

1 **Sex differences in fear regulation and reward seeking behaviors in a fear-safety-reward
2 discrimination task**

3

4

5 Abbreviated title: Sex differences in conditioned safety

6

7

8

9 Eliza M. Greiner¹, Makenzie R. Norris¹, Iris Müller^{1,2}, Ka H. Ng^{1,2}, Susan Sangha^{1,2*}

10

11 1. Department of Psychological Sciences

12 2. Purdue Institute for Integrative Neuroscience

13 Purdue University, West Lafayette, IN, USA 47907

14

15 *Correspondence to:

16 Susan Sangha

17 Department of Psychological Sciences

18 Purdue University

19 703 Third St., West Lafayette, IN 47907

20 (t) 765.494.0648

21 (e) sangha@purdue.edu

22

23

24 Number of figures: 4

25 Number of tables: 1

26

27

28 **Abstract**

29 Reward availability and the potential for danger or safety potently regulate emotion. Despite
30 women being more likely than men to develop emotion dysregulation disorders, there are
31 comparatively few studies investigating fear, safety and reward regulation in females. Here, we
32 show that female Long Evans rats do not suppress conditioned freezing in the presence of a
33 safety cue, nor do they extinguish their freezing response, whereas males do both. Females
34 were also more reward responsive during the reward cue until the first footshock exposure, at
35 which point there were no sex differences in reward seeking to the reward cue. Darting analyses
36 suggest females are able to regulate this behavior in response to the safety cue, suggesting
37 they might be able to discriminate between fear and safety cues but do not demonstrate this
38 with conditioned suppression of freezing behavior. However, levels of darting in this study were
39 too low to make any definitive conclusions. In summary, females showed a significantly different
40 behavioral profile than males in a task that tests the ability to discriminate among fear, safety
41 and reward cues. This paradigm offers a great opportunity to test for mechanisms that are
42 generating these behavioral sex differences in learned safety and reward seeking.

43

44 **Keywords:** sex differences; fear; safety; reward; extinction

45 **1. Introduction**
46 Clinical disorders arising from maladaptive emotion regulation present a large burden on society
47 worldwide. Many of these disorders show comorbidity, for example, addiction with anxiety
48 disorders (Grant et al., 2016). Cues predicting something aversive elicit avoidance and fear
49 behaviors whereas cues predicting reward elicit approach and reward-seeking behaviors. Cues
50 signifying safety have the power to modulate fear and reward-seeking behaviors by informing
51 the organism whether or not the environment is safe (Walasek, Wesierska, & Zieliński, 1995).
52 Thus, safety, fear and reward behaviors, and the circuitries governing these behaviors, are
53 intertwined. The majority of studies on reward and fear processing have been conducted in
54 parallel, investigating the circuitries separately in primarily male subjects. If we hope to
55 understand and treat comorbid disorders resulting from maladaptive emotion regulation,
56 increased efforts in investigating how these circuitries integrate their functions to influence
57 behavior is needed in both male and female subjects.

58
59 Our laboratory has designed and validated a behavioral task in which fear, safety and reward
60 cues are learned within the same session allowing us to assess the animal's ability to
61 discriminate among these cues (Müller, Brinkman, Sowinski, & Sangha, 2018; Ng, Pollock,
62 Urbanczyk, & Sangha, 2018; Sangha, Chadick, & Janak, 2013; Sangha, Greba, Robinson,
63 Ballendine, & Howland, 2014; Sangha, Robinson, Greba, Davies, & Howland, 2014). Rats are
64 exposed to cues associated with safety, fear (fear cue paired with footshock), and reward
65 (reward cue paired with sucrose). Male rats consistently learn to discriminate among safety, fear
66 and reward cues to 1) suppress conditioned freezing in the presence of a safety cue
67 (fear+safety cue), and 2) increase reward seeking when reward is available (reward cue) (Müller
68 et al., 2018; Ng et al., 2018; Sangha et al., 2013; Sangha, Greba, et al., 2014; Sangha,
69 Robinson, et al., 2014). This paradigm also allows us to investigate how safety cues can
70 regulate both fear and reward behaviors. Evidence suggests that reward learning mechanisms
71 overlap at least partially with safety learning (Leknes et al., 2011; Pollak et al., 2008; Rescorla,
72 1969; Rogan et al., 2005; Sangha et al., 2013; Tanimoto et al., 2004; Walasek et al., 1995). For
73 example, learned safety can act as a behavioral antidepressant in mice (Pollak et al., 2008),
74 and animals will perform certain behaviors in order to turn on a safety signal (Rescorla, 1969;
75 Rogan et al., 2005). Within the amygdala we have shown a subpopulation of neurons
76 responding with the same level of excitation or inhibition during both the reward and safety cues
77 (Sangha et al., 2013). We have also shown a dissociation between reward and safety
78 discrimination; inactivation of the prelimbic or infralimbic cortices of the ventromedial prefrontal

79 cortex have differential effects on reward and safety discrimination, respectively (Sangha,
80 Robinson, et al., 2014). Thus, in male rats, our prior work has already shown a critical
81 involvement of the corticoamygdalar circuit in learning this fear-safety-reward cue
82 discrimination.

83

84 Much of the research investigating emotion regulation mechanisms have exclusively used male
85 subjects. In a study using male Vietnam veterans, Post-Traumatic Stress Disorder (PTSD)
86 patients show impairments in suppressing their fear response in the presence of a safety cue
87 (Jovanovic et al., 2009). But, women are more than twice as likely to develop PTSD than men,
88 with females having a lifetime prevalence of 8.5% in contrast to 3.4% in males (Mclean et al.,
89 2011). In fear studies that have included female rats, it has been shown that females exhibit
90 lower levels of freezing behavior than male rats after repeated fear cue presentations (Daviu et
91 al., 2014). These findings have been thought to indicate a difficulty in fear conditioning in female
92 rats. A more recent experiment has identified that approximately 40% of female rats tested
93 exhibit an alternate fear behavior in the form of fast paced movements called 'darting'; this was
94 only seen in approximately 10% of male rats tested (Gruene et al., 2015). There is also
95 evidence of sex differences in the seeking of natural rewards, where it has been reported that
96 female rats consume more sucrose pellets than males and are willing to work harder for them
97 (Tapia, Lee, Weise, Tamasi, & Will, 2019). Dopamine signaling during reward tasks has also
98 been demonstrated to be different between sexes. For example, Conway et al (2019) showed
99 females continue to perform intracranial self-stimulation for brain stimulation reward while under
100 the influence of a kappa-opioid receptor agonist, which suppresses dopamine release, whereas
101 males decrease this behavior. Their data suggest that female rats may have an increased
102 capacity to produce and release dopamine compared to males, under these conditions. Our
103 prior work has shown, in males, that dopamine signaling in the basolateral amygdala contributes
104 to effective discrimination among fear, safety and reward cues (Ng et al., 2018).

105

106 Taken together, we hypothesized there would be sex differences in the ability to express clear
107 discrimination among fear, safety and reward cues. The inability of male PTSD patients to learn
108 safety signaling has been labeled a biomarker of the disorder (Jovanovic et al., 2012). Due to
109 sex-related differences in human diagnosis of PTSD, with women diagnosed at rates twice that
110 of men (Glover et al., 2015), any differences female rats have in the learning or retention of
111 safety signals could steer towards further research on the neurological processes underlying
112 these variations.

113 **2. Materials and Methods**

114 *2.1 Subjects*

115 A total of 24 adult male (215-375g) and 28 adult age-matched female (198-230g) Long Evans
116 rats (Blue Spruce; Envigo, Indianapolis), were single-housed and handled for 1 week prior to
117 testing. All procedures were performed during the light cycle and approved by the Purdue
118 Animal Care and Use Committee. Rats had *ad libitum* access to food and water prior to the
119 start of the experiment. After experiment onset, they were maintained on a food restricted diet
120 (20g per day for males; 16g per day for females) until the last day of the experiment.

121

122 *2.2 Apparatus*

123 The rats were trained in operant conditioning chambers consisting of Plexiglas boxes (32cm
124 length x 25cm width x 30cm height) encased in sound-attenuating chambers (Med Associates,
125 ST Albans, VT). 10% liquid sucrose was delivered through a recessed port 2cm above the floor
126 in the center of one wall. Two lights (28V, 100mA) were located 10.5cm from floor on either side
127 of the port. A light (28V, 100mA) 27cm above the floor on the wall opposite the port was on
128 throughout the entire session. Auditory cues were delivered via a speaker (ENV-224BM) located
129 24cm from the floor on the same wall as the port. Footshocks were delivered through a grid floor
130 via a constant current aversive stimulator (ENV-414S). An overhead video camera and side
131 video camera recorded the sessions for subsequent offline video scoring.

