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Abstract 22 

High- (HNA) and low-nucleic acid (LNA) bacteria are two operational groups identified by flow 23 

cytometry (FCM) in aquatic systems. HNA cell density often correlates strongly with 24 

heterotrophic production, while LNA cell density does not. However, which taxa are specifically 25 

associated with these groups, and by extension, productivity has remained elusive. Here, we 26 

addressed this knowledge gap by using a machine learning-based variable selection approach 27 

that integrated FCM and 16S rRNA gene sequencing data collected from 14 freshwater lakes 28 

spanning a broad range in physicochemical conditions. There was a strong association between 29 

bacterial heterotrophic production and HNA absolute cell abundances (R2 = 0.65), but not with 30 

the more abundant LNA cells. This solidifies findings, mainly from marine systems, that HNA 31 

and LNA could be considered separate functional groups, the former contributing a 32 

disproportionately large share of carbon cycling. Taxa selected by the models could predict HNA 33 

and LNA absolute cell abundances at all taxonomic levels, with the highest performance at the 34 

OTU level. Selected OTUs ranged from low to high relative abundance and were mostly lake 35 

system-specific (89.5%-99.2%). A subset of selected OTUs was associated with both LNA and 36 

HNA groups (12.5%-33.3%) suggesting either phenotypic plasticity or within-OTU genetic and 37 

physiological heterogeneity. These findings may lead to the identification of systems-specific 38 

putative ecological indicators for heterotrophic productivity. Generally, our approach allows for 39 

the association of OTUs with specific functional groups in diverse ecosystems in order to 40 

improve our understanding of (microbial) biodiversity-ecosystem functioning relationships.   41 
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Importance 42 

A major goal in microbial ecology is to understand how microbial community structure 43 

influences ecosystem functioning. Research is limited by the ability to readily culture most 44 

bacteria present in the environment and the difference in bacterial physiology in situ compared to 45 

in laboratory culture. Various methods to directly associate bacterial taxa to functional groups in 46 

the environment are being developed. In this study, we applied machine learning methods to 47 

relate taxonomic data obtained from marker gene surveys to functional groups identified by flow 48 

cytometry. This allowed us to identify the taxa that are associated with heterotrophic productivity 49 

in freshwater lakes and indicated that the key contributors were highly system-specific, regularly 50 

rare members of the community, and that some could switch between being low and high 51 

contributors. Our approach provides a promising framework to identify taxa that contribute to 52 

ecosystem functioning and can be further developed to explore microbial contributions beyond 53 

heterotrophic production. 54 

 55 

Keywords 56 

bacterioplankton, 16S rRNA, flow cytometry, machine learning, variable selection, aquatic 57 

microbiology, heterotrophic productivity   58 
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Introduction 59 

A key goal in the field of microbial ecology is to understand the relationship between microbial 60 

diversity and ecosystem functioning. However, it is challenging to associate bacterial taxa to 61 

specific ecosystem processes. Marker gene surveys have shown that natural bacterial 62 

communities are extremely diverse and the presence of a taxon does not imply its activity. The 63 

taxa observed in these surveys may have low metabolic potential, be dormant, or have recently 64 

died (1, 2). An additional hurdle is that the current standard unit of measure for microbial 65 

taxonomic analysis is relative abundance. This results in a negative correlation bias (3), which 66 

makes it difficult to quantitatively associate specific microbial taxa with microbial ecosystem 67 

functions using traditional correlation measures (4). Therefore, in order to ultimately model and 68 

predict bacterial communities, new methodologies, which integrate different data types, are 69 

needed to associate bacterial taxa with ecosystem functions (5). 70 

  71 

One such advance is the use of flow cytometry (FCM), which has been used extensively to study 72 

aquatic microbial communities (6–8). This single-cell technology partitions individual microbial 73 

cells into phenotypic groups based on their observable optical characteristics. Most commonly, 74 

cells are stained with a nucleic acid stain (e.g. SYBR Green I) and upon analysis assigned to 75 

either a low nucleic acid (LNA) or a high nucleic acid (HNA) group (9–12). HNA cells differ 76 

from LNA cells in both a considerable increase in fluorescence due to cellular nucleic acid 77 

content and scatter intensity due to cell morphology. The HNA group is thought to contribute 78 

more, whereas the LNA population has been considered to contribute less to productivity of a 79 

microbial community (6, 13–15). This is based on positive linear relationships between HNA 80 

abundance and (a) bacterial heterotrophic production (BP) (10, 14–17), (b) bacterial activity 81 
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measured using the dye 5-cyano-2,3-ditolyl tetrazolium chloride (18, 19), (c) phytoplankton 82 

abundance (20), and (d) dissolved organic carbon concentrations (21). Additionally, growth rates 83 

are higher for HNA than LNA cells (13, 16, 22) and HNA cells accrue cell damage significantly 84 

faster than the LNA cells under temperature (23) and chemical oxidant stress (24). In contrast, 85 

LNA bacterial growth rates are positively correlated with temperature and negatively correlated 86 

with chlorophyll a (25). However, it is important to note that LNA cells are often smaller than 87 

HNA cells (12, 25–27) and therefore LNA cells could have similar amino acid incorporation 88 

rates compared to HNA cells when evaluating biomass-specific production (12). 89 

 90 

Here we used a data-driven approach to associate the dynamics of individual taxa with those of 91 

the LNA and HNA groups in freshwater lakes by adopting a machine learning variable selection 92 

strategy. We applied two variable selection methods, the Randomized Lasso (RL) (28) and the 93 

Boruta algorithm (29) to associate individual taxa with HNA and LNA cell abundances. These 94 

methods extend on traditional machine learning algorithms (i.e. the Lasso and Random forest 95 

algorithm for the RL and Boruta algorithm, respectively) by making use of resampling and 96 

randomization. These extensions are needed as (a) the Lasso algorithm is not suited for 97 

compositional data because the regression coefficients have an unclear interpretation, and single 98 

variables may be selected when correlated to other variables (30), and (b) Random Forest 99 

algorithms can be biased towards correlated variables (31), which is an intrinsic issue with 100 

relative abundance data (3). The extended methods allow the user to either assign a probability of 101 

selection (RL) or statistically decide which taxa to select (Boruta).   102 

 103 
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We gathered samples from three types of lake systems (i) a set of oligo- to eutrophic small inland 104 

lakes, (ii) a short residence time mesotrophic freshwater estuary lake (Muskegon Lake), and (iii) 105 

a large oligotrophic Great Lake (Lake Michigan), all located in Michigan, USA. We then used 106 

the RL and Boruta algorithms to associate specific bacterial taxa to HNA and LNA FCM 107 

functional groups, and via the observed HNA-productivity relationship, to functioning. To 108 

validate the RL-based association with the HNA and/or LNA group, we correlated taxon 109 

abundances with specific regions within the FCM fingerprint at finer resolution (i.e. bins) 110 

without prior knowledge of the HNA/LNA groups. Furthermore, we tested for phylogenetic 111 

conservation of HNA and LNA functional groups using the probabilities from the RL output and 112 

for the association between the selected taxa and productivity.   113 
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Results 114 

Study lakes are dominated by LNA cells 115 

The inland lakes (6.3 x 106 cells/mL) and Muskegon Lake (6.0 x 106 cell/mL) had significantly 116 

higher total cell abundances than Lake Michigan (1.7 x 106 cell/mL; p = 2.7 x 10-14). Across all 117 

lakes, the mean proportion of HNA cell counts (HNAcc) to total cell counts was much lower 118 

(30.4 ± 9%) compared to the mean proportion of LNA cell counts (LNAcc; 69.6 ± 9%). Through 119 

ordinary least squares regression, there was a strong correlation between HNAcc and LNAcc 120 

across all data (R2 = 0.45, P = 2 x 10-24; Figure 1A), however, only Lake Michigan (R2 = 0.59, P 121 

= 5 x 10-11) and Muskegon Lake (R2 = 0.44, P= 2 x 10-9) had significant correlations when the 122 

three ecosystems were considered separately.  123 

 124 

HNA cell counts and heterotrophic bacterial production are strongly correlated 125 

For mesotrophic Muskegon Lake, there was a strong correlation between total bacterial 126 

heterotrophic production and HNAcc (R2 = 0.65, P = 1e-05; Figure 1B), no correlation between 127 

BP and LNAcc (R2 = 0.005, P = 0.31; Figure 1C), and a weak correlation between heterotrophic 128 

production and total cell counts (R2 = 0.18, P = 0.03; Figure 1D). There was a positive (HNA) 129 

and negative (LNA) correlation between the fraction of HNA or LNA to total cells and 130 

productivity, however, the relationship was weak and not significant (R2 = 0.14, P = 0.057). 131 

