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Abstract

The efficiency of neuronal information transfer in activated brain networks may affect behavioral
performance. Gamma-band synchronization has been proposed to be a mechanism that facilitates
neuronal processing of behaviorally relevant stimuli. In line with this, it has been shown that strong
gamma-band activity in visual cortical areas leads to faster responses to a visual go cue. We
investigated whether there are directly observable consequences of trial-by-trial fluctuations in non-
invasively observed gamma-band activity on the neuronal response. Specifically, we hypothesized
that the amplitude of the visual evoked response to a go cue can be predicted by gamma power in
the visual system, in the window preceding the evoked response. Thirty-three human subjects (22
female) performed a visual speeded response task while their magnetoencephalogram (MEG) was
recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We
estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the
estimated single trial amplitude of the most prominent event-related field (ERF) peak within the first
100 ms after the pattern reversal. In parieto-occipital cortical areas, the amplitude of the ERF
correlated positively with gamma power, and correlated negatively with reaction times. No effects
were observed for the alpha and beta frequency bands, despite clear stimulus onset induced
modulation at those frequencies. These results support a mechanistic model, in which gamma-band
synchronization enhances the neuronal gain to relevant visual input, thus leading to more efficient

downstream processing and to faster responses.


https://doi.org/10.1101/388587
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/388587; this version posted August 13, 2018. The copyright holder for this preprint (which was

20

21

22

23

24

25

26

27

28

29

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Significance statement

Gamma-band activity has been associated with many cognitive functions and improved behavioral
performance. For example, high amplitude gamma-band activity in visual cortical areas before a go
cue leads to faster reaction times. However, it remains unclear through which neural mechanism(s)
gamma-band activity eventually affects behavior. We tested whether the strength of induced
gamma-band activity affects evoked activity elicited by a subsequent visual stimulus. We found
enhanced amplitudes of early visual evoked activity, and faster responses with higher gamma power.
This suggests that gamma-band activity affects the neuronal gain to new sensory input, and thus
these results bridge the gap between gamma power and behavior, and support the putative role of

gamma-band activity in the efficiency of cortical processing.
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Introduction

Mesoscopic and macroscopic electrophysiological signals, as measured invasively as local field
potentials (LFPs) or non-invasively as the magneto/electroencephalogram (MEG/EEG), can often be
characterized by rhythmic activity patterns in a broad range of frequencies (Buzsaki and Draguhn,
2004). Experimentally, distinct frequency bands have been implicated in various cognitive processes.
For instance, cortical gamma-band activity (30-90 Hz) has been associated with attention (Tiitinen et
al., 1993; Fries et al., 2001; Taylor et al., 2005), memory (Jensen and Lisman, 1996; Carr et al., 2012)
and perception (Gray and Singer, 1989; Llinas et al., 1994). Gamma rhythms result from a balanced
interplay between neuronal excitation and inhibition. Fast-spiking interneurons bring about the
inhibition of the excitatory drive within a population. Once the inhibition fades off, the excitatory
drive activates pyramidal cells and in turn, excites the feedback loop of fast-spiking interneurons.
This interaction synchronizes the IPSPs in pyramidal neurons and generates gamma rhythms at the
population level (Buzsaki and Wang, 2012). Fries (2015) proposed that this mechanism functions to
synchronize inputs down the processing hierarchy, thereby making communication between

neuronal groups more effective.

Given its putative mechanistic role in affecting the outcome of cortical computations, gamma-band
synchronization has become a popular neural substrate to quantify in relation to behavior during
cognitive experiments. This has led to evidence for a relationship between gamma-band
synchronization and behavior, both in humans and other mammals. Multiple studies have found a
larger pre-stimulus gamma power for perceived versus unperceived stimuli (Makeig and Jung, 1996;
Linkenkaer-Hansen, 2004; Hanslmayr et al., 2007; Wyart and Tallon-Baudry, 2008), and strong
gamma power in visual areas leads to faster responses to a visual go cue (Womelsdorf et al., 2006;
Koch et al., 2009; Hoogenboom et al., 2010). These results are in line with the idea that gamma-band
synchronization facilitates stimulus processing, and more specifically, they suggest a behavioral

