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Abstract: A growing body of research suggests that the mitochondrial genome (mtDNA) is
important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged
in temperature tolerance, driving their use in high or low temperature fermentations. Here we
experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial
hybrids (Saccharomyces cerevisiae x Saccharomyces eubayanus, or Saccharomyces
pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of
hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain
temperature preferences. The strong influence of mitotype on the temperature tolerance of

otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation
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hypothesis in yeasts and demonstrates how mitotype has influenced the world's most commonly

fermented beverage.

One Sentence Summary: Mitochondrial genome origin affects the temperature tolerance of

synthetic and industrial lager-brewing yeast hybrids.
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Main Text: Temperature tolerance is a critical component of how species adapt to their
environment. The mitochondrial climatic adaptation hypothesis (/) posits that functional
variation between mitochondrial DNA (mtDNA) sequences (mitotypes) plays an important role
in shaping the genetic adaptation of populations to the temperatures of their environments. Clines
of mitotypes along temperature gradients and associations between mitotype and climate have
been observed for numerous metazoan species, including humans (7, 2). Experiments in
invertebrates have demonstrated directly that different mitotypes can alter temperature tolerance
(3, 4), and mitotype has been associated with adaption to temperature in natural environments (7,
3).

Recent work has suggested that mitotype can also play a role in temperature tolerance in
the model budding yeast genus Saccharomyces (6—8). The eight known Saccharomyces species
are broadly divided between cryotolerant and thermotolerant species (9—117). Thermotolerant
strains (maximum growth temperature >36°C) form a clade that includes the model organism
Saccharomyces cerevisiae (12), while the rest of the genus is more cryotolerant. Most prior
research has focused on thermotolerance or the function of mitochondria under heat stress
(~37°C), on mitotype differences within S. cerevisiae (6, §), or on interspecies differences
between S. cerevisiae and its thermotolerant sister species, Saccharomyces paradoxus (13). The
genetic basis of cryotolerance in Saccharomyces has been difficult to determine using
conventional crosses focused on the nuclear genome (/4—16). Given how common mitochondrial
adaption to cold conditions is among arctic metazoan species (/7—19), mitotype could also
conceivably influence cryotolerance in Saccharomyces.

In a companion study, Li et al. found that the parent providing mtDNA in hybrids of S.

cerevisiae and the cryotolerant species Saccharomyces uvarum had a large effect on temperature
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tolerance (20). Since Saccharomyces eubayanus is the sister species of S. uvarum but ~7%
genetically divergent, we wondered whether the effect of mitotype would extend to industrial
hybrids of S. cerevisiae x S. eubayanus, sometimes called Saccharomyces pastorianus (21).
While S. cerevisiae is well known for its role in human-associated fermentations, it is generally
not used to produce lager-style beers, which are brewed at colder temperatures than S. cerevisiae
can tolerate. Instead, the world's most commonly fermented beverage is brewed using
cryotolerant S. cerevisiae x S. eubayanus hybrids (217) that inherited their mtDNA from S.
eubayanus (22, 23). The recent discovery of S. eubayanus (21) has sparked substantial interest in
understanding the genetics of brewing-related traits to understand how lager strains were
domesticated historically and to develop novel lager-brewing strains (24-28).

To establish the temperature tolerance of S. cerevisiae and S. eubayanus, relative growth
scores were calculated at temperatures ranging from 4-37°C. Two strains of S. cerevisiae (a
laboratory strain and a strain used to brew ale-style beers) and two strains of S. eubayanus (a
derivative of the type strain from Patagonia (27) and a strain isolated from North Carolina that is
closely related to the ancestor of lager yeasts (29)) were tested. Strains were spotted onto plates
containing either glucose, a fermentable carbon source, or glycerol, a non-fermentable carbon
source that requires respiration to assimilate.

S. eubayanus and S. cerevisiae had reciprocal temperature responses. S. eubayanus strains
grew at all temperatures, except 37°C, while S. cerevisiae strains began to decline in relative
growth at 15°C and were completely unable to grow at 4°C (Fig. 1A-B, Fig. S1-4). Strain-
specific differences were also apparent. The S. cerevisiae-laboratory strain (Sc) and the S.

eubayanus-North Carolinian strain (SeNC) grew relatively weakly compared to conspecific
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strains. For Sc, poor growth was likely driven by auxotrophy, but the reason for SeNC'’s poor

performance is unknown.
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Fig. 1. Mitotype affects temperature tolerance in synthetic lager hybrids. Relative growth
scores of strains from 4-37°C combined from all tests. A) On glucose and B) glycerol, relative
growth of parent strains carrying their native mtDNA. Parent strains are: S. cerevisiae-laboratory
strain (Sc), S. cerevisiae-ale strain (ScAle), S. eubayanus-type strain (Se), and S. eubayanus-
North Carolinian strain (SeNC). C) On glucose and D) glycerol, relative growth of S. cerevisiae x
S. eubayanus synthetic hybrids carrying the mtDNA of different parents, engineered as in Fig.
S5. Error bars represent standard error. Differences in relative growth between hybrids carrying
different parental mtDNA with p-values of <0.05 were considered statistically significant and are

represented by an asterisk. Parents were not tested for significant differences.
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To directly test the role of mtDNA, we constructed a panel of synthetic hybrids of S.
cerevisiae X S. eubayanus, controlling the source of mtDNA (Fig. S5). Hybrids tolerated an
increased range of temperatures compared to their parents, regardless of mitotype (Fig. 1C-D,
Fig. S1-4). These results support a strong role for the nuclear genome in temperature tolerance
and indicate some level of codominance between alleles supporting thermotolerance and
cryotolerance.

