

1

2 **Fast, versatile, and quantitative annotation of complex images**

3

4 Kathleen Bates^{1,2}, Shen Jiang⁵, Ruth Bates [†], Shivesh Chaudhary ^{†,2}, Emily Jackson-Holmes ^{†,2},
5 Melinda Jue ^{†,2}, Erin McCaskey², Daniel Goldman^{3,4}, Hang Lu^{1,2*}

6 ¹Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia,
7 USA

8 ² School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta,
9 Georgia, USA

10 ³ School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA

11 ⁴ School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA

12 ⁵ School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA

13 [†] These authors contributed equally

14 *Correspondence should be addressed to HL: hang.lu@gatech.edu,

15

16

1 **We report a generic smartphone app for quantitative annotation of complex images. The app**
2 **is simple enough to be used by children, and annotation tasks are distributed across app**
3 **users, contributing to efficient annotation. We demonstrate its flexibility and speed by**
4 **annotating >30,000 images, including features of rice root growth and structure, stem cell**
5 **aggregate morphology, and complex worm (*C. elegans*) postures, for which we show that the**
6 **speed of annotation is >130-fold faster than state-of-the-art techniques with similar accuracy.**

7
8
9

1 **Introduction**

2 The accelerating ease of collecting very large image data sets (terabytes to petabytes)
3 has led to a shift in scientific bottlenecks from image collection to image analysis across many
4 disciplines, including connectomics¹⁻³, cell lineage tracing⁴, and ethology^{5,6}. Although highly
5 specialized computational pipelines are emerging to address this new bottleneck, these
6 pipelines require significant effort to develop, are computationally expensive and not error-
7 free, and may still rely on human image annotation. The widespread dependence on human
8 image annotation or correction is likely to continue, and yet tools for image annotation,
9 especially at large scales, often do not meet the needs of researchers.

10

11 Specifically, tools for quantitative annotation of images are hindered primarily by a
12 trade-off between speed, accuracy, and versatility. Some tools require extensive tuning or
13 parameter optimization for accurate annotation, or may not be well-suited for heterogeneous
14 image quality. In addition, many tools limit the way users can define image features of interest,
15 for example, via rectangles, polygons, or circles. Annotation speed is limited by the complexity
16 of annotation software, and, ultimately, how quickly annotators can mark phenotypes
17 accurately⁷. Equally critical for efficient annotation of large datasets is ease in distributing
18 annotation tasks, as well as broadness in settings or locations where users can annotate. To
19 serve the greatest number of researchers effectively, tools for large scale image annotation
20 should be generalizable, fast, and accurate.

21

1 Here we report a highly versatile, fast, and quantitative method for image annotation.

2 Features of interest of an arbitrary image can be annotated simply from user's finger- or stylus-

3 tracings (**Supplemental Movie 1**). We demonstrate the use of a simple and intuitive

4 smartphone- and tablet-based app to annotate complex body postures in *Caenorhabditis*

5 *elegans*, morphology of stem cell aggregates, and root growth of *Oryza sativa* (rice) and *Zea*

6 *mays* (corn). We crowd-sourced annotations of over 16,000 nematode images, 500 stem cell

7 aggregate images, and 900 root images, with a total of over 30,000 user annotations (**Fig. 1a-e**).

8 Briefly, the app loads images from an online database to the user's Android device, on which

9 users draw their best annotation. The user then uploads the annotated image (as well as pixel

10 vectors) and is immediately presented with another image from the image set. Our worm

11 tracing example app, 'Wurm Paint', can be found for free on the [Google Play Store](#), and the

12 source code as well as setup instructions for creating new versions of the app can be found at

13 <https://github.com/jiangshen/WurmPaint>.

14 **Results and Discussion**

15 Our app is indiscriminate to the nature of images or annotations. Worm images on our

16 database were derived from brightfield and darkfield microscope configurations, solid and

17 liquid imaging environments, and included both processed, binarized images as well as

18 unprocessed frames from raw videos (**Fig 1b**). Stem cell aggregate images on our database were

19 derived from phase images of both live and fixed aggregates grown in tissue culture plates as

20 well as aggregates grown in microfluidic devices (**Fig 1c**). For both nematode and stem cell

21 aggregate applications, users are presented with randomized images from the full dataset and

1 draw a single contour. This generic annotation scheme could also be used to trace individual
2 cells, or features of developing embryos (such as *Drosophila melanogaster*, *Xenopus*, or
3 zebrafish), to name a few. To allow users to annotate video frames in a pre-defined order (e.g.
4 when temporal context is critical to annotation) and in cases where an image contains multiple
5 features of interest, we created a second version of the app that presents uploaded images in
6 order and allows users to draw as many contours as needed. We used this app version to
7 annotate rice and corn root systems (**Fig 1d-e**). We expect that these two versions of the app
8 could serve many other image annotation problems equally well with little to no changes of the
9 source code.

10

11 The app is extremely easy for annotators to use. By using smartphones as the basis for
12 our image annotation system, users need only draw with a finger or stylus, as compared to the
13 greater difficulty of drawing with a computer mouse. The interface itself is simple and intuitive
14 compared to popular image annotation and analysis tools. We had 7-12 year-olds use the worm
15 tracing app, and found that it was simple enough for them to use without help after a brief
16 explanation (**Fig 2a**). Although the quality of children's annotations was far more variable than
17 annotations by adults, many of the children's annotations were of indistinguishable quality
18 compared to those of adults and annotations inconsistent with other user's annotations were
19 easy to identify.

