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Reversible inactivation of different millimeter-scale regions of primate IT
results in different patterns of core object recognition deficits
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Extensive research suggests that the inferior temporal (IT) pop-
ulation supports visual object recognition behavior. However,
causal evidence for this hypothesis has been equivocal, partic-
ularly beyond the specific case of face-selective sub-regions of
IT. Here, we directly tested this hypothesis by pharmacologi-
cally inactivating individual, millimeter-scale sub-regions of IT
while monkeys performed several object discrimination tasks,
interleaved trial-by-trial. First, we observed that IT inactivation
resulted in reliable contralateral-biased task-selective behav-
ioral deficits. Moreover, inactivating different IT sub-regions
resulted in different patterns of task deficits, each predicted
by that sub-region’s neuronal object discriminability. Finally,
the similarity between different inactivation effects was tightly
related to the anatomical distance between corresponding in-
activation sites. Taken together, these results provide direct
evidence that IT cortex causally supports general core object
recognition, and that the underlying IT codes are topographi-
cally organized.
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Introduction

Primate core visual object recognition — the ability to
rapidly recognize objects in spite of naturally occurring
identity-preserving image variability — is thought to rely
on the ventral visual stream, a hierarchy of visual cortical
areas (DiCarlo et al. 2012). Decades of research suggest that
inferior temporal (IT) cortex, the highest level of the ventral
stream hierarchy, is a necessary part of the brain’s neural
network that underlies core recognition behavior (Logothetis
& Sheinberg 1996, Tanaka 1996, Rolls 2000, DiCarlo et al.
2012). For example, it has been shown that parallel linear
object discriminants acting on the IT population not only
match overall primate behavioral performance (Hung et al.
2005, Zhang et al. 2011) but also predict primate behavioral
patterns (Sheinberg & Logothetis 1997, de Beeck et al. 2001,
Majaj et al. 2015), showing that IT is a tight neural correlate
of primate recognition behavior. Quantitative versions of
such experiments have proposed downstream neurally-
mechanistic models that successfully link IT population
activity to behavior (Majaj et al. 2015) — mechanisms that
appear to accurately generalize to all core object recognition
tasks. While these experiments are consistent with the
hypothesis that IT is a necessary node in the neural network
supporting core object recognition behavior, they might
also be epiphenomenal (e.g. (Katz et al. 2016, Liu & Pack
2017)). For clarity, we adopt the terminology of Jazayeri &
Afraz (2017), whereby causal dependencies link an observed
variable (here behavior) to an experimentally controlled

variable, in contrast to correlational dependencies, which are
associations that we measure and indirectly control, but do
not directly control (e.g. associations between neural activity
and behavior measured as visual stimuli are experimentally
controlled). Thus, to infer a causal dependency between
some aspect of IT activity and behavior, it is necessary to
directly manipulate IT activity (e.g. via the application of
pharmacological agents into IT to silence neurons, etc.)
while measuring behavior.

To date, the most successful direct IT manipulations in the
context of object recognition have targeted millimeter-scale
clusters of face-selective neurons in IT (Afraz et al. 2006,
2015, Moeller et al. 2017, Sadagopan et al. 2017). These
studies suggest that neurons in these IT sub-regions are nec-
essary for at least some basic- and subordinate-level face
recognition behaviors. Beyond this domain, a notable study
by Verhoef et al. (2012) found that manipulation of clusters
of 3D-structure preferring neurons in IT influenced the cate-
gorization of 3D stimuli as convex or concave. However, re-
sults from direct manipulations of IT in general visual object
recognition behavior have been equivocal at best. Lesions of
IT sometimes suggest the necessity of IT and visual behav-
iors (Cowey & Gross 1970, Manning 1972, Holmes & Gross
1984, Biederman et al. 1997, Buffalo et al. 2000) but the re-
sulting behavioral deficits are often contradictory (with often
no lasting visual deficits) (Dean 1974, Huxlin et al. 2000) and
surprisingly modest even for large-scale bilateral removal of
IT (e.g. 10-15% drop in performance when complete loss of
performance would have been 40%) (Horel et al. 1987, Mat-
sumoto et al. 2016). Thus, itis still unclear if IT is a necessary
node in supporting general core object recognition behavior.
Moreover, even if IT cortex is indeed necessary for all core
object recognition tasks, it is unclear if that assumed causal
role is spatially organized. For example, the current literature
on monkey IT is consistent with the hypothesis that every
square millimeter of IT cortex outside of the fMRI-defined
face patches is equally involved in all (non-face) object dis-
criminations, with some authors implicitly arguing for that
hypothesis (Tsao & Livingstone 2008, Kanwisher 2010).

To investigate these open questions, we here reversibly inac-
tivated neurons in individual, arbitrarily sampled millimeter-
scale regions of IT via local injection of muscimol while
monkeys performed a battery of pairwise core object dis-
crimination tasks, interleaved trial-by-trial. This paradigm
allowed us not only to directly test the aforementioned IT-to-
behavior linking hypotheses (Majaj et al. 2015), but also to
characterize the causal role of each inactivation IT site via a
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Fig. 1. (a) Schematic of experiment. It is still unclear if IT is necessary for general core object recognition behavior, and moreover if any such causal role is functionally
specific at the millimeter-scale. To investigate this, we reversibly inactivated individual arbitrarily-sampled millimeter-scale regions of IT via local injection of muscimol while
monkeys performed a battery of pairwise core object discrimination tasks (listed, highlighted in blue), interleaved trial-by-trial (see b). Bar plots outline alternative possible
outcomes corresponding to different patterns of behavioral deficits from such inactivations, varying in task-selectivity from highly specialized (far left panel, exhibiting deficits
only for face vs. non-face discriminations), to largely uniform (middle three panels, exhibiting equal deficits on all discrimination tasks, or all non-face discrimination tasks),
to relatively task-selective (far right panel, exhibiting deficits on some but not all discrimination tasks). (b) Behavioral paradigm. Each trial was initiated when the monkey
acquired and held its gaze on a central fixation point for 200ms, after which a test image (8x8 degrees of visual angle) appeared at the center of gaze for 100ms. After
extinction of the test image, two choice images, each displaying a single object in a canonical view with no background, were immediately shown to the left and right. One
of these two objects was always the same as the object that generated the test image (i.e. the correct choice), and its location (left or right) was randomly chosen on each
trial. The monkey was allowed to freely view the choice images for up to 1000ms, and indicated its final choice by holding fixation over the selected image for 700ms. A juice
reward was delivered immediately after each correct trial. Note that we refer to each pairwise object discrimination (averaged over all test images) as a "discrimination task"

and the trials for all such tasks (6-10 tasks, see Methods) were pseudo-randomly interleaved trial-by-trial.

pattern of deficits over object recognition tasks.

