated until only the highest-scored taxa remained. In this way,
536 performance of the Randomized Lasso was assessed from a minimal-optimal evaluation
537 perspective (82). In other words, the lowest amount of variables that resulted in the highest
538 predictive performance was determined.

539

540 ***Performance evaluation***

541 In order to account for the spatiotemporal structure of the data, a blocked cross-validation
542 scheme was implemented (83). Samples were grouped according the site and year that they were
543 collected. This results in 5, 10 and 16 distinctive groups for the Michigan, Muskegon and Inland
544 lake systems respectively. Predictive models were optimized in function of the R^2 between
545 predicted and true values of held-out groups using a leave-one-group-out cross-validation

546 scheme with the *LeaveOneGroupOut()* function. This results in a cross-validated R_{CV}^2 value. For
547 the Lasso, λ was determined using the *lassoCV()* function, with setting $\text{eps}=10^{-4}$ and
548 $\text{n_alphas}=400$. The Random Forest object was optimized using a grid search where max_features
549 was chosen in the interval $[1, \sqrt{p}, 2\sqrt{p}, \dots, p]$ (all variables) or $[1, \dots, p]$ (Boruta selected variables)
550 and min_samples_leaf in the interval $[1, \dots, 5]$, using the *GridSearchCV()* function. The number
551 of decision trees (n_trees) was set to 200. All functions are part of scikit-learn ((79); v0.19.1)
552

553 ***Stability of the Randomized Lasso***

554 Similarity of RL scores between lake systems and functional groups was quantified using the
555 Pearson correlation. This was done using the *pearsonr()* function in Scipy (v1.0.0).

556

557 ***Patterns of HNA and LNA OTUs across ecosystems and phylogeny***

558 To visualize patterns of selected HNA and LNA OTUs across the three ecosystems, a heatmap
559 was created with the RL scores of each OTU from the Randomized Lasso regression that were
560 higher than specified threshold values. The heatmap was created with the *heatmap.2()* function
561 (*gplots* R package) using the euclidean distances of the RL scores and a complete linkage
562 hierarchical clustering algorithm (**Figure 4**).

563

564 ***Correlations between taxa and productivity measurements***

565 The Kendall ranking correlation coefficient or Kendall's tau-b between productivity
566 measurements and individual abundances were calculated on the phylum and OTU level using
567 the *kendalltau()* function from Scipy (v1.0.0). P-values were corrected using Benjamini-

568 Hochberg correction, reported as P_adj. This was done using the *multitest()* function from the
569 Python module Statsmodels ((84); v0.5.0).

570

571 ***Phylogenetic tree construction and signal calculation***

572 We calculated the best performing maximum likelihood tree using the GTR-CAT model (-gtr -
573 fastest) model of nucleotide substitution with FastTree (version 2.1.9 No SSE3; (85)) and
574 visualized using the interactive tree of life (iTOL) (86). Phylogenetic signal is a measure of the
575 dependence among a species' trait values on their phylogenetic history (87). If the phylogenetic
576 signal is very strong, taxa belonging to similar phylogenetic groups (*e.g.* a Phylum) will share the
577 same trait (*i.e.* association with HNAcc or LNAcc). Alternatively, if the phylogenetic signal is
578 weak, taxa within a similar phylogenetic group will have different traits. The phylogenetic signal
579 was measured with both discrete (*i.e.* HNA, LNA, or both) and continuous traits (*i.e.* the RL
580 score) using the newick tree from FastTree. For the most part, Pagel's lambda was used (88) to
581 test for phylogenetic signal and was calculated with the *fitDiscrete()* function from the geiger R
582 package (discrete trait; (89)) and the *phylosig()* function from the phytools R package
583 (continuous trait; (90)). The lambda value varies between 0 and 1, with 1 indicating complete
584 phylogenetic patterning and 0 representing no phylogenetic patterning, leading to a tree
585 collapsing into a single polytomy. was then used to model phylogenetic signal using Pagel's
586 lambda, Blomberg's K (*phylosig()* function from the phytools R package (90)), and Moran's I
587 (*abouheif.moran()* function from the adephylo R package (91)).

588

589 **Acknowledgements**

590 PR was supported by Ghent University (BOFSTA2015000501) and MLS was supported by the
591 National Science Foundation Graduate Research Fellowship Program (Grant No. DGE
592 1256260). Part of the computational resources (Stevin Supercomputer Infrastructure) and
593 services used in this work were provided by the VSC (Flemish Supercomputer Center), funded
594 by Ghent University, the Hercules Foundation and the Flemish Government department EWI.
595 Flow cytometry analysis was supported through a Geconcerdeerde Onderzoeksactie (GOA) from
596 Ghent University (BOF15/GOA/006).

597 **Author Contributions**

598 MLS and PR co-wrote the paper with contributions from RP, BB, NB, WW, and VJD. MLS, RP,
599 and BB generated the data. MLS, PR, and RP performed the data analysis. PR, MLS, RP, WW,
600 and VJD designed the study.