132

133 *2.3 Behavioral Procedures*

134 Reward pre-training (5 sessions): An auditory cue was paired with 10% sucrose solution
135 delivery (100µl) and served as the reward cue (25 trials; ITI, 90-130s).

136 Habituation (1 session): Rats continued to receive 25 reward cue-sucrose pairings (ITI, 90-
137 130s) in addition to 5 unreinforced presentations each of the future fear and safety cues in order
138 to habituate the rats to their presentation, thereby reducing any baseline freezing to these novel
139 cues.

140 Discriminative conditioning (DC) (4 sessions): Reward cue-sucrose pairings continued (15
141 trials). Another auditory cue was paired with a mild 0.5mA, 0.5s footshock and served as the
142 fear cue (4 trials). In separate trials the 20s fear cue was presented at the same time as a 20s
143 safety light cue resulting in no footshock ('fear+safety', 15 trials). Trials in which the safety cue
144 was presented alone without any footshock were also included to assess whether freezing
145 developed to the safety cue as well as providing the animal with additional trials that contained a
146 safety cue-no shock contingency (10 trials). Trials were presented pseudorandomly (ITI, 100-

147 140 s). Eight of the male rats and 12 of the female rats underwent DC training in which the
148 reward cue was a continuous auditory cue (3 kHz, 20s cue; 70dB), the fear cue a pulsing
149 auditory cue (11 kHz, 20s; 70dB), and the safety cue was the presentation of two lights (28V,
150 100mA located on both sides of the port). The remaining eight male rats and eight female rats
151 underwent training in which the fear and safety cue stimuli were counterbalanced: the light
152 served as the fear cue and the pulsing auditory cue served as the safety cue.

153 Extinction Training (1 session): One day after the last DC session, both the reward cue and fear
154 cue were presented 20 times each in a pseudorandomized order without sucrose or footshock
155 (ITI, 60-120s).

156 Extinction Test (1 session): One day after extinction training, rats were presented with the
157 reward (10 trials), fear (10 trials), fear+safety (5 trials) and safety (5 trials) cues in a
158 pseudorandomized order (ITI, 60-120s). None of the cues were presented with sucrose or
159 footshock.

160

161 To exclude possible sex differences in pain sensitivity and footshock perception, a separate
162 group of male (n=8) and age-matched female (n=8) rats was presented with a series of
163 unsignalled footshocks of increasing intensities (0.3 mA, 0.35 mA, 0.4 mA, 0.45 mA, 0.5 mA,
164 0.55 mA, 0.6 mA, 0.7 mA, 0.8 mA, 0.9, 1.0 mA) with an inter-stimulus interval of 2 min. The
165 session was flanked with 5 min intervals in which no stimuli occurred.

166

167 *2.4 Data analyses*

168 Our experimental groups to directly compare males and females on discrimination behavior
169 consisted of 16-20 rats. Cohorts of 4 or 8 female rats were trained alongside cohorts of 4 male
170 rats for a total of 4 replications. Fear behavior was assessed manually offline from videos by
171 measuring freezing, defined as complete immobility with the exception of respiratory
172 movements, which is an innate defensive behavior (Blanchard & Blanchard, 1969; Fendt &
173 Fanselow, 1999). The total time spent freezing during each 20s cue was quantified and
174 expressed as a percentage. Measuring the total time the animal spent inside the reward port
175 and at the entrance of the port with nose positioned at port entrance during each cue assessed
176 reward-seeking behavior and was expressed as a percentage. Darting behavior was detected
177 and quantified offline from videos recorded from overhead cameras via a custom MatLab
178 program, with movements of a velocity of 23.5cm/s or faster qualifying as a single dart (Gruene
179 et al., 2015); these were also confirmed manually. Darting was expressed as the averaged # of
180 darts per cue (sum of darts/ # trials) or trial (sum of darts). Since there were different number of

181 trials per reward, fear, fear+safety and safety cue in each DC session and test for extinction,
182 this was expressed as the sum of darts across trials divided by the number of trials for each cue
183 (sum of darts/ # trials). And, since the extinction training data were expressed trial by trial, data
184 for each individual trial was shown and expressed as the averaged sum of darts for each
185 individual trial (sum of darts). Three individuals performed manual offline behavioral scoring.
186 Pearson's correlations of behavioral values between scorers were greater than $r = 0.80$.
187 Behavioral data were analyzed with one-way or two-way repeated measures ANOVAs, with sex
188 as the independent factor and condition as the repeated factor, followed by *post hoc* Sidak's,
189 Tukey's or Dunnett's multiple comparisons tests with GraphPad Prism 8. P values were
190 adjusted for multiple comparisons.

191
192 For shock sensitivity testing, freezing duration in the 2-min intervals between shock
193 presentations was scored manually, as well as darting and jumping immediately after shock
194 delivery. For the freezing durations, a two-way repeated measures ANOVA was carried out via
195 GraphPad Prism 7, with sex as the independent factor and shock intensity as the repeated
196 factor. Darting and jumping were assessed as dichotomous variables with darting/no darting
197 and jumping/no jumping, respectively. For both, a Cochran test was performed.

198

199 **3. Results**

200 *3.1 Female rats spent more time reward seeking during reward pre-training*

201 All rats first underwent 5 reward pre-training sessions in which the reward cue was paired with
202 sucrose delivery. The percent time spent at or in the reward port during each reward cue across
203 each reward session was quantified (Figure 1B). Two-way repeated-measures ANOVAs
204 showed main effects of session ($F(4,136)=5.395$, $p=0.0005$) and sex ($F(1,34)=10.83$, $p=.0023$),
205 but no significant interaction ($F(4,136)=0.9031$, $p=0.4641$). *Post hoc* Sidak's multiple
206 comparisons test showed females spent significantly more time reward seeking during the
207 reward cue than males for sessions R2 ($p=0.0274$), R3 ($p=0.0151$) and R5 ($p=0.0041$). The
208 latency, in seconds, to enter the port post-cue onset was also calculated for each reward cue
209 presentation across all sessions (Figure 1C). Two-way repeated-measures ANOVAs showed a
210 main effect of sex ($F(1,34)=20.37$, $p<.0001$), but no significant interaction ($F(4,136)=1.684$,
211 $p=0.1571$) or main effect of session ($F(4,136)=0.7755$, $p=0.5429$). *Post hoc* Sidak's multiple
212 comparisons test showed females were significantly faster to enter the port than males during
213 the last 3 reward sessions (R3, $p=0.001$; R4, $p=0.0391$; R5, $p=0.0014$). Taken together, female

214 rats consistently spent more time than males in the reward port during the reward cue in reward
215 pre-training sessions.

216
217 *3.2 Female rats did not show conditioned inhibition of freezing*
218 After reward pre-training, rats were then exposed to sessions also consisting of reward, fear and
219 safety cues. The reward cue and sucrose reward were the same as the reward pre-training
220 sessions. The fear cue was paired with a 0.5mA footshock, and neither the safety cue nor the
221 fear+safety cue resulted in footshock or sucrose.

222
223 The percent time spent at or in the reward port during each cue across session was quantified
224 for each DC session (Figure 2B). Two-way repeated-measures ANOVAs showed a significant
225 cue by sex effect, as well as main effects of cue and sex for DC1 (Table 1). *Post hoc* Sidak's
226 multiple comparisons test showed that, during DC1, females spent significantly more time
227 reward seeking during the reward cue compared to males ($p<0.001$), consistent to what was
228 seen in reward pre-training. For the remaining DC2-4 sessions, a main effect of cue was
229 observed (Table 1) and *post hoc* Tukey's multiple comparisons test showed that both male and
230 female rats spent significantly more time reward seeking during the reward cue compared to all
231 other cues ($p<0.0001$), with no significant differences between the males and females. Thus,
232 the noticeable increase in reward seeking in the females, that was seen during reward pre-
233 training, dissipated by the 2nd DC session.

234
235 The percent time freezing during each cue across session was quantified for each DC session
236 (Figure 2C). Two-way repeated-measures ANOVAs showed a significant cue by sex effect for
237 sessions DC2-4, as well as main effects of cue and sex for every session (Table 1). *Post hoc*
238 Sidak's multiple comparisons tests showed that, for every session, females displayed
239 significantly more freezing to the fear+safety cue compared to males (DC1, $p=0.0313$; DC2,
240 $p=0.007$; DC3, $p=0.0007$; DC4, $p<0.0001$). Females also showed significantly higher freezing
241 levels to the fear cue compared to males during DC2 ($p=0.0111$). Males showed a significant
242 reduction in freezing levels to the fear+safety cue compared to the fear cue during sessions
243 (DC3 ($p=0.0156$) and DC4 ($p<0.0001$), thus showing significant conditioned inhibition of freezing.
244 Females did not show a significant inhibition of freezing during any session.