Our results show that inactivation of even single, millimeter-
scale regions of IT resulted in reliable contralateral-biased
behavioral deficits. Interestingly, these deficits were highly
selective over core object recognition tasks — inactivating a
small region of IT produced deficits in only a subset of such
tasks, and inactivating different such regions resulted in dif-
ferent patterns of object recognition deficits. Furthermore,
the effect of inactivation was topographically organized in
that the pattern of behavioral deficit (i.e. the pattern over
tasks) was most similar at anatomically neighboring injec-
tion sites. We also found that each pattern of task deficit
was well predicted by the object discriminability of the lo-
cal region’s neuronal activity. Taken together, these results
demonstrate the necessity of IT cortex for a wide range of
general core object recognition behaviors, and reveal that —
even outside of face patches — IT cortex has behaviorally-
critical topographic organization of visual features. These
findings are consistent with and suggested by prior physiol-
ogy work (Wang et al. 1998, Tsunoda et al. 2001, Kreiman
et al. 2006), but, to our knowledge, this is the first demon-
stration of a topographically organized causal role of IT in
general core object recognition.
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Results

Our primary goal was to ask if IT causally supports object
recognition, and whether any such causal role is functionally
specific at the millimeter-scale, as schematized in Figure 1A.
To do this, we reversibly inactivated individual, arbitrarily
sampled millimeter-scale regions of IT via injection of mus-
cimol while monkeys performed a battery of pairwise core
object discrimination tasks. Figure 1B shows the behavioral
paradigm used for testing monkeys’ core object recognition
behavior. In this work, the battery consisted of 6 (Monkeys
1, 2) or 10 (Monkey 2 only) pairwise core object discrim-
ination tasks between five objects, interleaved trial-by-trial
(see Figure 1 A for task list, Figure S1 for control behav-
ior). To enforce true object recognition (rather than image
matching), stimuli consisted of naturalistic synthetic images
of 3D objects rendered under high view-uncertainty (see S1
for example images), and the monkey subjects were required
to generalize to new images in each task (as we have previ-
ously shown they readily do (Rajalingham et al. 2015)).

Figure 2A shows the behavioral data for an example inacti-
vation experiment in Monkey 1, for each of six pairwise dis-
crimination tasks. Each panel shows the relative behavioral
performance (mean = SEM, obtained by bootstrap resam-
pling over trials) for a given pairwise task, for each of three
consecutive behavioral sessions (pre-inactivation control, in-
activation, and post-inactivation control; see Methods). Per-
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Fig. 2. (a) Example inactivation experiment. (left) Behavioral performance (mean)

for each of six tasks over the three condition (pre-control, inactivation, and post-control;

see Methods). Data are shown as behavioral performance relative the average of pre- and post-control performances (see Methods) (bars show SEM obtained by bootstrap
resampling over trials). The location of the injection site ("inactivation" condition) for this experiment is shown in the right panel. The dark and light shaded areas correspond

to one and two SEM respectively of this control. For this site, we observed a strong

and significant deficit for some tasks (chair vs. dog, chair vs. plane, and dog vs. bear) but

not others (elephant vs. bear, dog vs. elephant). (right panel) The data on the left are summarized relative to the average control performance (mean 4+ SEM over trials). (b)

Eight more example IT inactivation experiments using the same format as (a, right

), out of the 25 sites we tested. Note that behavioral performance on one or more object

discrimination tasks is typically reduced by inactivation of each IT location, the specific task(s) affected are different at different IT locations, and no IT location affected all the

tasks.

formance on each task is shown relative to the average perfor-
mance on that task over the pre- and post- control sessions,
which we use as a measure of control behavior on each task
(see Methods); the dark and light shaded areas correspond to
one and two SEM of this measure (computed over trials), re-
spectively. We observed a strong and significant deficit for
some tasks (i.e. chair vs. dog, chair vs. plane, and dog vs.
bear) but not others (elephant vs. bear, dog vs. elephant).
The resulting pattern of behavioral deficits (i.e. the deficit
pattern over tasks) for this one example inactivation site in
IT is shown in Figure 2B, with the corresponding anatomi-
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cal location shown in the inset. For this volume of injection,
we expect strong neural suppression in a volume ~ 2.5mm
in diameter centered at the injection site (Arikan et al. 2002).
Figure 2C shows the pattern of behavioral deficits for eight
more example inactivation sites in IT out of the 25 sites we
tested from both monkeys (Monkey M, P in the first and sec-
ond row, respectively). We qualitatively observe that inacti-
vating each local IT region resulted in reliable task-specific
behavioral deficits, and that the pattern is not the same for
all IT regions. Together, these results suggest that inactivat-
ing different millimeter-scale regions of primate IT results in
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deficits in different core object recognition tasks (i.e. differ-
ent patterns of deficits). This inference is directly and quan-
titatively tested in the following analyses.

Summary of behavioral deficits. Figure 3A shows the

behavioral deficits for all inactivation sites and all tasks in
both monkeys as a scatter of control performance versus inac-
tivation performance (n=25 sites, n=182 tasks x sites). Con-
sidering all the tasks together, we observed a significant de-
crease in performance (i.e. inactivation lower than control),
corresponding to the predominance of points under the unity
line in Figure 3; on average, this amounted to a global deficit
of ps = —0.240.02 in units of d’ (p = 1.23 % 10716, one-
tailed exact test; see Figure 3B, red bar under global deficit).
Consistent with the known lateralization of IT (Op De Beeck
& Vogels 2000), this deficit was more pronounced for im-
ages in which the center of the target object was contralat-
eral to the injection hemisphere (us = —0.26 =0.03, p =
1.28e — 16) than for images with ipsilateral object centers
(us = —0.1740.03, p = 3.82 % 107 12) and this difference
was significant (p = 0.0128, one-tailed exact test; ipsi vs.
contra). Note that all images were presented foveally (span-
ning —4° to 4° of both azimuth and elevation, and average
object size was ~ 3.5°).
Next we asked whether the inactivation deficits were task-
specific. To examine this, we compared the magnitude of
behavioral deficits between the least-affected and most-
affected tasks, for each inactivation site. Crucially, to avoid
any selection bias, these tasks were selected from held-out
data: we split our data into two disjoint halves of trials,
selected the least/most affected tasks per inactivation site
from one split-half, and examined the corresponding deficits
on these selected tasks in the second split-half (thus the
expected value of the difference in deficits between the most
and least affected task is zero under the null hypothesis;
see Methods). Using this procedure, we observed a large
significant behavioral deficit for the most affected task
(us = —0.4440.08, p = 2.79 %« 10716), but not for the
least-affected task (us = —0.06 £0.08, p = 0.27), and the
difference was significant (p = 3.99 1074, see Figure 3B).
Finally, we observed even larger task-selective deficits when
restricting to contralateral objects (as described above), with
a similar significant difference between the most and least
affected tasks (us = —0.56 +0.1,—0.14 £ 0.11 for most and
least affected tasks respectively; p = 1.44 % 1073).

For each of the analyzed conditions, we observed no signif-
icant behavioral deficits on otherwise identical experiments
without muscimol inactivation (p > 0.05; Figure 3B, blue
bars). Furthermore, the patterns of deficits across these an-
alyzed conditions were similar for both animals (Figure S2).
In summary, inactivation of local regions of IT resulted in
highly reliable behavioral deficits, which were selective over
visual space (i.e. contralateral-biased) and selective over dif-
ferent core object recogntion tasks.

