

1 **Forecasting bacterial survival-success and adaptive evolution through multi-omics stress-
2 response mapping, network analyses and machine learning**

6 Zeyu Zhu^{1†}, Defne Surujon^{1†}, Aidan Pavao¹, José Bento², and Tim van Opijken^{1*}

9 ¹ Biology Department, Boston College, Chestnut Hill, MA, USA

10 ² Computer Science Department, Boston College, Chestnut Hill, MA, USA

16 [†] Equal contribution

17 ^{*} Corresponding author

23 Keywords:

24 Tn-Seq

25 RNA-Seq

26 machine learning

27 experimental evolution

28 network analysis

29 **ABSTRACT**

30 Whether a bacterial pathogen establishes an infection and/or evolves antibiotic resistance
31 depends on successful survival while experiencing stress from for instance the host immune
32 system and/or antibiotics. Predictions on bacterial survival and adaptive outcomes could thus
33 have great prognostic value. However, it is unknown what information is required to enable such
34 predictions. By developing a novel network-based analysis method, a bacterium's phenotypic and
35 transcriptional response can be objectively quantified in temporal 3D-feature space. The
36 resulting trajectories can be interpreted as a degree of coordination, where a focused and
37 coordinated response predicts bacterial survival-success, and a random uncoordinated response
38 predicts survival-failure. These predictions extend to both antibiotic resistance and *in vivo*
39 infection conditions and are applicable to both Gram-positive and Gram-negative bacteria.
40 Moreover, through experimental evolution we show that the degree of coordination is an
41 adaptive outcome - an uncoordinated response evolves into a coordinated response when a
42 bacterium adapts to its environment. Most surprisingly, it turns out that phenotypic and
43 transcriptional response data, network features and genome plasticity data can be used to train a
44 machine learning model that is able to predict which genes in the genome will adapt under
45 nutrient or antibiotic selection. Importantly, this suggests that deterministic factors help drive
46 adaptation and that evolution is, at least partially, predictable. This work demonstrates that with
47 the right information predictions on bacterial short-term survival and long-term adaptive
48 outcomes are feasible, which underscores that personalized infectious disease diagnostics and
49 treatments are possible, and should be developed.

50 **INTRODUCTION**

51 The ability to predict whether a bacterial pathogen is successfully establishing an infection, will
52 adapt to the stress it encounters in the host and/or progress to cause disease could have great
53 diagnostic value. However, it is unknown whether such predictions are entirely possible and
54 what information they would require. As a consequence, most diagnostics today come from a
55 physician's deductive reasoning, which can lead to sub-optimal antibiotic treatments and may
56 contribute to the emergence and spread of antibiotic resistance [1, 2]. Alternatively, in cancer
57 diagnostics transcriptional changes in specific genes of cancerous tissue, in addition to changes
58 in the host response, are used to provide prognostic information beyond standard clinical
59 assessment [3-6]. Moreover, integration of systems-level data, machine learning, and various
60 network/graph-based approaches have been employed to classify cancer subtypes and identify
61 subtype-specific drug targets, enhancing the diagnostic power of current approaches and leading
62 to more effective treatment options [7, 8]. With analogy to cancer diagnostics, a systems-wide
63 understanding of the state of a bacterial infection and how the infection may possibly progress
64 under pressure of the host-immune system and/or other stresses, could similarly aid in providing
65 targeted and personalized infectious-disease treatments.

66

67 Our previous work has indicated that advanced infectious-disease prognostics may be possible
68 by combining bacterial stress-response monitoring with network analyses [9]. A commonly
69 applied approach for characterizing bacterial stress responses is through RNA-Seq, which
70 measures genome-wide transcriptional changes upon an environmental perturbation. With the
71 advent of transposon-insertion sequencing (Tn-Seq), it has now also become relatively easy to
72 determine, on a genome-wide scale, the phenotypic importance of a gene, i.e. a gene's
73 contribution to fitness in a specific environment [10, 11]. Importantly, direct comparisons
74 between data from these different omics-approaches has shown, contrary to expectations, that
75 genes that change in transcription are poor indicators of what matters phenotypically. In other
76 words, phenotypically important and transcriptionally important genes (PIGs and TIGs) rarely
77 overlap [9, 12-18]. However, when integrated into a network, highly coordinated patterns
78 between PIGs and TIGs surface when the organism is challenged with an evolutionarily familiar
79 stress (i.e. one that has been experienced for many generations, e.g. nutrient depletion), while the
80 response becomes less coordinated when the bacterium is challenged with and responds to a