 132 

Association of OTUs to HNA and LNA groups by Randomized Lasso 133 

The relevance of specific OTUs for predicting FCM functional group abundance was assessed 134 

using the Randomized Lasso (RL), which assigns a score between 0 (unimportant) to 1 (highly 135 

important) to each taxon in function of the target variable: HNAcc or LNAcc. To assess the 136 
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predictive power of a subset of OTUs based on the RL, we iteratively removed the OTUs with 137 

the lowest RL score in a recursive variable elimination scheme. 𝑅𝐶𝑉
2 , a goodness-of-fit measure 138 

using the 𝑅2 of how well a set of selected OTUs predicts HNAcc or LNAcc compared to true 139 

values using cross-validation, increased when lower-ranked OTUs were removed (moving from 140 

right to left on Figure 2). The increase was gradual for the inland lakes (Figure 2A) and 141 

Muskegon Lake (Figure 2C) but was abrupt for Lake Michigan (Figure 2B). The proportion of 142 

taxa that resulted in the highest 𝑅𝐶𝑉
2  (see solid (HNA) and dotted (LNA) lines in Figure 2) was 143 

10.2% of all taxa for HNA and 17.7% for LNA for the inland lakes, 4.0% for HNA and 3.0% for 144 

LNA for Lake Michigan, and 21.1% for both HNA and LNA in Muskegon Lake. Lake Michigan 145 

differed the most from other lake systems, having the lowest 𝑅𝐶𝑉
2 , a sharp increase in 𝑅𝐶𝑉

2  as 146 

OTUs were eliminated, and a considerably lower number of OTUs that were retained (13 for 147 

HNAcc, 10 for LNAcc). No relationship could be established between rankings of variable 148 

selection methods and the relative abundance of individual OTUs (Figure S1). HNAcc and 149 

LNAcc could be predicted with equivalent performance to relative HNA and LNA proportions, 150 

yet the increase between initial and optimal performance was larger (Figure S2). The final 151 

predictive performance was higher when relative OTU abundances were transformed using the 152 

CLR-transformation (Figure S3).  153 

 154 

OTU-level predictions outperform other taxonomic levels 155 

𝑅𝐶𝑉
2  values were considerably higher than zero on all taxonomic levels, indicating that our results 156 

were consistent across all taxonomic levels and that different levels can be related to changes in 157 

HNAcc and LNAcc. While the OTU level resulted in the best prediction of HNAcc and LNAcc 158 

(Figure 3), each individual OTU had a lower RL score compared to other taxonomic levels, 159 
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which on average became lower as the taxonomic level decreased (Figure S4). The fraction of 160 

variables (i.e. taxa) that could be removed to reach the maximum 𝑅𝐶𝑉
2  decreased as the 161 

taxonomic level became less resolved.  162 

 163 

Validation of RL OTU selection results using the Boruta algorithm and Kendall tau statistic 164 

Venn diagrams were constructed to visualize consistency in the number of OTUs that were 165 

selected according to the RL method, the Boruta algorithm, and individual correlations with 166 

HNAcc and LNAcc via the Kendall rank correlation coefficient (Figure S5). The Kendall rank 167 

correlation coefficient selected the most OTUs, followed by the RL, and then the Boruta 168 

algorithm (except for HNAcc in Lake Muskegon; Figure S5). The Boruta algorithm selects 169 

relevant variables based on the importance of the most permuted variable as retrieved from 170 

multiple Random Forest models (see materials and methods). The Boruta algorithm ranks 171 

selected OTUs as ‘1’, tentative OTUs as ‘2’, and all other OTUs have lower ranks, depending on 172 

the stage in which they were eliminated. The fraction of selected OTUs was always smaller than 173 

1% across lake systems and functional groups (Figure S6).  All methods agreed on only a small 174 

subset of OTUs.  175 

 176 

For each lake system individually, the top RL-scored OTU for HNAcc was also selected by the 177 

Boruta algorithm, whereas both methods only agreed for Lake Michigan LNAcc (Table 1). 178 

Across all lake systems, OTU060 (Proteobacteria;Sphingomonadales;alfIV_unclassified) was the 179 

only OTU selected across all lake systems (LNAcc-associated). As Random Forest regressions 180 

are the base method of the Boruta algorithm, we compared the predictive power of Boruta 181 

selected OTUs to those of all OTUs using Random Forest regression. For all lake systems and 182 
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functional groups, the performance increased when only Boruta-selected OTUs were included in 183 

the model (Figure S7).  Lasso predictions, in which OTUs were selected according to the RL, 184 

were better as opposed to Random Forest predictions in which OTUs were selected according to 185 

the Boruta algorithm (Figure S7).  186 

 187 

Although all methods only agreed on a minority of OTUs, we can still formulate a number of 188 

general conclusions across these methods: (1) the selected OTUs were mostly lake systems 189 

specific, (2) a small fraction of OTUs was needed to predict changes in community composition, 190 

(3) selected OTUs were associated with absolute HNA or LNA abundance, (4) top RL-ranked 191 

HNA-associated OTUs were also selected according to the Boruta algorithm and (5) when the 192 

RL and Boruta both agreed on an OTU it was always significantly correlated with both HNAcc 193 

or LNAcc.  194 

 195 

HNA- and LNA-associated OTUs differed across lake systems  196 

RL-selected OTUs were mostly assigned to either the HNA or LNA groups and there was 197 

limited correspondence across lake systems between the selected OTUs (Figure 4). 1.5%-1.9% 198 

of the OTUs selected for Lake Michigan were also associated with HNAcc or LNAcc for the 199 

inland lakes or Muskegon Lake. This amount was higher for the shared OTUs between the inland 200 

lakes and Lake Muskegon, but still only amounted to 6.0% (HNAcc) or 10.5% (LNAcc) of all 201 

common OTUs. For OTUs selected in all three freshwater environments, RL scores were lake 202 

ecosystem specific, with only a significant similarity between the Inland lakes and Muskegon 203 

lake for HNAcc (r = 0.21, P = 0.0042; Figure S8). The Boruta algorithm selected mostly OTUs 204 

that were unique both for the lake system and FCM group (Figure S9). 205 
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 206 

The Bacteroidetes, Betaproteobacteria, Alphaproteobacteria, and Verrucomicrobia contributed 207 

54% of the 258 OTUs selected by the RL (Figure 5). Most selected OTUs belonging to these 208 

four phyla were associated with the LNA group (41-52% of selected OTUs), less than one third 209 

with the HNA group (14-30% of selected OTUs), and the remainder were selected as associated 210 

with both the LNA and HNA groups (23-36% of selected OTUs). In Muskegon Lake, OTU173 211 

(Bacteroidetes;Flavobacteriales;bacII-A) was selected as the major HNA-associated taxon while 212 

OTU29 (Bacteroidetes;Cytophagales;bacIII-B) had the highest RL score for LNA OTUs. In Lake 213 

Michigan, OTU25 (Bacteroidetes;Cytophagales;bacIII-A), was selected as the major HNA-214 

associated  taxon while OTU168 (Alphaproteobacteria:Rhizobiales:alfVII) was selected as a 215 

major LNA-associated  taxon. For the inland lakes, OTU369 216 

(Alphaproteobacterial;Rhodospirillales;alfVIII) was the major HNA-associated OTU while the 217 

OTU555 (Deltaproteobacteria;Bdellovibrionaceae;OM27) was the major LNA-associated  taxon. 218 

Most OTUs were selected for Muskegon Lake (153 OTUs; compared to 136 OTUs from the 219 

Inland Lakes and 20 OTUs from Lake Michigan) and 33% of these OTUs were associated with 220 

both FCM groups.  221 

 222 

Association with HNA and LNA is not phylogenetically conserved  223 

To evaluate how much evolutionary history explains whether a selected taxon was associated 224 

with the HNA and/or LNA group(s), we calculated Pagel’s λ, Blomberg’s K, and Moran’s I, 225 

which are different measures for testing whether there was a phylogenetic conservation of these 226 

traits. No phylogenetic signal was detected when using Pagel’s λ with either using FCM 227 

functional group as a discrete variable (i.e. associating an OTU with HNA, LNA, or Both or in 228 
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relation to the HNA RL score, which is a continuous variable (lambda = 0.16; P = 1) (Figure 5). 229 

However, there was a significant phylogenetic signal for the LNA RL score (p = 0.003, λ = 230 

0.66), suggesting a stronger phylogenetic structure in the LNA group compared to the HNA 231 

group. This significant result in the LNA group was not found when other measures of 232 

phylogenetic signal were considered (Blomberg’s K (HNA: p = 0.63; LNA: p = 0.54), and 233 

