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Abstract: A growing body of research suggests that the mitochondrial genome (mtDNA) is 

important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged 

in temperature tolerance, driving their use in high or low temperature fermentations. Here we 

experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial 

hybrids (Saccharomyces cerevisiae x Saccharomyces eubayanus, or Saccharomyces 

pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of 

hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain 

temperature preferences. The strong influence of mitotype on the temperature tolerance of 

otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation 
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hypothesis in yeasts and demonstrates how mitotype has influenced the world's most commonly 

fermented beverage. 

One Sentence Summary: Mitochondrial genome origin affects the temperature tolerance of 

synthetic and industrial lager-brewing yeast hybrids. 
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Main Text: Temperature tolerance is a critical component of how species adapt to their 

environment. The mitochondrial climatic adaptation hypothesis (1) posits that functional 

variation between mitochondrial DNA (mtDNA) sequences (mitotypes) plays an important role 

in shaping the genetic adaptation of populations to the temperatures of their environments. Clines 

of mitotypes along temperature gradients and associations between mitotype and climate have 

been observed for numerous metazoan species, including humans (1, 2). Experiments in 

invertebrates have demonstrated directly that different mitotypes can alter temperature tolerance 

(3, 4), and mitotype has been associated with adaption to temperature in natural environments (1, 

5).  

Recent work has suggested that mitotype can also play a role in temperature tolerance in 

the model budding yeast genus Saccharomyces (6–8). The eight known Saccharomyces species 

are broadly divided between cryotolerant and thermotolerant species (9–11). Thermotolerant 

strains (maximum growth temperature ≥36˚C) form a clade that includes the model organism 

Saccharomyces cerevisiae (12), while the rest of the genus is more cryotolerant. Most prior 

research has focused on thermotolerance or the function of mitochondria under heat stress 

(~37˚C), on mitotype differences within S. cerevisiae (6, 8), or on interspecies differences 

between S. cerevisiae and its thermotolerant sister species, Saccharomyces paradoxus (13). The 

genetic basis of cryotolerance in Saccharomyces has been difficult to determine using 

conventional crosses focused on the nuclear genome (14–16). Given how common mitochondrial 

adaption to cold conditions is among arctic metazoan species (17–19), mitotype could also 

conceivably influence cryotolerance in Saccharomyces.  

 In a companion study, Li et al. found that the parent providing mtDNA in hybrids of S. 

cerevisiae and the cryotolerant species Saccharomyces uvarum had a large effect on temperature 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/391946doi: bioRxiv preprint 

https://doi.org/10.1101/391946
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

tolerance (20). Since Saccharomyces eubayanus is the sister species of S. uvarum but ~7% 

genetically divergent, we wondered whether the effect of mitotype would extend to industrial 

hybrids of S. cerevisiae x S. eubayanus, sometimes called Saccharomyces pastorianus (21). 

While S. cerevisiae is well known for its role in human-associated fermentations, it is generally 

not used to produce lager-style beers, which are brewed at colder temperatures than S. cerevisiae 

can tolerate. Instead, the world's most commonly fermented beverage is brewed using 

cryotolerant S. cerevisiae x S. eubayanus hybrids (21) that inherited their mtDNA from S. 

eubayanus (22, 23). The recent discovery of S. eubayanus (21) has sparked substantial interest in 

understanding the genetics of brewing-related traits to understand how lager strains were 

domesticated historically and to develop novel lager-brewing strains (24–28). 

To establish the temperature tolerance of S. cerevisiae and S. eubayanus, relative growth 

scores were calculated at temperatures ranging from 4-37˚C. Two strains of S. cerevisiae (a 

laboratory strain and a strain used to brew ale-style beers) and two strains of S. eubayanus (a 

derivative of the type strain from Patagonia (21) and a strain isolated from North Carolina that is 

closely related to the ancestor of lager yeasts (29)) were tested. Strains were spotted onto plates 

containing either glucose, a fermentable carbon source, or glycerol, a non-fermentable carbon 

source that requires respiration to assimilate. 

S. eubayanus and S. cerevisiae had reciprocal temperature responses. S. eubayanus strains 

grew at all temperatures, except 37˚C, while S. cerevisiae strains began to decline in relative 

growth at 15˚C and were completely unable to grow at 4˚C (Fig. 1A-B, Fig. S1-4). Strain-

specific differences were also apparent. The S. cerevisiae-laboratory strain (Sc) and the S. 

eubayanus-North Carolinian strain (SeNC) grew relatively weakly compared to conspecific 
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strains. For Sc, poor growth was likely driven by auxotrophy, but the reason for SeNC’s poor 

performance is unknown.  

