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Abstract 1 

The efficiency of neuronal information transfer in activated brain networks may affect behavioral 2 

performance. Gamma-band synchronization has been proposed to be a mechanism that facilitates 3 

neuronal processing of behaviorally relevant stimuli. In line with this, it has been shown that strong 4 

gamma-band activity in visual cortical areas leads to faster responses to a visual go cue. We 5 

investigated whether there are directly observable consequences of trial-by-trial fluctuations in non-6 

invasively observed gamma-band activity on the neuronal response. Specifically, we hypothesized 7 

that the amplitude of the visual evoked response to a go cue can be predicted by gamma power in 8 

the visual system, in the window preceding the evoked response. Thirty-three human subjects (22 9 

female) performed a visual speeded response task while their magnetoencephalogram (MEG) was 10 

recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We 11 

estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the 12 

estimated single trial amplitude of the most prominent event-related field (ERF) peak within the first 13 

100 ms after the pattern reversal. In parieto-occipital cortical areas, the amplitude of the ERF 14 

correlated positively with gamma power, and correlated negatively with reaction times. No effects 15 

were observed for the alpha and beta frequency bands, despite clear stimulus onset induced 16 

modulation at those frequencies. These results support a mechanistic model, in which gamma-band 17 

synchronization enhances the neuronal gain to relevant visual input, thus leading to more efficient 18 

downstream processing and to faster responses.  19 
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Significance statement 20 

Gamma-band activity has been associated with many cognitive functions and improved behavioral 21 

performance. For example, high amplitude gamma-band activity in visual cortical areas before a go 22 

cue leads to faster reaction times. However, it remains unclear through which neural mechanism(s) 23 

gamma-band activity eventually affects behavior. We tested whether the strength of induced 24 

gamma-band activity affects evoked activity elicited by a subsequent visual stimulus. We found 25 

enhanced amplitudes of early visual evoked activity, and faster responses with higher gamma power. 26 

This suggests that gamma-band activity affects the neuronal gain to new sensory input, and thus 27 

these results bridge the gap between gamma power and behavior, and support the putative role of 28 

gamma-band activity in the efficiency of cortical processing.  29 
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Introduction 30 

Mesoscopic and macroscopic electrophysiological signals, as measured invasively as local field 31 

potentials (LFPs) or non-invasively as the magneto/electroencephalogram (MEG/EEG), can often be 32 

characterized by rhythmic activity patterns in a broad range of frequencies (Buzsáki and Draguhn, 33 

2004).  Experimentally, distinct frequency bands have been implicated in various cognitive processes. 34 

For instance, cortical gamma-band activity (30-90 Hz) has been associated with attention (Tiitinen et 35 

al., 1993; Fries et al., 2001; Taylor et al., 2005), memory (Jensen and Lisman, 1996; Carr et al., 2012) 36 

and perception (Gray and Singer, 1989; Llinas et al., 1994). Gamma rhythms result from a balanced 37 

interplay between neuronal excitation and inhibition. Fast-spiking interneurons bring about the 38 

inhibition of the excitatory drive within a population. Once the inhibition fades off, the excitatory 39 

drive activates pyramidal cells and in turn, excites the feedback loop of fast-spiking interneurons.  40 

This interaction synchronizes the IPSPs in pyramidal neurons and generates gamma rhythms at the 41 

population level (Buzsáki and Wang, 2012). Fries (2015) proposed that this mechanism functions to 42 

synchronize inputs down the processing hierarchy, thereby making communication between 43 

neuronal groups more effective.  44 

Given its putative mechanistic role in affecting the outcome of cortical computations, gamma-band 45 

synchronization has become a popular neural substrate to quantify in relation to behavior during 46 

cognitive experiments. This has led to evidence for a relationship between gamma-band 47 

synchronization and behavior, both in humans and other mammals. Multiple studies have found a 48 

larger pre-stimulus gamma power for perceived versus unperceived stimuli (Makeig and Jung, 1996; 49 

Linkenkaer-Hansen, 2004; Hanslmayr et al., 2007; Wyart and Tallon-Baudry, 2008), and strong 50 

gamma power in visual areas leads to faster responses to a visual go cue (Womelsdorf et al., 2006; 51 