Moran’s I (HNA: p = 0.88; LNA: p = 0.12)). 234 

 235 

Flow cytometry fingerprints confirm associated taxa and reveal more complex relationships 236 

between taxonomy and flow cytometric features 237 

To confirm the association of the final selected OTUs with the HNA and LNA groups, and 238 

resolve how HNA and LNA groups correspond to OTU-level clustering of cells on the FCM 239 

fingerprints, we calculated the correlation between the density of individual small regions (i.e. 240 

“bins”) in the flow cytometry data with the relative abundances of the OTUs. Note that (i) as 241 

these values denote correlations, they do not indicate actual presence, and (ii) the threshold that 242 

was used to manually make the distinction between HNAcc and LNAcc (i.e. dotted line in 243 

Figure 6) lies very close to the border between the two regions of positive and negative 244 

correlation. OTU25 correlated with bins that when aggregated corresponded to almost the entire 245 

HNA region, whereas OTU173 was limited to bins corresponding to the bottom of the HNA 246 

region (Figure 6). In contrast, OTU369 was positively correlated to bins situated in both the 247 

LNA and HNA regions of the cytometric fingerprint, highlighting results from Figure 4 where 248 

OTU369 was selected for both HNA and LNA.  249 

 250 

 251 
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Proteobacteria and rare taxa correlate with productivity measurements 252 

The Kendall rank correlation coefficient was calculated between CLR-transformed abundances 253 

of individual OTUs and productivity measurements. OTU481 was the sole OTU that correlated 254 

with productivity after a multiple testing correction (Kendall's tau-b = -0.67, P = 0.00003, P_adj 255 

= 0.016), but had a low RL score (0.022) for HNAcc and was not selected according to the 256 

Boruta algorithm. Of the top 10 OTUs selected for HNAcc according to the RL, three were still 257 

significantly associated with productivity (OTU614: P = 0.0064; OTU412, P = 0.044; OTU487, 258 

P = 0.014), but not when corrected for multiple hypothesis testing. Some OTUs that had a high 259 

RL score also had a positive response to productivity measurements, though they were 260 

insignificant after multiple testing correction. At the phylum level, only Proteobacteria were 261 

significantly correlated to productivity measurements (Kendall's tau = 0.49, P = 0.002, P_adj = 262 

0.05).  263 

Discussion 264 

Our study furthers the integration of functional and genotypic information to determine the 265 

complex relationships between microbial diversity and ecosystem functioning. Our results 266 

confirmed previous findings that flow cytometric operational groups are distinct functional 267 

groups having divergent correlations with heterotrophic productivity. Using two machine 268 

learning based variable selection strategies, we could associate bacterial taxa identified by 16S 269 

rRNA gene sequencing to these two functional groups in three types of freshwater lake systems 270 

in the Great Lakes region. We revealed that (i) HNA and LNA cell abundances were best 271 

predicted by a small subset of OTUs that were unique to each lake type, (ii) some OTUs were 272 

included in the best model for both HNA and LNA abundance, (iii) there was no phylogenetic 273 

conservation of HNA and LNA group association and (iv) freshwater FCM fingerprints display 274 
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more complex patterns related to OTUs and productivity compared to the traditional dichotomy 275 

of HNA and LNA. 276 

 277 

Although high-nucleic acid cell counts (HNAcc) and low-nucleic acid cell counts (LNAcc) were 278 

correlated with each other, only the association between bacterial heterotrophic production (BP) 279 

and HNAcc was strong and significant. This is in line with previous reports, though past studies 280 

have focused on the proportion of HNA rather than absolute cell abundances and are strongly 281 

biased towards marine systems. For example, Bouvier et al. (11) found a correlation between the 282 

fraction of HNA cells and BP within a large dataset of 640 samples across various freshwater to 283 

marine environments (Pearson's r  = 0.49), whereas a study off the coast of the Antarctic 284 

Peninsula found a moderate correlation (R2  = 0.36; (17)). Another study in the Bay of Biscay 285 

also found this association (R2 = 0.16; (15)), however, the authors attributed this difference to be 286 

related to cell size and not due to the activity of HNA. Notably, these studies were predominantly 287 

testing the association of marine HNA groups. The high correlation coefficients observed in our 288 

study may indicate a strong coupling between freshwater carbon cycling and HNA group 289 

abundance in freshwater lake systems. Consequently, this suggests an important role of HNA 290 

bacteria in the disproportionately large role that freshwater systems in the global carbon cycle 291 

(32). It has to be noted that our study only evaluated bacterial heterotrophic production using 292 

leucine amino acid incorporation, which biases our analyses against bacterial groups that cannot 293 

import or assimilate this compound (33). Finally, as our correlations with proportional HNA 294 

group abundances also indicated less strong correlations than with absolute HNAcc, we suggest 295 

absolute HNAcc should be used to best predict and study heterotrophic bacterial production.  296 

 297 
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Similar to other microbiome studies that use machine learning, only a minority of OTUs were 298 

needed to predict the phenotype of interest, with low predictive power of each single OTU, but 299 

strong predictive capacity of the selected group of OTUs (17, 34–36). Both the RL and Boruta 300 

algorithm have been applied to microbiome studies before, for example in the selection of genera 301 

in the human microbiome associated with BMI (37), salivary pH and lysozyme activity (38), and 302 

in relation to multiple sclerosis (39) or with differing diets during primate pregnancy (40). The 303 

Boruta algorithm has also recently been proposed as one of the top-performing variable selection 304 

methods that make use of Random Forests (41). Despite the power of these approaches, 305 

improvements can be made when attempting to integrate different types of data. For example, 306 

16S rRNA gene sequencing still faces the hurdles of DNA extraction (42) and 16S copy number 307 

bias (43). Moreover, detection limits are different for FCM (expressed in the number of cells) 308 

and 16S rRNA gene sequencing (expressed in the number of gene counts or relative abundance), 309 

therefore creating data that may be different in resolution. 310 

 311 

The selection of different sets of HNA and LNA OTUs across the three freshwater systems 312 

indicates that different taxa underlie the universally observed HNA and LNA functional groups 313 

across aquatic systems. This is perhaps not surprising as it has been shown that there is strong 314 

species sorting in lake systems  (44, 45), shaping community composition through diverging 315 

environmental conditions between the lake systems presented here (46). This high system 316 

specificity also explains the low RL scores for individual OTUs, as the spatial and temporal 317 

dynamics of an OTU diverged strongly across systems. For example, an OTU that has an RL 318 

score of 0.5 implies that on average it will only be chosen one out of two times in a Lasso model. 319 

 320 
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Some OTUs were associated with both HNAcc and LNAcc. There are multiple possible 321 

explanations for this: (a) In line with scenario 1 from Bouvier et al (11), cells transition from 322 

active growth (primarily HNA) to death or a dormant state (primarily LNA), depending on 323 

variable conditions over the spatiotemporal gradients sampled in this study. A large fraction of 324 

cells (40-95%) in aquatic systems has indeed been inferred to be dormant (47–49), in line with 325 

the predominance of LNA cells. (b) The same OTU may occur in both HNA and LNA groups 326 

due to phenotypic plasticity, which is more in line with scenario 4 from Bouvier et al (11). 327 

Bacterial phenotypic plasticity in size and morphology has been observed (50), and agrees with 328 

suggestions that HNA and LNA groups correspond to cells of differing size (12, 15, 27). (c) The 329 

association of taxa to LNA and HNA can also mean that these taxonomic groups thrive within 330 

either high or low productivity ecosystems and not necessarily that they are responsible for the 331 

change in productivity. (d) Finally, OTU level grouping of bacterial taxa can disguise genomic 332 

and corresponding phenotypic heterogeneity (51–54), which may be an alternate explanation for 333 

inconsistent associations between OTUs and FCM functional groups.  334 

 335 

We found no clear phylogenetic conservation of association to HNAcc or LNAcc. This is in 336 

contrast to a recent study that found a clear signal at the phylum level across different aquatic 337 

systems (27). However, lake water samples were an exception to the general trend. In addition, it 338 

is notable that Proctor et al. (27) separated HNA and LNA cells based on cell size (where HNA 339 

cells were defined at approximately >0.4 𝛍m and LNA cells were approximately 0.2-0.4 𝛍m, 340 

based on 50-90% removal of HNA cells after filtering using a 0.4 𝛍m filter), while our study 341 

separated these FCM functional groups on the basis of fluorescence intensity alone. A more 342 

direct estimation of phylogenetic conservation that directly combines cell sorting of HNA or 343 
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LNA cells and sequencing, such as the approach of Vila-Costa et al. (55), will be needed to 344 

resolve these contrasting results. Considering the correlations between FCM-based phenotypic 345 

diversity and sequencing-based taxonomic diversity (56, 57), there clearly is a link between 346 

taxonomy and the structure in microbial cytometry data (17).  However, the HNA/LNA 347 

dichotomy is too unresolved, as our correlation analysis between smaller regions in the 348 

cytometric fingerprint and the highly-ranked OTUs revealed a more complex relationship. This 349 

agrees with recent research, in which more than two FCM operational groups in aquatic systems 350 

were identified (17, 58, 59)7).   351 

 352 

The Boruta algorithm and RL scores agreed on a small subset of OTUs, including the top-ranked 353 