81 relatively new stress (e.g. antibiotics) [9]. This means that the degree of network coordination
82 between PIGs and TIGs originates from the bacterium's 'adaptive past' and should thus be
83 indicative of the degree to which the bacterium is adapted to a specific stress and will survive the
84 challenge (short-term survival outcome). Moreover, since evolution is a continuing process,
85 survival outcome - influenced by past adaptation - is ultimately related to future adaptive
86 outcomes; i.e. network coordination is indicative of where and how stress is experienced in the
87 genome, while selection drives adaptive evolution to resolve this stress. Thus, it may be possible
88 to predict where in the network innovation (adaptation) is most likely to occur to optimize
89 network coordination and increase survival success (long-term adaptive outcome).

90

91 Here we develop a novel integrated approach that combines genome-wide profiling, network
92 analyses and machine learning, which enables predictions on bacterial short-term survival and
93 long-term adaptive outcomes. As our model system, we use the respiratory pathogen
94 *Streptococcus pneumoniae*, which on a yearly basis causes ~1 million fatalities worldwide [19]
95 and ~4 million disease episodes in the US alone, among which ~40% are caused by strains that
96 are resistant to at least one antibiotic [20]. To develop this predictive strategy, we first establish
97 the transcriptionally and phenotypically important genes using temporal RNA-Seq and Tn-Seq
98 respectively in different *S. pneumoniae* strains that have different survival outcomes under
99 nutrient stress conditions and in the presence of antibiotics. By overlaying data onto newly
100 developed strain-specific networks and applying network analyses, we find that distinct network
101 patterns emerge that can be depicted as temporal trajectories that move through a specially
102 constructed feature space. Importantly, these patterns are predictive of whether or not a
103 bacterium is successfully surviving in its environment. Moreover, we apply the approach to *in*
104 *vitro* and *in vivo* data from *Pseudomonas aeruginosa*, highlighting its generalizability and the
105 possibility to predict bacterial survival-success in the host. Lastly, the development of a support
106 vector machine (SVM) leads to the ability to predict which genes acquire adaptive mutations
107 while adapting to nutrient stress or while evolving antibiotic resistance. This study shows that
108 infectious-disease prognostics is feasible through the implementation of different omics-
109 approaches, network analyses and machine learning, enabling the prediction of whether a
110 bacterium will survive or not under a given stress and where in the genome it is most likely to
111 adapt.

112 **RESULTS AND DISCUSSION**

113 **Strain specific metabolic networks are insufficient in defining nutrient dependency or**
114 **predicting survival outcomes in three strains of *S. pneumoniae*.**

115 *Streptococcus pneumoniae* on average contains 2100 genes and harbors considerable genetic
116 diversity, with two strains differing on average by 250 genes (presence and absence), and a pan-
117 genome (collection of all genes across all strains) that is approximately double the size of the
118 genome of any given strain. *S. pneumoniae* designates ~30% of its genome to metabolic
119 functions, which enables growth on different carbon sources and in the presence and absence of
120 different substrates (e.g. amino acids, lipids). This ‘strategy’ all but guarantees the bacterium’s
121 survival in a variety of host-niches, including the nasopharynx, inner-ear and lungs. Since
122 different host niches have different nutrient availability [21], nutrient depletion is evolutionarily
123 an important stress to the obligate non-motile human pathogen *S. pneumoniae* and has shaped its
124 genetic composition. We thus reasoned that strain-specific nutrient dependencies must exist and
125 that such dependencies can be used as a testing-ground to predict whether a strain will survive in
126 a specific environment and what information is needed to make such predictions.

127

128 Three strains (TIGR4 [T4], Taiwan-19F [19F] and D39) that differ in ~7% of their genetic
129 content (presence or absence of genes; [9]), were assayed to identify essential nutrients for
130 growth. Single nutrients were sequentially removed from a chemically defined medium (CDM)
131 and the effect on the growth rate was calculated. A nutrient is defined as essential if its removal
132 causes a >70% reduction in the bacterium’s growth rate, and important if the reduction is
133 between 50-70% (Supplementary Figure 1, detailed explanation of definitions in this study can
134 be found in Supplementary Information). In total, four amino acids are essential to all three
135 strains: (L-Arginine, L-Cysteine, L-Histidine, and L-Leucine; Supplementary Figure 1A), while
136 6 nutrients have strain-specific requirements: 1) three amino acids (Glycine, L-Isoleucine and L-
137 Valine) and the nucleobase uracil are essential to D39; 2) Pantothenate is important to T4; 3) L-
138 Glutamine is important for T4 and D39 (Supplementary Figure 1A). At least two possible
139 explanations for this strain-specific nutrient dependency are that a strain either lacks certain
140 genes that are required to synthesize the nutrient or the respective metabolic network is
141 differentially wired. For instance, a metabolic gene might encode isoforms of an enzyme that
142 catalyze different reactions in different strains [22]. To determine the origin of the strain-specific