20

1 Next, we sought to demonstrate that our app enabled fast annotation. For two of our
2 applications, we quantified the time between image uploads of single users as a conservative
3 estimate of time per annotation. For worm tracing, which always required a single user-drawn
4 contour, the average annotation time was 7 ± 0 s/image (95% CI), and for root tracing, which
5 often required multiple contours per image, the average annotation time was 14 ± 1 s/image
6 (95% CI). To benchmark user annotation speed in our app, we annotated worm images using
7 ImageJ⁸, which routinely required more time. In addition to the importance of individual users'
8 speed, overall speed is dependent on how many users can annotate in parallel. Smartphone-
9 based annotation not only allows us to easily distribute image annotation tasks as narrowly (a
10 single expert) or broadly (general public) as desired, it also expands geospatial locations and
11 settings where users can annotate⁹.

12

13 We then assessed the ability of users to trace known shapes accurately. We did this by
14 comparing averaged hand-drawn worm postures to computationally generated ground truth
15 postures. For worms with unambiguous postures, we matched points along the averaged hand-
16 drawn worm midlines with points along the corresponding ground truth midline and summed
17 the Euclidean norm of all point pairs. To determine an overall similarity between any two worm
18 midlines, we reasoned that an acceptably similar midline should lie within the center three-
19 quarters of the worm's total width at any given point. We therefore normalized similarity
20 scores so that a score of one indicated identical midlines, any positive score indicated that the
21 midlines were on average less than three-quarters of the worm width apart, and negative
22 similarity scores indicated that midlines were further than three-quarters of the worm width

1 apart (**Fig 2b**). Most averaged annotations of unambiguous postures had similarity scores above
2 zero when compared to their corresponding ground truth midline, including data collected from
3 non-expert annotators (**Fig 2c**). We concluded that the annotation accuracy was sufficiently
4 high for tracing worms.

5
6 To further demonstrate a practical application of our app, we focused on using
7 annotations of ambiguous *C. elegans* postures to reconstruct the dynamics of worm behavior.
8 Ambiguous postures result from segmentation errors, or more frequently, the worm partially
9 occluding itself, for example during stereotyped Ω - or δ -turns. A major advantage of using
10 human annotators is the ability to quickly generate varied predictions for images that humans
11 and algorithms alike struggle to find a ground truth for. *C. elegans* postures are often simplistic
12 and sinusoidal, but \sim 7% of the worms' behavior results in postures that are impossible to
13 segment using current tools. One approach relies on computationally expensive optimization to
14 attempt a quantitative posture description^{10,11}. Although accurate in most instances, this state-
15 of-the-art strategy for predicting ambiguous nematode posture requires on average 931.7s (n =
16 66) per video frame (software configuration in supplemental). Based on our average worm
17 annotation time, users can make predictions about 130-fold faster than this computational
18 strategy. User predictions for individual ambiguous images varied, but could typically be
19 grouped into several distinct shapes, indicating that there were often only a few reasonable
20 predictions for each ambiguous posture (**Fig 3a**). To characterize this variability quantitatively,
21 we calculated pairwise similarity scores comparing different annotations of the same image for
22 more than 500 source images and found that similarity scores peaked between zero and one,

1 and had a left-skewed distribution with a significant tail (**Fig 3b**). This is consistent with our
2 observation that although there is significant variability in user annotations, users are
3 frequently in agreement with one another, suggesting the utility of a consensus-based
4 approach in identifying a best solution. The ease and speed of generating viable predictions
5 based on human intelligence with the app gives it particular advantage in analyzing images
6 where a single 'correct' solution is non-existent and several solutions have high likelihood.

7

8 To resolve the ambiguities in our postural data set, we used annotations to create a
9 consensus prediction for ambiguous images (**Fig 3c**). For each source image, we first eliminated
10 annotations that were outliers or that created shapes outside of *C. elegans* postural space, then
11 used pairwise similarity scores to identify groups of similar annotations. We then chose the
12 group containing the most individual annotations, and averaged annotations in this group to
13 come to a consensus contour. Finally, we compared these disambiguated annotations to
14 predictions generated by the state-of-the-art computational method and found that the mode
15 of the similarity score distribution was -1, indicating that although consensus contours had
16 somewhat reduced accuracy, they overall agreed well with computational predictions
17 (**Supplemental Figure 2b**). Further, for frames where initial segmentation failed, users could
18 correctly annotate grayscale source images, while computational predictions were erroneous.

19

20 *C. elegans* is a powerful model organism with a large suite of tools for genetic
21 manipulation^{12,13}. These tools, along with a fully mapped nervous system¹⁴, have enabled

1 researchers to identify molecular mechanisms and individual genes associated with behavioral
2 phenotypes^{15–17}. However, quantitative analysis of some of the most complex behaviors, large-
3 angle turns that commonly include ambiguous postures, remains difficult, and gaps in
4 quantifiable behavior prevent dynamic posture analysis altogether. Using our consensus worm
5 contours, we recreated the postural repertoire and behavioral dynamics of *C. elegans*. First, we
6 sought to answer how significantly complex worm postures affect the overall shape space of *C.*
7 *elegans*. To answer this, we calculated the first four principle components of *C. elegans*' shape
8 space¹⁸ ('eigenworms') using either unambiguous results alone or both unambiguous results
9 and consensus contours (**Fig 4a, Supplemental Figure 2c**). Consistent with prior reports, we
10 found that the first four principle components were very similar with or without ambiguous
11 postures¹¹. Interestingly, the fractional variance of the worm's posture space captured by these
12 eigenworms is greater when ambiguous postures are included (**Fig 4b**). Lastly, we recreated
13 complete timeseries of the first four eigenworm amplitudes for individual worms using the
14 consensus contours (**Fig 4c**). These traces fill in the gaps left by ambiguous shapes and
15 outperform the computational prediction in some cases where the worm is tightly coiled
16 (**Supplemental Movie 2**). In addition to adding to our knowledge of *C. elegans* behavioral
17 dynamics purely through image annotation, this app can help improve existing posture
18 prediction algorithms by using these results.