245
246 The number of darts during each cue was also quantified for each DC session and expressed
247 as the sum of darts across trials for a given cue divided by the number of trials for that cue

248 (Figure 2D; sum of darts/ # trials). Darting behavior during cue presentation was largely absent
249 until DC3 and DC4. Two-way repeated-measures ANOVAs showed a significant cue by sex
250 effect for DC4, as well as main effects of cue, for DC2-4, and sex, for DC1 and DC4 (Table 1).
251 *Post hoc* Sidak's multiple comparisons test showed that, during DC4, females expressed more
252 darting behavior compared to males during both the fear cue ($p<0.0001$) and the fear+safety
253 cue ($p=0.0079$). Additionally, the females significantly reduced their darting behavior during the
254 fear+safety cue compared to the fear cue (*post hoc* Tukey's multiple comparisons test,
255 $p=0.0166$), suggesting some level of conditioned inhibition of darting behavior.

256

257 *3.3 Female rats did not show significant extinction of freezing*

258 The day after the last DC session all rats underwent fear and reward extinction within the same
259 session. That is, both the fear and reward cues were presented within the same training
260 session, without footshocks or sucrose presentations.

261

262 During extinction of reward, there was no main effect of reward trial ($F(19,646)=1.526$,
263 $p=0.0704$) or sex ($F(1,34)=1.31$, $p=0.2603$) and no interaction ($F(19,646)=0.8927$, $p=0.5924$);
264 there was also no significant difference between male and female groups for any trial (Figure
265 3Bi). One day later when rats were re-tested for extinction memory (Figure 3Bii), there was a
266 main effect of cue (2-way RM ANOVA; $F(3,102)=134.7$, $p<0.0001$) and sex ($F(1,34)=6.217$,
267 $p=0.0177$). *Post hoc* Sidak's multiple comparisons test showed females had significantly more
268 port activity than males just during the safety cue ($p=0.0452$), although this difference did not
269 reflect a large increase in port activity as females spent 6.38% +/- 0.86 of the safety cue in the
270 port compared to 2.66% +/- 0.86 in males. Overall, there appeared to be no differences in the
271 ability of males and females to extinguish their reward seeking responses.

272

273 To assess fear extinction the averaged percent time freezing during each trial of fear extinction
274 training was calculated (Figure 3Ci). There was a main effect of fear trial (2-way RM ANOVA;
275 $F(19, 646)=7.69$, $p<0.0001$) and sex (2-way RM ANOVA; $F(1, 34)=4.607$, $p=0.0391$), but no
276 significant interaction ($F(19, 646)=1.566$, $p=0.059$). Compared to trial 1, males showed
277 significantly reduced freezing in extinction trials 8-20 (*post hoc* Dunnett's multiple comparisons
278 test, $p<0.05$), demonstrating good fear extinction beginning at the 8th trial. In contrast, females
279 only showed a significant reduction in freezing during trials 14 and 19 compared to the first trial
280 (*post hoc* Dunnett's multiple comparisons test, $p<0.05$), demonstrating relatively absent fear
281 extinction. One day later when rats were retested for extinction memory (Figure 3Cii), there was

282 a main effect of cue ($F(3,102)=134.7$, $p<0.0001$) and sex ($F(1, 34)=6.217$, $p=0.0177$), as well as
283 a significant interaction of cue by sex ($F(3, 102)=3.481$, $p=0.0187$). *Post hoc* Sidak's multiple
284 comparisons test showed that females froze significantly more than males to the fear
285 ($p=0.0146$) and fear+safety ($p=0.0091$) cues. This indicates the continued absence of any
286 extinction of freezing in females.

287

288 In response to each fear cue presentation across extinction, we also assessed darting levels
289 (Figure 3Di). There was a main effect of sex ($F(1,34)=4.816$, $p=0.0351$), but no effect of trial
290 ($F(19, 646)=0.6941$, $p=0.8268$) and no significant interaction ($F(19, 646)=1.083$, $p=0.3640$).
291 *Post hoc* Sidak's multiple comparisons test showed no significant differences between males
292 and females for any trial. For the extinction memory test one day later (Figure 3Dii), there was a
293 significant cue by sex interaction ($F(3,102)=4.447$, $p=0.0056$), as well as a main effect of both
294 cue ($F(3, 102)=4.248$, $p=0.0072$) and sex ($F(1, 34)=4.834$, $p=0.0348$). Females showed
295 significantly higher darting levels than males during the fear cue (*post hoc* Sidak's multiple
296 comparisons test, $p=0.0002$), which was also significantly higher than the darting levels during
297 the reward ($p=0.0002$), safety ($p<0.0001$), and fear+safety ($p=0.0082$) cues in the females (*post*
298 *hoc* Tukey's multiple comparisons test). However, though statistically significant, the amount of
299 darting during the fear cue in females was very low, ranging from 0.05-0.4 across extinction
300 training, and therefore no definitive conclusions can be made regarding darting and extinction in
301 this study.

302

303 3.4 Shock reactivity in males versus females

304 To exclude possible sex differences in pain sensitivity and footshock perception, a separate
305 cohort of 8 male and 8 age-matched female rats received 11 unsignaled footshocks of
306 increasing intensities (0.3 mA, 0.35 mA, 0.4 mA, 0.45 mA, 0.5 mA, 0.55 mA, 0.6 mA, 0.7 mA,
307 0.8 mA, 0.9, 1.0 mA) with an inter-stimulus interval of 2 min. Freezing increased as a function of
308 shock intensities (Figure 4A; 2-way RM ANOVA; $F(11,121)=25.9$, $p<0.0001$). No main effects of
309 sex ($F(1,121)=0.2871$, $p=0.6027$) or sex by shock ($F(11,121)=1.413$, $p=0.1754$) were observed.
310 Our experiments utilized a shock intensity of 0.5mA throughout this study. For this particular
311 intensity, we also noted the number of rats that jumped or darted in response to a 0.5mA shock
312 (Figure 4B,C). No sex differences in the number of rats jumping in response to the 0.5mA
313 footshock were observed (χ^2 : $p>0.9$). The number of female rats darting after the 0.5mA
314 footshock was higher than males, but not significantly (χ^2 : $p =0.0769$), with five of the eight
315 female rats tested exhibiting the behavior. A higher number of females darting in response to

316 the footshock in this test would still not explain the lack of conditioned inhibition of freezing in
317 the females, as freezing levels at 0.5mA was slightly lower than the males (Figure 4A). Our
318 results do not definitively show, but do suggest, that females may be more likely to respond to a
319 footshock with a darting response.

320

321 **4. Discussion**

322 In this study, we show females exhibit a significantly different behavioral profile than males in a
323 task that tests for reward, fear and safety cue discrimination, as well as conditioned inhibition
324 and extinction. Female Long Evans rats showed more reward seeking early in training and
325 persistently high freezing levels to the fear cue when in the presence of a safety cue or after
326 fear extinction. Darting behavior in the females late in training showed conditioned inhibition of
327 this behavior in the presence of a safety cue, suggesting the females are able to discriminate
328 between the fear and safety cues but do not suppress their freezing response. This data adds to
329 the growing body of evidence of sex differences in fear regulation and highlights the advantages
330 of using more complex learning paradigms with additional behavioral measurements.

331

332 Even though studies including female subjects have been proportionally low, several studies
333 have reported clear sex differences in fear regulation. Most of these are consistent with our
334 findings of reduced discrimination between fear and safety signals. For instance, female mice
335 show more generalization of fear to novel and safe contexts compared to males, and with this
336 generalization there is a concurrent increase in basal amygdala activity (Keiser et al., 2017).
337 Male and female rats also respond differently to the controllability of a stressor. Males display
338 reduced fear during escapable stress versus inescapable stress whereas females exhibit no
339 beneficial effects of perceiving a stressor as escapable and controllable (Baratta et al., 2018).
340 The buffering effects seen in these males were linked to prelimbic cortical neurons projecting to
341 the dorsal raphe nucleus, which do not appear to be engaged in females. Females displaying a
342 similar fear response to both inescapable and escapable stress is similar to our findings of
343 females showing equivalent freezing levels to the fear cue in the presence or absence of a
344 safety cue, in that there were no buffering effects seen by the safety cue. It appears that
345 females do not downregulate their fear response in situations cued as safe.