relevance of the strength of gamma-band synchronization in task-relevant areas.
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Although the relation between the amplitude of the gamma rhythm and behavior has been
established, relatively little is known about how gamma-band synchronization in sensory cortical
areas affects the chain of neuronal events, leading to an eventual effect on behavior. One way to
investigate this would be to relate trial-by-trial fluctuations of the gamma amplitude and/or phase,
estimated at the moment of task-relevant stimulus onset, with the transient event-related response
to this stimulus. Most studies investigating the mechanisms of gamma-band facilitation used invasive
recording techniques, and focused on the relevance of the gamma phase (Fries et al., 2001; Cardin et
al., 2009; Ni et al., 2016). Ni et al (2016) show, at the mesoscopic scale of LFPs and multiunit activity,
that gamma-band oscillations lead to rhythmic fluctuations in neuronal gain, such that inputs at

phases of high gain elicit stronger multiunit activity.

In the present research, we investigated the effect of trial-by-trial fluctuations in MEG-derived
gamma-band activity on stimulus-evoked activity. Using a visual stimulation paradigm that is known
to robustly induce gamma-band activity in early visual cortical areas, we instructed participants to
respond as fast as possible to an unpredictable salient change in a moving grating. We hypothesized
that intrinsic variability in gamma power reflects variability in the efficiency of information transfer in
the visual processing stream, which would manifest itself as correlated amplitude variability of the
early evoked responses. More salient activation in sensory areas would in turn lead to enhanced

processing in downstream areas, eventually causing a faster behavioral response.
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Materials and Methods

Subjects

33 healthy volunteers, of which 22 females and 11 males, participated in the study. Their age range
was 18-63 years (mean * SD: 27 + 10 years) and they all had normal or corrected-to-normal vision. All
subjects gave written informed consent according to the Declaration of Helsinki. The study was
approved by the local ethics committee (CMO region Arnhem/Nijmegen). One subject was excluded

from analysis due to a technical error, which corrupted one of the data files.

Experimental Design

Stimuli

The experimental task was programmed in MATLAB (R2012b, Mathworks, RRID: SCR_001622) using
Psychophysics Toolbox (Brainard and Vision, 1997, RRID: SCR_002881). All stimuli were presented
against a gray background. A fixation dot was present throughout the experiment, the color of which
indicated when the participant was allowed to blink with their eyes (green for blinking, red for not
blinking). A concentric sinusoidal grating was presented at 100% black/white contrast and was
tapered towards the edges with a Hanning mask, such that edge effects were excluded (see figure 1).
The grating was present at the center of the screen, with a visual angle of 7.1°, 2 sinusoidal cycles per

degree and a contraction speed of 2 cycles per second.

Experimental equipment

Stimuli were presented by back-projection onto a semi translucent screen (width 48 cm) by an
PROPixx projector with a refresh rate of 120 Hz and a resolution of 1920 x 1080 pixels. Subjects were

seated at a distance of 76 cm from the projection screen in a magnetically shielded room. MEG was
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96  recorded throughout the experiment with a 275-channel axial gradiometer CTF MEG system at a

97 sampling rate of 1200 Hz. In addition, subject’s gaze position was continuously recorded using an SR

98 Research Eyelink 1000 eye-tracking device (RRID: SCR_009602). Head position was monitored in real-

99  time during the experiment by using head-positioning coils at the nasion and left and right ear canals
100  of the subject (Stolk et al., 2013). When head position deviated more than 5 mm from the position at
101  the start of the experiment, subjects readjusted to the original position. Behavioral responses during

102  the MEG session were recorded using a fiber optic response pad (FORP).

103 In addition to the MEG recording, anatomical T1 scans of the brain were acquired with a 3T Siemens
104  MRI system (Siemens, Erlangen, Germany). In order for co-registration of the MEG and MRI datasets,
105  the scalp surface was mapped using a Polhemus 3D electromagnetic tracking device (Polhemus,

106 Colchester, Vermont, USA).

107

108 Procedure

109  Subjects were instructed to keep fixation at the fixation dot throughout the experiment (see figure
110  1). The fixation dot was colored red most of the time, but turned green during the eye-blink period.
111  After a 1.0 second eye-blink period and a 1.5-2.0 second baseline window, a contracting grating was
112 presented at the center of the screen. The grating contracted for 1.0-3.0 seconds, after which a

113 pattern reversal of the stimulus occurred. This functioned as a go cue. Participants had to respond as
114  fast and as accurately as possible to the go cue by pressing a button with the right index finger.