19

20

1 Our app-based annotation scheme allows researchers from any field to quickly and
2 easily annotate complex images in quantitative ways. Here, we demonstrated its flexibility and
3 speed in annotating rice root growth and structure, stem cell aggregate morphology, and
4 complex worm postures, where we showed that the app is ~ 130-fold faster than state-of-the-
5 art posture optimization techniques. We expect that the app will be useful as an alternative to
6 creating complex and bespoke computational image processing pipelines, as a way to
7 complement and augment existing computational pipelines, and as a simple way to generate
8 consensus ground truths towards improving machine learning algorithms for image processing.

1 Materials and Methods:

2 ***C. elegans* maintenance.** Worms were cultured at 20C in a dark incubator on standard
3 nematode growth medium (NGM) petri dishes seeded with OP50 bacteria¹⁹. All experiments
4 were performed on day 1 adults. Animals were synchronized via 2 hr lay-offs; 4 days before
5 experiments, ~ 20 adult worms were picked onto seeded plates and allowed to lay eggs for 2
6 hrs before being picked back off. Strains used in this work include N2; QL142: spe-27(it110);
7 and AQ2334: lite-1(ce314); ljl123[pmec-4 ChR2; punc-122 RFP].

8

9 ***C. elegans* behavior experiments.** For on-plate experiments, in addition to age synchronization
10 as described above, worms were cultured on NGM agar plates seeded with OP50 E. Coli
11 containing either 100 microM ATR (Sigma-Aldrich) (experimental) or no ATR (control) until day
12 1 of adulthood. Experiments were performed on a previously developed microscopy system²⁰
13 that tracks and records free-ranging behavior of individuals while optogenetically stimulating
14 animals. For ‘swimming’ experiments, microfluidic devices were made as described²¹. Silicone
15 tubing and metal luer connectors were rinsed with dH2O and autoclave sterilized. Devices were
16 flushed and degassed with filtered and autoclaved M9 containing 0.01% Triton-X 100. After
17 degassing, synchronized day 1 adult worms were washed off of agar culture plates and
18 suspended in M9 containing 0.01% Triton-X 100. The worm suspension was loaded into device
19 as described²¹. After loading, bulk flow within the device was prevented via medical clips closed
20 on the silicone tubing.

21

1 **Android App and database** The Android application was written in Java and it utilizes Firebase
2 as the database backend. The database structure can be found in **Supplemental Figure 1**. The
3 app also makes use of Google Play Services to facilitate login via Google account and for gaming
4 purposes. The app conforms to material design and focuses on clean user interfaces for better
5 usability and smoother drawing experience. Code for the app can be found at
6 <https://github.com/jiangshen/WurmPaint>, along with instructions on how to setup the app
7 from the source code. The source code can be used under an MIT license.

8
9 To familiarize non-expert users with typical worm movement and shapes, we assembled a brief
10 tutorial <https://sites.google.com/view/wurm/tutorial>. As general guidelines, we asked users to
11 draw a continuous contour along the midline of the worm, starting at one end of the worm to
12 the other end, so that the contour did not contain sharp corners, rather smooth bends along
13 the length of the worm.

14
15 **Worm tracking.** We built upon an existing worm tracker¹¹ for our initial image analysis and to
16 identify frames where worms were partially self-occluded (i.e. ambiguous). A subset of these
17 frames was uploaded to our database for annotation. Using the generative algorithm included
18 in the existing worm tracker to predict worm posture for occluded shapes, we optimized
19 parameters for our data set and found predicted worm postures for several full videos from
20 which we had drawn ambiguous postures for our database. The worm tracker uses MATLAB
21 software (we used MATLAB version 2017a). Further software configuration and parameters we
22 used can be found on our lab GitHub. To evaluate the time required to process individual

1 frames using this worm tracker, we used MATLAB to measure how long the point-swarm (PS)
2 optimization (generation of alternative posture predictions) required for each ambiguous
3 frame. This step took an average of 776.2 ± 5.2 s/ ambiguous frame (95% CI, $n = 66$) with
4 parallel processing (a local pool consisting of 4 cores). After this generative step, a progressive
5 optimizing interpolation (POI) step evaluates the alternative posture predictions to determine
6 which makes sense in the context of the worm postures in the surrounding frames. For this
7 step, we timed the total time until a solution was generated. For a movie with 444 ambiguous
8 frames, this step required 155.5 s/ ambiguous frame (equivalent to the time required for > 20
9 human annotations). Combined, the PS and POI tracking steps required on average 931.7 s/
10 ambiguous frame, or the equivalent of 133 human annotations. The computers used were Dell
11 Precision Tower model 5810 with 32 GB RAM and Intel Xeon CPU.

12

13 **User annotation speed**

14 We collect timestamps when users upload images and drawing vectors with a resolution of 1s,
15 based on the user's device's time. To determine a conservative average user annotation speed,
16 we first grouped all annotations by user, then computed the time between each upload for that
17 user. We then pooled all these inter-upload times. Because inter-upload times could range from
18 a few seconds to days depending on the user's usage frequency, we imposed an upper
19 threshold of 30s for worm image annotations and an upper threshold of 90s for root image
20 annotations to determine the average user annotation speed.

21

22 **Post-processing of annotated worm images**

1 Although the current version of the app allows us to upload the coordinate trajectories of user
2 annotations, the initial version that much of the data presented here originates from only
3 allowed us to upload the annotation superimposed on the source image. Thus, to extract
4 annotations and reconstruct trajectories from uploaded images, some post-processing of
5 annotated images was required. Briefly, to identify annotations, we found non-grey pixels in
6 each image. We then binarized the annotation alone and skeletonized the image, followed by
7 removal of branch points if branch points existed. We then checked the curvature of each line
8 segment to ensure it fell in a reasonable range – if it did not, we broke the segment at its point
9 of maximum curvature. Using the resulting line segments, we attempted to reconnect them to
10 each other using both the proximity of segment endpoints and local segment slope. Once
11 segments had been reconnected, the worm’s midline was reconstructed using the projections
12 onto the first five eigenvectors as described previously¹⁸. Average speed of this post-processing
13 was 0.0597 s/ frame (n = 1000). This process is illustrated in **Supplemental Figure 2a**, and code
14 for these steps is available in our GitHub repository. However, we emphasize that other app
15 users need not perform any post-processing of images. Instead, coordinate trajectories can be
16 accessed by parsing JSON files that are downloadable from our Firebase database.