Task-selectivity of deficits. Focusing on "contralateral
stimuli" (i.e. images in which the center of the target object
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was contralateral to the injection hemisphere), Figure 3C
shows the task deficit patterns for each of the 25 inactivation
sites as a heat map. Each column corresponds to the deficit
pattern over tasks from inactivating an individual IT site,
normalized to a fixed color scale ([0,1]); brighter colors
correspond to larger relative task deficits. Consistent with
the inferred task-selectivity from Figure 3B, we observe
that each inactivation resulted in a non-uniform behavioral
deficit pattern. This non-uniformity was quantified via a
sparsity index (SI, see Methods) which has a value of 0
for perfectly uniform deficit patterns (i.e. where each IT
sub-region is equally necessary for all tasks), and a value
of 1 for a perfectly task-specialized (or “one-hot”) deficit
pattern (i.e. where each sub-region is necessary for just one
of the tested tasks). We observed that inactivation of local
regions in IT led to highly non-uniform deficit patterns, on
average (SI(d) = 0.71+0.05; mean+SEM over sites, see
Figure 3D).

To ground this empirical SI value, we estimated the corre-
sponding SI distributions for different simulated behavioral
deficit patterns with varying degrees of non-uniformity
across tasks. These simulated deficit patterns were obtained
via random permutations of our data, varying only the
proportion of affected tasks (see Methods), in an effort to
best match all other sources of variability (e.g. trial and task
sampling variability) for direct comparison with the empir-
ically observed SI. Figure 3D shows the SI distributions
expected from behavioral deficits of varying degrees of non-
uniformity (i.e. with 10%,25%,...,100% of tasks affected).
We observe that the empirically observed task-selectivity is
significantly greater than expected from a uniform deficit
(p = 2.42 x 10~ 16; relative to simulated 100%-affected,
i.e. uniform) but significantly less than expected from a
highly sparse deficit pattern (p = 5.28 * 1073; relative to
simulated 10%-affected). Indeed, the observed SI estimates
correspond to simulation of deficits on ~ 25% of tested tasks.

Importantly, this non-uniformity does not simply reflect non-
uniformity in the behavioral difficulty across tasks. Indeed,
normalizing each deficit pattern by the behavioral difficulty
pattern resulted in normalized deficit patterns that were not
significantly correlated with task difficulty (r = 0.06, p =
0.39), and significantly non-uniform as quantified by sparsity
(SI(6,)=0.74+0.06; p=2.21 %1075, relative to simulated
uniform). This is also clear from Figure 3C, which shows that
inactivation of different sites led to different deficit weight
patterns (left panel). Accordingly, the deficits were relatively
evenly distributed over the tasks, as reflected by the uni-
formity of the the average deficit pattern over all sites (3C,
right-most bar). Together, these results indicate that the non-
uniformity of task deficits is not tied to specific tasks.

Tissue selectivity of deficits. Inactivating different
anatomical regions of IT resulted in different patterns of
task deficits. To directly test this tissue selectivity, we com-
pared the inactivation deficit patterns between pairs of IT
sites. Pairwise deficit pattern similarity was quantified using

Rajalingham etal. | Selective core object recognition deficits from inactivation of IT
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Fig. 3. : (a) Behavioral deficits for all IT inactivation sites and all tasks in both monkeys as a scatter of control performance and inactivation performance. Note the on-average
decrease in performance corresponding to predominance of points under the unity line (dashed line). (b) Summary of behavioral deficits when grouping the tasks and task
images in different ways. Red bars show the magnitude of inactivation deficit (relative to control) for each grouping. From left to right, these groupings are: all images and
all tasks ("Global"), ipsilateral/contralateral object images for all tasks ("lpsi" and "Contra"), the least/most affected task at each site ("Least" and "Most") selected on held
out data, contralateral object images for the least/most affected task at each site ("Most Contra") selected on held out data. Blue bars correspond to otherwise identical
experiments but without muscimol inactivation (control experiments). (c) The heat map shows the task deficits for each of the 25 inactivation sites, with brighter colors
corresponding to larger relative task deficits, highlighting that inactivation of each IT site resulted in a different, relatively sparse, pattern of behavioral deficit. The average
deficit pattern over all inactivation sites (right column) is largely uniform, suggesting that IT as a whole is approximately equally involved in each discrimination task. (d) The
black bar shows the sparsity (see Methods) of the behavioral task deficits, over all sites (mean 4= SEM over sites). To provide calibration, green lines show the sparsity values
that occur under simulations in which we varied the proportion of truly affected tasks and used identical sampling noise as our data; see Methods). Together, these results

suggest that inactivation of a single 2.5 mm diameter region of IT affects 25% of core object discrimination tasks, on average.

a noise-adjusted correlation (p, see Methods). We consid-
ered all pairs of inactivation sites, measured within the same
animal and image-set, where the inactivation deficit patterns
of both sites had split-half internal reliability greater than a
threshold 6 (n = 62 pairs for § = 0.1, but results did not
significantly depend on the choice of the threshold ¢). We
measured the dependence of pairwise deficit similarity on
the anatomical distance between the inactivation sites, where
anatomical distance (d) was computed as the Euclidean dis-
tance between the injection site locations estimated via high-
resolution micro-focal stereo x-ray reconstruction (see Meth-
ods). We first observed that inactivation deficits are highly
replicable across experiments: the noise-adjusted correlation
between behavioral deficit patterns of neighboring inactiva-
tion sites was near ceiling (p = 0.92 £+ 0.03 for d < 1mm,
mean + SEM over site pairs; Figure 4). We further ob-

Rajalingham etal. | Selective core object recognition deficits from inactivation of IT

serve that this similarity between the inactivation deficits of
two injection sites was monotonically related to the anatom-
ical distance between (Figure 4). A simple exponential de-
cay model (half-max-full-width HM FW = 3.29 £ 1.19mm)
significantly explained this relationship (R? = 0.36 £ 0.12,
p = 8.04%10"%). We verified that this model correlation
is not expected by chance by fitting the model on randomly
shuffled data (R? = 0.00 +0.13, p = 0.50). Note that this
HMFW estimate is approximately consistent with a com-
bined effect of the known spatial spread of muscimol in the
cortical tissue and previously reported columnar organization
of IT at a sub-millimeter-scale. Together, these results sug-
gest that behavioral deficits are tissue-specific, i.e. the effect
of inactivation is different for different inactivation sites, and
most similar at anatomically neighboring injection sites.
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Fig. 4. (a) Topographical organization. The main panel plots the similarity in behav-
ioral deficit patterns between pairs of IT injection sites (quantified as noise-adjusted
correlation, y-axis) as a function of the anatomical distance between each pair of
sites (x-axis). Empirical data are shown as the mean (4= SEM) of all pairs of sites
in logarithmically-spaced bins of tissue distance (blue points). Note that the pat-
tern of inactivation-induced behavioral effects is highly replicable in that we observe
very high correlation of effects for repeated experiments at or very near the origi-
nally tested site (near 0 on the x-axis). The similarity between any two inactivation
deficits was monotonically related to their anatomical distance, and a simple expo-
nential model significantly explained this relationship (see inset).