601 **References**

- 602 1. Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary
603 implications of dormancy. *Nature Reviews Microbiology* 9:119–130.
- 604 2. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2017. Relic DNA is
605 abundant in soil and obscures estimates of soil microbial diversity. *Nature Microbiology*
606 2:16242.
- 607 3. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egoscue JJ. 2017. Microbiome Datasets
608 Are Compositional: And This Is Not Optional. *Frontiers in Microbiology* 8.
- 609 4. Knight R, Vrbanac A, Taylor BC, Aksенов A, Callewaert C, Debelius J, Gonzalez A,
610 Kosciolka T, McCall L-I, McDonald D, Melnik AV, Morton JT, Navas J, Quinn RA,
611 Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZZ, Zaneveld JR, Zhu Q,
612 Caporaso JG, Dorrestein PC. 2018. Best practices for analysing microbiomes. *Nature
613 Reviews Microbiology* 16:410–422.
- 614 5. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP,
615 Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft J-U, Rainey PB,
616 Freilich S, Schuster S, Milferstedt K, van der Meer JR, Großkopf T, Huisman J, Free A,
617 Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Isaac Newton Institute
618 Fellows, Soyer OS. 2016. Challenges in microbial ecology: building predictive
619 understanding of community function and dynamics. *The ISME Journal* 10:2557–2568.
- 620 6. Gasol JM, Del Giorgio PA. 2000. Using flow cytometry for counting natural planktonic
621 bacteria and understanding the structure of planktonic bacterial communities. *Scientia
622 Marina* 64:197–224.
- 623 7. Vives-Rego J, Lebaron P, Nebe-von Caron G. 2000. Current and future applications of flow
624 cytometry in aquatic microbiology. *FEMS Microbiology Reviews* 24:429–448.
- 625 8. Wang Y, Hammes F, De Roy K, Verstraete W, Boon N. 2010. Past, present and future
626 applications of flow cytometry in aquatic microbiology. *Trends in Biotechnology* 28:416–
627 424.
- 628 9. Gasol JM, Zweifel UL, Peters F, Fuhrman JA. 1999. Significance of Size and Nucleic Acid
629 Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria.
630 *Applied and Environmental Microbiology* 65:4475–4483.
- 631 10. Lebaron P, Servais P, Agogue H, Courties C, Joux F. 2001. Does the high nucleic acid
632 content of individual bacterial cells allow us to discriminate between active cells and
633 inactive cells in aquatic systems? *Applied and Environmental Microbiology* 67:1775–1782.
- 634 11. Bouvier T, del Giorgio PA, Gasol JM. 2007. A comparative study of the cytometric
635 characteristics of High and Low nucleic-acid bacterioplankton cells from different aquatic
636 ecosystems. *Environmental Microbiology* 9:2050–2066.
- 637 12. Wang Y, Hammes F, Boon N, Chami M, Egli T. 2009. Isolation and characterization of low
638 nucleic acid (LNA)-content bacteria. *The ISME Journal* 3:889–902.

- 639 13. Lebaron P, Servais P, Baudoux A, Bourrain M, Courties C, Parthuisot N. 2002. Variations
640 of bacterial-specific activity with cell size and nucleic acid content assessed by flow
641 cytometry. *Aquatic Microbial Ecology* 28:131–140.
- 642 14. Servais P, Casamayor E, Courties C, Catala P, Parthuisot N, Lebaron P. 2003. Activity and
643 diversity of bacterial cells with high and low nucleic acid content. *Aquatic Microbial
644 Ecology* 33:41–51.
- 645 15. Morán X, Bode A, Suárez L, Nogueira E. 2007. Assessing the relevance of nucleic acid
646 content as an indicator of marine bacterial activity. *Aquatic Microbial Ecology* 46:141–152.
- 647 16. Servais P, Courties C, Lebaron P, Troussellier M. 1999. Coupling Bacterial Activity
648 Measurements with Cell Sorting by Flow Cytometry. *Microbial Ecology* 38:180–189.
- 649 17. Bowman JS, Amaral-Zettler LA, J Rich J, M Luria C, Ducklow HW. 2017. Bacterial
650 community segmentation facilitates the prediction of ecosystem function along the coast of
651 the western Antarctic Peninsula. *The ISME Journal* 11:1460–1471.
- 652 18. Morán XAG, Ducklow HW, Erickson M. 2011. Single-cell physiological structure and
653 growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts).
654 *Limnology and Oceanography* 56:37–48.
- 655 19. Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI. 2015.
656 Catchment-scale biogeography of riverine bacterioplankton. *The ISME Journal* 9:516–526.
- 657 20. Sherr EB, Sherr BF, Longnecker K. 2006. Distribution of bacterial abundance and cell-
658 specific nucleic acid content in the Northeast Pacific Ocean. *Deep Sea Research Part I: Oceanographic
659 Research Papers* 53:713–725.
- 660 21. García FC, Calleja ML, Al-Otaibi N, Røstad A, Morán XAG. 2018. Diel dynamics and
661 coupling of heterotrophic prokaryotes and dissolved organic matter in epipelagic and
662 mesopelagic waters of the central Red Sea. *Environmental Microbiology* 20:2990–3000.
- 663 22. Jochem FJ, Lavrentyev PJ, First MR. 2004. Growth and grazing rates of bacteria groups
664 with different apparent DNA content in the Gulf of Mexico. *Marine Biology* 145:1213–
665 1225.
- 666 23. Arnoldini M, Heck T, Blanco-Fernández A, Hammes F. 2013. Monitoring of Dynamic
667 Microbiological Processes Using Real-Time Flow Cytometry. *PLoS ONE* 8:e80117.
- 668 24. Ramseier MK, von Gunten U, Freihofer P, Hammes F. 2011. Kinetics of membrane
669 damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by
670 ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. *Water
671 Research* 45:1490–1500.
- 672 25. Huete-Stauffer T, Morán X. 2012. Dynamics of heterotrophic bacteria in temperate coastal
673 waters: similar net growth but different controls in low and high nucleic acid cells. *Aquatic
674 Microbial Ecology* 67:211–223.
- 675 26. Morán XAG, Alonso-Sáez L, Nogueira E, Ducklow HW, González N, López-Urrutia Á,
676 Díaz-Pérez L, Calvo-Díaz A, Arandia-Gorostidi N, Huete-Stauffer TM. 2015. More,
677 smaller bacteria in response to ocean's warming? *Proceedings of the Royal Society B: Biological
678 Sciences* 282:20150371.