115 Responses had to be made within 700 ms. Ten percent of the trials were catch trials, in which no
116  stimulus change occurred. After the stimulus change the grating continued to contract for another
117 750 ms, until the end of the trial. There was no feedback of task performance, but participants were
118  trained before the experiment to make sure they understood the task. Participants completed a

119 maximum of thirteen blocks, each consisting of forty trials, or until one hour had passed. In between
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120  blocks there was a self-paced break, if needed followed by repositioning of the subject to the original

121 position (see Experimental Equipment). In total, participants completed between 400 and 520 trials.

Pattern reversal

122

123 Figure 1. Task time-line. Each trials starts with a 1.0 second blink period, followed by a variable
124 | baseline period (1.5-2.0 s). A concentric drifting grating is presented for 1.0-3.0 seconds, after which
125 | astimulus reversal occurs. The grating continues drifting for 0.75 seconds, until the end of the trial,

126 | during which a response has to be made.

127

128  Data Analysis

129 MEG preprocessing

130 The MEG data was preprocessed offline in MATLAB (2015b, Mathworks, RRID: SCR_001622) using
131 FieldTrip toolbox (Oostenveld et al., 2011, RRID:SCR_004849) and custom written code. First,

132 excessively noisy channels and trials were removed from the data by visual inspection. Additionally,
133  trials with squid jumps or muscle artifacts were removed from the data. Eyetracker data was visually

8
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inspected to discard trials with eye blinks within the latency of interest and trials where the eye

position exceeded 5 degrees from the fixation dot were removed likewise.

The data were demeaned, and high pass filtered at 1 Hz using a finite impulse response windowed
sinc (FIRWS; Widmann, 2006) filter. Power line interference (50 Hz) and its harmonics were removed
using a discrete Fourier transform (DFT) filter. Further, signals relating to cardiac activity or eye blinks
and eye movements were identified and removed from the data using independent component
analysis (ICA). Lastly, the trials of interest were defined as those where a stimulus change was

present and where a behavioral response was made within 700 ms of that event.

MRI processing

MRI data were co-registered to the MEG-based coordinate system using the head-positioning coils
and the digitized scalp surface. Using SPM8 (Penny et al., 2011) we created volume conduction
models of the head, and individual meshes of dipole positions, consisting of a cortically constrained
surface-based mesh with 15,784 vertex locations. These meshes were created using Freesurfer
(RRID: SCR_001847) and HCP workbench (RRID: SCR_008750). The dipole positions were used for the
identification of a virtual channel with the strongest gamma-band response or low frequency
response (see Single-trial power), and evoked responses were modeled on a parcellated version of
this mesh. The vertices were grouped into 374 parcels based on a refined version of the Conte69
atlas (Van Essen et al., 2012) in order to reduce the dimensionality of the data (similar to Schoffelen
et al., 2017). Forward models were computed using single-shell volume conductor models that were

derived from individual structural MR images (Nolte, 2003).
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Time-frequency analysis

Time-resolved spectral power was estimated for low (2-30 Hz) and high (28-100 Hz) frequencies after
padding the data with zeros to six seconds. For low frequencies, a Hanning tapered 500 ms sliding
time window was used in steps of 50 ms, with 2 Hz resolution. High frequency power was estimated
using a DPSS multi-taper approach with a sliding time window of 250 ms and steps of 50 ms, 4 Hz
resolution and 8 Hz smoothing. Time-frequency activity was expressed relative to a baseline, defined
as [-1.0 -0.25] seconds, time locked to stimulus onset. For initial exploration, spectral decomposition
was performed on synthetic planar gradient data (Bastiaansen and Kndsche, 2000), and combined
into a single spectrum per sensor. This way, power spectra could easily be averaged across subjects

for visualization purposes.