HNA OTU for all lake systems according to RL, which motivates further investigation of the 354 

ecology of these OTUs. While little detailed information on the identities and ecology of HNA 355 

and LNA freshwater lake bacterial taxa exists, several studies identified Bacteroidetes among the 356 

most prominent HNA taxa, which is in line with our findings. Independent research by Vila-357 

Costa et al. (55) found that the HNA group was dominated by Bacteroidetes in summer samples 358 

from the Mediterranean Sea, Read et al. (19) showed that HNA abundances correlated with 359 

Bacteroidetes, and Schattenhofer et al. (60) reported that the Bacteroidetes accounted for the 360 

majority of HNA cells in the North Atlantic Ocean. In Muskegon Lake, OTU173 was the 361 

dominant HNA taxon and is a member of the Order Flavobacteriales (bacII-A). The bacII group 362 

is a very abundant freshwater bacterial group and has been associated with senescence and 363 

decline of an intense algal bloom (61), suggesting their potential for bacterial production. BacII-364 

A has also made up ~10% of the total microbial community during cyanobacterial blooms, 365 

reaching its maximum density immediately following the bloom (62). In Lake Michigan, 366 
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OTU25, a member of the Bacteroidetes Order Cytophagales known as bacIII-A, was the top 367 

HNA OTU. However, much less is known about this specific group of Bacteroidetes. Though, 368 

the bacII-A/bacIII-A group has been strongly associated with more heterotrophically productive 369 

headwater sites (compared to higher order streams) from the River Thames, showing a negative 370 

correlation in rivers with dendritic distance from the headwaters, indicating that these taxa may 371 

contribute more to productivity (19). In the inland lakes, OTU369 was the major HNA taxon and 372 

is associated with the Alphaproteobacteria Order Rhodospirillales (alfVIII), which to our 373 

knowledge is a group with very little information available in the literature. In contrast to our 374 

findings of Bacteroidetes and Alphaproteobacterial HNA selected OTUs, Tada & Suzuki (63) 375 

found that the major HNA taxon from an oceanic algal culture was from the Betaproteobacteria 376 

whereas LNA OTUs were within the Actinobacteria phylum. 377 

Conclusions 378 

We integrated flow cytometry (FCM) and 16S rRNA gene amplicon sequencing data to associate 379 

bacterial taxa with productivity in freshwater lake systems. Our results on a diverse set of 380 

freshwater lake systems indicate that the taxa associated with HNA and LNA functional groups 381 

are lake-specific, and that association with these functional groups is not phylogenetically 382 

conserved. With this study, we show the potential and limitations of integrating flow cytometry-383 

derived in situ functional information with sequencing data using machine learning approaches. 384 

This integration of data enhances our insights into which taxa may contribute to ecosystem 385 

functioning in aquatic bacterial communities. While these data-driven hypotheses will need 386 

further verification, the method is promising considering the wide application of FCM in aquatic 387 

environments, its recent application in other sample matrices (e.g., faeces (64), soils (65), and 388 
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wastewater sludge (66)), and the introduction of novel stains to delineate operational groups 389 

based on phenotypic traits (67).  390 

Materials and Methods 391 

Data collection and DNA extraction, sequencing and processing  392 

In this study, we used a total of 173 samples collected from three types of lake systems described 393 

previously (46), including: (a) 49 samples from Lake Michigan (2013 & 2015), (b) 62 samples 394 

from Muskegon Lake (2013-2015; one of Lake Michigan’s estuaries), and (c) 62 samples from 395 

twelve inland lakes in Southeastern Michigan (2014-2015). For more details on sampling, please 396 

see Figure 1 and  the Field Sampling, DNA extraction, and DNA sequencing and processing 397 

sections within Chiang et al. (46). In all cases, water for microbial biomass samples were 398 

collected and poured through a 210 μm and 20 μm bleach sterilized nitex mesh and sequential in-399 

line filtration was performed using 47 mm polycarbonate in-line filter holders (Pall Corporation, 400 

Ann Arbor, MI, USA) and an E/S portable peristaltic pump with an easy-load L/S pump head 401 

(Masterflex®, Cole Parmer Instrument Company, Vernon Hills, IL, USA) to filter first through a 402 

3 μm isopore polycarbonate (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) and 403 

second through a 0.22 μm Express Plus polyethersulfone membrane filters (47 mm diameter, 404 

Millipore, MA, USA). The current study only utilized the 3 - 0.22 μm fraction for analyses.  405 

 406 

DNA extractions and sequencing were performed as described in Chiang et al. (46). Fastq files 407 

were submitted to NCBI sequence read archive under BioProject accession number 408 

PRJNA414423 (inland lakes), PRJNA412983 (Lake Michigan), and PRJNA412984 (Muskegon 409 

Lake). We analyzed the sequence data using MOTHUR V.1.38.0 (seed = 777; (Schloss et al. 410 

2009) based on the MiSeq standard operating procedure and put together at the following link: 411 
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https://github.com/rprops/Mothur_oligo_batch. A combination of the Silva Database (release 412 

123; (68)) and the freshwater TaxAss 16S rRNA database and pipeline (69) was used for 413 

classification of operational taxonomic units (OTUs).  414 

 415 

For the taxonomic analysis, each of the three lake datasets were analyzed separately and treated 416 

with an OTU abundance threshold cutoff of at least 5 sequences in 10% of the samples in the 417 

dataset (similar strategy to (70)). For comparison of taxonomic abundances across samples, each 418 

of the three datasets were then rarefied to an even sequencing depth, which was 4,491 sequences 419 

for Muskegon Lake samples, 5,724 sequences for the Lake Michigan samples, and 9,037 420 

sequences for the inland lake samples. Next, the relative abundance at the OTU level was 421 

calculated using the transform_sample_counts() function in the phyloseq R package (71) by 422 

taking the count value and dividing it by the sequencing depth of the sample. For all other 423 

taxonomic levels, the taxonomy was merged at certain taxonomic ranks using the tax_glom() 424 

function in phyloseq (71) and the relative abundance was re-calculated.  425 

 426 

Heterotrophic bacterial production measurements 427 

Muskegon Lake samples from 2014 and 2015 were processed for heterotrophic bacterial 428 

production using the [3H] leucine incorporation into bacterial protein in the dark method (72, 73). 429 

At the end of the incubation with [3H]-leucine, cold trichloroacetic acid-extracted samples were 430 

filtered onto 0.2 µm filters that represented the leucine incorporation by the bacterial community.  431 

Measured leucine incorporation during the incubation was converted to bacterial carbon 432 

production rate using a standard theoretical conversion factor of 2.3 kg C per mole of leucine 433 

(73).  434 
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 435 

Flow cytometry, measuring HNA and LNA 436 

In the field, a total of 1 mL of 20 μm filtered lake water were fixed with 5 μL of glutaraldehyde 437 

(20% vol/vol stock), incubated for 10 minutes on the bench (covered with aluminum foil to 438 

protect from light degradation), and then flash frozen in liquid nitrogen to later be stored in -439 

80°C freezer until later processing with a flow cytometer. Flow cytometry procedures followed 440 

the protocol laid out in Props et al. (56), which also uses the samples presented in the current 441 

study (Michigan and Muskegon samples). Samples were stained with SYBR Green I and 442 

measured in triplicate. The lowest number of cells collected after denoising was 2342. HNA and 443 

LNA groups were selected using the fixed gates introduced in Prest et al. (74) and plotted in 444 

Figure S10.  Cell counts were determined per HNA and LNA group and averaged over the three 445 

replicates (giving rise to HNAcc and LNAcc). All cytometry data is available on the 446 

FlowRepository database (75): inland lakes (ID:FR-FCM-ZY9J), Michigan and Muskegon 447 

(ID:FR-FCM-ZYZN).  448 

 449 

Data analysis 450 

Processed data and analysis code for the following analyses can be found on the GitHub page for 451 

this project at https://deneflab.github.io/HNA_LNA_productivity/. 452 

 453 

HNA-LNA and HNA-Productivity Statistics and Regressions 454 

We tested the difference in absolute number of cells within HNA and LNA functional groups 455 

across running analysis of variance with a post-hoc Tukey HSD test (aov() and TukeyHSD(); 456 

stats R package; (76). In addition, we tested the association of HNA and LNA to each other and 457 
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with productivity by running ordinary least squares regression with the lm() (stats R package; 458 