Koch et al., 2009; Hoogenboom et al., 2010). These results are in line with the idea that gamma-band 52 

synchronization facilitates stimulus processing, and more specifically, they suggest a behavioral 53 

relevance of the strength of gamma-band synchronization in task-relevant areas.  54 
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Although the relation between the amplitude of the gamma rhythm and behavior has been 55 

established, relatively little is known about how gamma-band synchronization in sensory cortical 56 

areas affects the chain of neuronal events, leading to an eventual effect on behavior. One way to 57 

investigate this would be to relate trial-by-trial fluctuations of the gamma amplitude and/or phase, 58 

estimated at the moment of task-relevant stimulus onset, with the transient event-related response 59 

to this stimulus. Most studies investigating the mechanisms of gamma-band facilitation used invasive 60 

recording techniques, and focused on the relevance of the gamma phase (Fries et al., 2001; Cardin et 61 

al., 2009; Ni et al., 2016). Ni et al (2016) show, at the mesoscopic scale of LFPs and multiunit activity, 62 

that gamma-band oscillations lead to rhythmic fluctuations in neuronal gain, such that inputs at 63 

phases of high gain elicit stronger multiunit activity.  64 

In the present research, we investigated the effect of trial-by-trial fluctuations in MEG-derived 65 

gamma-band activity on stimulus-evoked activity. Using a visual stimulation paradigm that is known 66 

to robustly induce gamma-band activity in early visual cortical areas, we instructed participants to 67 

respond as fast as possible to an unpredictable salient change in a moving grating. We hypothesized 68 

that intrinsic variability in gamma power reflects variability in the efficiency of information transfer in 69 

the visual processing stream, which would manifest itself as correlated amplitude variability of the 70 

early evoked responses. More salient activation in sensory areas would in turn lead to enhanced 71 

processing in downstream areas, eventually causing a faster behavioral response.   72 
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Materials and Methods 73 

Subjects 74 

33 healthy volunteers, of which 22 females and 11 males, participated in the study. Their age range 75 

was 18-63 years (mean ± SD: 27 ± 10 years) and they all had normal or corrected-to-normal vision. All 76 

subjects gave written informed consent according to the Declaration of Helsinki. The study was 77 

approved by the local ethics committee (CMO region Arnhem/Nijmegen). One subject was excluded 78 

from analysis due to a technical error, which corrupted one of the data files. 79 

 80 

Experimental Design 81 

Stimuli 82 

The experimental task was programmed in MATLAB (R2012b, Mathworks, RRID: SCR_001622) using 83 

Psychophysics Toolbox (Brainard and Vision, 1997, RRID: SCR_002881). All stimuli were presented 84 

against a gray background. A fixation dot was present throughout the experiment, the color of which 85 

indicated when the participant was allowed to blink with their eyes (green for blinking, red for not 86 

blinking). A concentric sinusoidal grating was presented at 100% black/white contrast and was 87 

tapered towards the edges with a Hanning mask, such that edge effects were excluded (see figure 1). 88 

The grating was present at the center of the screen, with a visual angle of 7.1°, 2 sinusoidal cycles per 89 

degree and a contraction speed of 2 cycles per second. 90 

 91 

Experimental equipment 92 

Stimuli were presented by back-projection onto a semi translucent screen (width 48 cm) by an 93 

PROPixx projector with a refresh rate of 120 Hz and a resolution of 1920 x 1080 pixels. Subjects were 94 

seated at a distance of 76 cm from the projection screen in a magnetically shielded room. MEG was 95 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/388587doi: bioRxiv preprint 

https://doi.org/10.1101/388587
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

recorded throughout the experiment with a 275-channel axial gradiometer CTF MEG system at a 96 

sampling rate of 1200 Hz. In addition, subject’s gaze position was continuously recorded using an SR 97 

Research Eyelink 1000 eye-tracking device (RRID: SCR_009602). Head position was monitored in real-98 

time during the experiment by using head-positioning coils at the nasion and left and right ear canals 99 

of the subject (Stolk et al., 2013). When head position deviated more than 5 mm from the position at 100 

the start of the experiment, subjects readjusted to the original position. Behavioral responses during 101 

the MEG session were recorded using a fiber optic response pad (FORP). 102 

In addition to the MEG recording, anatomical T1 scans of the brain were acquired with a 3T Siemens 103 

MRI system (Siemens, Erlangen, Germany). In order for co-registration of the MEG and MRI datasets, 104 

the scalp surface was mapped using a Polhemus 3D electromagnetic tracking device (Polhemus, 105 