346

347 Our data showing an increase in darting behavior in female rats as the number of fear cue-
348 footshock trials increase is consistent with another report using female rats in a fear conditioning
349 and extinction paradigm (Gruene et al., 2015). Like us, Gruene et al (2015) also show darting

350 levels increase as learning about the fear cue advances. Compared to us, Gruene et al (2015)
351 report notably higher darting frequencies, which is most likely due to the differences in shock
352 intensities and number of trials; our study used 4 trials of 0.5mA per day for 4 days compared to
353 their study using 7 trials of 0.7mA on one day. Our study also includes reinforced reward trials
354 within the same sessions as the fear cue-footshock trials, which could alter the contextual
355 expectations of the training session and reduce overall darting levels. It would be interesting in
356 future studies to identify what leads a female to become a 'darter' versus 'non-darter'. As darting
357 is a more active response compared to freezing, the circuits engaged during potential threats
358 would likely be different in these two populations.

359
360 Our findings showing a lack of conditioned inhibition of freezing in females appear to be
361 inconsistent with a recent study demonstrating a lack of sex differences in conditioned inhibition
362 of freezing (Foilb et al., 2018). This is likely due to differences in our respective protocols. First,
363 their footshock intensity was 1.2mA, resulting in freezing levels >90% during the fear cue. As
364 footshock intensity and number of trials are consistently inconsistent across studies, it would be
365 interesting to assess if freezing and darting levels in females follow a linear trend with increasing
366 training intensity, or if there is instead a possibly U-shaped relationship. Foilb et al (2018) also
367 used separate presentations of the fear cue and safety cue throughout training and employed
368 the fear+safety cue summation test during recall, whereas we include fear+safety trials as part
369 of the training. In contrast, another study has shown females discriminate equally to males early
370 in training but then generalize their fear response to the safety cue with continued training (Day
371 et al., 2016). While the females in our study clearly showed equivalent freezing levels to both
372 the fear and fear+safety cues at all time points throughout training, they did not increase their
373 freezing levels to the safety cue when presented alone. And, lastly, our paradigm, unlike others,
374 includes reinforced reward trials during the training of fear and safety cues, which would change
375 the context from a 'threat-no threat' situation to a 'threat-no threat-reward' situation, inducing
376 approach behaviors on top of defensive behaviors.

377
378 Altogether, the data paints a consistent picture of females showing heightened fear responses
379 to cues signaling safety, mimicking the clinical picture in women (Gamwell et al., 2015; Lonsdorf
380 et al., 2015). The presentation of a safety signal not only decreases fear, but also stimulates
381 opposing neuronal activity. Field potential recordings in the striatum during safety signal
382 presentation has shown that brain regions dealing with approach and reward become activated
383 (Rogan et al., 2005). These findings have also been translated to using safety signals to

384 overcome anhedonia in rats (Pollak et al., 2008), showing that safety signals may also be
385 regulating emotion in addition to conditioned behavior (Foilb & Christianson, 2018).

386

387 In our study, females consistently showed elevated reward-seeking behavior during the reward
388 cue compared to males beginning in the second reward pre-training session. This data appears
389 consistent with reward studies showing significant sex differences in response to sucrose, with
390 females willing to work more for sucrose in a progressive ratio paradigm (Tapia et al., 2019),
391 and in response to drugs of abuse, with female rats consistently self-administering drugs more
392 rapidly than males (Becker & Koob, 2016). The increased reward-seeking in females seen in
393 our study remained until the end of the first DC session at which point they were equivalent to
394 the males. Interestingly, DC1 is the first time the animals are exposed to footshock. Taking into
395 account the lack of conditioned inhibition of freezing in the females, the females may no longer
396 be as motivated to seek rewards in the face of adverse footshocks. This would be consistent
397 with the report that female rats sacrifice their metabolic needs in order to avoid shocks more
398 than males (Pellman et al., 2017).

399

400 Numerous sex differences have been reported in the functioning of the stress neuropeptide,
401 corticotropin-releasing factor (CRF), with differences in receptor expression, distribution,
402 trafficking and signaling (reviewed in (Bangasser & Wiersielis, 2018)). The majority of these
403 differences lead to enhanced CRF efficacy in females, which may lead to heightened sensitivity
404 to stressors in females. Recently, the gene for CRH receptor 1 (*CRHR1*) has been identified as
405 a possible candidate gene for mood and anxiety disorders. Weber et al. (2016) have shown that
406 carrying the *CRHR1* minor rs17689918 allele increases the risk for panic disorders in women.
407 Patients carrying this risk allele also demonstrate more generalization of fear to a safety cue,
408 increased amygdala activation during the safety cue and decreased frontal cortex activation with
409 discriminative fear conditioning. Thus, aberrant CRF signaling can lead to sustained fear under
410 conditions cued as safe and can be manifested by changes in neural activity in the amygdala
411 and frontal cortex.

412

413 Neural activity in the amygdala and prefrontal cortex has been shown by our lab to also play a
414 critical role in effective discriminative conditioning in male rats. We have previously identified
415 neurons in the basolateral amygdala (BLA) that discriminate among safety, fear and reward
416 cues in male rats (Sangha et al., 2013); our future experiments will test if females show the
417 same discriminative neurons. Using reversible pharmacological inactivations in male rats, we

418 have also demonstrated that the infralimbic prefrontal cortex (IL) is necessary for suppression of
419 conditioned fear during a safety cue and the prelimbic prefrontal cortex (PL) is necessary for
420 fear expression and discriminatory reward-seeking (Sangha, Robinson, et al., 2014). These
421 results indicate that activating the IL in the females may improve conditioned inhibition to the
422 combined fear and safety cues. Our results with male rats also show that manipulating D1-
423 receptor mediated dopamine activity in the BLA disrupts suppression of conditioned fear (Ng et
424 al., 2018), implicating dopaminergic ventral tegmental area (VTA) neurons projecting to the BLA
425 in safety-fear-reward discrimination.

426

427 Our findings are consistent with human studies where females show less discrimination
428 between the fear and safety signals than males (Gamwell et al., 2015; Lonsdorf et al., 2015),
429 which may reflect underlying mechanisms of increased prevalence for anxiety and stress-
430 related disorders in women. For example, a deficiency in effective safety signal processing has
431 been linked to Post-traumatic Stress Disorder (Jovanovic et al., 2009, 2010), panic disorder
432 (Gorka et al., 2014), and anxiety (Lissek et al., 2005), all disorders with a higher incidence in
433 women than men (McLean et al., 2011). In our paradigm, females show a significantly different
434 behavioral profile than males that is consistent with the clinical picture, thus making it a great
435 tool to test for the neurobiological mechanisms underlying these sex differences.

436

437 **5. Acknowledgements:**

438 We thank Yolanda Jonker, Signe Hobaugh, Jessica Kerns, Emma Speckelson, Emily Willis, and
439 Mackenzie McIntosh for excellent animal care. IM was supported by the Alexander von
440 Humboldt foundation. This work was supported by the National Institutes of Health [NIMH
441 R01MH110425 to SS].

442 **6. References**

443 Bangasser, D. A., & Wiersielis, K. R. (2018). Sex differences in stress responses : a critical role
444 for corticotropin-releasing factor. *Hormones*, 17(1), 5–13.

445 Baratta, M. V., Leslie, N. R., Fallon, I. P., Dolzani, S. D., Chun, L. E., Tamalunas, A. M., Watkins
446 L.R., & Maier, S. F. (2018). Behavioural and neural sequelae of stressor exposure are not
447 modulated by controllability in females. *European Journal of Neuroscience*, 47, 959–967.
448 <http://doi.org/10.1111/ejn.13833>

449 Becker, J. B., & Koob, G. F. (2016). Sex Differences in Animal Models : Focus on Addiction.
450 *Pharmacological Reviews*, 68, 242–263.

451 Blanchard, R. J., & Blanchard, D. C. (1969). Crouching as an index of fear. *Journal of
452 Comparative and Physiological Psychology*, 67(3), 370–5.