(76)).  459 

 460 

Ranking correlation  461 

Ranking correlation between variables was calculated using the Kendall rank correlation 462 

coefficient, using the kendalltau() function in Scipy (v1.0.0) or cor() in R (v3.2). The ‘tau-b’ 463 

implementation was used, which is able to deal with ties. Values range from -1 (strong 464 

disagreement) to 1 (strong agreement). The same statistic was used to assess the similarity 465 

between rankings of variable selection methods.  466 

 467 

Centered-log ratio transform  468 

First, following guidelines from Paliy & Shanker (77), Gloor et al. (3) and Quinn et al. (78), 469 

relative abundances of OTUs were transformed using a centered log-ratio (CLR) transformation 470 

before variable selection was applied. This means that the relative abundance 𝑥𝑖of a taxa was 471 

transformed according to the geometric mean of that sample, in which there are  taxa present:  472 

.   473 

Zero values were replaced by . This was done using the scikit-bio package 474 

(www.scikit-bio.org, v0.4.1).  475 

 476 

Lasso & stability selection 477 
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Scores were assigned to taxa based on an extension of the Lasso estimator, which is called 478 

stability selection (28). In the case of 𝑛 samples, the Lasso estimator fits the following regression 479 

model:  480 

  ,   481 

in which  denotes the abundance table,  the target to predict, which either is HNA cell 482 

abundances (HNAcc) or LNA cell abundances (LNAcc),  the weight of each variable and  is a 483 

regularization parameter which controls the complexity of the model and prevents overfitting. 484 

The Lasso performs an intrinsic form of variable selection, as the weights of certain variables 485 

will be put to zero.  486 

 487 

Stability selection, when applied to the Lasso, is in essence an extension of the Lasso regression. 488 

It implements two types of randomizations to assign a score to the variables, and is therefore also 489 

called the Randomized Lasso (RL). The resulting RL score can be seen as the probability that a 490 

certain variable will be included in a Lasso regression model (i.e., its weight will be non-zero 491 

when fitted). When performing stability selection, the Lasso is fitted to  different subsamples of 492 

the data of fraction , denoted as  and corresponding . A second randomization is added by 493 

introducing a weakness parameter . In each model, the penalty  changes to a randomly chosen 494 

value in the set , which means that a higher penalty will be assigned to a random subset 495 

of the total amount of variables. The Randomized Lasso therefore becomes:  496 

  ,   497 

where  is a random variable which is either  or 1. Next, the Randomized Lasso score (RL 498 

score) is determined  by counting the number of times the weight of a variable was non-zero for 499 
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each of the  models and divided by . Meinshausen and Bühlmann (28) show that, under 500 

stringent conditions, the number of falsely selected variables is controlled for the Randomized 501 

Lasso when the RL score is higher than 0.5.  If  is varied, one can determine the stability path, 502 

which is the relationship between  and  for every variable. For our implementation, , 503 

 and the highest score was selected in the stability path for which  ranged from  504 

until , logarithmically divided in 100 intervals. The RandomizedLasso() function from the 505 

scikit-learn machine learning library was used ((79), v0.19.1).  506 

 507 

Random Forests & Boruta 508 

The Boruta algorithm is a wrapper algorithm that makes use of Random Forests as a base 509 

classification or regression method in order to select all relevant variables in function of a 510 

response variable (29). Similar to stability selection, the method uses an additional form of 511 

randomness in order to perform variable selection. Random Forests are fitted to the data multiple 512 

times. To remove the correlation to the response variable, each variable gets per iteration a so-513 

called shadow variable, which is a permuted copy of the original variable. Next, the Random 514 

Forest algorithm is run with the extended set of variables, after which variable importances are 515 

calculated for both original and shadow variables. The shadow variable that has the highest 516 

importance score is used as reference, and every variable with significantly lower importance, as 517 

determined by a Bonferroni corrected t-test, is removed. Likewise, variables containing an 518 

importance score that is significantly higher are included in the final list of selected variables. 519 

This procedure can be repeated until all original variables are either discarded or included in the 520 

final set; variables that remain get the label ‘tentative’ (i.e., after all repetitions it is still not 521 

possible to either select or discard a certain variable). We used the boruta_py package to 522 
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implement the Boruta algorithm (https://github.com/scikit-learn-contrib/boruta_py). Random 523 

Forests were implemented using RandomForestRegressor() function from scikit-learn (79), 524 

v0.19.1. Random Forests were run with 200 trees, the number of variables considered at every 525 

split of a decision tree was  and the minimal number of samples per leaf was set to five. The 526 

latter were based on default values for Random Forests in a regression setting (80). The Boruta 527 

algorithm was run for 300 iterations, variables were selected or discarded at  after 528 

performing Bonferroni correction.   529 

 530 

Recursive variable elimination  531 

Scores of the Randomized Lasso were evaluated using a recursive variable elimination strategy 532 

(81). Variables were ranked according to the RL score. Next, the lowest-ranked variables were 533 

eliminated from the dataset, after which the Lasso was applied to predict HNAcc and LNAcc 534 

respectively. This process was repeated until only the highest-scored taxa remained. In this way, 535 

performance of the Randomized Lasso was assessed from a minimal-optimal evaluation 536 

perspective (82). In other words, the lowest amount of variables that resulted in the highest 537 

predictive performance was determined.  538 

 539 

Performance evaluation 540 

In order to account for the spatiotemporal structure of the data, a blocked cross-validation 541 

scheme was implemented (83). Samples were grouped according the site and year that they were 542 

collected. This results in 5, 10 and 16 distinctive groups for the Michigan, Muskegon and Inland 543 

lake systems respectively. Predictive models were optimized in function of the  between 544 

predicted and true values of held-out groups using a leave-one-group-out cross-validation 545 
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scheme with the LeaveOneGroupOut() function. This results in a cross-validated  value. For 546 

the Lasso,  was determined using the lassoCV() function, with setting eps=  and 547 

n_alphas=400. The Random Forest object was optimized using a grid search where max_features 548 

was chosen in the interval  (all variables) or  (Boruta selected variables) 549 

and  min_samples_leaf in the interval , using the GridSearchCV() function. The number 550 

of decision trees (n_trees) was set to 200. All functions are part of scikit-learn ((79); v0.19.1) 551 

 552 

Stability of the Randomized Lasso 553 

Similarity of RL scores between lake systems and functional groups was quantified using the 554 

Pearson correlation. This was done using the pearsonr() function in Scipy (v1.0.0).  555 

 556 

Patterns of HNA and LNA OTUs across ecosystems and phylogeny 557 

To visualize patterns of selected HNA and LNA OTUs across the three ecosystems, a heatmap 558 

was created with the RL scores of each OTU from the Randomized Lasso regression that were 559 

higher than specified threshold values. The heatmap was created with the heatmap.2() function 560 

(gplots R package) using the euclidean distances of the RL scores and a complete linkage 561 

hierarchical clustering algorithm (Figure 4).  562 

 563 

Correlations between taxa and productivity measurements 564 

The Kendall ranking correlation coefficient or Kendall's tau-b between productivity 565 

measurements and individual abundances were calculated on the phylum and OTU level using 566 

the kendalltau() function from Scipy (v1.0.0). P-values were corrected using Benjamini-567 
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Hochberg correction, reported as P_adj. This was done using the multitest() function from the 568 

Python module Statsmodels ((84); v0.5.0).  569 

 570 

Phylogenetic tree construction and signal calculation  571 

We calculated the best performing maximum likelihood tree using the GTR-CAT model (-gtr -572 

fastest) model of nucleotide substitution with FastTree (version 2.1.9 No SSE3; (85)) and 573 

visualized using the interactive tree of life (iTOL) (86). Phylogenetic signal is a measure of the 574 

dependence among a species’ trait values on their phylogenetic history (87). If the phylogenetic 575 

signal is very strong, taxa belonging to similar phylogenetic groups (e.g. a Phylum) will share the 576 

same trait (i.e. association with HNAcc or LNAcc). Alternatively, if the phylogenetic signal is 577 

weak, taxa within a similar phylogenetic group will have different traits. The phylogenetic signal 578 

was measured with both discrete (i.e. HNA, LNA, or both) and continuous traits (i.e. the RL 579 

score) using the newick tree from FastTree. For the most part, Pagel’s lambda was used (88) to 580 

test for phylogenetic signal and was calculated with the fitDiscrete() function from the geiger R 581 

package (discrete trait; (89)) and the phylosig() function from the phytools R package 582 