Peak frequency

Subject-specific gamma power was estimated on the individualized gamma peak frequency. In order
to estimate peak frequencies, the power spectrum after stimulus onset was contrasted with the pre-
stimulus baseline. First, trials were separated into baseline and stimulus presentation epochs, where
the first 400 ms of stimulus presentation were discarded in order to prevent spectral effects of
evoked activity. Next, trial epochs were cut into 500 ms snippets, with fifty percent overlap. Spectral
power was then estimated on these snippets in the 30-90 Hz range, after tapering with a Hanning
window. Finally, the gamma peak frequency was determined at the maximum power ratio of
stimulus presentation over baseline period, averaged over occipital MEG channels. A similar
approach was used for low frequencies, in the 2-30 Hz range, but here the negative peak (i.e.

showing the largest power reduction from baseline) was used.

10
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Single-trial power

To get an optimal estimate of single-trial gamma power, we created subject-specific virtual channels,
using a DICS beamformer (Gross et al., 2001), scanning the cortically constrained mesh of dipole
positions. The 750 ms of data before the stimulus change were used to ensure the best signal-to-
noise ratio, while at the same time ensuring that the estimate of gamma-band activity was as little as
possible affected by evoked activity. These 750 ms epochs were padded with zeros to one second,
and a multi-taper Fast Fourier transform (FFT) with 8 Hz spectral smoothing was applied to these
data. The same was done for a 750 ms baseline window. Spatial filters were created for each of the
vertex locations, using the cross-spectral density estimated from the concatenated data, at the
subject-specific peak frequencies, and a regularization parameter of 5%. Next, the virtual channel

was selected as the vertex that showed the largest increase in gamma power, relative to baseline.

Next, the single-trial gamma power was estimated on these virtual channels, in the 200 ms just
before the ERF window (see Single-trial event-related responses; the window in which power was
estimated ended 20 ms before the start of the ERF window), using a spatial filter with fixed dipole
orientation, optimized for this time window.

To estimate single-trial power estimates for the alpha-beta band, a similar procedure was used. The
cross-spectral density matrix was estimated at individual peak-frequency with 2.5 Hz smoothing,
based on the 400 ms before the ERF window. Since the induced low frequency response was a power
decrease relative to baseline, the vertex location that showed the largest decrease was selected as

the virtual channel.

Single-trial event-related responses

The event-related response to the stimulus change was modelled using a Linearly Constrained
Minimum Variance (LCMV) beamformer on the cortically-constrained meshes of dipole positions,

followed by a parcellation based on an anatomical atlas (see MRI preprocessing). Data, time locked to

11
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204  stimulus change, were selected and baseline corrected based on 100 ms prior to the change. For
205 each anatomical parcel, the source time courses of the dipoles belonging to this parcel were

206  concatenated, and subjected to a principal component analysis (PCA). The first spatial component
207  that explained most variance in the signal was used as a representation of single-trial activity for this
208 parcel. In order to account for the beamformer’s depth bias, the data were normalized by an

209  estimate of the noise using the covariance matrix of the 200 ms prior to the go cue. The resulting
210  time courses were low-pass filtered at 30 Hz using a finite impulse response (FIR) windowed sync
211  function. The data were filtered from right to left, to avoid leakage of pre-change signal into the post-
212 change estimates. Next, the amplitudes of the single-trial visual evoked responses were estimated in
213 a time window showing the most prominent peak in the trial averaged ERF, in the first 100ms after
214  stimulus change, on a subjects-by-subject basis. These windows were manually defined by visual

215 inspection of the source-level activity time courses.

216

217  Correlation of single-trial power and ERF amplitude

218  Correlations between ERF amplitude, alpha-beta power and gamma power, and response speed, and
219 between gamma power, response speed and trial length were computed at the single-subject level
220  using Spearman’s rank correlation coefficient. We also computed partial correlations between alpha-
221 beta/gamma power and response speed, each time accounting for trial length and power values in

222 the other frequency band.

223

224  Statistical analysis

225  The correlation between alpha-beta power and gamma power, response speed and trial length was
226  statistically evaluated using a parametric t-test (against 0) on the distribution of correlation

227  coefficients over subjects (alpha = 0.05).