143 nutrient dependency we expanded the *S. pneumoniae* metabolic model we previously built for T4
144 [9] with two additional strain-specific models for D39 and 19F (Supplementary Figure 2;
145 Supplementary File 2). The three models are highly conserved, sharing 96% of all metabolic
146 genes across all strains (i.e. 431 metabolic genes/868 metabolic reactions), however, neither the
147 presence of strain-specific metabolism genes nor differences in the metabolic network topology
148 can sufficiently explain the observed strain-specific nutrient requirements.

149

150 **Genome-wide profiling reveals distinct transcriptional patterns between a nutrient
151 dependent strain and an independent strain.**

152 Genomic content and network architecture are thus not enough to consistently predict bacterial
153 survival and growth in a certain environment. We previously demonstrated that the degree of
154 network coordination between phenotypic and transcriptional responses distinguishes
155 evolutionarily familiar stresses from relatively novel ones [9]. Such network patterns could thus
156 be key to predicting whether a bacterium is successfully surviving in a specific environment.

157

158 To uncover genes that are phenotypically important (PIGs), we performed Tn-Seq on T4 in the
159 absence of either uracil, L-Valine or Glycine (i.e. nutrients essential for D39 but not T4). Tn-Seq
160 measures, in a highly quantitative fashion and on a genome-wide scale, which genes and
161 pathways are important for growth in a specific environment [11, 23]. By comparing fitness in
162 the presence and absence of a nutrient, genes that are important for T4's survival in the absence
163 of the nutrient are identified, which leads to a total of 134 PIGs that contribute to growth of T4
164 (15 genes for Glycine, 75 genes for uracil, 44 genes for L-Valine). All of these genes have
165 homologs in D39 and thus do not directly explain the different dependencies between T4 and
166 D39. Subsequently, we profiled the manner in which T4 and D39 transcriptionally respond to the
167 absence of the D39-specific essential nutrients. Genome-wide transcriptional responses were
168 determined by temporal RNA-Seq for T4 (the nutrient-independent strain) and D39 (the nutrient-
169 dependent strain) at 30 and 90 min after nutrient depletion (Supplementary Table 1).

170

171 Three distinct transcriptional patterns emerge that differentiate a nutrient-dependent from an
172 independent strain: 1) A dependent strain tends to trigger a greater number of expression changes
173 under nutrient depletion (Supplementary Table 2). For instance, in the absence of L-Valine or

174 Glycine, D39 triggers significantly more TIGs than T4 at both the early and the late time points
175 (two proportion Z-test, $p < 0.01$) (Supplementary Table 2). Additionally, in the absence of uracil,
176 D39 and T4 trigger similar numbers of TIGs at 30min, however at 90min, the number of TIGs in
177 T4 decrease (from 22 to 13), while in D39 the number of differentially expressed genes increases
178 to 857 (nearly 40% of the genome); 2) In each single nutrient-depletion condition, magnitude
179 distributions of differential expression are significantly wider in D39 than in T4 (Figure 2A,
180 Kolmogorov-Smirnov test, $p < 0.01$, Supplementary Table 2), indicating that the extent of
181 genome-wide transcriptional change is much larger in the dependent strain; 3) A functional
182 distribution analysis of TIGs shows that at 30 and 90 min after the depletion of Glycine or L-
183 Valine, and at 90 min after the depletion of uracil more TIGs per functional tag are differentially
184 regulated in the dependent strain (Figure 2B; Supplementary File 3). Furthermore, the TIGs are
185 distributed across more functional categories indicating that nutrient depletion has a greater
186 impact on most cellular systems of the dependent strain (Figure 2C; Supplementary File 3). If we
187 directly compare the TIGs of the independent with the dependent strain, it turns out that the T4-
188 TIGs (both early and late) are also TIGs in D39. This suggests that the dependent strain can raise
189 a similar ‘appropriate response’ as the independent strain to the endured stress. To obtain slightly
190 higher temporal resolution we additionally profiled 60 min after uracil depletion, which triggers
191 20 TIGs in D39, the majority of which are involved in uracil uptake (uracil permease SP_1286)
192 and the metabolic pathway that generates the pyrimidine precursor uridine monophosphate
193 (UMP) (SP_0701-0702, SP_0963-0964, SP_1275-1278, SP_1288; Supplementary File 3). These
194 exact uracil-related genes are also up-regulated in T4 and form the majority of T4’s response to
195 uracil depletion at both early and late time points (Supplementary File 3, Figure 2D).
196 Importantly, this further shows that D39 is actually able to generate an appropriate
197 transcriptional response, but only over a limited amount of time. Instead, somewhere between 60
198 and 90 minutes D39’s response is washed out by a rapidly expanding genome-wide
199 dysregulation (Figure 2E-F).