Despite robust growth across temperatures, synthetic hybrids with different mitotypes
displayed clear and consistent differences in relative growth. At higher temperatures, S.
cerevisiae mitotypes permitted increased growth relative to S. eubayanus mitotypes, while the
same was true for S. eubayanus mitotypes at lower temperatures. Relative growth was typically
high for both mitotypes on glucose, but significant differences were detected at 5 of 6
temperatures (Fig. 1C). On glycerol, the impact of mitotype was exaggerated (Fig. 1D), and the
differences in growth were significant at all temperatures. Subtle background-specific effects
were also observed, including a growth defect at 37°C for the ScAle x SeNC hybrid carrying
ScAle mtDNA (Fig. S1).

To test if mtDNA still plays a role in temperature tolerance in industrial lager-brewing
hybrids that have been evolving to lagering conditions for many generations, we replaced the
native lager mtDNA of S. eubayanus origin (23) with S. cerevisiae mtDNA from Sc and ScAle,
creating lager cybrids (Fig. 2A). Consistent with results for synthetic hybrids, lager cybrids
carrying S. cerevisiae mtDNA had greater growth at higher temperatures and decreased growth
at colder temperatures, especially on glycerol (Fig. 2B-C, Fig. S6). On glucose, strain-specific
differences between lager cybrids were particularly apparent. At 30°C and below, lager cybrids

carrying ScAle mtDNA grew significantly less than the parental lager strain with its native (S.
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eubayanus) mtDNA (Fig. 2B, Fig. S6A, B), while there was no difference in growth between the
parental lager strain and cybrids carrying Sc mtDNA, except at temperature extremes (4°C and
33.5°C) (Fig. 2B, Fig. S6A, B). On glycerol, both lager cybrids grew significantly less than the
industrial strain at 15°C and below, while they grew significantly more at 22°C and 30°C (Fig.
2C, Fig. S6A, C), displaying a shift from lager-brewing toward ale-brewing temperatures. These
results show that the strong effect of mtDNA on temperature tolerance seen in synthetic hybrids

extends to industrial lager strains under at least some conditions.
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Fig. 2. S. cerevisiae mtDNA increases the thermotolerance and decreases the cryotolerance
of an industrial lager strain. A) Outline of crosses and strain engineering to produce lager
cybrids. Yeast cells represent the nuclear genome, large inner circles represent mtDNA, and
small green inner circles represent the HyPr plasmid (30). Lower case “a” and “a” indicate
mating types. Karyogamy-deficient (kari-1) strains can be of either mating type and are mated to
the opposite mating type. Black indicates genetic material from the S. cerevisiae karyogamy-
deficient strain; red, genetic material from a S. cerevisiae parent; blue, genetic material of S.
eubayanus origin; and purple, a hybrid (i.e. lager) nuclear genome. B) On glucose and C)
glycerol, growth of a lager strain with native (S. eubayanus) mtDNA and lager cybrids with S.
cerevisiae mtDNA. Error bars represent standard error, and asterisks indicate statistically

significant differences in growth between the cybrid and lager with native mtDNA (p-value

<0.05).

We have shown that mtDNA has a significant impact on the temperature tolerance of
interspecies hybrids of S. cerevisiae and S. eubayanus. Along with previous research suggesting
hybrid lager yeasts acquired most of their aggressive fermentation traits from S. cerevisiae (25,
27, 28), our results suggest they acquired their cold tolerance from S. eubayanus in large part by
retaining S. eubayanus mtDNA. Our results and methods provide a roadmap for constructing
designer lager strains where temperature tolerance can be controlled for the first time (24-28).
Shifting the temperature preference of synthetic or industrial lager strains to warmer
fermentation temperatures could substantially reduce the cost of lager brewing by reducing
production time and infrastructure requirements. The strain-specific differences observed further
suggest that the S. cerevisiae parent, the S. eubayanus parent, and cytonuclear incompatibilities

(31), should all be considered during strain construction. Along with the companion study of Li
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et al. (20), the identification of a role for mtDNA in temperature tolerance of these yeasts extends

support for the mitochondrial climatic adaptation hypothesis (/) to fungi and suggests that the

outsized role of mtDNA in controlling temperature tolerance may be general to eukaryotes.
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