12
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Statistical significance of the correlation between alpha-beta/gamma power and ERF amplitude, and
between ERF amplitude and reaction times was assessed using non-parametric permutation tests
(based on 10000 permutations) combined with spatial clustering for family-wise error control (Maris
and Oostenveld, 2007). Under the null hypothesis of no systematic relationship across participants
between gamma power and the ERF amplitude, we created a reference distribution of the group-
level t-statistic of the correlation against zero, using sign swapping of the correlation for random
subsets of subjects. Spatially adjacent parcels with t-values corresponding to a nominal alpha
threshold of 0.05 (0.01 for the correlation between ERF amplitude and RT) were grouped into
clusters, and cluster-level statistics were computed as the sum of t-values within a cluster. The null-
hypothesis was rejected if the maximum cluster-level statistic in the observed data was in the
positive tail of the permutation distribution of cluster-level statistics for the correlation between ERF
amplitude and gamma power, and in the negative tail for the correlation between alpha-beta power

and ERF amplitude, and between ERF amplitude and reaction times, at a level of <0.05 one-sided.

13


https://doi.org/10.1101/388587
http://creativecommons.org/licenses/by-nc-nd/4.0/

241

242

243

244

245

246

247

248

249

250

251

bioRxiv preprint doi: https://doi.org/10.1101/388587; this version posted August 13, 2018. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 100
90
80 100 80
80 o o
n g 60 g
4 “ 2 &
g e a 409
40 9 o
g g 2
o [ 20 ‘™
@ 50 20 2 2
iy X §
0 0
40
30
0 0.5 1 15
Time (s)
C 250
200 -
8150 -
()
[o)]
5
S 100 -
(0]
o
[
2
o
a

-50

30 40 50 60 70 80 20

Frequency (Hz)
D 80 o __.600 I
o 3
o
i 70 - 2 500
o 2400
& 60 - ©
o] =
o R G 300
T 50 - ]
< 2 200
[T
40 - &,

o
=1

30 -

o

Figure 2. Stimulus induces strong gamma synchronization. A) Group-average time-frequency
spectrum. Gamma (50-70 Hz) power peaks right after stimulus onset and is sustained throughout
stimulus presentation. B) Topography of the stimulus-induced gamma-band activity. Circles reflect
selected channels, shown in A. C) Individual (gray line) and group-average (black line) power spectra
on the channel level. D) Left: gamma peak frequencies. Generally, peak frequencies were in the 40-
70 Hz range. Right: power changes (right) at individual gamma peak frequencies. Power changes
were highly variable. E) Source level activity of induced gamma the group average t-value. Induced

gamma activity was strongest in occipital regions.
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Out of the 400-520 completed trials per subject, on average fifty of them were catch trials, i.e. these
trials did not require a response. Overall, the subjects performed with a mean accuracy of 94% (SD =
5.8%). Excluding catch trials and trials with artifacts or excessive eye movements, on average 339

trials per subject (SD = 61) were considered for further analysis. Of this pool, the mean performance

rate was 94% (SD = 5.5%) and the mean reaction time over subjects was 371 ms (SD = 56 ms).

Stimulus protocol leads to reliable stimulus-induced changes in gamma power and visual event-

related responses

The contracting grating stimuli used here are known to robustly induce gamma-band synchronization
(Hoogenboom et al., 2006; Swettenham et al., 2009; Van Pelt and Fries, 2013). In order to verify the
spectral characteristics of the stimulus-onset induced neuronal response, we conducted a time-
frequency analysis at the channel-level. We contrasted spectral power after stimulus onset with the
average spectrum in the baseline window. Figure 2 shows the average spectral power for all subjects
in the gamma-frequency range (30-90 Hz). As expected, it was highest in occipital channels and it
remained high throughout the whole stimulus presentation. Sources of the activity were localized to
early visual areas (see figure 2e). In order to assess the gamma power increase quantitatively we
estimated the power increase from baseline at the individual gamma peak frequency (figure 2d) and
at the occipital channel that showed maximal increase. Over subjects, gamma power increased on
average with 124% (mean, SD = 124%) during stimulation (figure 2d, right). Besides a gamma-band
increase, a decrease in power was generally observed in the alpha/low beta band (8-20 Hz). This
phenomenon presented itself mainly in occipital channels, and was also strongest in occipital source

parcels (see figure 3).