453 Conway, S. M., Puttick, D., Russell, S., Potter, D., Roitman, M. F., & Charto, E. H. (2019).
454 Females are less sensitive than males to the motivational- and dopamine- suppressing
455 effects of kappa opioid receptor activation, *Neuropharmacology* 146, 231–241.
456 <http://doi.org/10.1016/j.neuropharm.2018.12.002>

457 Daviu, N., Andero, R., Armario, A., & Nadal, R. (2014). Sex differences in the behavioural and
458 hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats. *Hormones
459 and Behavior*, 66(5), 713–723. <http://doi.org/10.1016/j.yhbeh.2014.09.015>

460 Day, H. L. L., Reed, M. M., & Stevenson, C. W. (2016). Sex differences in discriminating
461 between cues predicting threat and safety. *Neurobiology of Learning and Memory*, 133,
462 196–203. <http://doi.org/10.1016/j.nlm.2016.07.014>

463 Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of
464 conditioned fear. *Neuroscience & Biobehavioral Reviews*, 23(5), 743–760.
465 [http://doi.org/10.1016/S0149-7634\(99\)00016-0](http://doi.org/10.1016/S0149-7634(99)00016-0)

466 Foilb, A. R., Bals, J., Sarlitto, M. C., & Christianson, J. P. (2018). Sex differences in fear
467 discrimination do not manifest as differences in conditioned inhibition. *Learning and
468 Memory*, 25(1), 49–53. <http://doi.org/10.1101/lm.045500.117>

469 Foilb, A. R., & Christianson, J. P. (2018). Chapter 11 Brain Mechanisms for Learning and Using
470 Safety Signals. In S. Sangha & D. Foti (Eds.), *Neurobiology of Abnormal Emotion and
471 Motivated Behaviors: Integrating Animal and Human Research* (1st editio, pp. 205–224).
472 Cambridge, Massachusetts: Academic Press.

473 Gamwell, K., Nylocks, M., Cross, D., Bradley, B., Norrholm, S. D., & Jovanovic, T. (2015). Fear
474 Conditioned Responses and PTSD Symptoms in Children : Sex Differences in Fear-
475 Related Symptoms. *Developmental Psychobiology*, 57, 799–808.

476 <http://doi.org/10.1002/dev.21313>

477 Glover, E. M., Jovanovic, T., & Norrholm, S. D. (2015). Estrogen and extinction of fear
478 memories: Implications for posttraumatic stress disorder treatment. *Biological Psychiatry*,
479 78(3), 178–185. <http://doi.org/10.1016/j.biopsych.2015.02.007>

480 Gorka, S. M., Lieberman, L., Nelson, B. D., Sarapas, C., & Shankman, S. A. (2014). Aversive
481 responding to safety signals in panic disorder: The moderating role of intolerance of
482 uncertainty. *Journal of Anxiety Disorders*, 28(7), 731–736.
483 <http://doi.org/10.1016/j.janxdis.2014.06.004>

484 Grant, B. F., Saha, T. D., June Ruan, W., Goldstein, R. B., Patricia Chou, S., Jung, J., Zhang,
485 H., Smith, S.M., Pickering, R.P., Huang, B., & Hasin, D. S. (2016). Epidemiology of DSM-5
486 drug use disorder results from the national epidemiologic survey on alcohol and related
487 conditions-III. *JAMA Psychiatry*, 73(1), 39–47.
488 <http://doi.org/10.1001/jamapsychiatry.2015.2132>

489 Gruene, T. M., Flick, K., Stefano, A., Shea, S. D., & Shansky, R. M. (2015). Sexually divergent
490 expression of active and passive conditioned fear responses in rats. *eLife*, 4, 1–9.
491 <http://doi.org/10.7554/eLife.11352>

492 Jovanovic, T., Kazama, A., Bachevalier, J., & Davis, M. (2012). Impaired safety signal learning
493 may be a biomarker of PTSD. *Neuropharmacology*, 62(2), 695–704.
494 <http://doi.org/10.1016/j.neuropharm.2011.02.023>

495 Jovanovic, T., Norrholm, S. D., Blanding, N. Q., Davis, M., Duncan, E., Bradley, B., & Ressler,
496 K. J. (2010). Impaired fear inhibition is a biomarker of PTSD but not depression.
497 *Depression and Anxiety*, 27(3), 244–251. <http://doi.org/10.1002/da.20663>

498 Jovanovic, T., Norrholm, S. D., Fennell, J. E., Keyes, M., Fiallos, A. M., Myers, K. M., Davis, M.,
499 & Duncan, E. J. (2009). Posttraumatic stress disorder may be associated with impaired
500 fear inhibition: Relation to symptom severity. *Psychiatry Research*, 167(1–2), 151–160.
501 <http://doi.org/10.1016/j.psychres.2007.12.014>

502 Keiser, A. A., Turnbull, L. M., Darian, M. A., Feldman, D. E., Song, I., & Tronson, N. C. (2017).
503 Sex Differences in Context Fear Generalization and Recruitment of Hippocampus and
504 Amygdala during Retrieval. *Neuropsychopharmacology*, 42(2), 397–407.
505 <http://doi.org/10.1038/npp.2016.174>

506 Leknes, S., Lee, M., Berna, C., Andersson, J., & Tracey, I. (2011). Relief as a reward: Hedonic
507 and neural responses to safety from pain. *PLoS ONE*, 6(4), e17870.
508 <http://doi.org/10.1371/journal.pone.0017870>

509 Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine,

510 D. S. (2005). Classical fear conditioning in the anxiety disorders: A meta-analysis.
511 *Behaviour Research and Therapy*, 43(11), 1391–1424.
512 <http://doi.org/10.1016/j.brat.2004.10.007>

513 Lonsdorf, T.B., Haaker, J., Schümann, D., Sommer, T., Brassen, S., Bunzek, N., Gamer, M., &
514 Kalisch, R. (2015). Sex differences in CS-discrimination during context-dependent fear
515 learning and its retrieval - the role of biological sex, contraceptives and menstrual cycle
516 phases. *Journal of Psychiatry and Neuroscience*, 40(6), 368–375.
517 <http://doi.org/10.1503/jpn.140336>

518 Mclean, C., Asnaani, A., Litz, B., & Hofmann, S. (2011). Gender differences in anxiety disorders:
519 Prevalence, course of illness, comorbidity and burden of illness. *Journal of Psychiatric
520 Research*, 45(8), 1027–1035. <http://doi.org/10.1016/j.jpsychires.2011.03.006>.Gender
521 Müller, I., Brinkman, A. L., Sowinski, E. M., & Sangha, S. (2018). Adolescent conditioning
522 affects rate of adult fear, safety and reward learning during discriminative conditioning.
523 *Scientific Reports* 8, 17315. <http://doi.org/10.1038/s41598-018-35678-9>

524 Ng, K. H., Pollock, M. W., Urbanczyk, P. J., & Sangha, S. (2018). Altering D1 receptor activity in
525 the basolateral amygdala impairs fear suppression during a safety cue. *Neurobiology of
526 Learning and Memory*, 147, 26–34. <http://doi.org/10.1016/j.nlm.2017.11.011>

527 Pellman, B. A., Schuessler, B. P., Tellakat, M., & Kim, J. J. (2017). Sexually Dimorphic Risk
528 Mitigation Strategies in Rats. *Eneuro*, 4(1), e.0288-16.2017.
529 <http://doi.org/10.1523/ENEURO.0288-16.2017>

530 Pollak, D. D., Monje, F. J., Zuckerman, L., Denny, C. a., Drew, M. R., & Kandel, E. R. (2008).
531 An Animal Model of a Behavioral Intervention for Depression. *Neuron*, 60(1), 149–161.
532 <http://doi.org/10.1016/j.neuron.2008.07.041>

533 Rescorla, R. A. (1969). Conditioned inhibition of fear resulting from negative CS-US
534 contingencies. *Journal of Comparative and Physiological Psychology*, 67(4), 504–509.
535 <http://doi.org/10.1037/h0027313>

536 Rogan, M. T., Leon, K. S., Perez, D. L., & Kandel, E. R. (2005). Distinct neural signatures for
537 safety and danger in the amygdala and striatum of the mouse. *Neuron*, 46(2), 309–20.
538 <http://doi.org/10.1016/j.neuron.2005.02.017>

539 Sangha, S., Chadick, J. Z., & Janak, P. H. (2013). Safety encoding in the basal amygdala. *The
540 Journal of Neuroscience*, 33(9), 3744–51. <http://doi.org/10.1523/JNEUROSCI.3302-12.2013>

541 Sangha, S., Greba, Q., Robinson, P. D., Ballendine, S. A., & Howland, J. G. (2014). Heightened
542 fear in response to a safety cue and extinguished fear cue in a rat model of maternal

544 immune activation. *Frontiers in Behavioral Neuroscience*, 8, 168.