Neurally-mechanistic models that link IT activity to
behavior. Given the observed tissue specificity, we asked
to what extent the observed behavioral deficits could be
predicted by the neuronal activity patterns in the inactivated
sub-regions (e.g. prior to inactivation). The central panel in
Figure 5A shows the location of an example muscimol inac-
tivation site and local electrophysiology sites, co-registered
using stereo micro-focal x-ray reconstruction, and overlaid
on a coronal MRI slice. For this example site in IT, we
recorded the activity of eight multi-unit sites (shown as cyan
discs) in close proximity to the injection site (shown as red
disc). Multi-unit activity was recorded in response to the
same images as those used in behavioral testing, in a passive
viewing paradigm (see Methods). Each sub-panel shows a
multi-unit site’s stimulus-locked firing rate responses for
each of the five objects, averaged over images. We note that
neuronal sites, while heterogeneous, each exhibit reliable
object preferences. Based on local neuronal responses such
as this, we constructed and tested a number of linking (aka
"decoder") models, each of which maps the local IT spiking
response patterns to a predicted behavioral deficit.

Figure 5B shows the predictions from two example link-
ing models. The local neural response models predict large
deficits for tasks with images that produce the largest re-
sponse from the local neuronal sites. The local neural dis-
criminability models predict large deficits for tasks for which
the local neural spiking activity was most discriminative, as
measured by a linear classifier. We qualitatively observe that
the discriminability models better capture the observed be-
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havioral deficit patterns than the response models, for this
example inactivation site. This is quantified in Figure 5C
as a noise-adjusted correlation between predicted and ac-
tual behavioral deficits, over all inactivation sites with lo-
cal neuronal recordings (n = 10 sites for d < 2mm). All
discriminability models significantly predict the inactivation
deficits (p < 0.001), while the response models failed to do
so (p > 0.05). In summary, inactivation of millimeter-scale
regions of IT results in behavioral deficits that are predicted
by the local neuronal discriminability.

Discussion

In this work, we sought to investigate if and how neural
activity in IT causally supports core object recognition be-
havior. Specifically, our goals were to 1) directly test the
hypothesis that IT is a necessary node in the brain’s neu-
ral network that underlies potentially all core object recog-
nition discrimination behavior (tasks), and 2) to ask if any
such causal role is functionally organized over the cortical
tissue. To this end, we reversibly inactivated individual, ar-
bitrarily sampled millimeter-scale regions of IT while mon-
keys performed a battery of object discrimination tasks. Our
first contribution is to provide direct causal evidence for the
role of IT in core object recognition, which was largely lack-
ing, especially beyond the specific case of face-selective sub-
regions of IT. Moreover, our results revealed that the causal
role of IT in object recognition has topographic organiza-
tion at the millimeter-scale and is predicted by local neu-
ronal discriminability. Together, these advances solidify the
previously-presumed causal role of IT cortex in core object
recognition, and could be used to distinguish among alterna-
tive neurally-mechanistic (i.e. neural network) models of the
ventral stream and its role in core object recognition behav-
ior, as outlined below.

The hypothesized role of IT cortex in core object
recognition behavior. We here define the decoding hypoth-
esis (aka linking hypothesis (Brindley 1960)) that motivated
the present study, and alternatives to that hypothesis. First,
we hypothesize that IT cortex is a necessary node in the
brain’s neural network that underlies core recognition be-
havior (Prediction I). Stated in other words, our hypothesis
is that core object recognition behavior causally depends on
the firing of neurons in IT cortex, and without those spikes,
core object recognition behavior would be at chance (DiCarlo
etal. 2012, Majaj et al. 2015). Importantly, core object recog-
nition behavior is not a single “task”, but is a domain of
many possible tasks — including at least hundreds of pair-
wise object discrimination tasks in monkeys (Rajalingham
et al. 2015, 2018). Thus, based on prior IT recording work
(Majaj et al. 2015), our decoding hypothesis is more specific:
each IT neuron is a necessary part of multiple such tasks (Pre-
diction 2), which is contrasted with the alternative possibility
that all non-face-selective IT neurons are necessary for all
object tasks. Third, our decoding hypothesis is that single
IT neurons that carry information that might potentially sup-
port each task, are indeed necessary for each such task, and
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Fig. 5. Relationship of IT spiking responses to patterns of behavioral deficit. (a) Left: Multi-unit spiking activity recorded serially (prior to inactivation) with a single micro-
electrode for eight sites sampled within an example IT sub-region . The recording locations (each determined via stereo, micro-focal X-ray; see Methods) are here plotted
projected into the plane of a single MRI slice containing the center of the IT inactivated region. Each inset panel shows the spiking activity response to each of five objects
aligned to stimulus onset; each line is the mean activity, averaged over all images of each object and all repetitions (40 images/object, ~ 10 repetitions/image). Gray bar
shows image presentation time (100 ms). Neuronal sites, while heterogeneous, each exhibit object preferences, even when averaging over images. Right: To determine
whether the observed behavioral deficits are predicted by local neuronal activity, we constructed and tested several decoder models that transform IT response patterns
into predictions of behavioral deficits resulting from inactivation (see Methods). The predictions of two of these models (upper and lower scatter plot) are compared with the
measured behavioral deficits for this example IT inactivation site. Note that larger deficits correspond to more negative values of Ad’ (lower left corner of each scatter plot).
(B) The average predictive power of each of five tested decoder model is shown as the noise-adjusted correlation between predicted and actual behavioral deficits, for all
relevant sites (i.e. where we had both the local spiking responses (as in a) and the pattern of behavioral deficits measure on the same set of images). Each bar corresponds
to a specific decoding model (models M1-M5, see Methods). All local neuronal discriminability models (blue) were clearly better than the local neuronal response models

(green).

they are necessary regardless of their physical location in IT
(Prediction 3). This hypothesis is implicitly stated in (Majaj
et al. 2015) and explicitly discussed in (Afraz et al. 2015).
However, because prior work (Tanaka 1996, Kreiman et al.
2006, Sato et al. 2008) showed that IT neurons with simi-
lar object feature and image preferences tend to be clustered
at millimeter-scale, our decoding hypothesis (above) predicts
that each mm-scale IT sub-region is an enrichment of neu-
rons that are necessary nodes in some object discrimination
tasks (again, more than one task). This is contrasted with the
alternative possibility that each sub-region of IT is equally
involved in all object discrimination tasks. We note that all
of these assumptions (here collectively called our “decoding
hypothesis”) and the resultant predictions (Predictions 1-3)
were in place prior to our undertaking of this study, and in-
deed, were the motivation of this study.

Direct causal evidence for the role of IT in core object
recognition. While we cannot yet test all the mechanistic
aspects of this decoding hypothesis (above), we can test
some it most basic predictions — to our knowledge, these
tests had not yet been done. To carry out these tests, we
adopt the terminology of Jazayeri & Afraz (2017), whereby
“causal” dependencies can be inferred by correlating a
dependent variable to an experimentally controlled vari-
able, in contrast to correlational dependencies which are
associations between variables that we measure and may
indirectly control, but we do not directly control. Thus,
to infer a causal link between IT activity and behavior,
it is necessary to directly manipulate activity in IT (e.g.