- 679 27. Proctor CR, Besmer MD, Langenegger T, Beck K, Walser J-C, Ackermann M, Bürgmann
680 H, Hammes F. 2018. Phylogenetic clustering of small low nucleic acid-content bacteria
681 across diverse freshwater ecosystems. *The ISME Journal* 12:1344–1359.
- 682 28. Meinshausen N, Bühlmann P. 2010. Stability selection: Stability Selection. *Journal of the*
683 *Royal Statistical Society: Series B (Statistical Methodology)* 72:417–473.
- 684 29. Kursa MB, Rudnicki WR. 2010. Feature Selection with the **Boruta** Package. *Journal of*
685 *Statistical Software* 36.
- 686 30. Li H. 2015. Microbiome, Metagenomics, and High-Dimensional Compositional Data
687 Analysis. *Annual Review of Statistics and Its Application* 2:73–94.
- 688 31. Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable
689 importance for random forests. *BMC Bioinformatics* 9.
- 690 32. Biddanda B. 2017. Global Significance of the Changing Freshwater Carbon Cycle. *Eos*
691 98:1–5.
- 692 33. Salcher MM, Posch T, Pernthaler J. 2013. *In situ* substrate preferences of abundant
693 bacterioplankton populations in a prealpine freshwater lake. *The ISME Journal* 7:896–907.
- 694 34. Schubert AM, Rogers MAM, Ring C, Mogle J, Petrosino JP, Young VB, Aronoff DM,
695 Schloss PD. 2014. Microbiome Data Distinguish Patients with *Clostridium difficile*
696 Infection and Non-*C. difficile*-Associated Diarrhea from Healthy Controls. *mBio* 5.
- 697 35. Baxter NT, Zackular JP, Chen GY, Schloss PD. 2014. Structure of the gut microbiome
698 following colonization with human feces determines colonic tumor burden. *Microbiome*
699 2:20.
- 700 36. Herren CM, McMahon KD. 2018. Keystone taxa predict compositional change in microbial
701 communities: Keystone microbes predict community turnover. *Environmental*
702 *Microbiology* 20:2207–2217.
- 703 37. Lin W, Shi P, Feng R, Li H. 2014. Variable selection in regression with compositional
704 covariates. *Biometrika* 101:785–797.
- 705 38. Zaura E, Brandt BW, Prodan A, Teixeira de Mattos MJ, Imangaliyev S, Kool J, Buijs MJ,
706 Jagers FL, Hennequin-Hoenderdos NL, Slot DE, Nicu EA, Lagerweij MD, Janus MM,
707 Fernandez-Gutierrez MM, Levin E, Krom BP, Brand HS, Veerman EC, Kleerebezem M,
708 Loos BG, van der Weijden GA, Crielaard W, Keijser BJ. 2017. On the ecosystemic
709 network of saliva in healthy young adults. *The ISME Journal* 11:1218–1231.
- 710 39. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, Luckey DH, Marietta EV,
711 Jeraldo PR, Chen X, Weinshenker BG, Rodriguez M, Kantarci OH, Nelson H, Murray JA,
712 Mangalam AK. 2016. Multiple sclerosis patients have a distinct gut microbiota compared to
713 healthy controls. *Scientific Reports* 6:28484.
- 714 40. Ma J, Prince AL, Bader D, Hu M, Ganu R, Baquero K, Blundell P, Alan Harris R, Frias
715 AE, Grove KL, Aagaard KM. 2014. High-fat maternal diet during pregnancy persistently
716 alters the offspring microbiome in a primate model. *Nature Communications* 5:3889.