(continuous trait; (90)). The lambda value varies between 0 and 1, with 1 indicating complete 583 

phylogenetic patterning and 0 representing no phylogenetic patterning, leading to a tree 584 

collapsing into a single polytomy.  was then used to model phylogenetic signal using Pagel’s 585 

lambda, Blomberg’s K (phylosig() function from the phytools R package (90)), and Moran’s I 586 

(abouheif.moran() function from the adephylo R package (91)).  587 

 588 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

28 

Acknowledgements 589 

PR was supported by Ghent University (BOFSTA2015000501) and MLS was supported by the 590 

National Science Foundation Graduate Research Fellowship Program (Grant No. DGE 591 

1256260). Part of the computational resources (Stevin Supercomputer Infrastructure) and 592 

services used in this work were provided by the VSC (Flemish Supercomputer Center), funded 593 

by Ghent University, the Hercules Foundation and the Flemish Government department EWI. 594 

Flow cytometry analysis was supported through a Geconcerteerde Onderzoeksactie (GOA) from 595 

Ghent University (BOF15/GOA/006). 596 

Author Contributions 597 

MLS and PR co-wrote the paper with contributions from RP, BB, NB, WW, and VJD. MLS, RP, 598 

and BB generated the data. MLS, PR, and RP performed the data analysis.  PR, MLS, RP, WW, 599 

and VJD designed the study.  600 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

29 

 References 601 

1.  Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary 602 

implications of dormancy. Nature Reviews Microbiology 9:119–130. 603 

2.  Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2017. Relic DNA is 604 

abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology 605 

2:16242. 606 

3.  Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome Datasets 607 

Are Compositional: And This Is Not Optional. Frontiers in Microbiology 8. 608 

4.  Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, 609 

Kosciolek T, McCall L-I, McDonald D, Melnik AV, Morton JT, Navas J, Quinn RA, 610 

Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZZ, Zaneveld JR, Zhu Q, 611 

Caporaso JG, Dorrestein PC. 2018. Best practices for analysing microbiomes. Nature 612 

Reviews Microbiology 16:410–422. 613 

5.  Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, 614 

Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft J-U, Rainey PB, 615 

Freilich S, Schuster S, Milferstedt K, van der Meer JR, Groβkopf T, Huisman J, Free A, 616 

Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Isaac Newton Institute 617 

Fellows, Soyer OS. 2016. Challenges in microbial ecology: building predictive 618 

understanding of community function and dynamics. The ISME Journal 10:2557–2568. 619 

6.  Gasol JM, Del Giorgio PA. 2000. Using flow cytometry for counting natural planktonic 620 

bacteria and understanding the structure of planktonic bacterial communities. Scientia 621 

Marina 64:197–224. 622 

7.  Vives-Rego J, Lebaron P, Nebe-von Caron G. 2000. Current and future applications of flow 623 

cytometry in aquatic microbiology. FEMS Microbiology Reviews 24:429–448. 624 

8.  Wang Y, Hammes F, De Roy K, Verstraete W, Boon N. 2010. Past, present and future 625 

applications of flow cytometry in aquatic microbiology. Trends in Biotechnology 28:416–626 

424. 627 

9.  Gasol JM, Zweifel UL, Peters F, Fuhrman JA. 1999. Significance of Size and Nucleic Acid 628 

Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria. 629 

Applied and Environmental Microbiology 65:4475–4483. 630 

10.  Lebaron P, Servais P, Agogue H, Courties C, Joux F. 2001. Does the high nucleic acid 631 

content of individual bacterial cells allow us to discriminate between active cells and 632 

inactive cells in aquatic systems? Applied and Environmental Microbiology 67:1775–1782. 633 

11.  Bouvier T, del Giorgio PA, Gasol JM. 2007. A comparative study of the cytometric 634 

characteristics of High and Low nucleic-acid bacterioplankton cells from different aquatic 635 

ecosystems. Environmental Microbiology 9:2050–2066. 636 

12.  Wang Y, Hammes F, Boon N, Chami M, Egli T. 2009. Isolation and characterization of low 637 

nucleic acid (LNA)-content bacteria. The ISME Journal 3:889–902. 638 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

30 

13.  Lebaron P, Servais P, Baudoux A, Bourrain M, Courties C, Parthuisot N. 2002. Variations 639 

of bacterial-specific activity with cell size and nucleic acid content assessed by flow 640 

cytometry. Aquatic Microbial Ecology 28:131–140. 641 

14.  Servais P, Casamayor E, Courties C, Catala P, Parthuisot N, Lebaron P. 2003. Activity and 642 

diversity of bacterial cells with high and low nucleic acid content. Aquatic Microbial 643 

Ecology 33:41–51. 644 

15.  Morán X, Bode A, Suárez L, Nogueira E. 2007. Assessing the relevance of nucleic acid 645 

content as an indicator of marine bacterial activity. Aquatic Microbial Ecology 46:141–152. 646 

16.  Servais P, Courties C, Lebaron P, Troussellier M. 1999. Coupling Bacterial Activity 647 

Measurements with Cell Sorting by Flow Cytometry. Microbial Ecology 38:180–189. 648 

17.  Bowman JS, Amaral-Zettler LA, J Rich J, M Luria C, Ducklow HW. 2017. Bacterial 649 

community segmentation facilitates the prediction of ecosystem function along the coast of 650 

the western Antarctic Peninsula. The ISME Journal 11:1460–1471. 651 

18.  Moràn XAG, Ducklow HW, Erickson M. 2011. Single-cell physiological structure and 652 

growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts). 653 

Limnology and Oceanography 56:37–48. 654 

19.  Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI. 2015. 655 

Catchment-scale biogeography of riverine bacterioplankton. The ISME Journal 9:516–526. 656 

20.  Sherr EB, Sherr BF, Longnecker K. 2006. Distribution of bacterial abundance and cell-657 

specific nucleic acid content in the Northeast Pacific Ocean. Deep Sea Research Part I: 658 

Oceanographic Research Papers 53:713–725. 659 

21.  García FC, Calleja ML, Al-Otaibi N, Røstad A, Morán XAG. 2018. Diel dynamics and 660 

coupling of heterotrophic prokaryotes and dissolved organic matter in epipelagic and 661 

mesopelagic waters of the central Red Sea. Environmental Microbiology 20:2990–3000. 662 

22.  Jochem FJ, Lavrentyev PJ, First MR. 2004. Growth and grazing rates of bacteria groups 663 

with different apparent DNA content in the Gulf of Mexico. Marine Biology 145:1213–664 

1225. 665 

23.  Arnoldini M, Heck T, Blanco-Fernández A, Hammes F. 2013. Monitoring of Dynamic 666 

Microbiological Processes Using Real-Time Flow Cytometry. PLoS ONE 8:e80117. 667 

24.  Ramseier MK, von Gunten U, Freihofer P, Hammes F. 2011. Kinetics of membrane 668 

damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by 669 

ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. Water 670 

Research 45:1490–1500. 671 

25.  Huete-Stauffer T, Morán X. 2012. Dynamics of heterotrophic bacteria in temperate coastal 672 

waters: similar net growth but different controls in low and high nucleic acid cells. Aquatic 673 

Microbial Ecology 67:211–223. 674 

26.  Morán XAG, Alonso-Sáez L, Nogueira E, Ducklow HW, González N, López-Urrutia Á, 675 

Díaz-Pérez L, Calvo-Díaz A, Arandia-Gorostidi N, Huete-Stauffer TM. 2015. More, 676 

smaller bacteria in response to ocean’s warming? Proceedings of the Royal Society B: 677 

Biological Sciences 282:20150371. 678 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

31 

27.  Proctor CR, Besmer MD, Langenegger T, Beck K, Walser J-C, Ackermann M, Bürgmann 679 

H, Hammes F. 2018. Phylogenetic clustering of small low nucleic acid-content bacteria 680 

across diverse freshwater ecosystems. The ISME Journal 12:1344–1359. 681 

28.  Meinshausen N, Bühlmann P. 2010. Stability selection: Stability Selection. Journal of the 682 

Royal Statistical Society: Series B (Statistical Methodology) 72:417–473. 683 

29.  Kursa MB, Rudnicki WR. 2010. Feature Selection with the Boruta Package. Journal of 684 

Statistical Software 36. 685 

30.  Li H. 2015. Microbiome, Metagenomics, and High-Dimensional Compositional Data 686 

Analysis. Annual Review of Statistics and Its Application 2:73–94. 687 

31.  Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable 688 

importance for random forests. BMC Bioinformatics 9. 689 

32.  Biddanda B. 2017. Global Significance of the Changing Freshwater Carbon Cycle. Eos 690 

98:1–5. 691 

33.  Salcher MM, Posch T, Pernthaler J. 2013. In situ substrate preferences of abundant 692 

bacterioplankton populations in a prealpine freshwater lake. The ISME Journal 7:896–907. 693 