200

201 **Network analyses of the transcriptional and phenotypic responses can be visualized in a
202 temporal feature space and define survival as a coordinated response.**

203 To enable detailed network analyses and determine the degree of network coordination, the
204 strain-specific metabolic network models were converted into genetic networks where each gene

205 is represented as a node, and two gene nodes are connected if the proteins encoded by these
206 genes are involved in the same or in subsequent reactions. Overlaying TIGs and PIGs on the
207 network shows very little overlap and when genome-wide fitness is plotted against expression
208 change most genes distribute along the horizontal and vertical axes (Supplementary Figure 3).
209 This means that genes that change in expression rarely change in fitness, indicating that
210 transcriptional importance is a poor indicator of what matters phenotypically (Supplementary
211 Table 2, Supplementary Figure 3), which is consistent with our previous observations [9]. When
212 the independent and dependent strains' responses are plotted on a network, visual inspection
213 suggests that the independent response remains contained to a specific part of the network over
214 time (Figure 3A), while the dependent strain's response becomes increasingly scattered across
215 the entirety of the network (Figure 3B). In order to objectively quantify these responses we
216 devised three types of measurements that capture the defining network characteristics of a
217 response:

218 1) Connectedness (CC): the number of connected components is calculated by removing all
219 nodes from the network that are neither PIGs nor TIGs. This leaves a collection of sub-networks
220 (or components) that are separated and unreachable from one another. In a network sense, this
221 means that information may flow within a component but not between components due to
222 missing connections. The number of components thus explains the cohesiveness and continuity
223 of the response. For instance, in the absence of uracil in T4 we observe one large component
224 which corresponds to the UMP biosynthesis pathway, and several small (single-node)
225 components (Figure 3C). In contrast, the dependent D39-uracil at 90 min response is defined by
226 a large number of small components consisting of 1 or 2 genes (Figure 3D), however a large
227 dominating component consisting of 121 TIGs and PIGs is also observed (Figure 3D). This large
228 component potentially results from the presence of few highly connected "hub" genes. It is thus
229 important to evaluate whether the number of connected components formed in an observed
230 response are significantly different from a random response, which is achieved by permutation
231 testing (see Methods).

232 2) Closeness (CN): while a small number of components may indicate that a response is
233 contained to a few network modules, it is equally important to take into account the relative
234 position, or closeness, of the components, where highly related (sub)pathways are generally
235 closer to each other than unrelated pathways. This measure thus explains whether components

236 are functionally related and a response is targeted. For instance, out of the 13 components in the
237 T4 uracil depletion response 12 are only 2-3 edges away from their nearest component (Figure
238 3E), which is significantly smaller than the distances between randomized responses (obtained
239 through permutation testing). This indicates that the response, while not fully connected, is
240 contained and targeted in a relatively small area of the full metabolic network. In contrast, the
241 distances between the components of the D39-uracil response are not significantly smaller than a
242 random response (Figure 3F).

243 3) Representation (RE): while our network is limited to metabolism, the observed TIGs and PIGs
244 are genome-wide (Figure 2). For instance, D39's response to Glycine depletion is significantly
245 connected, however the metabolic portion of the response comprises only ~20% of the full
246 response. Importantly, since only the part of the response that falls on the network is considered,
247 the majority of the response in this case is thus ignored. This heavily skewed off-network
248 response is problematic because while the 20% on-network may give an indication of being
249 connected and/or close, in reality the true response could be random. This is illustrated with
250 respect to the earlier observation that even though the dependent strain may trigger an
251 appropriate transcriptional response that suggests survival-success, when the entire response is
252 considered it becomes clear that the transcriptional dysregulation is scattered across many other
253 non-metabolic pathways, processes and genes that are overwhelming the “appropriate response”
254 (Figure 2). To account for this, the RE is calculated, which defines a response as “metabolically
255 represented” if a significant proportion of the responsive genes fall on the metabolic network
256 (see Methods).