17

18 **Similarity score calculation**

19 As described in the text, in order to compare two paths, we matched 100 points between two
20 worm midlines and computed the Euclidean distance between each pair, followed by summing
21 all of these distances and normalizing the distance by 75% of the width of that particular worm
22 at each of the 100 matched points. Mathematically, $1 - \sum_{i=1}^{100} \frac{\|midline1_i - midline2_i\|_2}{0.75 * worm\ thickness_i}$.

1

2 **Consensus generation**

3 To construct consensus midlines from user annotations, we first noted that even for pairs of
4 reconstructed midlines that were below a zero similarity score, users were making essentially
5 the same annotation. To identify a threshold similarity score below which we could consider
6 two annotations to be from distinct groups, we modeled the distribution of similarity scores
7 from user-user comparisons (**Fig 2d**) as a mixture of gaussians. The primary mode was centered
8 at -0.068 and the secondary mode was centered at -3.260 (**Supplemental Figure 2b**). To ensure
9 that most generally similar annotations were grouped together, we computed a threshold two
10 standard deviations below the primary mode, a similarity score value of -0.809. We found that
11 several other methods of identifying this similarity score threshold identified thresholds that
12 ranged from slightly positive to slightly negative. These methods included the Otsu thresholding
13 method on user-user similarity scores and searching for the lowest threshold of the user-user
14 similarity scores for which the Wilcoxon rank-sum test failed to reject the null hypothesis that
15 the user-user similarity scores and user-ground truth similarity scores were drawn from the
16 same distribution at the 5% significance level.

17 Having identified a reasonable threshold, we generated consensus contours. During this
18 process, we used the projections of worm backbones into the space of the first five
19 eigenvectors. First, we identified and removed annotations whose eigenvector projections were
20 outside of the range of *C. elegans* posture space. Then, for each source image, we first
21 identified all annotations of the source image and removed any remaining outlier annotations
22 of that image, where an outlier is a value more than three scaled median absolute deviations

1 away from the median. Next, we computed similarity scores for all pairs of annotations and
2 used our previously identified threshold to identify pairs of images that were very similar to one
3 another. Then, we further grouped these pairs into larger groups of similar annotations and
4 identified the group of similar annotations with the largest number of members. For example, if
5 image pairs (1, 2), (2, 3) and (5,6) all have similarity scores above our threshold, we take the
6 union of all pairs that contain images 1, 2 and 3 and, separately, the union of all pairs that
7 contain images 5 and 6. If more images belong to the first union set than the second, we use
8 the first set to calculate a consensus contour by finding the centroid of this group of contours in
9 the five-dimensional space of posture projections.

10 **Code Availability**

11 Source code for Wurm Paint and Root Trace (root tracing app) are provided at
12 <https://github.com/jiangshen/WurmPaint>, along with instructions for independent researchers
13 to create their own versions of the app using novel data. The source code is available under an
14 MIT license. Analysis code is available at <https://github.gatech.edu/Lu-Fluidics->
15 [Lab/WurmPaintProcessing](https://github.gatech.edu/Lu-Fluidics-) (with dependency on <https://github.gatech.edu/Lu-Fluidics->
16 [Lab/eigenwormTracker](https://github.gatech.edu/Lu-Fluidics-)).

17 **Data Availability**

18 The datasets generated during and/or analysed during the current study are available from the
19 corresponding author on reasonable request.

20
21

1 **Author Contributions**

2 K.B. and H.L. conceived the project and wrote the manuscript, S.J. developed the app with input
3 from K.B. and H.L., K.B. developed supporting code and analyzed data, D.G. and E.M. provided
4 *O. sativa* data, E. J-H. provided stem cell aggregate data, K.B., H.L., R.B., M.J., E.J-H. and S.C.
5 annotated data.

6 **Competing Interests**

7 The authors declare no competing interests.

8

9

10

1

2 1. Kim, J. S. *et al.* Space–time wiring specificity supports direction selectivity in the retina.
3 *Nature* **509**, 331–336 (2014).

4 2. Boergens, K. M. *et al.* webKnossos: efficient online 3D data annotation for connectomics.
5 *Nat. Methods* **14**, 691–694 (2017).

6 3. Helmstaedter, M. Cellular-resolution connectomics: challenges of dense neural circuit
7 reconstruction. *Nat. Methods* **10**, 501–507 (2013).

8 4. Amat, F. *et al.* Fast, accurate reconstruction of cell lineages from large-scale fluorescence
9 microscopy data. *Nat. Methods* **11**, 951–958 (2014).

10 5. de Chaumont, F. *et al.* Computerized video analysis of social interactions in mice. *Nat.*
11 *Methods* **9**, 410–417 (2012).

12 6. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: interactive
13 machine learning for automatic annotation of animal behavior. *Nat. Methods* **10**, 64–67
14 (2013).

15 7. Carpenter, A. E., Kamentsky, L. & Eliceiri, K. W. A call for bioimaging software usability.
16 *Nat. Methods* **9**, 666–70 (2012).

17 8. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image
18 analysis. *Nature Methods* **9**, 671–675 (2012).

19 9. Rainie, L. & Zickuhr, K. *Americans' Views on Mobile Etiquette*. (2015). at
20 <www.pewresearch.org>

21 10. Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X. & Schafer, W. R. A database of *C.*
22 *elegans* behavioral phenotypes. *Nat. Methods* **10**, 877–879 (2013).

23 11. Broekmans, O. D. *et al.* Resolving coiled shapes reveals new reorientation behaviors in *C.*
24 *elegans*. *Elife* **5**, 1077–1084 (2016).