Rajalingham et al. |
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via the application of pharmacological agents into IT to
silence neurons, etc.) while measuring behavior. Related
correlational dependencies (e.g. via direct manipulation
of visual input to the retinac while measuring variations
from both IT activity and behavior) are consistent with our
causal decoding hypothesis (outlined above) but could also
reflect epiphenomenal mechanisms; i.e. correlation does
not imply causation. Recently, research in other behavioral
domains has exposed divergences between correlational and
causal dependencies (Katz et al. 2016, Liu & Pack 2017),
highlighting the need to directly test causal dependencies.

With respect to Prediction 1 of our stated decoding hypothe-
sis (that IT is necessary for core object recognition), decades
of neurophysiological and neuropsychological research sug-
gest that activity in IT cortex is a good neural correlate of
primate object recognition behavior (Logothetis & Sheinberg
1996, Tanaka 1996, Rolls 2000, DiCarlo et al. 2012): individ-
ual neurons in IT cortex are selective to complex visual fea-
tures in images, and exhibit remarkable tolerance to changes
in viewing parameters (Kobatake & Tanaka 1994, Ito et al.
1995, Logothetis et al. 1995, Booth & Rolls 1998, Rust &
DiCarlo 2010), and the population of neurons in IT not only
matches overall primate behavioral performance (Hung et al.
2005, Zhang et al. 2011) but also reliably predicts the be-
havioral error patterns (Majaj et al. 2015). Taken together,
these results are consistent with our decoding hypothesis, but
could also reflect epiphenomenal mechanisms. To this end,
our first major contribution in this work is to provide direct
causal evidence for the role of IT in core object recognition
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behavior. Prior to this, causal evidence for the role of IT
in core object recognition has been both scarce and equivo-
cal, especially beyond the specific case of face-selective re-
gions in IT. Lesions of IT suggest a coarse causal link be-
tween this area and visual behaviors (Cowey & Gross 1970,
Manning 1972, Holmes & Gross 1984, Weiskrantz & Saun-
ders 1984, Buffalo et al. 1998, Huxlin et al. 2000, Matsumoto
et al. 2016) but the resulting behavioral deficits are often con-
tradictory (Dean 1974, Huxlin et al. 2000) and at best modest
(Horel et al. 1987, Matsumoto et al. 2016). For example,
recent work showed that near complete ablation of IT (bilat-
eral removal of anterior IT) resulted in only mild (10-15%)
deficits in object categorization (Matsumoto et al. 2016). It
is unclear to what extent these modest behavioral deficits can
be explained by limitations of the methodologies and the be-
havioral assays, which may not be robust to alternative (po-
tentially compensatory) strategies. A handful of studies have
reported using focal reversible neural perturbation tools (e.g.
electrical, pharmacological, and optogenetic perturbation) to
test the stated decoding hypothesis, but all exclusively tar-
geted spatial clusters of face-selective neurons in IT, testing
the causal role of these regions in basic- and subordinate-
level face recognition behaviors (Afraz et al. 2006, 2015,
Moeller et al. 2017, Sadagopan et al. 2017), with one notable
exception (Verhoef et al. 2012). Thus, our results provide the
most systematic direct causal evidence for the general decod-
ing hypothesis (i.e. Prediction 1) outlined above.

The causal role of IT in core object recognition is to-
pographically organized. With respect to Prediction 2 of
our stated decoding hypothesis (that each mm-scale IT sub-
region is necessary for several, but not all, object discrimi-
nation tasks), our second major contribution in this work is
to provide direct evidence for a task-selective causal role of
IT in core object recognition at the millimeter-scale. Prior
to this, all existing studies have exclusively targeted specific
spatial clusters of face-selective neurons in IT, testing the
causal role of these regions in basic- and subordinate-level
face recognition behaviors (Afraz et al. 2006, 2015, Moeller
et al. 2017, Sadagopan et al. 2017). While faces are an espe-
cially behaviorally relevant stimulus class for primates (Tsao
& Livingstone 2008), the experimental bias towards face-
preferring (on average) spatial clusters in IT is likely related
to the spatial resolution limitations of current neural pertur-
bation tools, which operate on groups of spatially contiguous
neurons at approximately millimeter-scale. Given this limita-
tion, the known millimeter-scale spatial clusters of face selec-
tive regions in IT (Tsao et al. 2003, 2006, Tsao & Livingstone
2008) form an intuitively optimal candidate for testing causal
dependencies related to our decoding hypothesis. We note
that similar spatial clustering of response selectivity has been
reported for a small number of other image groupings be-
sides faces, such as color, places, and bodies (Conway et al.
2007, Kornblith et al. 2013, Lafer-Sousa & Conway 2013,
Verhoef et al. 2015, Popivanov et al. 2012). Importantly, the
topographic organization of neurons in IT is largely unknown
and assumed by many to be functionally random and non-
specific beyond these discrete clusters. To support a general
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inference, we here tested arbitrary sampled millimeter-scale
regions of ventral IT, rather than functionally target inactiva-
tion sites. Interestingly, we found that inactivation of differ-
ent regions in ventral IT led to different task-specific deficits,
suggesting some functional specificity for arbitrarily sampled
millimeter-scale regions. Indeed, our data suggest that each
millimeter-scale region in IT is causally involved in a rela-
tively small proportion (~ 25%) of object recognition tasks,
and that anatomically neighboring regions are similar in this
regard. This topographical organization is consistent with
previously reported sub-millimeter scale columnar organiza-
tion of neurons in IT (Fujita et al. 1992, Tanaka 1996, Wang
etal. 1996, 1998, Kreiman et al. 2006). We speculate that this
topographic organization could reflect a general principle of
global cortical layout, whereby neuronal selectivities are de-
veloped in the face of metabolic constraints (e.g. minimiza-
tion of connection wiring length (Chklovskii et al. 2002)).

The causal role of IT in core object recognition is pre-
dicted by the local neuronal discriminability. Finally,
with respect to Prediction 3 of our decoding hypothesis, we
found that behavioral deficits from inactivating millimeter
scale regions of IT are consistent with predictions from a
spatially distributed readout of neurons in IT (Majaj et al.
2015). Indeed, inactivation deficits were well predicted
by local neuronal discriminability decoding models, sug-
gesting that the causal role of each IT sub-region is well
approximated by the information that is coded explicitly
(i.e. linearly separably) by the local population of neurons.
In contrast, inactivation deficits were not well predicted by
specific local neural response readout models, which predict
that neurons that respond highly to particular stimulus
classes, without explicitly encoding the differences between
them, are causally involved in discrimination between these
classes. None of the tested decoding models perfectly
explain the inactivation deficits, potentially due to data
limits. In the current work, we did not have sufficient neural
sampling to directly test population decoding models (e.g.
by simulating perturbations on a localized sub-population
within a representative sample of all of IT, and measuring
the resulting simulated behavior). Nevertheless, our results
are consistent with at least one decoding hypothesis (Majaj
et al. 2015) (see Figure 5B).