Colchester, Vermont, USA). 106 

 107 

Procedure 108 

Subjects were instructed to keep fixation at the fixation dot throughout the experiment (see figure 109 

1). The fixation dot was colored red most of the time, but turned green during the eye-blink period. 110 

After a 1.0 second eye-blink period and a 1.5-2.0 second baseline window, a contracting grating was 111 

presented at the center of the screen. The grating contracted for 1.0-3.0 seconds, after which a 112 

pattern reversal of the stimulus occurred. This functioned as a go cue. Participants had to respond as 113 

fast and as accurately as possible to the go cue by pressing a button with the right index finger. 114 

Responses had to be made within 700 ms. Ten percent of the trials were catch trials, in which no 115 

stimulus change occurred. After the stimulus change the grating continued to contract for another 116 

750 ms, until the end of the trial. There was no feedback of task performance, but participants were 117 

trained before the experiment to make sure they understood the task. Participants completed a 118 

maximum of thirteen blocks, each consisting of forty trials, or until one hour had passed. In between 119 
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blocks there was a self-paced break, if needed followed by repositioning of the subject to the original 120 

position (see Experimental Equipment). In total, participants completed between 400 and 520 trials. 121 

 122 

Figure 1. Task time-line. Each trials starts with a 1.0 second blink period, followed by a variable 123 

baseline period (1.5-2.0 s). A concentric drifting grating is presented for 1.0-3.0 seconds, after which 124 

a stimulus reversal occurs. The grating continues drifting for 0.75 seconds, until the end of the trial, 125 

during which a response has to be made. 126 

 127 

Data Analysis 128 

MEG preprocessing 129 

The MEG data was preprocessed offline in MATLAB (2015b, Mathworks, RRID: SCR_001622) using 130 

FieldTrip toolbox (Oostenveld et al., 2011, RRID:SCR_004849) and custom written code. First, 131 

excessively noisy channels and trials were removed from the data by visual inspection. Additionally, 132 

trials with squid jumps or muscle artifacts were removed from the data. Eyetracker data was visually 133 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/388587doi: bioRxiv preprint 

https://doi.org/10.1101/388587
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

inspected to discard trials with eye blinks within the latency of interest and trials where the eye 134 

position exceeded 5 degrees from the fixation dot were removed likewise.  135 

The data were demeaned, and high pass filtered at 1 Hz using a finite impulse response windowed 136 

sinc (FIRWS; Widmann, 2006) filter. Power line interference (50 Hz) and its harmonics were removed 137 

using a discrete Fourier transform (DFT) filter. Further, signals relating to cardiac activity or eye blinks 138 

and eye movements were identified and removed from the data using independent component 139 

analysis (ICA). Lastly, the trials of interest were defined as those where a stimulus change was 140 

present and where a behavioral response was made within 700 ms of that event. 141 

 142 

MRI processing 143 

MRI data were co-registered to the MEG-based coordinate system using the head-positioning coils 144 

and the digitized scalp surface. Using SPM8 (Penny et al., 2011) we created volume conduction 145 

models of the head, and individual meshes of dipole positions, consisting of a cortically constrained 146 

surface-based mesh with 15,784 vertex locations. These meshes were created using Freesurfer 147 

(RRID: SCR_001847) and HCP workbench (RRID: SCR_008750). The dipole positions were used for the 148 

identification of a virtual channel with the strongest gamma-band response or low frequency 149 

response (see Single-trial power), and evoked responses were modeled on a parcellated version of 150 

this mesh. The vertices were grouped into 374 parcels based on a refined version of the Conte69 151 

atlas (Van Essen et al., 2012) in order to reduce the dimensionality of the data (similar to Schoffelen 152 

et al., 2017). Forward models were computed using single-shell volume conductor models that were 153 

derived from individual structural MR images (Nolte, 2003). 154 

  155 
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Time-frequency analysis 156 