- 717 41. Degenhardt F, Seifert S, Szymczak S. 2017. Evaluation of variable selection methods for
718 random forests and omics data sets. *Briefings in Bioinformatics*.
- 719 42. McCarthy A, Chiang E, Schmidt ML, Denef VJ. 2015. RNA Preservation Agents and
720 Nucleic Acid Extraction Method Bias Perceived Bacterial Community Composition. *PLOS*
721 ONE 10:e0121659.
- 722 43. Louca S, Doebeli M, Parfrey LW. 2018. Correcting for 16S rRNA gene copy numbers in
723 microbiome surveys remains an unsolved problem. *Microbiome* 6:41.
- 724 44. Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E,
725 Conde-Porcuna J-M, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L. 2007.
726 The power of species sorting: Local factors drive bacterial community composition over a
727 wide range of spatial scales. *Proceedings of the National Academy of Sciences* 104:20404–
728 20409.
- 729 45. Adams HE, Crump BC, Kling GW. 2014. Metacommunity dynamics of bacteria in an arctic
730 lake: the impact of species sorting and mass effects on bacterial production and
731 biogeography. *Frontiers in Microbiology* 5.
- 732 46. Chiang E, Schmidt ML, Berry MA, Biddanda BA, Burtner A, Johengen TH, Palladino D,
733 Denef VJ. 2018. Verrucomicrobia are prevalent in north-temperate freshwater lakes and
734 display class-level preferences between lake habitats. *PLOS ONE* 13:e0195112.
- 735 47. Aanderud ZT, Vert JC, Lennon JT, Magnusson TW, Breakwell DP, Harker AR. 2016.
736 Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes. *Frontiers in*
737 *Microbiology* 7.
- 738 48. Jones SE, Lennon JT, Karl D. 2010. Dormancy contributes to the maintenance of microbial
739 diversity. *Proceedings of the National Academy of Sciences of the United States of*
740 *America* 107:5881–5886.
- 741 49. Zimmermann R, Iturriaga R, Becker-Birck J. 1978. Simultaneous Determination of the
742 Total Number of Aquatic Bacteria and the Number Thereof Involved in Respiration.
743 *Applied and Environmental Microbiology* 36:926–935.
- 744 50. Corno G, Jürgens K. 2006. Direct and Indirect Effects of Protist Predation on Population
745 Size Structure of a Bacterial Strain with High Phenotypic Plasticity. *Applied and*
746 *Environmental Microbiology* 72:78–86.
- 747 51. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW.
748 2006. Genomic islands and the ecology and evolution of *Prochlorococcus*. *Science*
749 311:1768–1770.
- 750 52. Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. 2008. Resource Partitioning
751 and Sympatric Differentiation Among Closely Related Bacterioplankton. *Science*
752 320:1081–1085.
- 753 53. Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, Thomas BC, VerBerkmoes NC,
754 Hettich RL, Banfield JF. 2010. Proteogenomic basis for ecological divergence of closely
755 related bacteria in natural acidophilic microbial communities. *Proceedings of the National*
756 *Academy of Sciences* 107:2383–2390.

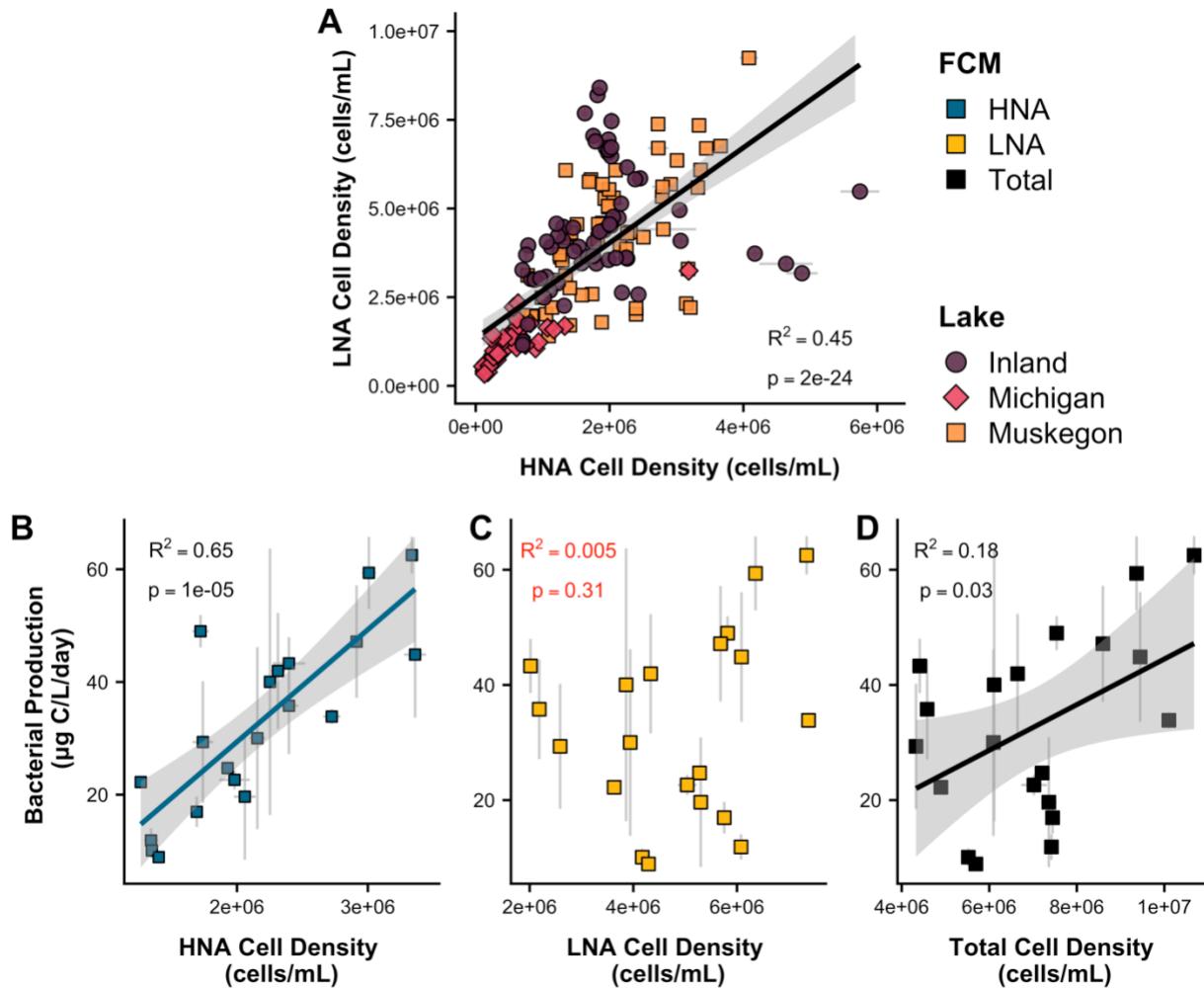
- 757 54. Shapiro BJ, Polz MF. 2014. Ordering microbial diversity into ecologically and genetically
758 cohesive units. *Trends in Microbiology* 22:235–247.
- 759 55. Vila-Costa M, Gasol JM, Sharma S, Moran MA. 2012. Community analysis of high- and
760 low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA
761 pyrosequencing: Bacterial composition of different cytometric populations in
762 Mediterranean waters. *Environmental Microbiology* 14:1390–1402.
- 763 56. Props R, Schmidt ML, Heyse J, Vanderploeg HA, Boon N, Denef VJ. 2018. Flow
764 cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-
765 specific feeding rates by invasive dreissenid mussels: Phenotypic tracking of
766 bacterioplankton. *Environmental Microbiology* 20:521–534.
- 767 57. Props R, Kerckhof F-M, Rubbens P, De Vrieze J, Hernandez Sanabria E, Waegeman W,
768 Monsieurs P, Hammes F, Boon N. 2017. Absolute quantification of microbial taxon
769 abundances. *The ISME Journal* 11:584–587.
- 770 58. Amalfitano S, Fazi S, Ejarque E, Freixa A, Romaní AM, Butturini A. 2018. Deconvolution
771 model to resolve cytometric microbial community patterns in flowing waters:
772 Deconvolving Cytometric Microbial Subgroups. *Cytometry Part A* 93:194–200.
- 773 59. Song Y, Wang Y, Mao G, Gao G, Wang Y. 2019. Impact of planktonic low nucleic acid-
774 content bacteria to bacterial community structure and associated ecological functions in a
775 shallow lake. *Science of The Total Environment* 658:868–878.
- 776 60. Schattenhofer M, Wulf J, Kostadinov I, Glöckner FO, Zubkov MV, Fuchs BM. 2011.
777 Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid
778 content in the North Atlantic Ocean. *Systematic and Applied Microbiology* 34:470–475.
- 779 61. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A Guide to the Natural
780 History of Freshwater Lake Bacteria. *Microbiology and Molecular Biology Reviews* 75:14–
781 49.
- 782 62. Woodhouse JN, Kinsela AS, Collins RN, Bowling LC, Honeyman GL, Holliday JK, Neilan
783 BA. 2016. Microbial communities reflect temporal changes in cyanobacterial composition
784 in a shallow ephemeral freshwater lake. *The ISME Journal* 10:1337–1351.
- 785 63. Tada Y, Suzuki K. 2016. Changes in the community structure of free-living heterotrophic
786 bacteria in the open tropical Pacific Ocean in response to microalgal lysate-derived
787 dissolved organic matter. *FEMS Microbiology Ecology* 92:fiw099.
- 788 64. Vandepitte D, Kathagen G, D'hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J,
789 Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J. 2017. Quantitative
790 microbiome profiling links gut community variation to microbial load. *Nature*.
- 791 65. Frossard A, Hammes F, Gessner MO. 2016. Flow Cytometric Assessment of Bacterial
792 Abundance in Soils, Sediments and Sludge. *Frontiers in Microbiology* 7.
- 793 66. Foladori P, Bruni L, Tamburini S, Ziglio G. 2010. Direct quantification of bacterial biomass
794 in influent, effluent and activated sludge of wastewater treatment plants by using flow
795 cytometry. *Water Research* 44:3807–3818.