545 <http://doi.org/10.3389/fnbeh.2014.00168>

546 Sangha, S., Robinson, P. D., Greba, Q., Davies, D. A., & Howland, J. G. (2014). Alterations in
547 reward, fear and safety cue discrimination after inactivation of the rat prelimbic and
548 infralimbic cortices. *Neuropsychopharmacology*, 39(10), 2405–13.
549 <http://doi.org/10.1038/npp.2014.89>

550 Tanimoto, H., Heisenberg, M., & Gerber, B. (2004). Event timing turns punishment to reward.
551 *Nature*, 430, 983. <http://doi.org/10.1038/nature02816>

552 Tapia, M. A., Lee, J. R., Weise, V. N., Tamasi, A. M., & Will, M. J. (2019). Sex differences in
553 hedonic and homeostatic aspects of palatable food motivation. *Behavioural Brain
554 Research*, 359, 396–400. <http://doi.org/10.1016/j.bbr.2018.11.023>

555 Walasek, G., Wesierska, M., & Zieliński, K. (1995). Conditioning of fear and conditioning of
556 safety in rats. *Acta Neurobiologiae Experimentalis*, 55(2), 121–132.

557 Weber, H., Richter, J., Straube, B., Lueken, U., Domschke, K., Schartner, C., ... Reif, A. (2016).
558 Allelic variation in CRHR1 predisposes to panic disorder: Evidence for biased fear
559 processing. *Molecular Psychiatry*, 21(6), 813–822. <http://doi.org/10.1038/mp.2015.125>

560

561 **7. Figure Legends**

562 **Figure 1. Females show increased reward seeking in response to the reward cue. A)**

563 Schematic depicting experimental outline. During reward pre-training, rats (16 males, 20
564 females) received 25 cue-sucrose pairings across 5 separate sessions. **B)** Averaged percent
565 time spent in the reward port during the five reward pre-training sessions (R1-5). Females spent
566 significantly more time in the port compared to males during R2, R3 and R5. **C)** Averaged
567 latency to enter the port after cue onset (in seconds). Females entered the port significantly
568 sooner than males during R3-5. Means +/- SEM. *p<0.05, **p<0.01.

569

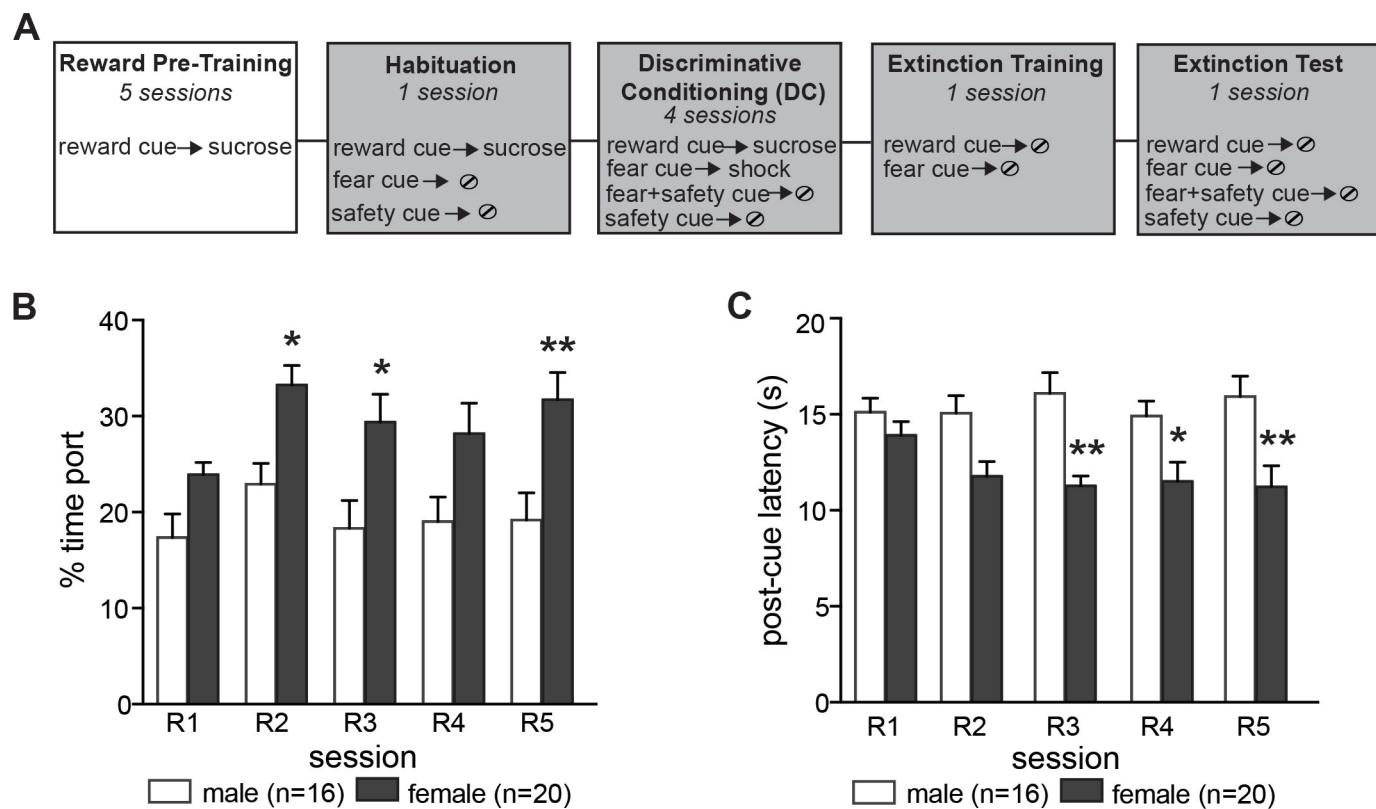
570 **Figure 2. Females do not show inhibition of conditioned freezing in the presence of the**

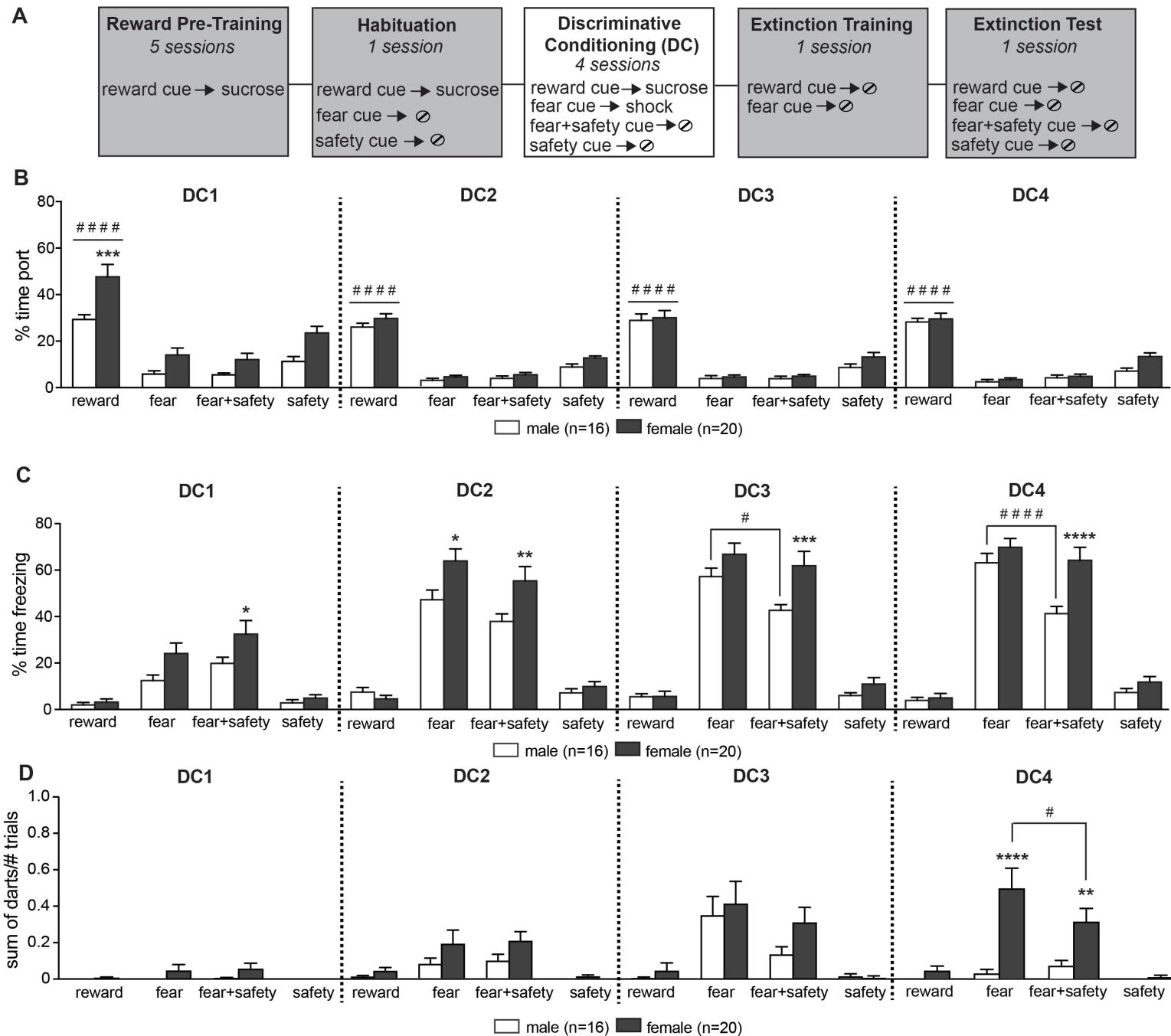
571 **safety cue. A)** Schematic depicting experimental outline. During the 4 DC sessions, rats (16
572 males, 20 females) were presented with four types of cued trials: reward cue-sucrose, fear cue-
573 shock, fear+safety cue with no footshock and the safety cue presented alone without footshock.
574 **B)** Averaged percent time spent in the port during each cue across the 4 DC sessions. Both
575 males and females showed significantly higher reward seeking during the reward cue compared
576 to all other cues during every DC session. During DC1, females showed significantly higher
577 reward seeking to the reward cue compared to males. **C)** Averaged percent time spent freezing
578 during each cue across the 4 DC sessions. During DC3 and DC4, males showed significantly
579 lower freezing to the fear+safety cue (and reward and safety cues) when compared to the fear
580 cue. Females did not show significant inhibition of conditioned freezing to the fear+safety cue
581 compared to the fear cue during any DC session. Females also showed significantly higher
582 freezing to the fear+safety cue compared to males during every session. **D)** Darting behavior
583 during each cue across the 4 DC sessions. During DC4 females showed significantly more darts
584 than males during the fear and fear+safety cues. Females also showed more darts during the
585 fear cue than the fear+safety cue. Means +/- SEM. # p<0.05, #####p<0.0001 within sex,
586 between cue comparison; * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 within cue, between sex
587 comparison.