Fig. 1 

 

Fig. 1. Mitotype affects temperature tolerance in synthetic lager hybrids. Relative growth 

scores of strains from 4-37˚C combined from all tests. A) On glucose and B) glycerol, relative 

growth of parent strains carrying their native mtDNA. Parent strains are: S. cerevisiae-laboratory 

strain (Sc), S. cerevisiae-ale strain (ScAle), S. eubayanus-type strain (Se), and S. eubayanus-

North Carolinian strain (SeNC). C) On glucose and D) glycerol, relative growth of S. cerevisiae x 

S. eubayanus synthetic hybrids carrying the mtDNA of different parents, engineered as in Fig. 

S5. Error bars represent standard error. Differences in relative growth between hybrids carrying 

different parental mtDNA with p-values of <0.05 were considered statistically significant and are 

represented by an asterisk. Parents were not tested for significant differences. 
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To directly test the role of mtDNA, we constructed a panel of synthetic hybrids of S. 

cerevisiae x S. eubayanus, controlling the source of mtDNA (Fig. S5). Hybrids tolerated an 

increased range of temperatures compared to their parents, regardless of mitotype (Fig. 1C-D, 

Fig. S1-4). These results support a strong role for the nuclear genome in temperature tolerance 

and indicate some level of codominance between alleles supporting thermotolerance and 

cryotolerance. 

Despite robust growth across temperatures, synthetic hybrids with different mitotypes 

displayed clear and consistent differences in relative growth. At higher temperatures, S. 

cerevisiae mitotypes permitted increased growth relative to S. eubayanus mitotypes, while the 

same was true for S. eubayanus mitotypes at lower temperatures. Relative growth was typically 

high for both mitotypes on glucose, but significant differences were detected at 5 of 6 

temperatures (Fig. 1C). On glycerol, the impact of mitotype was exaggerated (Fig. 1D), and the 

differences in growth were significant at all temperatures. Subtle background-specific effects 

were also observed, including a growth defect at 37˚C for the ScAle x SeNC hybrid carrying 

ScAle mtDNA (Fig. S1).   

To test if mtDNA still plays a role in temperature tolerance in industrial lager-brewing 

hybrids that have been evolving to lagering conditions for many generations, we replaced the 

native lager mtDNA of S. eubayanus origin (23) with S. cerevisiae mtDNA from Sc and ScAle, 

creating lager cybrids (Fig. 2A). Consistent with results for synthetic hybrids, lager cybrids 

carrying S. cerevisiae mtDNA had greater growth at higher temperatures and decreased growth 

at colder temperatures, especially on glycerol (Fig. 2B-C, Fig. S6). On glucose, strain-specific 

differences between lager cybrids were particularly apparent. At 30˚C and below, lager cybrids 

carrying ScAle mtDNA grew significantly less than the parental lager strain with its native (S. 
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eubayanus) mtDNA (Fig. 2B, Fig. S6A, B), while there was no difference in growth between the 

parental lager strain and cybrids carrying Sc mtDNA, except at temperature extremes (4˚C and 

33.5˚C) (Fig. 2B, Fig. S6A, B). On glycerol, both lager cybrids grew significantly less than the 

industrial strain at 15˚C and below, while they grew significantly more at 22˚C and 30˚C (Fig. 

2C, Fig. S6A, C), displaying a shift from lager-brewing toward ale-brewing temperatures. These 

results show that the strong effect of mtDNA on temperature tolerance seen in synthetic hybrids 

extends to industrial lager strains under at least some conditions. 
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Fig. 2 
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Fig. 2. S. cerevisiae mtDNA increases the thermotolerance and decreases the cryotolerance 

of an industrial lager strain. A) Outline of crosses and strain engineering to produce lager 

cybrids. Yeast cells represent the nuclear genome, large inner circles represent mtDNA, and 

small green inner circles represent the HyPr plasmid (30). Lower case “a” and “α” indicate 

mating types. Karyogamy-deficient (kar1-1) strains can be of either mating type and are mated to 

the opposite mating type. Black indicates genetic material from the S. cerevisiae karyogamy-

deficient strain; red, genetic material from a S. cerevisiae parent; blue, genetic material of S. 

eubayanus origin; and purple, a hybrid (i.e. lager) nuclear genome. B) On glucose and C) 

glycerol, growth of a lager strain with native (S. eubayanus) mtDNA and lager cybrids with S. 

cerevisiae mtDNA. Error bars represent standard error, and asterisks indicate statistically 

significant differences in growth between the cybrid and lager with native mtDNA (p-value 

<0.05). 

 We have shown that mtDNA has a significant impact on the temperature tolerance of 

interspecies hybrids of S. cerevisiae and S. eubayanus. Along with previous research suggesting 

hybrid lager yeasts acquired most of their aggressive fermentation traits from S. cerevisiae (25, 

27, 28), our results suggest they acquired their cold tolerance from S. eubayanus in large part by 

retaining S. eubayanus mtDNA. Our results and methods provide a roadmap for constructing 

designer lager strains where temperature tolerance can be controlled for the first time (24–28). 

Shifting the temperature preference of synthetic or industrial lager strains to warmer 

fermentation temperatures could substantially reduce the cost of lager brewing by reducing 

production time and infrastructure requirements. The strain-specific differences observed further 

suggest that the S. cerevisiae parent, the S. eubayanus parent, and cytonuclear incompatibilities 

(31), should all be considered during strain construction. Along with the companion study of Li 
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et al. (20), the identification of a role for mtDNA in temperature tolerance of these yeasts extends 

support for the mitochondrial climatic adaptation hypothesis (1) to fungi and suggests that the 

outsized role of mtDNA in controlling temperature tolerance may be general to eukaryotes. 
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