- 796 67. Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, Malmstrom RR,
797 Northen TR. 2018. Study of Oak Ridge soils using BONCAT-FACS-Seq reveals that a
798 large fraction of the soil microbiome is active. *bioRxiv*.
- 799 68. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO.
800 2012. The SILVA ribosomal RNA gene database project: improved data processing and
801 web-based tools. *Nucleic Acids Research* 41:D590–D596.
- 802 69. Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. 2018. TaxAss: Leveraging a Custom
803 Freshwater Database Achieves Fine-Scale Taxonomic Resolution. *mSphere* 3:e00327-18.
- 804 70. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ,
805 Ursell L, Alm EJ, Birmingham A, Cram JA, Fuhrman JA, Raes J, Sun F, Zhou J, Knight R.
806 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and
807 precision. *The ISME Journal* 10:1669–1681.
- 808 71. McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible Interactive
809 Analysis and Graphics of Microbiome Census Data. *PLoS ONE* 8:e61217.
- 810 72. Kirchman D, K'Nees E, Hodson R. 1985. Leucine Incorporation and Its Potential as a
811 Measure of Protein Synthesis by Bacteria in Natural Aquatic Systemst. *Applied and*
812 *Environmental Microbiology* 49:9.
- 813 73. Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine
814 bacteria. *Marine Ecology Progress Series* 51:201–213.
- 815 74. Prest EI, Hammes F, Kötzsch S, van Loosdrecht MCM, Vrouwenvelder JS. 2013.
816 Monitoring microbiological changes in drinking water systems using a fast and
817 reproducible flow cytometric method. *Water Research* 47:7131–7142.
- 818 75. Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. 2012. FlowRepository: A
819 resource of annotated flow cytometry datasets associated with peer-reviewed publications.
820 *Cytometry Part A* 81A:727–731.
- 821 76. R Core Team. 2018. R: A Language and Environment for Statistical Computing. R
822 Foundation for Statistical Computing, Vienna, Austria.
- 823 77. Paliy O, Shankar V. 2016. Application of multivariate statistical techniques in microbial
824 ecology. *Molecular Ecology* 25:1032–1057.
- 825 78. Quinn TP, Erb I, Richardson MF, Crowley TM. 2018. Understanding sequencing data as
826 compositions: an outlook and review. *Bioinformatics* 34:2870–2878.
- 827 79. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
828 Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D. Scikit-learn:
829 Machine Learning in Python. *MACHINE LEARNING IN PYTHON* 6.
- 830 80. Probst P, Wright M, Boulesteix A-L. 2018. Hyperparameters and Tuning Strategies for
831 Random Forest.
- 832 81. Guyon I, Weston J, Barnhill S. 2002. Gene Selection for Cancer Classification using
833 Support Vector Machines. *Machine Learning* 46:389–422.