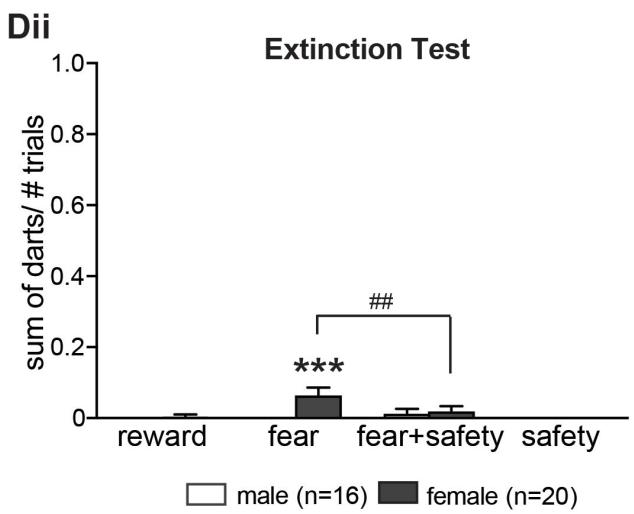
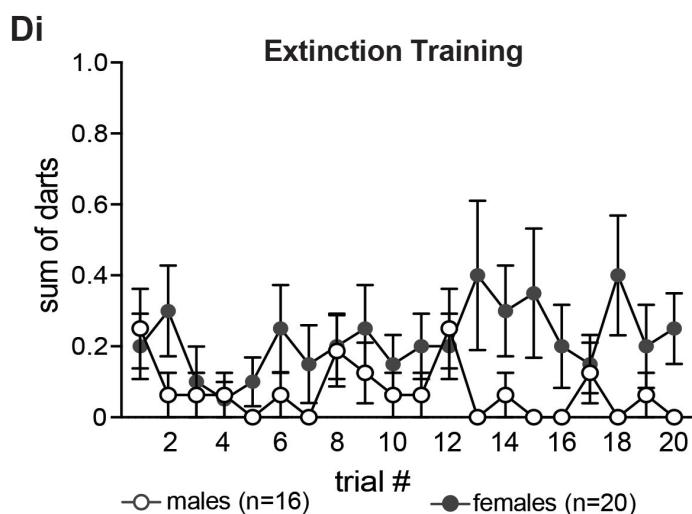
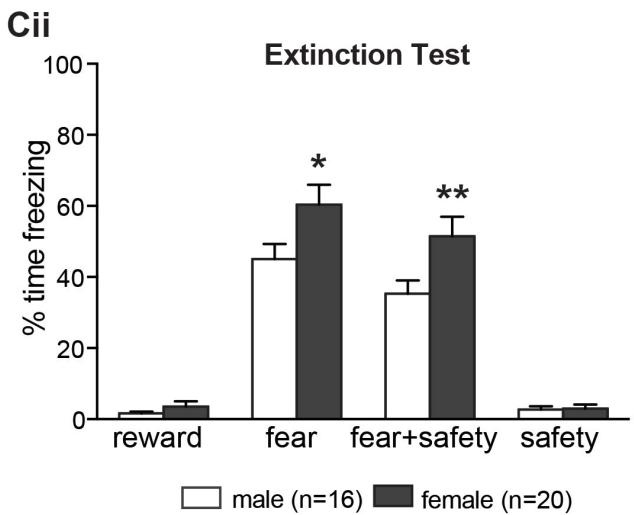
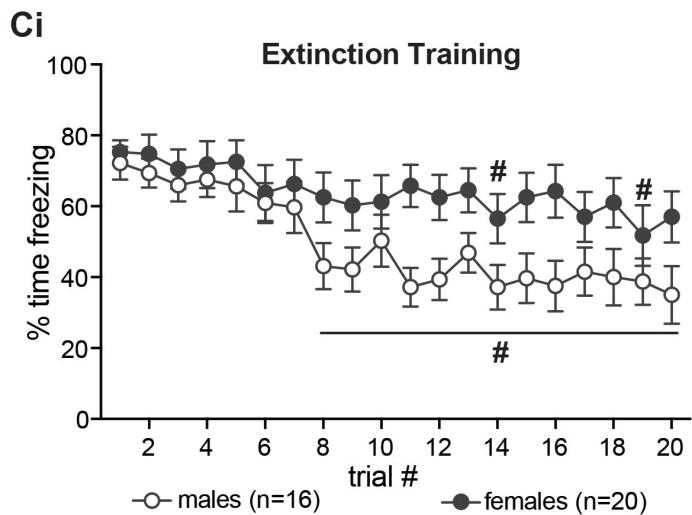
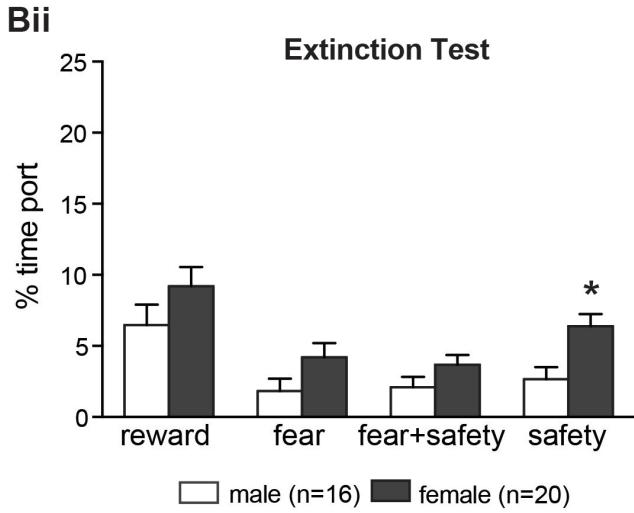
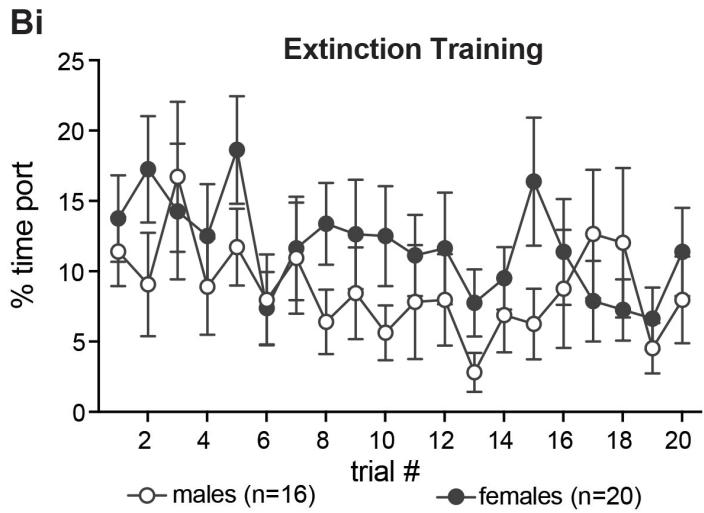
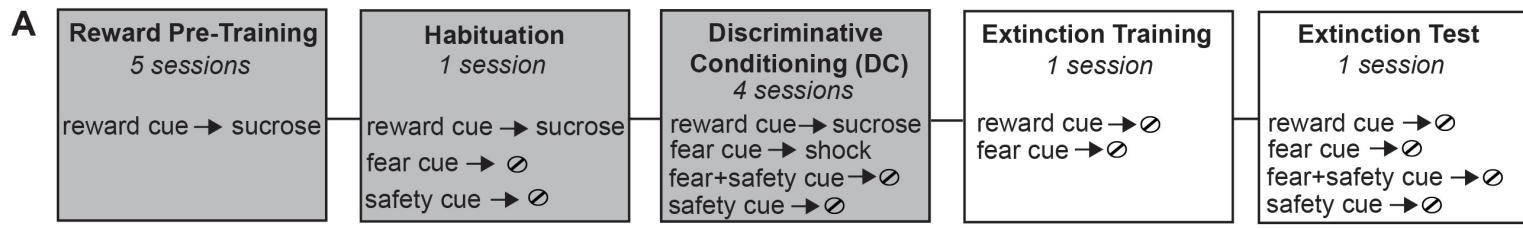
588