Time-resolved spectral power was estimated for low (2-30 Hz) and high (28-100 Hz) frequencies after 157 

padding the data with zeros to six seconds. For low frequencies, a Hanning tapered 500 ms sliding 158 

time window was used in steps of 50 ms, with 2 Hz resolution. High frequency power was estimated 159 

using a DPSS multi-taper approach with a sliding time window of 250 ms and steps of 50 ms, 4 Hz 160 

resolution and 8 Hz smoothing. Time-frequency activity was expressed relative to a baseline, defined 161 

as [-1.0 -0.25] seconds, time locked to stimulus onset. For initial exploration, spectral decomposition 162 

was performed on synthetic planar gradient data (Bastiaansen and Knösche, 2000), and combined 163 

into a single spectrum per sensor. This way, power spectra could easily be averaged across subjects 164 

for visualization purposes. 165 

 166 

Peak frequency 167 

Subject-specific gamma power was estimated on the individualized gamma peak frequency. In order 168 

to estimate peak frequencies, the power spectrum after stimulus onset was contrasted with the pre-169 

stimulus baseline. First, trials were separated into baseline and stimulus presentation epochs, where 170 

the first 400 ms of stimulus presentation were discarded in order to prevent spectral effects of 171 

evoked activity. Next, trial epochs were cut into 500 ms snippets, with fifty percent overlap. Spectral 172 

power was then estimated on these snippets in the 30-90 Hz range, after tapering with a Hanning 173 

window.  Finally, the gamma peak frequency was determined at the maximum power ratio of 174 

stimulus presentation over baseline period, averaged over occipital MEG channels. A similar 175 

approach was used for low frequencies, in the 2-30 Hz range, but here the negative peak (i.e. 176 

showing the largest power reduction from baseline) was used. 177 

  178 
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Single-trial power 179 

To get an optimal estimate of single-trial gamma power, we created subject-specific virtual channels, 180 

using a DICS beamformer (Gross et al., 2001), scanning the cortically constrained mesh of dipole 181 

positions. The 750 ms of data before the stimulus change were used to ensure the best signal-to-182 

noise ratio, while at the same time ensuring that the estimate of gamma-band activity was as little as 183 

possible affected by evoked activity. These 750 ms epochs were padded with zeros to one second, 184 

and a multi-taper Fast Fourier transform (FFT) with 8 Hz spectral smoothing was applied to these 185 

data. The same was done for a 750 ms baseline window. Spatial filters were created for each of the 186 

vertex locations, using the cross-spectral density estimated from the concatenated data, at the 187 

subject-specific peak frequencies, and a regularization parameter of 5%. Next, the virtual channel 188 

was selected as the vertex that showed the largest increase in gamma power, relative to baseline. 189 

Next, the single-trial gamma power was estimated on these virtual channels, in the 200 ms just 190 

before the ERF window (see Single-trial event-related responses; the window in which power was 191 

estimated ended 20 ms before the start of the ERF window), using a spatial filter with fixed dipole 192 

orientation, optimized for this time window. 193 

To estimate single-trial power estimates for the alpha-beta band, a similar procedure was used. The 194 

cross-spectral density matrix was estimated at individual peak-frequency with 2.5 Hz smoothing, 195 

based on the 400 ms before the ERF window. Since the induced low frequency response was a power 196 

decrease relative to baseline, the vertex location that showed the largest decrease was selected as 197 

the virtual channel. 198 

 199 

Single-trial event-related responses 200 

The event-related response to the stimulus change was modelled using a Linearly Constrained 201 

Minimum Variance (LCMV) beamformer on the cortically-constrained meshes of dipole positions, 202 

followed by a parcellation based on an anatomical atlas (see MRI preprocessing). Data, time locked to 203 
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stimulus change, were selected and baseline corrected based on 100 ms prior to the change. For 204 

each anatomical parcel, the source time courses of the dipoles belonging to this parcel were 205 

concatenated, and subjected to a principal component analysis (PCA). The first spatial component 206 

that explained most variance in the signal was used as a representation of single-trial activity for this 207 

parcel. In order to account for the beamformer’s depth bias, the data were normalized by an 208 

estimate of the noise using the covariance matrix of the 200 ms prior to the go cue. The resulting 209 

time courses were low-pass filtered at 30 Hz using a finite impulse response (FIR) windowed sync 210 

function. The data were filtered from right to left, to avoid leakage of pre-change signal into the post-211 

change estimates. Next, the amplitudes of the single-trial visual evoked responses were estimated in 212 

a time window showing the most prominent peak in the trial averaged ERF, in the first 100ms after 213 

stimulus change, on a subjects-by-subject basis. These windows were manually defined by visual 214 

inspection of the source-level activity time courses.  215 

 216 

Correlation of single-trial power and ERF amplitude 217 

Correlations between ERF amplitude, alpha-beta power and gamma power, and response speed, and 218 

between gamma power, response speed and trial length were computed at the single-subject level 219 