- 834 82. Nilsson R, Bjorkegren J, Tegner J. Consistent Feature Selection for Pattern Recognition in
835 Polynomial Time 24.
- 836 83. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-
837 Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF. 2017.
838 Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic
839 structure. *Ecography* 40:913–929.
- 840 84. Seabold S, Perktold J. 2010. Statsmodels: Econometric and Statistical Modeling with
841 Python. *Proceedings of the 9th Python in Science Conference (SciPy 2010)* 57–61.
- 842 85. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately Maximum-Likelihood
843 Trees for Large Alignments. *PLoS ONE* 5:e9490.
- 844 86. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and
845 annotation of phylogenetic and other trees. *Nucleic Acids Research* 44:W242–W245.
- 846 87. Revell LJ, Harmon LJ, Collar DC. 2008. Phylogenetic Signal, Evolutionary Process, and
847 Rate. *Systematic Biology* 57:591–601.
- 848 88. Pagel M. 1999. Inferring the historical patterns of biological evolution. *Nature* 401:877–
849 884.
- 850 89. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating
851 evolutionary radiations. *Bioinformatics* 24:129–131.
- 852 90. Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other
853 things). *Methods in Ecology and Evolution* 3:217–223.
- 854 91. Jombart T, Balloux F, Dray S. 2010. adephylo: new tools for investigating the phylogenetic
855 signal in biological traits. *Bioinformatics* 26:1907–1909.
- 856

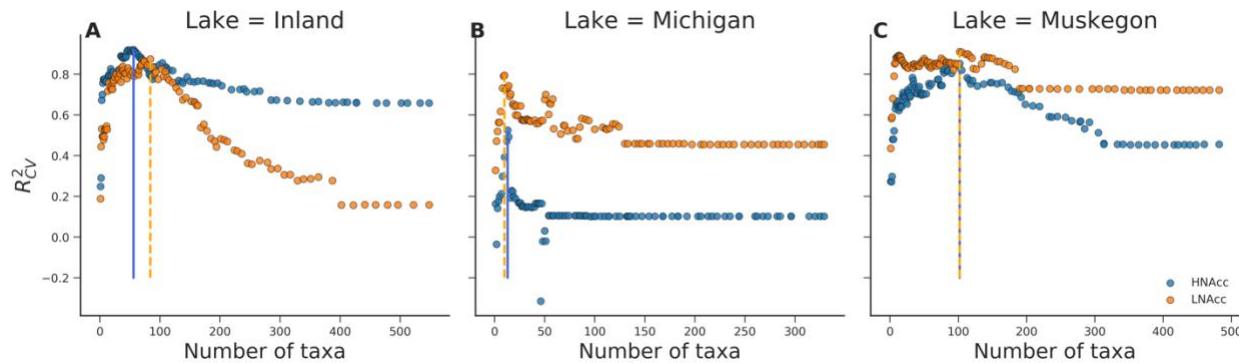
857
858
859
860
861

Figure 1: (A) Correlation between HNA cell counts and LNA cell counts across the three freshwater lake ecosystems. **(B-D)** Muskegon Lake bacterial heterotrophic production and its correlation with **(B)** HNA cell counts (HNAcc), **(C)** LNA cell counts, (LNAcc) and **(D)** total cell counts. The grey area in plots A, B, and D represents the 95% confidence intervals.