25 12. Fire, A. *et al.* Potent and specific genetic interference by double-stranded RNA in
26 *Caenorhabditis elegans*. *Nature* **391**, 806–11 (1998).

27 13. Friedland, A. E. *et al.* Heritable genome editing in *C. elegans* via a CRISPR-Cas9 system.
28 *Nat. Methods* **10**, 741–743 (2013).

29 14. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous
30 system of the nematode *Caenorhabditis elegans*. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.*
31 **314**, 1–340 (1986).

32 15. Nelson, L. S., Rosoff, M. L. & Li, C. Disruption of a neuropeptide gene, *flp-1*, causes
33 multiple behavioral defects in *Caenorhabditis elegans*. *Science* **281**, 1686–90 (1998).

34 16. Mendel, J. *et al.* Participation of the protein Go in multiple aspects of behavior in *C.*
35 *elegans*. *Science (80-.).* **267**, 1652–1655 (1995).

1 17. de Bono, M. & Bargmann, C. I. Natural Variation in a Neuropeptide Y Receptor Homolog
2 Modifies Social Behavior and Food Response in *C. elegans*. *Cell* **94**, 679–689 (1998).

3 18. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. Dimensionality and dynamics
4 in the behavior of *C. elegans*. *PLoS Comput. Biol.* **4**, e1000028 (2008).

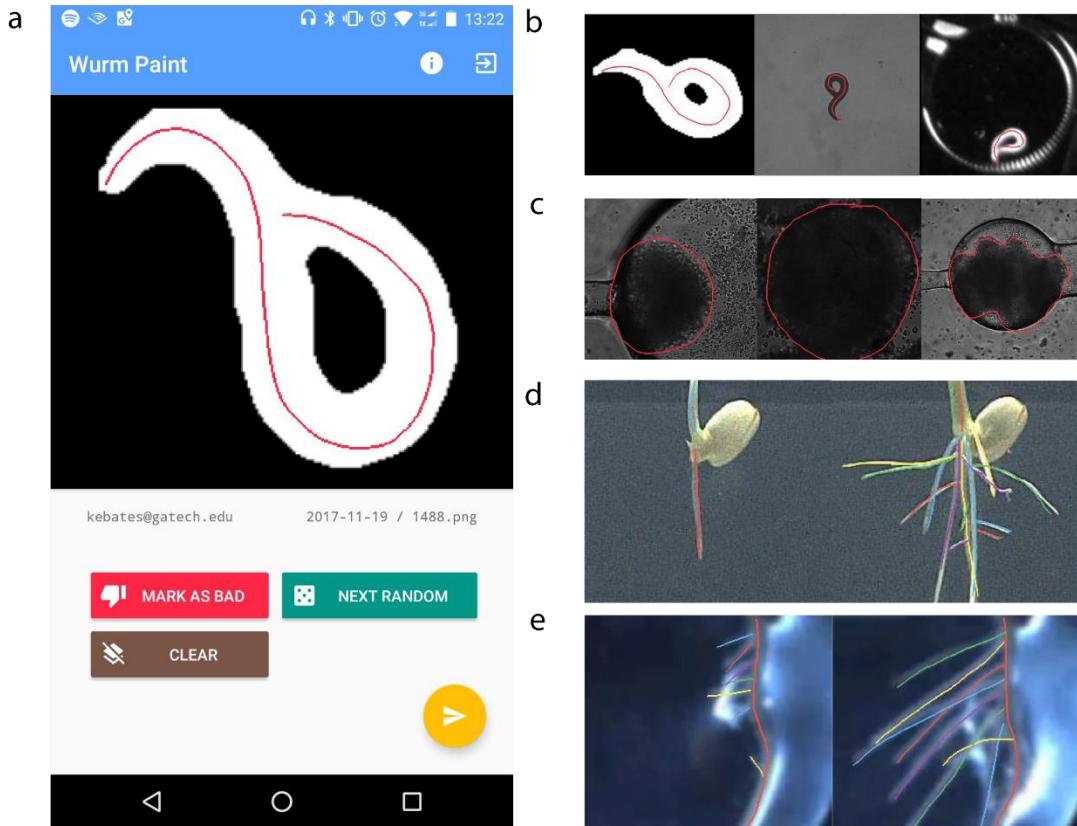
5 19. Brenner, S. The genetics of *Caenorhabditis elegans*. *Genetics* **77**, 71–94 (1974).

6 20. Stirman, J. N. *et al.* Real-time multimodal optical control of neurons and muscles in freely
7 behaving *Caenorhabditis elegans*. *Nat. Methods* **8**, 153–8 (2011).

8 21. Chung, K. *et al.* Microfluidic chamber arrays for whole-organism behavior-based chemical
9 screening. *Lab Chip* **11**, 3689 (2011).