using Spearman’s rank correlation coefficient. We also computed partial correlations between alpha-220 

beta/gamma power and response speed, each time accounting for trial length and power values in 221 

the other frequency band. 222 

 223 

Statistical analysis 224 

The correlation between alpha-beta power and gamma power, response speed and trial length was 225 

statistically evaluated using a parametric t-test (against 0) on the distribution of correlation 226 

coefficients over subjects (alpha = 0.05). 227 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/388587doi: bioRxiv preprint 

https://doi.org/10.1101/388587
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Statistical significance of the correlation between alpha-beta/gamma power and ERF amplitude, and 228 

between ERF amplitude and reaction times was assessed using non-parametric permutation tests 229 

(based on 10000 permutations) combined with spatial clustering for family-wise error control (Maris 230 

and Oostenveld, 2007). Under the null hypothesis of no systematic relationship across participants 231 

between gamma power and the ERF amplitude, we created a reference distribution of the group-232 

level t-statistic of the correlation against zero, using sign swapping of the correlation for random 233 

subsets of subjects. Spatially adjacent parcels with t-values corresponding to a nominal alpha 234 

threshold of 0.05 (0.01 for the correlation between ERF amplitude and RT) were grouped into 235 

clusters, and cluster-level statistics were computed as the sum of t-values within a cluster. The null-236 

hypothesis was rejected if the maximum cluster-level statistic in the observed data was in the 237 

positive tail of the permutation distribution of cluster-level statistics for the correlation between ERF 238 

amplitude and gamma power, and in the negative tail for the correlation between alpha-beta power 239 

and ERF amplitude, and between ERF amplitude and reaction times, at a level of <0.05 one-sided.  240 
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Results 241 

 242 

Figure 2. Stimulus induces strong gamma synchronization. A) Group-average time-frequency 243 

spectrum. Gamma (50-70 Hz) power peaks right after stimulus onset and is sustained throughout 244 

stimulus presentation. B) Topography of the stimulus-induced gamma-band activity. Circles reflect 245 

selected channels, shown in A. C) Individual (gray line) and group-average (black line) power spectra 246 

on the channel level. D) Left: gamma peak frequencies. Generally, peak frequencies were in the 40-247 

70 Hz range. Right: power changes (right) at individual gamma peak frequencies. Power changes 248 

were highly variable. E) Source level activity of induced gamma the group average t-value. Induced 249 

gamma activity was strongest in occipital regions.  250 

 251 
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Out of the 400-520 completed trials per subject, on average fifty of them were catch trials, i.e. these 252 

trials did not require a response. Overall, the subjects performed with a mean accuracy of 94% (SD = 253 

5.8%). Excluding catch trials and trials with artifacts or excessive eye movements, on average 339 254 

trials per subject (SD = 61) were considered for further analysis. Of this pool, the mean performance 255 

rate was 94% (SD = 5.5%) and the mean reaction time over subjects was 371 ms (SD = 56 ms). 256 

 257 

Stimulus protocol leads to reliable stimulus-induced changes in gamma power and visual event-258 

related responses 259 

The contracting grating stimuli used here are known to robustly induce gamma-band synchronization 260 

(Hoogenboom et al., 2006; Swettenham et al., 2009; Van Pelt and Fries, 2013). In order to verify the 261 

spectral characteristics of the stimulus-onset induced neuronal response, we conducted a time-262 

frequency analysis at the channel-level. We contrasted spectral power after stimulus onset with the 263 

average spectrum in the baseline window. Figure 2 shows the average spectral power for all subjects 264 

in the gamma-frequency range (30-90 Hz). As expected, it was highest in occipital channels and it 265 

remained high throughout the whole stimulus presentation. Sources of the activity were localized to 266 

early visual areas (see figure 2e). In order to assess the gamma power increase quantitatively we 267 

estimated the power increase from baseline at the individual gamma peak frequency (figure 2d) and 268 

at the occipital channel that showed maximal increase. Over subjects, gamma power increased on 269 

average with 124% (mean, SD = 124%) during stimulation (figure 2d, right). Besides a gamma-band 270 

increase, a decrease in power was generally observed in the alpha/low beta band (8-20 Hz). This 271 

phenomenon presented itself mainly in occipital channels, and was also strongest in occipital source 272 

parcels (see figure 3).  273 

In addition to the stimulus inducing a robust gamma-band response, the stimulus change caused an 274 

event-related field (ERF). Figure 3a shows the ERF of an example subject over trials, together with the 275 

topography of the trial average of the P100 response in figure 3c. The signal-to-noise ratio (SNR) of 276 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/388587doi: bioRxiv preprint 

https://doi.org/10.1101/388587
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

the evoked response is relatively poor at the single-trial level. Also, the spatial topography was 277 

variable over subjects (data not shown). In order to reduce the spatial variability over subjects and to 278 

boost the SNR, all further analyses were conducted on the source level. Figure 3b shows a superior 279 