34.  Schubert AM, Rogers MAM, Ring C, Mogle J, Petrosino JP, Young VB, Aronoff DM, 694 

Schloss PD. 2014. Microbiome Data Distinguish Patients with Clostridium difficile 695 

Infection and Non-C. difficile-Associated Diarrhea from Healthy Controls. mBio 5. 696 

35.  Baxter NT, Zackular JP, Chen GY, Schloss PD. 2014. Structure of the gut microbiome 697 

following colonization with human feces determines colonic tumor burden. Microbiome 698 

2:20. 699 

36.  Herren CM, McMahon KD. 2018. Keystone taxa predict compositional change in microbial 700 

communities: Keystone microbes predict community turnover. Environmental 701 

Microbiology 20:2207–2217. 702 

37.  Lin W, Shi P, Feng R, Li H. 2014. Variable selection in regression with compositional 703 

covariates. Biometrika 101:785–797. 704 

38.  Zaura E, Brandt BW, Prodan A, Teixeira de Mattos MJ, Imangaliyev S, Kool J, Buijs MJ, 705 

Jagers FL, Hennequin-Hoenderdos NL, Slot DE, Nicu EA, Lagerweij MD, Janus MM, 706 

Fernandez-Gutierrez MM, Levin E, Krom BP, Brand HS, Veerman EC, Kleerebezem M, 707 

Loos BG, van der Weijden GA, Crielaard W, Keijser BJ. 2017. On the ecosystemic 708 

network of saliva in healthy young adults. The ISME Journal 11:1218–1231. 709 

39.  Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, Luckey DH, Marietta EV, 710 

Jeraldo PR, Chen X, Weinshenker BG, Rodriguez M, Kantarci OH, Nelson H, Murray JA, 711 

Mangalam AK. 2016. Multiple sclerosis patients have a distinct gut microbiota compared to 712 

healthy controls. Scientific Reports 6:28484. 713 

40.  Ma J, Prince AL, Bader D, Hu M, Ganu R, Baquero K, Blundell P, Alan Harris R, Frias 714 

AE, Grove KL, Aagaard KM. 2014. High-fat maternal diet during pregnancy persistently 715 

alters the offspring microbiome in a primate model. Nature Communications 5:3889. 716 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

32 

41.  Degenhardt F, Seifert S, Szymczak S. 2017. Evaluation of variable selection methods for 717 

random forests and omics data sets. Briefings in Bioinformatics. 718 

42.  McCarthy A, Chiang E, Schmidt ML, Denef VJ. 2015. RNA Preservation Agents and 719 

Nucleic Acid Extraction Method Bias Perceived Bacterial Community Composition. PLOS 720 

ONE 10:e0121659. 721 

43.  Louca S, Doebeli M, Parfrey LW. 2018. Correcting for 16S rRNA gene copy numbers in 722 

microbiome surveys remains an unsolved problem. Microbiome 6:41. 723 

44.  Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, 724 

Conde-Porcuna J-M, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L. 2007. 725 

The power of species sorting: Local factors drive bacterial community composition over a 726 

wide range of spatial scales. Proceedings of the National Academy of Sciences 104:20404–727 

20409. 728 

45.  Adams HE, Crump BC, Kling GW. 2014. Metacommunity dynamics of bacteria in an arctic 729 

lake: the impact of species sorting and mass effects on bacterial production and 730 

biogeography. Frontiers in Microbiology 5. 731 

46.  Chiang E, Schmidt ML, Berry MA, Biddanda BA, Burtner A, Johengen TH, Palladino D, 732 

Denef VJ. 2018. Verrucomicrobia are prevalent in north-temperate freshwater lakes and 733 

display class-level preferences between lake habitats. PLOS ONE 13:e0195112. 734 

47.  Aanderud ZT, Vert JC, Lennon JT, Magnusson TW, Breakwell DP, Harker AR. 2016. 735 

Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes. Frontiers in 736 

Microbiology 7. 737 

48.  Jones SE, Lennon JT, Karl D. 2010. Dormancy contributes to the maintenance of microbial 738 

diversity. Proceedings of the National Academy of Sciences of the United States of 739 

America 107:5881–5886. 740 

49.  Zimmermann R, Iturriaga R, Becker-Birck J. 1978. Simultaneous Determination of the 741 

Total Number of Aquatic Bacteria and the Number Thereof Involved in Respiration. 742 

Applied and Environmental Microbiology 36:926–935. 743 

50.  Corno G, Jürgens K. 2006. Direct and Indirect Effects of Protist Predation on Population 744 

Size Structure of a Bacterial Strain with High Phenotypic Plasticity. Applied and 745 

Environmental Microbiology 72:78–86. 746 

51.  Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW. 747 

2006. Genomic islands and the ecology and evolution of Prochlorococcus. Science 748 

311:1768–1770. 749 

52.  Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. 2008. Resource Partitioning 750 

and Sympatric Differentiation Among Closely Related Bacterioplankton. Science 751 

320:1081–1085. 752 

53.  Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, Thomas BC, VerBerkmoes NC, 753 

Hettich RL, Banfield JF. 2010. Proteogenomic basis for ecological divergence of closely 754 

related bacteria in natural acidophilic microbial communities. Proceedings of the National 755 

Academy of Sciences 107:2383–2390. 756 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

33 

54.  Shapiro BJ, Polz MF. 2014. Ordering microbial diversity into ecologically and genetically 757 

cohesive units. Trends in Microbiology 22:235–247. 758 

55.  Vila-Costa M, Gasol JM, Sharma S, Moran MA. 2012. Community analysis of high- and 759 

low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA 760 

pyrosequencing: Bacterial composition of different cytometric populations in 761 

Mediterranean waters. Environmental Microbiology 14:1390–1402. 762 

56.  Props R, Schmidt ML, Heyse J, Vanderploeg HA, Boon N, Denef VJ. 2018. Flow 763 

cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-764 

specific feeding rates by invasive dreissenid mussels: Phenotypic tracking of 765 

bacterioplankton. Environmental Microbiology 20:521–534. 766 

57.  Props R, Kerckhof F-M, Rubbens P, De Vrieze J, Hernandez Sanabria E, Waegeman W, 767 

Monsieurs P, Hammes F, Boon N. 2017. Absolute quantification of microbial taxon 768 

abundances. The ISME Journal 11:584–587. 769 

58.  Amalfitano S, Fazi S, Ejarque E, Freixa A, Romaní AM, Butturini A. 2018. Deconvolution 770 

model to resolve cytometric microbial community patterns in flowing waters: 771 

Deconvolving Cytometric Microbial Subgroups. Cytometry Part A 93:194–200. 772 

59.  Song Y, Wang Y, Mao G, Gao G, Wang Y. 2019. Impact of planktonic low nucleic acid-773 

content bacteria to bacterial community structure and associated ecological functions in a 774 

shallow lake. Science of The Total Environment 658:868–878. 775 

60.  Schattenhofer M, Wulf J, Kostadinov I, Glöckner FO, Zubkov MV, Fuchs BM. 2011. 776 

Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid 777 

content in the North Atlantic Ocean. Systematic and Applied Microbiology 34:470–475. 778 

61.  Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A Guide to the Natural 779 

History of Freshwater Lake Bacteria. Microbiology and Molecular Biology Reviews 75:14–780 

49. 781 

62.  Woodhouse JN, Kinsela AS, Collins RN, Bowling LC, Honeyman GL, Holliday JK, Neilan 782 

BA. 2016. Microbial communities reflect temporal changes in cyanobacterial composition 783 

in a shallow ephemeral freshwater lake. The ISME Journal 10:1337–1351. 784 

63.  Tada Y, Suzuki K. 2016. Changes in the community structure of free-living heterotrophic 785 

bacteria in the open tropical Pacific Ocean in response to microalgal lysate-derived 786 

dissolved organic matter. FEMS Microbiology Ecology 92:fiw099. 787 

64.  Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, 788 

Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J. 2017. Quantitative 789 

microbiome profiling links gut community variation to microbial load. Nature. 790 

65.  Frossard A, Hammes F, Gessner MO. 2016. Flow Cytometric Assessment of Bacterial 791 

Abundance in Soils, Sediments and Sludge. Frontiers in Microbiology 7. 792 

66.  Foladori P, Bruni L, Tamburini S, Ziglio G. 2010. Direct quantification of bacterial biomass 793 

in influent, effluent and activated sludge of wastewater treatment plants by using flow 794 

cytometry. Water Research 44:3807–3818. 795 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