Importantly, our results directly speak to questions of long-
standing interest in systems and cognitive neuroscience. A
belief held by many in this field is that the overall respon-
siveness of a cluster of neurons is indicative of its causal
role in behavior. For example, one might conclude that face
selective regions, which respond preferentially to images of
faces, must causally support face detection and discrimina-
tion behaviors (Tsao & Livingstone 2008). An alternative
hypothesis, used as the basis for techniques such as multi-
voxel pattern analysis (MVPA) (Norman et al. 2006), is that
the behavioral role of a cluster of neurons is not determined
by its responsiveness per se, but by its discriminability. To
date, there have been a handful of attempts in human cog-
nitive neuroscience to discriminate between these alternative
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hypotheses using coarse perturbations of neural activity (e.g.
trans-cranial magnetic stimulation, and electrical stimulation
(Parvizi et al. 2012, Schalk et al. 2017, Pitcher et al. 2007)).
In this study, we were able to both record from and inactivate
the neuronal activity in arbitrarily selected millimeter-scale
regions in primate IT. In contrast to previous human cogni-
tive neuroscience studies, we found that responsiveness is not
at all predictive of the behavioral deficits resulting from in-
activation. Instead, our results are consistent with a decoding
hypothesis based on neuronal discriminability (Majaj et al.
2015), and demonstrate that one should not conclude that a
cluster of neurons that preferentially responds to a particular
group of stimuli causally supports the ability to discriminate
between stimuli within that group.

Methods

Subjects and surgery. Two adult male rhesus macaque
monkeys (Macaca mulatta, subjects M, P) were trained on
the core object recognition paradigm described below. For
each animal, a surgery using sterile technique was performed
under general anaesthesia to implant a titanium head post to
the skull using titanium screws, and a cylindrical recording
chamber (19 mm inner diameter; Crist Instruments) over a
craniotomy targeting the temporal lobe in the left hemisphere
from the top of the skull (Monkey M, +13 mm posterior-
anterior, +16.3 mm medial-lateral, 15° medial-lateral angle;
Monkey P, +13 mm posterior-anterior, +14.75 mm medial-
lateral, 15° medial-lateral angle). All procedures were per-
formed in compliance with the guideline of National Insti-
tutes of Health and the American Physiological Society, and
approved by the MIT Committee on Animal Care.

Core object recognition behavioral paradigm. Core
object discrimination is defined as the ability to discriminate
between two or more objects in visual images presented
under high view uncertainty in the central visual field
(~ 10°), for durations that approximate the typical primate,
free-viewing fixation duration (~ 200 ms) (DiCarlo & Cox
2007, DiCarlo et al. 2012). As in our previous work (Rajal-
ingham et al. 2015, 2018), we investigate this behavior using
batteries of trial-by-trial interleaved set of pairwise object
discrimination tasks. The behavioral paradigm is described
below. Behavioral data was collected under head fixation,
and subjects reported their choices using their gaze. We
monitored eye position by tracking the position of the pupil
using a camera-based system (SR Research Eyelink 1000).
Images were presented on a 27 LCD monitor (1920 x 1080
at 60 Hz; Samsung S27A850D) positioned 44 cm in front
of the animal. At the start of each training session, subjects
performed an eye-tracking calibration task by saccading to a
range of spatial targets and maintaining fixation for 800ms.
Calibration was repeated if drift was noticed over the course
of the session.

Figure 1B illustrates the behavioral paradigm. Each trial was
initiated when the monkey acquired and held gaze fixation
on a central fixation point for 200ms, after which a test
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image (8 x 8° of visual angle in size) appeared at the center
of gaze for 100ms. Trials were aborted if gaze was not held
within £2°. After extinction of the test image, two choice
images, each displaying a single object in a canonical view
with no background, were immediately shown to the left and
right (each centered at 8° of eccentricity along the horizontal
meridian; see Fig. 1B). One of these two objects was always
the same as the object that generated the test image (i.e. the
correct choice), and its location (left or right) was randomly
chosen on each trial. The object that was not displayed in
the test image is referred to as the distractor object, but note
that objects are equally likely to be distractors and targets.
The monkey was allowed to freely view the choice images
for up to 1000ms, and indicated its final choice by holding
fixation over the selected image for 700ms. The monkey was
rewarded with a small juice reward for each correct trial.
After the end of each trial, another fixation point appeared,
cueing the next trial. Each trial consisted of a different
randomly selected pairwise object discrimination task. Note
that each pairwise task is operationally defined by the pair
of choice objects at the end of the trial, and we insure that
the test images are chosen in a balanced way such that
approximately half of the trials begin with test images of one
object and the other half of the trials begin with test images
of the other object. Performance of each such "pairwise task"
is the primary unit of measure in this study (averaged over
all test images of each object, unless otherwise noted). Note
that, because the trials of each such pairwise discrimination
task are randomly interleaved, the subject cannot anticipate
which object will be shown or which pair of object choices
will appear after the test image. Real-time experiments
for monkey psychophysics were controlled by open-source
software (MWorks Project http://mworks-project.org/).

Both animals were previously trained on other images of
other objects, and were proficient in discriminating among
over 35 object categories (i.e. several hundreds of possi-
ble pairwise object discrimination tasks). In this study, five
basic-level objects were tested (bear, elephant, dog, airplane,
and chair) that were picked at random. While other (unpub-
lished) work suggests that more objects are needed to fully
exercise the domain of core object recognition, in this study
our primary goal was to balance between spanning that do-
main and collecting enough behavioral trails to detect even
subtle changes in discrimination performance that might re-
sult from suppression of IT sub-regions. Our choice of five
objects resulted in ten possible pairwise object discrimina-
tion tasks (see Figure 1A for complete list). To accumulate
enough trials to precisely measure performance for each task
within a single behavioral session (i.e. a single experimental
day), we sub-selected six of these ten tasks for most exper-
iments. For a subset of experiments in one animal (monkey
P, experiment 2), we tested all ten pairwise tasks. For each
session, monkeys were tested for several hours (until sati-
ation) and performed a large number of trials (monkey M:
344241097, monkey P: 4430+942; mean + SD).
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Test images. We examined basic-level object recognition
behavior by generating test images of the five objects (above)
that were synthesized from the five computer models of each
object. As in prior work (Rajalingham et al. 2015, Majaj
et al. 2015), the goal was to use naturalistic images that
also exercised the view invariance challenges of core object
recognition, and the image generation pipeline is described
in detail elsewhere (Majaj et al. 2015) . Briefly, each image
was generated by first rendering the object with randomly
chosen viewing parameters (2D position, 3D rotation and
viewing distance), and then placing that foreground object
view onto a randomly chosen, natural image. Object models
spanned basic-level object categories (bear, elephant, dog,
airplane, and chair). Background images were sampled ran-
domly from a large database of high-dynamic range images
of indoor and outdoor scenes obtained from Dosch Design
(www.doschdesign.com). This image generation procedure
enforces invariant object recognition as it requires the animal
to tackle the invariance problem, the computational crux
of object recognition (Ullman & Humphreys 1996, Pinto
et al. 2008). Note that this design is in contrast to many
prior perturbation studies of IT cortex in which the subject is
required only to match one image to that same image (a.k.a.
standard "match-to-sample") (Horel et al. 1987, Biederman
et al. 1997), while here the subject must match any possible
image of an object to a visual token (canonical view) that
stands for that object.