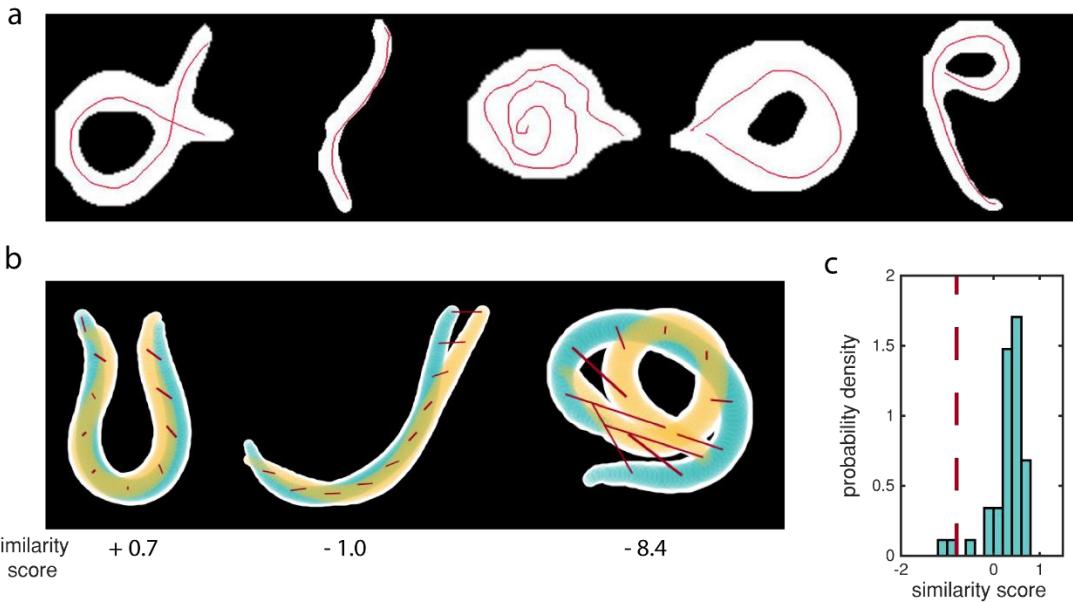
10

11



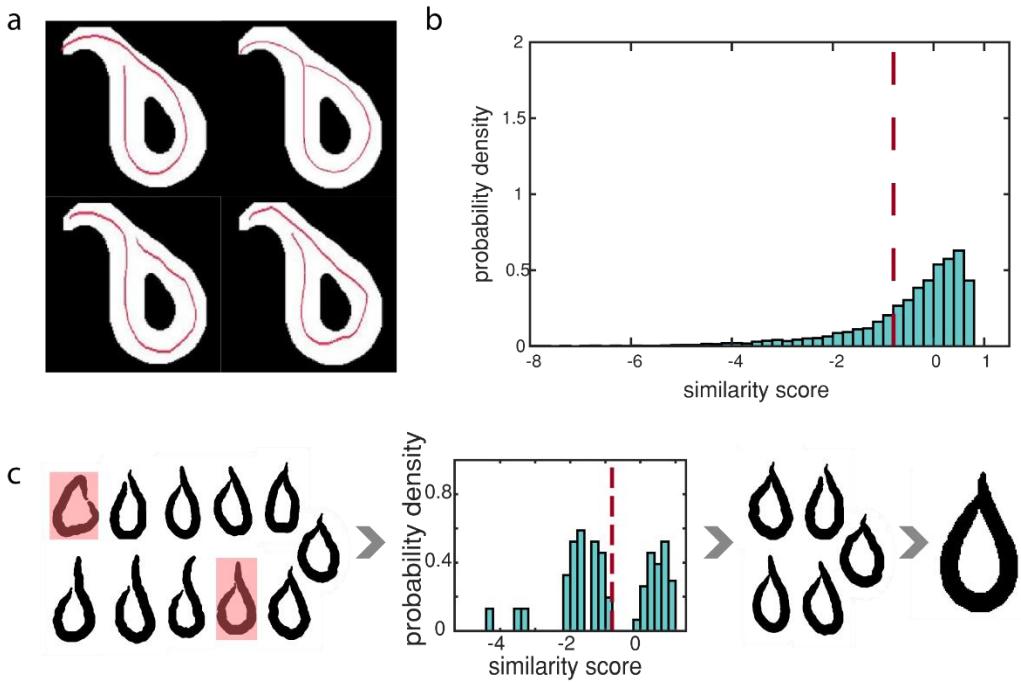
1

2 **Figure 1** | Versatile smartphone annotation of images. (a) Screen capture of Android interface of
3 worm tracing app, 'Wurm Paint'. See **Supplemental Movie 1** for a video of the app in use. (b)
4 User annotations of worm posture in binary image, grayscale brightfield image, and grayscale
5 darkfield image. (c) User annotations of stem cell aggregate morphology using app with same
6 source code as Wurm Paint. (d) User annotations of rice root structure. Left-hand images
7 temporally precede right-hand images. App presents images in temporal order, as temporal
8 context helps users to decipher additional information when root structure is partially occluded
9 at later timepoints. (e) User annotations of corn root structure. Left-hand images temporally
10 precede right-hand images. Even in poor, changing, or inhomogeneous imaging conditions,
11 human annotators make reasonable predictions.