257 Lastly, to incorporate the manner in which the response changes over-time the log-transformed
258 p-values for CC, CN and RE calculated from each time point are plotted in a feature space,
259 where each of the three characteristics are placed along separate axes (Figure 3G; Supplementary
260 Figure 4). In this scheme, the region around the origin (grey box, Figure 3G) represents a
261 response that is non-significant in terms of CC, CN, and RE.

262
263 For all three depletion conditions (L-Valine, Glycine and uracil), the response of the nutrient-
264 independent strain (T4) tends to move away from the origin over time, and the responses are
265 characterized by significant CC, CN and/or RE (Figure 3H-J). In contrast, the nutrient-dependent
266 D39's responses are mostly confined to the non-significant regions near the origin (Figure 3H-J).

267 This is especially well illustrated by the uracil depletion experiment, where T4 and D39 strains
268 are situated at a very similar location at 30 min (Figure 3J). However, while the independent
269 strain T4 moves towards a higher CC, CN and RE, D39 moves in the opposite direction and into
270 the non-significant space. Thus, coordination between the transcriptional and phenotypic
271 response is maintained and strengthened over time in strains that can tolerate and survive in a
272 particular environment but weakened in strains that cannot (Figure 3H-J). Importantly, this
273 trajectory reinforces quantitatively what was suggested by the transcriptional response where
274 both strains start out in a very similar manner, and while the T4 response remains targeted, the
275 D39 response ends in uncoordinated dysregulation (Figure 2-uracil depletion). The temporal
276 trajectory formed by three network parameters (CC, CN, RE) thus characterizes the stress-
277 response of a strain as coordinated or uncoordinated, corresponding to survival success or
278 failure.

279

280 **Experimental evolution of a sensitive strain reverts nutrient dependencies and rewrites
281 stress responses into a coordinated response.**

282 In order to test whether a dependent strain that becomes adapted to the absence of a nutrient (i.e.
283 it becomes independent) acquires network coordination, two short-term evolution experiments
284 were designed in which D39 was adapted to grow in the absence of uracil or L-Valine separately.
285 Four replicate populations were established for each experiment and cultured by serial passaging
286 in CDM in which either nutrient was decreased by approximately 15% every 3 days until
287 populations were obtained that are able to robustly grow in the absence of either nutrient (~40
288 generations each; Supplementary Figure 1C; Figure 4A).

289

290 To determine the adapted strains' transcriptional response, temporal RNA-Seq was performed on
291 a uracil-adapted (aD39-uracil) and a L-Valine-adapted strain (aD39-val) in the presence and
292 absence of the respective nutrient. Similar to the original independent strain T4, the two adapted
293 D39 strains now exhibit only a small number of differentially expressed genes (Supplementary
294 Table 2; Supplementary File 3), the magnitude of differential expression has a narrow
295 distribution, and TIGs in the adapted strains show specific function distributions similar to the
296 'original' independent strain T4 (Figure 4C and Figure 2B). On a network level, coordination
297 profiles and trajectories arise that are highly similar to T4 (Figure 4D and E). For instance, the

298 trajectory of aD39-val tracks along a higher RE and CC, resembling T4 (Figure 4D), and the
299 trajectory of aD39-uracil moves in the opposite direction of D39 with higher CC, CN and RE
300 and is almost indistinguishable from T4 (Figure 4E). Our analyses thus show that adaptation to
301 nutrient depletion stress leads to transcriptional rewiring and that adapted strains gain highly
302 targeted and coordinated responses, predictive of their ability to survive in an environment.

303

304 **Rewiring of genome-wide transcriptional and phenotypic responses to achieve coordination**
305 **extends to the evolution of antibiotic resistance.**

306 To test if network trajectories can also predict survival outcomes in a more complex
307 environment, we extended our approach to the evolution of antibiotic-resistance by challenging
308 T4 with vancomycin. Vancomycin is often used in treating infections caused by beta lactam-
309 resistant *S. pneumoniae* especially during sepsis and meningitis [24, 25]. The MIC of T4 is
310 0.24ug/mL (Supplementary Figure 1C) and in order to obtain a vancomycin-adapted strain a
311 short-term evolution experiment was performed. Four replicate populations were adapted to
312 vancomycin for ~70 generations (Supplementary Figure 1C), and an adapted strain (aT4-vanc)
313 was isolated, which can grow at 1xMIC with a relative fitness of $W_{aT4-vanc} = 0.88$ compared to the
314 no drug control (Figure 5A; i.e. a 12% relative growth defect). Fluorescence microscopy on T4
315 (wild-type) and aT4-vanc reveal significantly longer cell chains for T4 in the absence of
316 vancomycin ($p<0.0001$ in t-test; Figure 5B and C). After one-hour exposure to vancomycin
317 (1xMIC), the wildtype loses the long chain morphology and often exhibits a bulging phenotype
318 (Figure 5B), which is in agreement with previous reports [26], while aT4-vanc cells under
319 vancomycin treatment are indistinguishable from untreated cells (Two-sample t-test, $p=0.6001$)
320 confirming their adapted state.