The majority of the behavioral data presented here were col-
lected in response to a base image set generated from the
five objects (40 test images of each object, 200 test images
in total). We additionally generated a variant of this dataset
consisting of texture-less images of the same objects. These
texture-less images were targeted to both titrate the task diffi-
culty and further remove potential low-level confounds (e.g.
luminance and contrast). This texture-less image set was not
held fixed in size: on each behavioral session, we tested sub-
jects on a mixture of 20% previously seen and 80% com-
pletely novel texture-less images of the same five objects,
to mitigate potential memorization strategies. For the pur-
pose of the current work, we treat both of these image sets as
equivalent, namely as images of the same five objects under
study differing only in their precise generative parameters.
Figure S1 shows example two images for each object, from
both image sets.

Physiology and pharmacology.In each animal, we
first recorded multi-unit activity (MUA) from randomly
sampled sites on the ventral surface of IT (monkey M: 57
multi-unit sites, monkey P: 43 multi-unit sites). Recordings
in each animal were made over a period of several weeks
using glass-coated tungsten micro-electrodes (impedance,
0.3 —0.5M; outer diameter, 310um; Alpha Omega). A
motorized micro-drive (Alpha Omega) was used to lower
electrodes through a 26-gauge stainless-steel guide tube
inserted into the brain (5 mm) and held by a plastic grid
inside the recording chamber (CRIST). We recorded MUA
responses from IT while monkeys passively fixated images

10 | bioRxiv

in a rapid serial visual presentation (RSVP) protocol (10
images/trial, 100ms on, 100 ms off). To ensure accurate
stimulus presentation, eye position was tracked and trials
were aborted if gaze was not held within £1.5°. To ensure
accurate stimulus locking, spikes were aligned to a pho-
todiode trigger attached to the display screen. Multi-unit
responses were amplified (1x head-stage), filtered (250Hz
cutoff), digitized (sampling rate of 40kHz) and sorted
(Plexon MAP system, Plexon Inc.). For each image and
multi-unit site, the image response patterns were obtained
by first averaging MUA over many (~ 10) image repetitions,
and computing the number of repetition-averaged spikes in
two post-stimulus windows (70-170ms, 170-270ms)

Following this mapping stage, we performed inactivation
experiments using focal microinjections of muscimol, a
potent GABA agonist (Andrews & Johnston 1979). We
varied the location of microinjections to randomly sample
the ventral surface of IT (from approximately +-8mm AP to
approx +20mm AP). Given the relatively long half-life of
muscimol, inactivation sessions were interleaved over days
with control behavioral sessions. Thus, each inactivation
experiment consisted of three behavioral sessions: the
baseline or pre-control session (1 day prior to injection), the
inactivation session, and the recovery or post-control session
(2 days after injection). Each inactivation session began with
a single focal microinjection of 1ul of muscimol (Smg/ml,
Sigma Aldrich) at a slow rate (100nl/min) via a 30-gauge
stainless-steel cannula at the targeted site in ventral IT.
Injections were made through a simple microinjection circuit
consisting of a three-way valve (Labsmith) and marker line
(similar to (Noudoost & Moore 2011)), enabling precise
monitoring of the flow and volume of muscimol injected. In
pilot experiments, we verified complete neural suppression
at the location of injection using custom-built single-use
injectrodes (Noudoost & Moore 2011). Given this volume
of muscimol, we estimate strong neural suppression within
a local region of ~ 2.bmm in diameter for up to six hours
after injection (Arikan et al. 2002). After completion of the
injection, we waited 10-20 minutes before measuring the
monkey’s behavior on a battery of object recognition tasks
for up to 3 hours post-injection.

To ensure accurate targeting of IT and reconstruction of the
relative positions of injection and recording locations, all
electrophysiological recordings and pharmacological injec-
tions were made under micro-focal stereo x-ray guidance
(Cox et al. 2008). Briefly, monkeys were fitted with a plastic
frame (3 x 4 cm) positioned near the temporal lobe using
a plastic arm anchored in the dental acrylic implant. The
frame contained six brass fiducial markers (Imm diameter)
of known geometry, measured using micro-CT. The fiducial
markers formed a fixed 3D skull-based coordinate system for
registering all physiological recordings and pharmacological
injection sites. At each site, two x-rays were taken simulta-
neously at near orthogonal angles, and the 3D location of the
electrode/cannula tip was reconstructed relative to the skull
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using stereo-photogrammetric techniques. This procedure
enables high-resolution reconstruction (<200um error) of
electrode and cannula locations across experimental sessions
(Cox et al. 2008, Issa et al. 2013). Under assumptions of
approximate planarity for the ventral surface of IT, we mea-
sured the distance between sites in IT using the Euclidean
distance between x-ray reconstructed 3-D coordinates.

In total, we collected data for 25 inactivation experiments,
with each inactivation experiment consisting of three consec-
utive behavioral sessions each, in two monkeys (monkey M:
n = 10 experiments, monkey P: n = 15 experiments). In-
terleaved within this inactivation data collection, we addi-
tionally collected behavioral data for 18 control experiments,
where each experiment again consisted of three consecutive
control behavioral sessions each, with the same images and
tasks but with no injections, in both monkeys (monkey M:
n = 5 experiments, monkey P: n = 13 experiments). These
control data were used to estimate the natural variability in
performance across behavioral sessions.

Analysis.

Behavioral metrics. We previously introduced several
metrics to characterize behavior in this pairwise object
discrimination paradigm (Rajalingham et al. 2018). Here,
we focus on the highest resolution behavioral metric that
can be reliably measured in a single behavioral session,
the one-versus-other object level performance metric (pre-
viously termed B.02). Briefly, this metric is a pattern of
pairwise object discrimination performances. For each
pairwise object discrimination task, performance was
estimated using a sensitivity index d’ (Macmillan 1993):
d' = Z(hitrate) — Z(false alarm rate), where Z(.) is the
inverse of the cumulative Gaussian distribution. All d’
estimates were constrained to a range of [0, 5].

Recall that each inactivation experiment consisted of three
behavioral sessions. We first equated the number of tri-
als per session by selecting the first N trials of each ses-
sion, where N was the minimum number of trials across
the three sessions. For each of these three behavioral ses-
sions, we then computed a pattern of performances across
tasks. We defined the control behavioral performance as
the average of the pre-control and post-control performances:
1Z)control = (¢precontrol + ¢postcontrol)/2- To measure the
behavioral deficit from inactivation, we estimated a behav-
ioral deficit pattern (&) as the difference between inactivated
and control performance over tasks:

0= winactivated - ’(/}control

We additionally estimated a normalized behavioral deficit
pattern as
5 = winactivated - wcontrol
n

winactivated + d)control

Sparsity of deficit. We quantified the non-uniformity of the
behavioral deficits using a sparsity index ST(z) (Vinje &
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Gallant 2000) as follows:
A(z) = E[2]*/ El2?],

SI(z) = (1-A(2))/(1-1/N)

where E[.] denotes the expectation of, and N is the length
of the vector . When applied to a behavioral deficit pattern
with no sampling noise, SI(d), this index has a value of 0
for perfectly uniform deficit patterns, and a value of 1 for
perfectly one-hot deficit pattern. To ensure that the sparsity
of the behavioral deficit did not purely reflect non-uniformity
in the behavioral difficulty across tasks, we additionally
computed this index from the normalized deficit pattern
vector SI(d,). We computed the SI for each inactivation
site, and estimated the average across all sites.