34 

67.  Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, Malmstrom RR, 796 

Northen TR. 2018. Study of Oak Ridge soils using BONCAT-FACS-Seq reveals that a 797 

large fraction of the soil microbiome is active. bioRxiv. 798 

68.  Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 799 

2012. The SILVA ribosomal RNA gene database project: improved data processing and 800 

web-based tools. Nucleic Acids Research 41:D590–D596. 801 

69.  Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. 2018. TaxAss: Leveraging a Custom 802 

Freshwater Database Achieves Fine-Scale Taxonomic Resolution. mSphere 3:e00327-18. 803 

70.  Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, 804 

Ursell L, Alm EJ, Birmingham A, Cram JA, Fuhrman JA, Raes J, Sun F, Zhou J, Knight R. 805 

2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and 806 

precision. The ISME Journal 10:1669–1681. 807 

71.  McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible Interactive 808 

Analysis and Graphics of Microbiome Census Data. PLoS ONE 8:e61217. 809 

72.  Kirchman D, K’Nees E, Hodson R. 1985. Leucine Incorporation and Its Potential as a 810 

Measure of Protein Synthesis by Bacteria in Natural Aquatic Systemst. Applied and 811 

Environmental Microbiology 49:9. 812 

73.  Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine 813 

bacteria. Marine Ecology Progress Series 51:201–213. 814 

74.  Prest EI, Hammes F, Kötzsch S, van Loosdrecht MCM, Vrouwenvelder JS. 2013. 815 

Monitoring microbiological changes in drinking water systems using a fast and 816 

reproducible flow cytometric method. Water Research 47:7131–7142. 817 

75.  Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. 2012. FlowRepository: A 818 

resource of annotated flow cytometry datasets associated with peer-reviewed publications. 819 

Cytometry Part A 81A:727–731. 820 

76.  R Core Team. 2018. R: A Language and Environment for Statistical Computing. R 821 

Foundation for Statistical Computing, Vienna, Austria. 822 

77.  Paliy O, Shankar V. 2016. Application of multivariate statistical techniques in microbial 823 

ecology. Molecular Ecology 25:1032–1057. 824 

78.  Quinn TP, Erb I, Richardson MF, Crowley TM. 2018. Understanding sequencing data as 825 

compositions: an outlook and review. Bioinformatics 34:2870–2878. 826 

79.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 827 

Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D. Scikit-learn: 828 

Machine Learning in Python. MACHINE LEARNING IN PYTHON 6. 829 

80.  Probst P, Wright M, Boulesteix A-L. 2018. Hyperparameters and Tuning Strategies for 830 

Random Forest. 831 

81.  Guyon I, Weston J, Barnhill S. 2002. Gene Selection for Cancer Classification using 832 

Support Vector Machines. Machine Learning 46:389–422. 833 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

35 

82.  Nilsson R, Bjorkegren J, Tegner J. Consistent Feature Selection for Pattern Recognition in 834 

Polynomial Time 24. 835 

83.  Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-836 

Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF. 2017. 837 

Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic 838 

structure. Ecography 40:913–929. 839 

84.  Seabold S, Perktold J. 2010. Statsmodels: Econometric and Statistical Modeling with 840 

Python. Proceedings of the 9th Python in Science Conference (SciPy 2010) 57–61. 841 

85.  Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately Maximum-Likelihood 842 

Trees for Large Alignments. PLoS ONE 5:e9490. 843 

86.  Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and 844 

annotation of phylogenetic and other trees. Nucleic Acids Research 44:W242–W245. 845 

87.  Revell LJ, Harmon LJ, Collar DC. 2008. Phylogenetic Signal, Evolutionary Process, and 846 

Rate. Systematic Biology 57:591–601. 847 

88.  Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–848 

884. 849 

89.  Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating 850 

evolutionary radiations. Bioinformatics 24:129–131. 851 

90.  Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other 852 

things). Methods in Ecology and Evolution 3:217–223. 853 

91.  Jombart T, Balloux F, Dray S. 2010. adephylo: new tools for investigating the phylogenetic 854 

signal in biological traits. Bioinformatics 26:1907–1909. 855 

856 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

36 

Figure 1: (A) Correlation between HNA cell counts and LNA cell counts across the three 857 

freshwater lake ecosystems. (B-D) Muskegon Lake bacterial heterotrophic production and 858 

its correlation with (B) HNA cell counts (HNAcc), (C) LNA cell counts, (LNAcc) and (D) 859 

total cell counts. The grey area in plots A, B, and D represents the 95% confidence 860 

intervals.  861 

  862 
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Figure 2: 𝑅𝐶𝑉
2  in function of the number of OTUs, which were iteratively removed based on the 863 

RL score and evaluated using the Lasso at every step. The solid (HNA) and dashed (LNA) 864 

vertical lines corresponds to the threshold (i.e., number of OTUs) which resulted in a maximal 865 

𝑅𝐶𝑉
2 . (A) Inland system (𝑅𝐶𝑉,𝑚𝑎𝑥

2 = 0.92), HNAcc; (B) Lake Michigan (𝑅𝐶𝑉,𝑚𝑎𝑥
2 = 0.53), 866 

HNAcc; (C) Muskegon lake, HNAcc (𝑅𝐶𝑉,𝑚𝑎𝑥
2 = 0.85); (D) Inland system, LNAcc (𝑅𝐶𝑉,𝑚𝑎𝑥

2 =867 

0.87); (E) Lake Michigan, LNAcc (𝑅𝐶𝑉,𝑚𝑎𝑥
2 = 0.79; (F) Muskegon lake, LNAcc (𝑅𝐶𝑉,𝑚𝑎𝑥

2 =868 

0.91).   869 

  870 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

38 

Figure 3: Evaluation of HNA cell counts (HNAcc) and LNA cell counts (LNAcc) predictions 871 

using the Lasso at all taxonomic levels for the Muskegon lake system, expressed in terms of 𝑅𝐶𝑉
2 , 872 

using different subsets of taxonomic variables. Subsets were determined by iteratively 873 

eliminating the lowest-ranked taxonomic variables based on the RL score. 874 
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Figure 4: Hierarchical clustering of the RL score for the top 10 selected OTUs within each lake 876 

system and FCM functional groups with the selected OTU (rows) across HNA and LNA groups 877 

within the three lake systems (columns). 878 
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Figure 5: Phylogenetic tree with all HNA and LNA selected OTUs from each of the three lake 880 

systems with their (starting from the inside working to the outside) (i) phylum level taxonomic 881 

classification, (ii) HNA RL scores (i.e. HNA-Score), (iii) LNA RL scores (i.e. LNA-Score), and 882 

(iv) and discrete association with HNA, LNA or both groups based on the RL score threshold 883 

values (i.e. FCM-Group). Any OTU absent from a FCM group is white. The tree was rooted 884 

using OTU1552. 885 
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Figure 6: Correlation (Kendall’s tau-b) between the relative abundances of the top three OTUs 887 

selected by the RL and the densities in the cytometric fingerprint. The fluorescence threshold 888 

used to manually define HNA and LNA populations is indicated by the dotted line. 889 
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1 

Table 1: Top scored OTUs according to the RL per functional population and lake ecosystem. Selection according to the Boruta 891 

algorithm is given in addition to the RL score. Descriptive statistics by means of the Kendall rank correlation coefficient have been 892 

added with level of significance in function of the HNA/LNA population.  893 

Lake 

system 

Functional 

group 

OTU RL 

score 

Boruta 

selected 

Kendall 

tau 

(HNA) 

P-value 

(HNA) 

Kendall 

tau 

(LNA) 

P-value 

(LNA) 

Phylum Class Order Family Genus 

(species) 

Inland HNA OTU

369 

0.382 yes -0.43 <0.001 -0.28 0.0012 Proteobacteria Alphaproteobacteria 

 

Rhodospirrlalleles 

 

alfVIII 

 

alfVIII_ unclassified 

 LNA OTU

555 

0.384 no 0.089 N.S. 0.22 0.011 Proteobacteria Deltaproteobacteria 

 

Bdellovibrionales 

 

Bdellovibrionacea 

 

OM27_clade 

 

Michigan HNA OTU

025 

0.362 yes 0.46 <0.001 0.41 <0.001 Bacteroidetes Cytophagia 

 

Cytophagales 

 

bacIII 

 

bacIII-A 

 LNA OTU

168 

0.428 yes 0.26 0.0092 0.4 <0.001 Proteobacteria Alphaproteobacteria 

 

Rhizobiales 

 

alfVII alfVII_unclassified 

Muskegon HNA OTU

173 

0.462 yes 0.5 <0.001 0.2 0.019 Bacteroidetes Flavobacteriia 

 

Flavobacteriales 

 

bacII 

 

bacII-A 

 LNA OTU

029 

0.568 no 0.26 0.0029 0.49 <0.001 Bacteroidetes Cytophagia 

 

Cytophagales 

 

bacIII 

 

bacIII-B 

(Algor) 
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