SNR for single trials on the source level compared to the channel level, together with the source 280 

topography in figure 3d. Despite the large variability of the response evoked by the stimulus change 281 

and the percentage increase in induced gamma, all subjects did show the neuronal response that 282 

was expected.  283 

 284 

Figure 3. Stimulus induces desynchronization in alpha-beta band (8-20 Hz). Similar to figure 2 but for 285 

low frequencies. Power in de alpha and low beta range decreased after stimulus onset, which was 286 

strongest in occipital parts of the cortex. 287 
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 288 

Figure 4. Signal-to-noise ratio of evoked activity is higher at the source level than at the channel 289 

level. A-B: single-trial time courses of evoked activity for the channel/parcel depicted in C/D, for a 290 

representative subject. C-D: topography of the P100 (depicted in A/B), evoked by the stimulus 291 

change. 292 

 293 

Pre-stimulus gamma power correlates with reaction times 294 

In order to evaluate the effect of pre-stimulus gamma power on behavior, we calculated the 295 

correlation between reaction times and the gamma power preceding the stimulus change. Gamma 296 

power was estimated on a virtual channel in source space. There was a relatively weak but highly 297 

significant, negative correlation of -0.072 (SD = 0.064, t(31) = -6.3, p = 5.1*10-7), which is in line with 298 

previous research (Womelsdorf et al., 2006; Hoogenboom et al., 2010). 299 
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One potential factor that might explain the correlation between gamma power and reaction times is 300 

stimulus jitter (i.e., the time between stimulus onset and the stimulus change). Stimulus jitter was 301 

uniformly distributed, and by consequence the instantaneous probability of a reversal event (hazard 302 

rate) increased over time. There could be a common dependence of gamma power and reaction 303 

times on stimulus expectancy. In order to investigate this possibility, we computed partial 304 

correlations between reaction time, gamma power and stimulus jitter, each time accounting for the 305 

third variable. Since we also found a stimulus-induced power reduction in the alpha-beta band, there 306 

is also a possibility that the correlation between gamma power and reaction times is actually caused 307 

by a common dependence on power in this frequency band. Therefore, we also partialled out power 308 

in the alpha-beta band. Reaction times correlated negatively with both gamma power (M = -0.068, 309 

t(31) = -6.1, p = 8.9 * 10-7, uncorrected) and stimulus jitter (M = -0.17, t(31) = -7.0, p = 6.9 * 10-8, 310 

uncorrected), but there was no correlation between gamma power and stimulus jitter (t(31) = 0.85, p 311 

= 0.40, uncorrected). Additionally, no significant correlation was found between reaction times and 312 

low frequency power when accounting for gamma power and stimulus jitter (t(31) = 1.1, p= 0.27, 313 

uncorrected), nor between low frequency power and gamma power (t(31) = 0.03, p = 0.97, 314 

uncorrected). These results indicate that the correlation between gamma power and reaction times 315 

is not likely to be the result of a build-up in expectancy, nor a result of power correlations between 316 

frequency bands. Further, there is no effect of low frequency power on reaction times, above and 317 

beyond the effect of gamma. 318 

 319 

Pre-stimulus gamma power predicts ERF amplitude 320 

Considering the vast amount of variability in the evoked response over subjects at the channel level, 321 

and the low signal-to-noise ratio of single trial event-related responses, we estimated the single trial 322 

responses to the stimulus change at the source-level, before quantifying the relation between 323 

gamma power and ERF amplitude. The time courses of the evoked response were projected into  324 
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 325 

Figure 5. Occipital gamma power correlates with ERF amplitude. A) Group statistic of the correlation 326 

between gamma power and ERF amplitude. B) boxplot (left) of correlation values and individual 327 

correlations (right). For each subject, correlations were averaged over those parcels belonging to the 328 

cluster that contributed to the significant effect. 329 

 330 

source space with an LCMV beamformer and combined into parcels according to an anatomical brain 331 

atlas (Van Essen et al., 2012). The relation between gamma power and the ERF was quantified as a 332 