In addition to the stimulus inducing a robust gamma-band response, the stimulus change caused an
event-related field (ERF). Figure 3a shows the ERF of an example subject over trials, together with the

topography of the trial average of the P100 response in figure 3c. The signal-to-noise ratio (SNR) of
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277  the evoked response is relatively poor at the single-trial level. Also, the spatial topography was
278  variable over subjects (data not shown). In order to reduce the spatial variability over subjects and to
279 boost the SNR, all further analyses were conducted on the source level. Figure 3b shows a superior
280  SNR for single trials on the source level compared to the channel level, together with the source
281  topography in figure 3d. Despite the large variability of the response evoked by the stimulus change
282  and the percentage increase in induced gamma, all subjects did show the neuronal response that
283  was expected.
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285 Figure 3. Stimulus induces desynchronization in alpha-beta band (8-20 Hz). Similar to figure 2 but for
286 low frequencies. Power in de alpha and low beta range decreased after stimulus onset, which was
287 strongest in occipital parts of the cortex.
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289 Figure 4. Signal-to-noise ratio of evoked activity is higher at the source level than at the channel
290 | level. A-B: single-trial time courses of evoked activity for the channel/parcel depicted in C/D, for a
291 representative subject. C-D: topography of the P100 (depicted in A/B), evoked by the stimulus

292 | change.

293

294  Pre-stimulus gamma power correlates with reaction times

295 In order to evaluate the effect of pre-stimulus gamma power on behavior, we calculated the

296 correlation between reaction times and the gamma power preceding the stimulus change. Gamma
297 power was estimated on a virtual channel in source space. There was a relatively weak but highly
298  significant, negative correlation of -0.072 (SD = 0.064, t(31) =-6.3, p = 5.1*107), which is in line with

299 previous research (Womelsdorf et al., 2006; Hoogenboom et al., 2010).
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300 One potential factor that might explain the correlation between gamma power and reaction times is
301 stimulus jitter (i.e., the time between stimulus onset and the stimulus change). Stimulus jitter was
302 uniformly distributed, and by consequence the instantaneous probability of a reversal event (hazard
303 rate) increased over time. There could be a common dependence of gamma power and reaction

304 times on stimulus expectancy. In order to investigate this possibility, we computed partial

305 correlations between reaction time, gamma power and stimulus jitter, each time accounting for the
306  third variable. Since we also found a stimulus-induced power reduction in the alpha-beta band, there
307 is also a possibility that the correlation between gamma power and reaction times is actually caused
308 by a common dependence on power in this frequency band. Therefore, we also partialled out power
309 in the alpha-beta band. Reaction times correlated negatively with both gamma power (M =-0.068,
310 t(31)=-6.1, p=8.9 * 107, uncorrected) and stimulus jitter (M =-0.17, t(31) =-7.0, p = 6.9 * 108,

311 uncorrected), but there was no correlation between gamma power and stimulus jitter (t(31) = 0.85, p
312  =0.40, uncorrected). Additionally, no significant correlation was found between reaction times and
313 low frequency power when accounting for gamma power and stimulus jitter (t(31) = 1.1, p=0.27,
314  uncorrected), nor between low frequency power and gamma power (t(31) =0.03, p = 0.97,

315 uncorrected). These results indicate that the correlation between gamma power and reaction times
316  is not likely to be the result of a build-up in expectancy, nor a result of power correlations between
317  frequency bands. Further, there is no effect of low frequency power on reaction times, above and

318 beyond the effect of gamma.

319

320  Pre-stimulus gamma power predicts ERF amplitude

321  Considering the vast amount of variability in the evoked response over subjects at the channel level,
322 and the low signal-to-noise ratio of single trial event-related responses, we estimated the single trial
323 responses to the stimulus change at the source-level, before quantifying the relation between

324  gamma power and ERF amplitude. The time courses of the evoked response were projected into
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Figure 5. Occipital gamma power correlates with ERF amplitude. A) Group statistic of the correlation
between gamma power and ERF amplitude. B) boxplot (left) of correlation values and individual
correlations (right). For each subject, correlations were averaged over those parcels belonging to the

cluster that contributed to the significant effect.