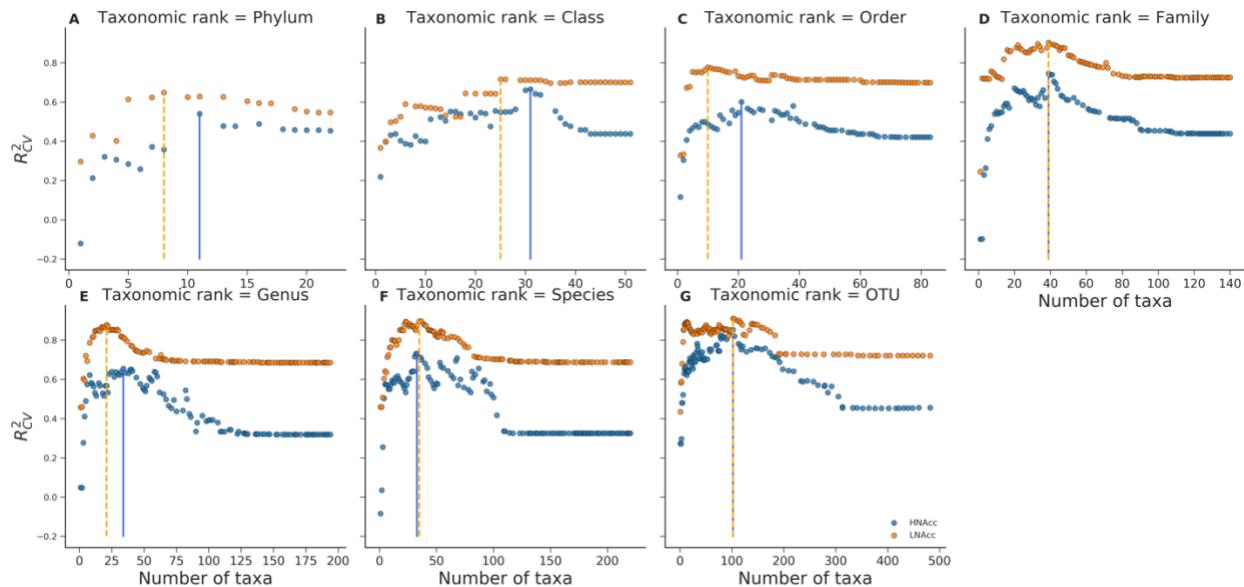
862

863 **Figure 2:** R_{CV}^2 in function of the number of OTUs, which were iteratively removed based on the
864 RL score and evaluated using the Lasso at every step. The solid (HNA) and dashed (LNA)
865 vertical lines corresponds to the threshold (i.e., number of OTUs) which resulted in a maximal
866 R_{CV}^2 . **(A)** Inland system ($R_{CV,max}^2 = 0.92$), HNAcc; **(B)** Lake Michigan ($R_{CV,max}^2 = 0.53$),
867 HNAcc; **(C)** Muskegon lake, HNAcc ($R_{CV,max}^2 = 0.85$); **(D)** Inland system, LNAcc ($R_{CV,max}^2 =$
868 0.87); **(E)** Lake Michigan, LNAcc ($R_{CV,max}^2 = 0.79$); **(F)** Muskegon lake, LNAcc ($R_{CV,max}^2 =$
869 0.91).



870

871 **Figure 3:** Evaluation of HNA cell counts (HNAcc) and LNA cell counts (LNAcc) predictions
872 using the Lasso at all taxonomic levels for the Muskegon lake system, expressed in terms of R_{CV}^2 ,
873 using different subsets of taxonomic variables. Subsets were determined by iteratively
874 eliminating the lowest-ranked taxonomic variables based on the RL score.