Spearman rank correlation at the single subject level and can be seen in figure 5. Group statistical 333 

evaluation showed that the correlation differed significantly from zero (M = 0.027, p=0.01, 334 

nonparametric permutation test, corrected). This difference was supported by a cluster of positive 335 

correlation in source parcels in occipital and parietal areas (figure 5a), supporting the hypothesis that 336 

increased gamma power leads to an increased amplitude of the stimulus-evoked transient. 337 

Additionally, we correlated ERF amplitude and reaction times (figure 6b). This correlation was 338 

significantly lower than zero (M = -0.027, p=0.037, nonparametric permutation test, corrected), 339 

indicating that a higher amplitude of early evoked activity leads to a faster behavioral response. The 340 

cluster that mostly contributed to this effect was found in source parcels belonging to the visual 341 

cortex of the right hemisphere (figure 6a), conform our hypothesis. Although we did not find a 342 
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correlation between low frequency power and reaction times, low frequency power might still affect 343 

ERF amplitude. In order to ensure that this was not the case, we tested whether low frequency 344 

power before the ERF was predictive of ERF amplitude. Conform the stimulus-induced alpha-beta 345 

power decrease, if any, a negative correlation was expected with ERF amplitude. This correlation was 346 

not significant at the group level (p = 0.66, nonparametric permutation test, corrected). 347 

  348 

Figure 6. ERF amplitude in occipital cortex correlates with reaction times.  A) Group statistic of the 349 

correlation between ERF amplitude and reaction times. B) boxplot (left) of correlation values and 350 

individual correlations (right). For each subject, correlations were averaged over those parcels 351 

belonging to the cluster that contributed to the significant effect. 352 
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Discussion 

In this experiment, we investigated the neuronal consequences of trial-by-trial variability in induced 

gamma-band activity, using a visual stimulus change detection paradigm. We hypothesized that 

higher gamma power before a go cue would facilitate the efficiency of the processing of the response 

cue, leading to a more strongly synchronized response in early visual areas, as reflected by higher 

early latency ERF amplitudes. In turn, the increased processing efficiency would lead to a faster 

behavioral response.  

We computed single trial estimates of gamma power in visual areas, in the time window just prior to 

the stimulus change, and replicated the finding that higher gamma amplitude leads to faster reaction 

times in response to the go cue (Hoogenboom et al., 2010). Moreover, we correlated the single-trial 

gamma power with the amplitude of early latency source-reconstructed event-related activity, and 

observed a significant group-level effect, where the early latency event-related response in parieto-

occipital areas correlated positively with pre-stimulus gamma power. In turn, the amplitude of event-

related response in visual areas correlated negatively with reaction times. These findings are 

consistent with the hypothesis that strong local gamma-band synchronization facilitates the neuronal 

response to a change in the stimulus, which eventually leads to improved behavioral performance. 

Here, the effect of oscillatory activity on the subsequent neuronal response was specific to the 

gamma band. We also analyzed the effect of alpha/beta activity on the event-related response, since 

activity in these frequency bands was also prominently modulated by the onset of the visual 

stimulus. In contrast to the gamma band, we did not observe a significant association between trial-

by-trial power fluctuations in these lower frequencies, and trial-by-trial fluctuations in the event-

related response, and response speed.  

Although Hoogenboom et al. (2010) did not specifically investigate the relation between gamma-

band activity and the ERF, the authors did quantify the relation between ERF amplitude and reaction 

times, and found no significant effect. This latter null-finding is in contrast with our analysis of the 
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current data. Most likely this discrepancy is due to the fact that the aforementioned study used a 

temporally ill-defined stimulus change (change in drift speed). This did not elicit prominent evoked 

activity and thus prohibited the reliable estimation of evoked activity. In contrast, we used a pattern 

reversal as stimulus change, precisely because this is known to elicit prominent evoked activity 

(Nakamura et al., 1997; Di Russo et al., 2005; Barnikol et al., 2006; Perfetti et al., 2007). Because of 

this, we were able to reliably estimate the amplitude of early visual components on single trials and 

demonstrate a positive correlation between gamma power and ERF amplitude, and a negative 

correlation between ERF amplitude and reaction times, in support of our hypothesis. 