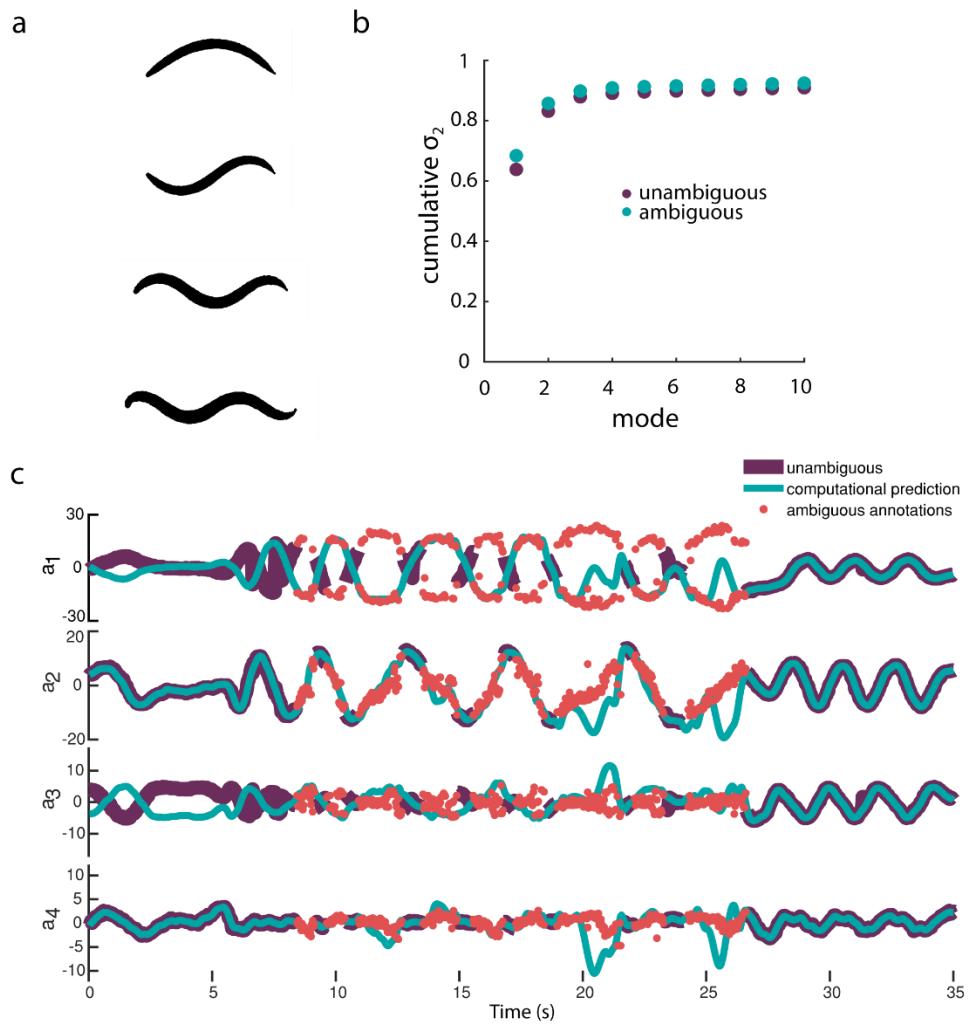
1

2 **Figure 2** | Intuitive and accurate annotation of images. (a) Annotations by 7-12 year-olds.
3 Although annotation quality is variable, the app is simple enough that children could use it
4 without any aid. (b) Sketch of similarity score calculations. For each panel, two worm contours
5 (white overlaid with yellow or blue) are reconstructed based on ground truth or annotated
6 midlines. 100 points along the midline are matched, and the Euclidean distance between each
7 pair is computed. Here we show this at 10 points along the backbone (red lines). We then
8 normalize the sum of these distances so that identical midlines result in similarity scores of one
9 and scores of zero indicate that midlines were on average within three-quarters of the worm
10 width apart. Yellow and blue highlight the center three-quarters of the worm's width. (c)
11 Probability density of similarity scores for unambiguous posture solutions compared to averaged
12 user annotations of the same unambiguous postures. Most similarity scores lie above zero,
13 indicating that users can accurately annotate unambiguous images. The dashed red line indicates
14 the threshold we use to calculate consensus contours. Almost all average user annotations are
15 above this threshold. N = 44.



1

2 **Figure 3** | Generating accurate consensus predictions for ambiguous images. (a) Example set of
3 ambiguous images. While some users draw the midline as continuous to the left side of the worm
4 body, others draw the midline as continuous to the right side of the worm body. (b) Probability
5 density of similarity scores for comparison between different user annotations of the same
6 ambiguous posture. The skew of the probability density is consistent with higher variability in
7 user annotations of ambiguous postures compared to unambiguous postures, while the mode
8 location between zero and one is consistent with many users in agreement with one another.
9 The dotted red line indicates the threshold we use to calculate consensus contours. Although this
10 threshold is less than zero (i.e. midlines are greater than three-quarters width distant),
11 annotations above this threshold are generally consistent with one another. The threshold was
12 determined by modeling probability density as a mixture of two Gaussians (see **Methods**). N
13 =26,098. (c) Illustration of consensus generation scheme. First, we identify and remove outlier
14 annotations and annotations outside of a range of eigenmode amplitudes. Next, we compare
15 each annotation to every other annotation of the same posture using similarity scores. We group
16 annotations based on which pairs have similarity scores above the dotted red threshold. Then
17 we find the group containing the most annotations and use the cluster centroid to produce a
18 consensus contour.



1

2 **Figure 4** | Reconstruction of continuous behavior dynamics from annotations. (a) Representation
3 of first four principle components of worm posture ('eigenworms') including both unambiguous
4 and ambiguous postures from four annotated videos in our dataset (37,784 frames). Our
5 eigenworms are different from many other reported eigenworms, but this is a result of the
6 extended physical environments represented in our dataset. As reported in other works, our
7 eigenworms both with and without ambiguous postures were very similar (see **Supplemental**
8 **Figure 2c**). (b) Cumulative variance captured by each additional eigenworm ('mode') for both
9 unambiguous images only and both unambiguous and ambiguous images together. As in other
10 work, we note that most of the variability in *C. elegans*' posture is captured by very few
11 eigenworms, and after the first four eigenworms the additional variance captured is incremental
12 for both ambiguous and unambiguous cases. When both unambiguous and ambiguous images
13 are included, the variance captured by the first four eigenworms is greater than the variance
14 captured using only unambiguous images. (c) Traces of amplitude of first four eigenworms in

1 time for an individual worm. Dark purple lines are amplitudes calculated for unambiguous
2 postures via image processing. Note the extensive gaps between purple lines that represent
3 ambiguous postures that are usually associated with reorientation and turning of the worm. Blue
4 lines are computational predictions for the full video, including ambiguous postures. Red dots
5 represent consensus contours for individual frames found using app user annotations. Typically,
6 red dots follow similar contours to blue lines. For the amplitudes of the first eigenworm in
7 particular, the red dots follow two opposing sinusoidal contours simultaneously, one contour
8 representing the opposite head orientation of the worm compared to the other contour. As is
9 apparent in **Supplemental Movie 2**, there are some cases where user annotations more
10 accurately represent the worm's motion compared to the computational prediction.

11

12 **Supplemental Movie 1** | Demonstration of example app usage. Users simply trace features of
13 interest with a finger or stylus and upload them to the cloud. Users can also report images that
14 don't match the anticipated pattern (in this case, images that don't look like worms). Movie is
15 in real time.