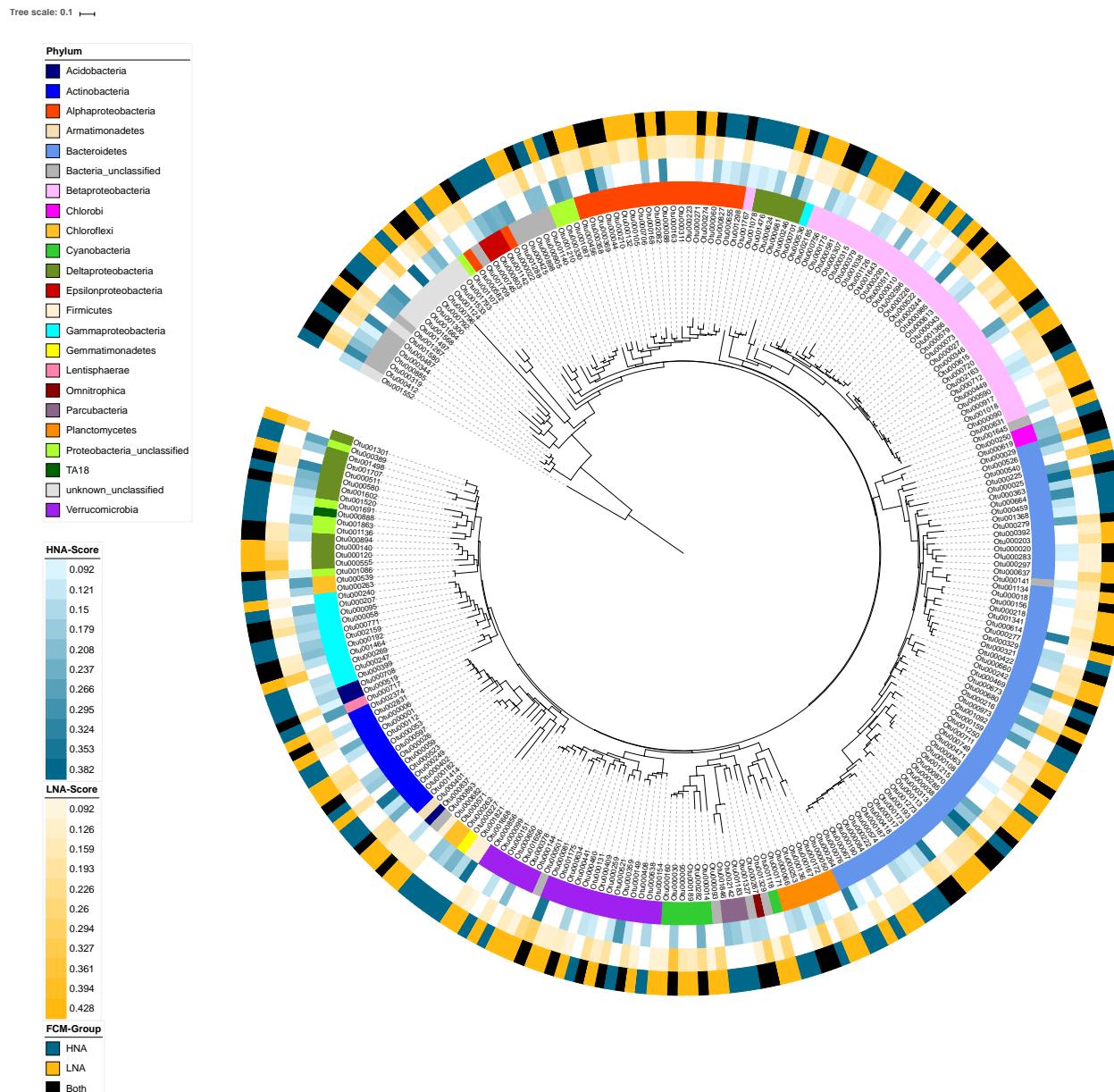


875

876 **Figure 4:** Hierarchical clustering of the RL score for the top 10 selected OTUs within each lake
877 system and FCM functional groups with the selected OTU (rows) across HNA and LNA groups
878 within the three lake systems (columns).

879

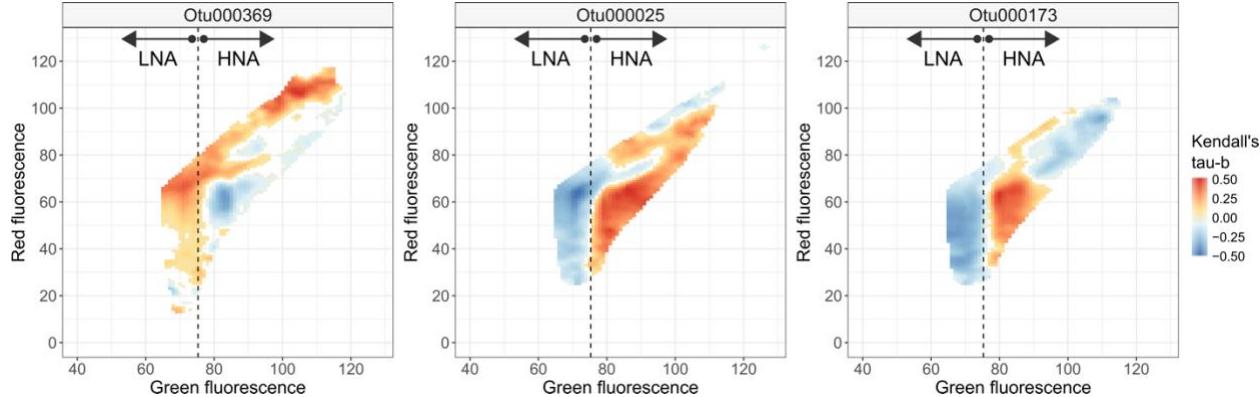
880 **Figure 5:** Phylogenetic tree with all HNA and LNA selected OTUs from each of the three lake
881 systems with their (*starting from the inside working to the outside*) (i) phylum level taxonomic
882 classification, (ii) HNA RL scores (*i.e.* HNA-Score), (iii) LNA RL scores (*i.e.* LNA-Score), and
883 (iv) and discrete association with HNA, LNA or both groups based on the RL score threshold
884 values (*i.e.* FCM-Group). Any OTU absent from a FCM group is white. The tree was rooted
885 using OTU1552.



886

887 **Figure 6:** Correlation (Kendall's tau-b) between the relative abundances of the top three OTUs
888 selected by the RL and the densities in the cytometric fingerprint. The fluorescence threshold
889 used to manually define HNA and LNA populations is indicated by the dotted line.

890



891 **Table 1:** Top scored OTUs according to the RL per functional population and lake ecosystem. Selection according to the Boruta
 892 algorithm is given in addition to the RL score. Descriptive statistics by means of the Kendall rank correlation coefficient have been
 893 added with level of significance in function of the HNA/LNA population.

Lake system	Functional group	OTU	RL score	Boruta selected	Kendall tau (HNA)	P-value (HNA)	Kendall tau (LNA)	P-value (LNA)	Phylum	Class	Order	Family	Genus (species)
Inland	HNA	OTU 369	0.382	yes	-0.43	<0.001	-0.28	0.0012	Proteobacteria	Alphaproteobacteria	Rhodospirralleles	alfVIII	alfVIII_ unclassified
	LNA	OTU 555	0.384	no	0.089	N.S.	0.22	0.011	Proteobacteria	Deltaproteobacteria	Bdellovibrionales	Bdellovibrionacea	OM27_clade
Michigan	HNA	OTU 025	0.362	yes	0.46	<0.001	0.41	<0.001	Bacteroidetes	Cytophagia	Cytophagales	bacIII	bacIII-A
	LNA	OTU 168	0.428	yes	0.26	0.0092	0.4	<0.001	Proteobacteria	Alphaproteobacteria	Rhizobiales	alfVII	alfVII_unclassified
Muskegon	HNA	OTU 173	0.462	yes	0.5	<0.001	0.2	0.019	Bacteroidetes	Flavobacteriia	Flavobacteriales	bacII	bacII-A
	LNA	OTU 029	0.568	no	0.26	0.0029	0.49	<0.001	Bacteroidetes	Cytophagia	Cytophagales	bacIII	bacIII-B (Algor)

894