One possible concern that might confound a mechanistic interpretation of the relation between 

gamma-band activity, response speed, and the event-related transients could be a latent variable 

that correlates with these measures, causing spurious, indirect correlations. Specifically, the time 

interval between a warning cue and an upcoming stimulus is well known to be a determinant of 

response speed (Schoffelen et al., 2005; Beck et al., 2014), and temporally better predictable stimuli 

are associated with higher amplitudes in early components of evoked activity (Doherty, 2005; Lange 

et al., 2006; Dassanayake et al., 2016). Additionally, the hazard rate has been shown to correlate with 

spectral characteristics in alpha/beta and gamma band, (Schoffelen et al., 2005; Rolke and Hofmann, 

2007; Tsunoda and Kakei, 2008; Rohenkohl and Nobre, 2011) and low frequency spectral responses 

have been shown to be anti-correlated with high frequency responses (Hoogenboom et al., 2006; 

Womelsdorf et al., 2006; Scheeringa et al., 2011; Spaak et al., 2012)  Therefore, variability in the low 

frequency response, and/or stimulus expectancy might be a common determinant for gamma power, 

and response speed. We checked for these possibilities by estimating the partial correlation between 

gamma power and reaction time, controlling for differences in stimulus expectancy and power in low 

frequencies. The partial correlations were still significant, and specifically there was no additional 

effect of low frequency power on reaction times. This further corroborates the absence of a trial-by-

trial effect of low frequency alpha/beta activity on the ERF amplitude. These results highlight the 
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relevance and uniqueness of gamma power in behavior, and are in support of a model in which 

gamma-band activity modulates neuronal processing in order to affect behavior. 

Even though to our knowledge there is no further literature supporting a correlation between 

reaction times and the amplitude of early visual evoked components, correlations have been found 

with their peak latency (Kammer et al., 1999; Gerson et al., 2005). In contrast to the current 

experiment, where the stimulus was constant in every trial and we made use of the natural 

variations in the physiological and behavioral response, these studies manipulated either luminance 

or natural scenes in order to do so. Disregarding the source of variation in the physiological and the 

behavioral response, it is conceivable that pre-stimulus change gamma-band activity might also 

affect the latency of the evoked response in addition to its amplitude, and the combination of both 

ultimately affects behavior. This is beyond the scope of the current study, but would be an 

interesting topic in future research. 

Our main effect is in contrast to Privman et al. (2011). The authors used a repetition suppression 

paradigm, and found a reduction in ERP power in higher order visual areas as a function of gamma 

power in response to the second stimulus. The authors hypothesized that the gamma-band activity 

caused by the first stimulus might be sustained after its offset and disrupts synchronization of the 

neural population, selective for the second incoming stimulus. Thus, their findings might be specific 

to the simulation protocol used, which is further supported by the finding that the repetition 

suppression effect is largest when the stimuli are more similar, leading to larger overlapping 

neuronal representations (Grill-Spector et al., 2006).  

In this study, we used non-invasive MEG recordings in human participants. In contrast to invasive 

recordings, MEG lacks the high spatial resolution and high signal-to-noise ratio to allow for a detailed 

functional and spatial interpretation of our findings. In contrast to the present findings, recent work 

using invasive data from macaques and cats (Ni et al., 2016), showed that the gain of the multiunit 

response in primary visual cortex is dependent on the gamma phase of the local field potential.  
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However, the authors did not investigate the functional relevance of gamma amplitude, nor did we 

study gamma phase. Still, their results and our results are not contradictive: the amount of 

synchronization on the one hand, reflected by gamma power, and high excitability phases on the 

other hand, might both contribute to enhanced neuronal gain. 

In addition to the relatively limited spatial resolution, the high spatiotemporal variability in the 

response across subjects did not allow for a consistent assignment of even the early ERF components 

to a specific subregion in the visual system. The amplitude of the ERF was estimated as the most 

prominent peak within the first 100 ms after the go cue, which in terms of latency is well beyond the 

first geniculate input into primary visual cortex and might even reflect extrastriate activity, and thus 

likely reflects a more widespread activation of several cortical areas. Despite this limitation, our 

findings indicate that gamma-band activity increases the neuronal gain to new visual input. In 

addition, the fact that this effect can be shown at the spatial scale at which MEG operates, provides 

further justification to use gamma-band responses as a physiologically and mechanistically inspired 

dependent variable in non-invasive human cognitive neuroscience experiments.  
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