source space with an LCMV beamformer and combined into parcels according to an anatomical brain
atlas (Van Essen et al., 2012). The relation between gamma power and the ERF was quantified as a
Spearman rank correlation at the single subject level and can be seen in figure 5. Group statistical
evaluation showed that the correlation differed significantly from zero (M = 0.027, p=0.01,
nonparametric permutation test, corrected). This difference was supported by a cluster of positive
correlation in source parcels in occipital and parietal areas (figure 5a), supporting the hypothesis that
increased gamma power leads to an increased amplitude of the stimulus-evoked transient.
Additionally, we correlated ERF amplitude and reaction times (figure 6b). This correlation was
significantly lower than zero (M =-0.027, p=0.037, nonparametric permutation test, corrected),
indicating that a higher amplitude of early evoked activity leads to a faster behavioral response. The
cluster that mostly contributed to this effect was found in source parcels belonging to the visual

cortex of the right hemisphere (figure 6a), conform our hypothesis. Although we did not find a
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correlation between low frequency power and reaction times, low frequency power might still affect
ERF amplitude. In order to ensure that this was not the case, we tested whether low frequency
power before the ERF was predictive of ERF amplitude. Conform the stimulus-induced alpha-beta
power decrease, if any, a negative correlation was expected with ERF amplitude. This correlation was

not significant at the group level (p = 0.66, nonparametric permutation test, corrected).
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Figure 6. ERF amplitude in occipital cortex correlates with reaction times. A) Group statistic of the
correlation between ERF amplitude and reaction times. B) boxplot (left) of correlation values and
individual correlations (right). For each subject, correlations were averaged over those parcels

belonging to the cluster that contributed to the significant effect.
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Discussion

In this experiment, we investigated the neuronal consequences of trial-by-trial variability in induced
gamma-band activity, using a visual stimulus change detection paradigm. We hypothesized that
higher gamma power before a go cue would facilitate the efficiency of the processing of the response
cue, leading to a more strongly synchronized response in early visual areas, as reflected by higher
early latency ERF amplitudes. In turn, the increased processing efficiency would lead to a faster

behavioral response.

We computed single trial estimates of gamma power in visual areas, in the time window just prior to
the stimulus change, and replicated the finding that higher gamma amplitude leads to faster reaction
times in response to the go cue (Hoogenboom et al., 2010). Moreover, we correlated the single-trial
gamma power with the amplitude of early latency source-reconstructed event-related activity, and
observed a significant group-level effect, where the early latency event-related response in parieto-
occipital areas correlated positively with pre-stimulus gamma power. In turn, the amplitude of event-
related response in visual areas correlated negatively with reaction times. These findings are
consistent with the hypothesis that strong local gamma-band synchronization facilitates the neuronal

response to a change in the stimulus, which eventually leads to improved behavioral performance.

Here, the effect of oscillatory activity on the subsequent neuronal response was specific to the
gamma band. We also analyzed the effect of alpha/beta activity on the event-related response, since
activity in these frequency bands was also prominently modulated by the onset of the visual
stimulus. In contrast to the gamma band, we did not observe a significant association between trial-
by-trial power fluctuations in these lower frequencies, and trial-by-trial fluctuations in the event-

related response, and response speed.

Although Hoogenboom et al. (2010) did not specifically investigate the relation between gamma-
band activity and the ERF, the authors did quantify the relation between ERF amplitude and reaction

times, and found no significant effect. This latter null-finding is in contrast with our analysis of the
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current data. Most likely this discrepancy is due to the fact that the aforementioned study used a
temporally ill-defined stimulus change (change in drift speed). This did not elicit prominent evoked
activity and thus prohibited the reliable estimation of evoked activity. In contrast, we used a pattern
reversal as stimulus change, precisely because this is known to elicit prominent evoked activity
(Nakamura et al., 1997; Di Russo et al., 2005; Barnikol et al., 2006; Perfetti et al., 2007). Because of
this, we were able to reliably estimate the amplitude of early visual components on single trials and
demonstrate a positive correlation between gamma power and ERF amplitude, and a negative

correlation between ERF amplitude and reaction times, in support of our hypothesis.