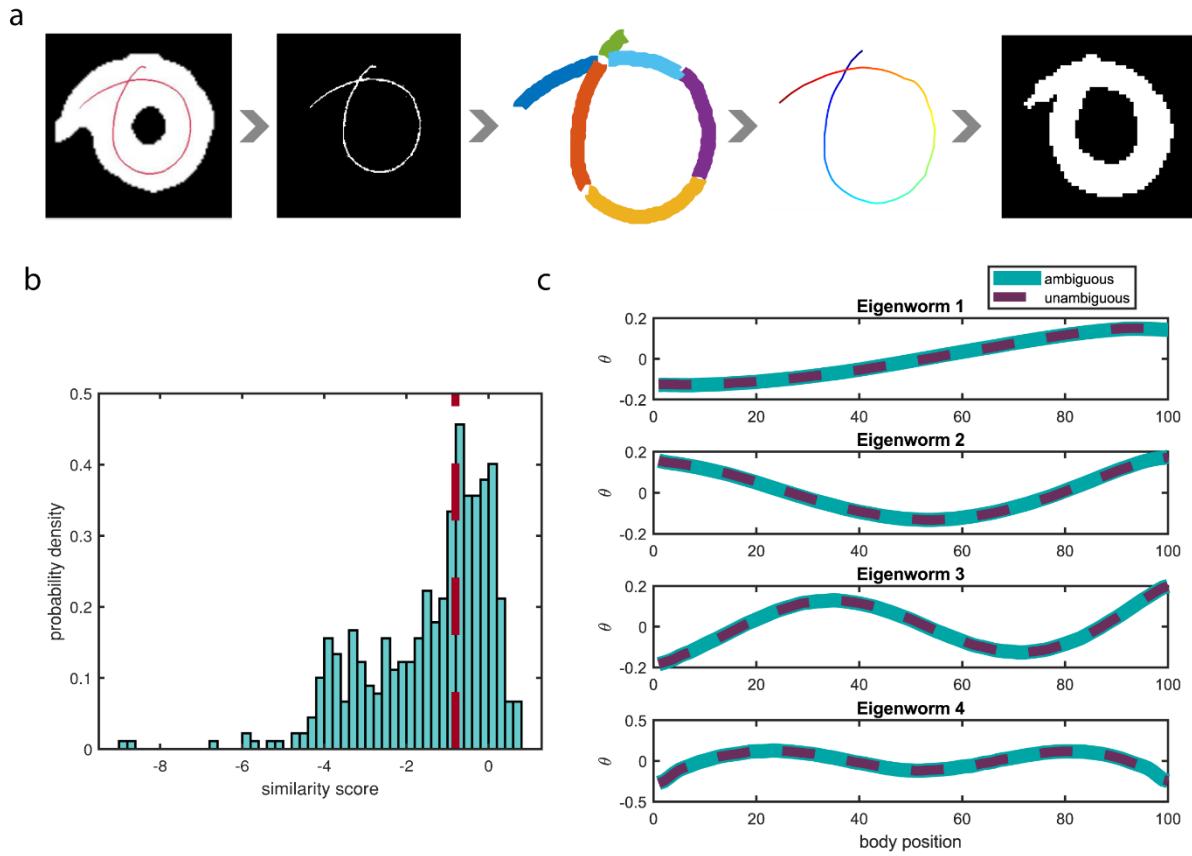
16 **Supplemental Movie 2** | Representative example reconstruction of worm behavior. Segmented
17 images from raw data are on left, with purely algorithmic reconstruction in center, and
18 consensus annotation-based reconstruction on right (only for complex or ambiguous frames).
19 Although algorithmic reconstruction is visually more accurate in many frames, annotation-
20 based reconstruction produces accurate results even in frames that are inaccurately segmented
21 or in cases where the algorithm performs poorly. Movie is at half speed from original 30 fps.

22

1 Supplemental Figures

2

3 **Supplemental Figure 1** | App database structure. Top-level (left) and expanded (right) structure of the root tracing app database. All apps have similarly structured databases. ‘Bad_images’ contains mapping to user-reported images. In Wurm Paint, we used this feature to identify images where image segmentation had failed, where the image feature was too small for users to draw, or images that didn’t clearly contain a worm. ‘Master_upload’ defines which source image sets are live on the app, as well as the number of images in each source set. User feedback is stored in the ‘ratings’ structure. Finally, ‘uploads’ maps user annotations (with user id, image name, and date and time of annotation) to the source image. In newer app versions available on our Github, we also save line trajectories at the bottom of the ‘uploads’ structure. To initialize the app, only the ‘master_upload’ structure is needed.



1
2 **Supplemental Figure 2 |** Worm annotation characterization (a) Reconstruction pipeline for worm
3 midlines. Worm backbone annotations used in the main text were collected as images
4 superimposed on the source image, so midlines must be reconstructed. Newer versions of the
5 app save the drawn trajectory directly, so reconstruction is unnecessary. We found non-gray
6 pixels (annotations) within the annotated images and binarized the annotation, followed by
7 breaking the annotation at points of intersection or extreme curvature. Then we used local
8 curvature and distance metrics to predict which line segments were connected and
9 reconstructed the midline and image. (b) Probability density of similarity scores for ambiguous
10 posture predictions compared to ambiguous posture consensus annotations. Red dashed line is
11 threshold used for consensus generation. The broader similarity score distribution compared to
12 unambiguous annotation to unambiguous ground truth comparison is caused partially by user
13 variability and lower user accuracy and partially by the predictive nature of the state-of-the-art
14 algorithm that sometimes leads to incorrect solutions. $N = 449$ (c) First four eigenvectors
15 ('eigenworms') of the *C. elegans* posture space computed from four annotated videos (>37,000
16 frames). Computing eigenworms from only unambiguous postures or both ambiguous and
17 unambiguous postures resulted in little difference, as reported in other work. Compared to
18 eigenworms reported in other work, ours are similar, but with different eigenworms capturing a
19 greater fraction of the total postural variability.

20