589 **Figure 3. Females do not show significant extinction of fear. A)** Schematic depicting

590 experimental outline. During extinction training both the reward and fear cues are presented in
591 the same session without sucrose or footshock. During the test for extinction memory 1 day
592 later all cues are presented without sucrose or footshock. **Bi)** Averaged percent time spent in
593 the port during each reward cue presentation during extinction training. No significant
594 differences were found between males and females during extinction training. **Bii)** Averaged


595 percent time spent in the port during each cue 1 day after extinction training. Females spent
596 significantly more time in the port than males during the safety cue. **Ci)** Averaged percent time
597 spent freezing during each fear cue presentation during extinction training. Compared to the first
598 trial of extinction, males showed significantly reduced freezing during trials 8-20. Freezing levels
599 for females did not significantly decrease at any point in extinction training, with the exception of
600 trials 14 and 19. #p<0.05, compared to trial 1. **Cii)** Averaged percent time spent freezing during
601 each cue 1 day after extinction training. Males showed evidence of fear cue extinction retention.
602 Females froze significantly more than males during the fear and fear+safety cues. **Di)** Averaged
603 darting during each fear cue presentation during extinction training. No significant post hoc
604 differences found between males and females during extinction training. **Dii)** Averaged darting
605 during each cue 1 day after extinction training. Females had significantly higher dart levels than
606 males during the fear cue, which was also significantly higher than the reward, safety and
607 fear+safety cues in females. Means +/- SEM. #p<0.05, #####p<0.0001 within sex, between
608 cue/trial comparisons. *p<0.05, **p<001, ***p<0.0001 within cue, between sex comparisons.
609


610 **Figure 4. No significant differences in shock reactivity between age-matched male and**
611 **female rats. A)** Male and female rats (n=8 each) were subjected to increasing footshock
612 intensities from 0.3mA to 1.0mA. No significant differences in freezing levels (means +/- SEM)
613 were detected between males and females after each shock presentation. The box around the
614 data at 0.5mA indicates the intensity used for the experiments in this study. There were no
615 significant differences in the number of males or females who jumped (**B**) or darted (**C**) in
616 response to the 0.5mA shock.








Reward seeking			
Session	Cue x Sex effects	Main effect of cue	Main effect of sex
DC1	F(3,102) = 3.472, p=0.0189	F(3,102) = 95.16, p<0.0001	F(1,34) = 9.827, p=0.0035
DC2	F(3,102) = 0.7742, p=0.5110	F(3,102) = 227.9, p<0.0001	F(1,34) = 4.69, p=0.0374
DC3*	F(3,90) = 0.6512, p=0.5843	F(3,90) = 117, p<0.0001	F(1,30)=1.041, p=0.3157
DC4	F(3,102) = 2.255, p=0.0864	F(3,102) = 181.2, p<0.0001	F(1,34) = 2.453, p=0.1266
Freezing			
Session	Cue x Sex effects	Main effect of cue	Main effect of sex
DC1	F(3,102) = 2.245, p=0.0876	F(3,102) = 31.82, p<0.0001	F(1,34) = 5.045, p=0.0313
DC2	F(3,102) = 4.075, p=0.0089	F(3,102) = 103.4, p<0.0001	F(1,34) = 6.621, p=0.0146
DC3*	F(3,90) = 2.9, p=0.0393	F(3,90) = 151.3, p<0.0001	F(1,30)=9.719, p=0.0040
DC4	F(3,102) = 4.889, p=0.0032	F(3,102) = 198.9, p<0.0001	F(1,34) = 8.294, p=0.0068
Darting			
Session	Cue x Sex effects	Main effect of cue	Main effect of sex
DC1	F(3,102) = 1.98, p=0.1216	F(3, 102) = 2.388, p=0.0733	F(1,34) = 4.146, p=0.0496
DC2	F(3,102) = 1.134, p=0.3390	F(3, 102) = 9.377, p<0.0001	F(1,34) = 3.667, p=0.0640
DC3	F(3,102) = 0.9158 p=0.4361	F(3, 102) = 18.96, p<0.0001	F(1,34)=0.9579, p=0.3346
DC4	F(3,102) = 10.65, p<0.0001	F(3, 102) = 15.65, p<0.0001	F(1,34) = 13.34, p=0.0009

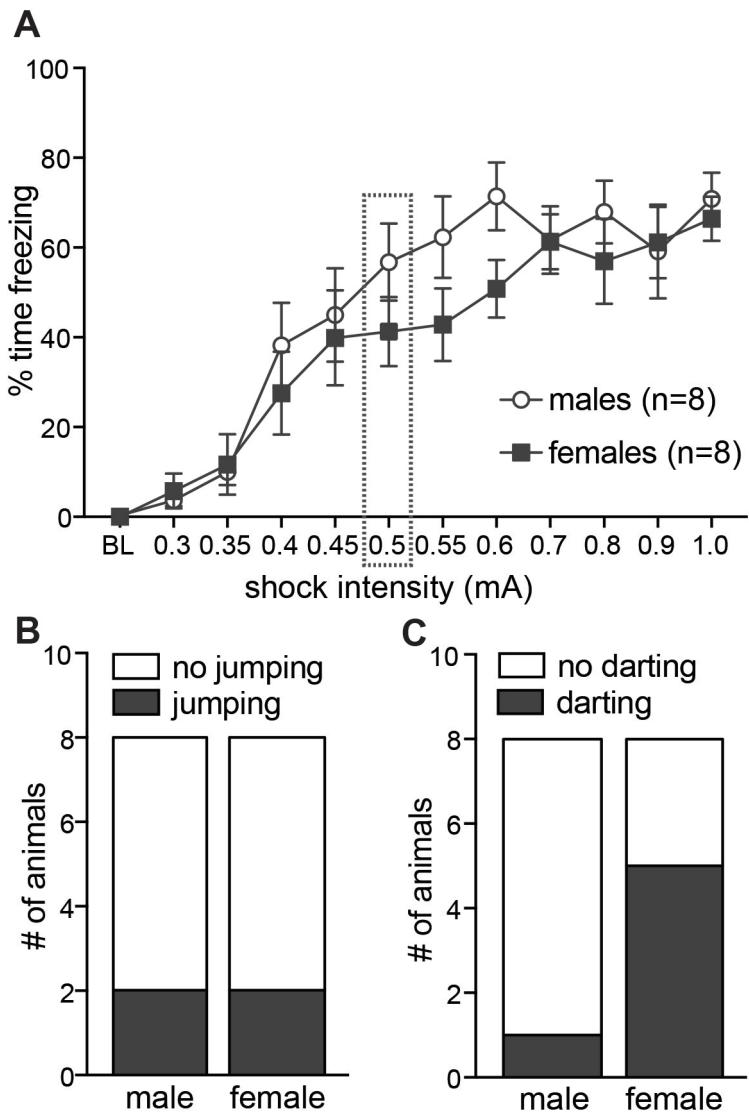

*video files for 4 females were corrupted for this session (n=16 females, 16 males)

Table 1. Summary of two-way repeated-measures ANOVA analyses for reward seeking, freezing and darting behaviors during the four discriminative conditioning (DC) sessions.