One possible concern that might confound a mechanistic interpretation of the relation between
gamma-band activity, response speed, and the event-related transients could be a latent variable
that correlates with these measures, causing spurious, indirect correlations. Specifically, the time
interval between a warning cue and an upcoming stimulus is well known to be a determinant of
response speed (Schoffelen et al., 2005; Beck et al., 2014), and temporally better predictable stimuli
are associated with higher amplitudes in early components of evoked activity (Doherty, 2005; Lange
et al., 2006; Dassanayake et al., 2016). Additionally, the hazard rate has been shown to correlate with
spectral characteristics in alpha/beta and gamma band, (Schoffelen et al., 2005; Rolke and Hofmann,
2007; Tsunoda and Kakei, 2008; Rohenkohl and Nobre, 2011) and low frequency spectral responses
have been shown to be anti-correlated with high frequency responses (Hoogenboom et al., 2006;
Womelsdorf et al., 2006; Scheeringa et al., 2011; Spaak et al., 2012) Therefore, variability in the low
frequency response, and/or stimulus expectancy might be a common determinant for gamma power,
and response speed. We checked for these possibilities by estimating the partial correlation between
gamma power and reaction time, controlling for differences in stimulus expectancy and power in low
frequencies. The partial correlations were still significant, and specifically there was no additional
effect of low frequency power on reaction times. This further corroborates the absence of a trial-by-

trial effect of low frequency alpha/beta activity on the ERF amplitude. These results highlight the
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relevance and uniqueness of gamma power in behavior, and are in support of a model in which

gamma-band activity modulates neuronal processing in order to affect behavior.

Even though to our knowledge there is no further literature supporting a correlation between
reaction times and the amplitude of early visual evoked components, correlations have been found
with their peak latency (Kammer et al., 1999; Gerson et al., 2005). In contrast to the current
experiment, where the stimulus was constant in every trial and we made use of the natural
variations in the physiological and behavioral response, these studies manipulated either luminance
or natural scenes in order to do so. Disregarding the source of variation in the physiological and the
behavioral response, it is conceivable that pre-stimulus change gamma-band activity might also
affect the latency of the evoked response in addition to its amplitude, and the combination of both
ultimately affects behavior. This is beyond the scope of the current study, but would be an

interesting topic in future research.

Our main effect is in contrast to Privman et al. (2011). The authors used a repetition suppression
paradigm, and found a reduction in ERP power in higher order visual areas as a function of gamma
power in response to the second stimulus. The authors hypothesized that the gamma-band activity
caused by the first stimulus might be sustained after its offset and disrupts synchronization of the
neural population, selective for the second incoming stimulus. Thus, their findings might be specific
to the simulation protocol used, which is further supported by the finding that the repetition
suppression effect is largest when the stimuli are more similar, leading to larger overlapping

neuronal representations (Grill-Spector et al., 2006).

In this study, we used non-invasive MEG recordings in human participants. In contrast to invasive
recordings, MEG lacks the high spatial resolution and high signal-to-noise ratio to allow for a detailed
functional and spatial interpretation of our findings. In contrast to the present findings, recent work
using invasive data from macaques and cats (Ni et al., 2016), showed that the gain of the multiunit

response in primary visual cortex is dependent on the gamma phase of the local field potential.
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However, the authors did not investigate the functional relevance of gamma amplitude, nor did we
study gamma phase. Still, their results and our results are not contradictive: the amount of
synchronization on the one hand, reflected by gamma power, and high excitability phases on the

other hand, might both contribute to enhanced neuronal gain.

In addition to the relatively limited spatial resolution, the high spatiotemporal variability in the
response across subjects did not allow for a consistent assignment of even the early ERF components
to a specific subregion in the visual system. The amplitude of the ERF was estimated as the most
prominent peak within the first 100 ms after the go cue, which in terms of latency is well beyond the
first geniculate input into primary visual cortex and might even reflect extrastriate activity, and thus
likely reflects a more widespread activation of several cortical areas. Despite this limitation, our
findings indicate that gamma-band activity increases the neuronal gain to new visual input. In
addition, the fact that this effect can be shown at the spatial scale at which MEG operates, provides
further justification to use gamma-band responses as a physiologically and mechanistically inspired

dependent variable in non-invasive human cognitive neuroscience experiments.
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