To ground this empirical S7 value in intuition, we esti-
mated the corresponding SI distributions for different simu-
lated behavioral deficit patterns with varying degrees of non-
uniformity across tasks, and with comparable sampling noise
to that in our actual behavioral data (i.e. a finite number of
trials). To estimate the expected SI distribution from a deficit
with P% of tasks affected, we performed the following sim-
ulation. For each inactivation site, we computed an estimate
of the deficit pattern (4) from a random bootstrap sample of
trials. From this deficit pattern estimate, we set all but the top
PY% of deficit values to zero, and randomly shuffled the posi-
tion of remaining non-zero entries. We averaged the resulting
deficit pattern estimates across bootstrap samples to obtain a
simulated deficit pattern with approximately equal, non-zero
deficit on P% of tasks. Finally, we computed the sparsity
index for this simulated mean deficit pattern. By varying
P(=10%,25%,...,100%), we obtained estimates of SI dis-
tributions expected from different degrees of non-uniformity
across tasks.

Neuronal readout models. To investigate the link between
neuronal activity and behavioral deficits, we constructed and
tested a number of decoding models. Each of these models
predicts an inactivation pattern from the activity of neurons
recorded in close anatomical proximity (within 2mm) to the
injection site. As described above, multi-unit neuronal ac-
tivity was measured in response to the same images under a
passive viewing paradigm and could thus be used as the input
to each decoding model. We constructed a feature matrix R
from the firing rate responses over images (averaged over rep-
etitions) all local multi-unit sites. Each tested decoder model
maps R to a behavioral deficit prediction A. The local neural
discriminability and local population discriminability models
we tested here were loosely inspired from population readout
models of IT (Majaj et al. 2015). Note, however, that the
current implementations do not include the remaining (non-
local) IT population as inputs, as we did not have access to
a larger sample of IT. The specific local decoder models we
tester here were: local neural response models (M1, M2) pre-
dict largest deficits for tasks with images that yielded largest
response from the local neuronal sites, and local neural dis-
criminability models (M3, M4, M5) predict largest deficits
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for tasks for which the local neural population was most dis-
criminative, as measured by a linear classifier. The details of
these five models are as follows:

1. M1 (mean neural response): The deficit for each
task A; ; is estimated as the (negative of) neural re-
sponse to objects ¢, 7, averaged over sites and images

(<R> sites,images)-

2. M2 (weighted mean neural response): The deficit for
each task A; ; is estimated as the (negative of) neural
response to objects 4, 7, averaged over sites and images
after weighting each site by its overall discriminability
w (<'LUR>sites,images)-

3. M3 (local neural response discriminability): The neu-
ral image responses averaged over sites, ((R)sites), 1S
used as a single neural feature f to train and test a lin-
ear SVM. The deficit for each task A, ; is estimated as
the (negative of) the SVM performance (in units of d’)
to objects ¢, 7, averaged over images.

4. M4 (local neural discriminability, mass action): Each
neural site’s image response ([2s;¢e, ), is used as a sin-
gle neural feature f to train and test a linear SVM. The
deficit for each task A; ; is estimated as the (negative
of) the SVM performance (in units of d’) to objects 7, 5,
averaged over images, summed over all sites k.

5. M5 (local population discriminability): The local neu-
ronal image response (), is used to train and test a
linear SVM. The deficit for each task A; ; is estimated
as the (negative of) the SVM performance (in units of
d') to objects i, j, averaged over images.

Noise-adjusted correlations. We measured the similarity
between two behavioral deficit patterns d1,d2 (e.g. between
true deficit patterns and predictions from a model) using a
noise-adjusted correlation (DiCarlo & Johnson 1999, John-
son et al. 2002). For each behavioral deficit pattern, we split
all independent raw observations (e.g. behavioral trials) into
two equal halves and computed the behavioral deficit pat-
tern from each half, resulting in two independent estimates
of the deficit pattern. We took the Pearson correlation be-
tween these two estimates as a measure of the reliability of
that behavioral deficit pattern, given the data, i.e. the split-
half internal reliability. To estimate the noise-adjusted corre-
lation between two deficit patterns, we compute the Pearson
correlation over all the independent estimates of deficits from
each, and we then divide that raw Pearson correlation by the
geometric mean of the split-half internal reliability of each

deficit:

VP61,61 X Pb3,69

Since all correlations in the numerator and denominator were
computed using the same amount of trial data (exactly half of
the trial data), we did not need to make use of any prediction
formulas (e.g. extrapolation to larger number of trials using
Spearman-Brown prediction formula). This procedure was

5(51762) =
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repeated 10 times with different random split-halves of tri-
als. Our rationale for using a reliability-adjusted correlation
measure was to account for variance in the behavioral deficit
that is not replicable by the task condition. If two behavioral
deficits are identical, then their expected noise-adjusted cor-
relation is 1.0, regardless of the finite amount of data that are
collected. The noise-adjusted correlation was used to com-
pute the similarity between observed and predicted behav-
ioral deficit patterns (e.g. for testing neural readout models),
as well as for the similarity between two different behavioral
deficit patterns arising from two different inactivation sites.

Statistical testing. Unless otherwise specified, we estimated
the uncertainty in behavioral deficit measurements (i.e. delta,
see above) via bootstrap resampling of trials, repeated 100
times. The standard error of each delta measurement was es-
timated as the standard deviation of its bootstrap distribution.
For statistical tests, we performed one-tailed exact tests, by
computing the empirical probability of observing a sample
below zero. To compute this probability from the empiri-
cal bootstrap distribution, we fit a Gaussian kernel density
function to the empirical distribution, optimizing the band-
width parameter to minimize the mean squared error. This
kernel density function was evaluated to compute a p-value,
by computing the cumulative probability of observing a pos-
itive behavioral delta.
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Example images
Image-set 1
(Textured images)

Image-set 2
(Textureless images)

Fig. S1. (a) Visual images. Two (out of hundreds) example images per object, for each of the five objects and for both image sets, are shown. Stimuli consisted of naturalistic
synthetic images of 3D objects rendered under high view-uncertainty and overlaid on a naturalistic background. We additionally generated a dataset consisting of texture-less
images of the same objects; two example texture-less images for each of the five objects are shown (image-set 2). For the purpose of the current work, we treat both of these
image sets as equivalent, namely as images of the same five objects under study.
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Fig. S2. Summary of behavioral deficits for each monkey. Formatting as in Figure 3B
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