321

322 The transcriptional response of T4 and aT4-vanc was determined with RNA-Seq at six time
323 points post-vancomycin treatment (10, 20, 30, 45, 60, and 90 min at 1xMIC). Overall, the
324 distinct patterns that are observed under nutrient-depletion are observed in the presence of
325 vancomycin as well: 1) aT4-vanc triggers fewer differential expression than T4 (Supplementary
326 Table 2); 2) aT4-vanc has significantly narrower magnitude distributions of differential
327 expression (Figure 5D, Supplementary Table 2; Kolmogorov-Smirnov test, $p<0.02$); 3) aT4-vanc

328 triggers significantly fewer TIGs in most functional tags (Figure 5E and Supplementary Table 2;
329 p<0.002 with Bonferroni correction for multiple testing).

330

331 To generate the phenotypic response and enable network analyses Tn-Seq was performed in the
332 presence of vancomycin, which, as expected, reveals little overlap between PIGs and TIGs
333 (Supplementary Table 2). The CC, CN and RE trajectories for T4 and aT4-vanc at 1xMIC start at
334 very similar coordinates in the feature space with high RE (Figure 6A). However, T4 rapidly
335 transitions to a less-represented space, displaying an erratic trajectory that ends in a non-
336 significant and uncoordinated response, indicative of survival-failure. On the other hand, aT4-
337 vanc moves away from the origin, to a state where it is significantly connected, close and
338 represented over the first 30 minutes. Between 30 and 90 minutes, aT4-vanc then follows an arc
339 where it gradually becomes less represented, close or connected, and eventually ends just below
340 the significance threshold for all three characteristics (Figure 6A). Thus, while aT4-vanc can
341 maintain a highly coordinated response for at least 60 minutes, this coordination is still partially
342 lost at the 90-minute time point, most likely because aT4-vanc is not fully adapted to
343 vancomycin, displaying a detectable growth defect in the presence of 1xMIC compared to the no
344 drug control (Figure 5A). We reasoned that at a higher vancomycin concentration, aT4-vanc
345 would start to behave more similarly to the sensitive T4 at 1xMIC. When challenged with
346 1.4xMIC of vancomycin, aT4-vanc initially shows a similar trajectory to 1xMIC (Figure 6A) but
347 traverses the same arc faster, i.e. at 1xMIC aT4-vanc traverses an arc over 60 minutes whereas at
348 1.4xMIC the traversal of the same arc is completed in 30-45 minutes. Finally, at 1.4xMIC,
349 between 45 and 90 minutes, the trajectory stays near the non-significant space. Thus, aT4-vanc at
350 1.4xMIC displays similarities to both the wild-type and aT4-vanc at 1xMIC where it has a
351 coordinated response at earlier time points but loses its coordination relatively fast (over fewer
352 number of line segments) and behaves erratically (similar to T4) at the later time points. This
353 means that, similar to nutrient-depletion, the direction of the trajectory but also the shape and the
354 speed at which it moves along a trajectory has predictive value concerning short-term survival
355 success under antibiotic exposure.

356

357 **Network coordination is predictive of survival outcome in other bacterial pathogens.**

358 In order to determine whether our findings are applicable to other bacterial species, network
359 analyses were extended to the evolutionarily distant opportunistic pathogen *Pseudomonas*
360 *aeruginosa* [27]. Tn-Seq and RNA-Seq data collected for strain PAO1 tested against 14
361 antimicrobials [28] and for strain PA14 tested in 2 *in vivo* wound infections (chronic and acute)
362 [17] were overlaid onto their respective strain-specific metabolic models [29]. In none of the 14
363 antimicrobial conditions PA14 elicits a coordinated response, i.e. CC, CN and RE of the PIGs
364 and TIGs are never significant (Figure 6B). On the other hand, during an infection, the
365 transcriptional and phenotypic responses of PAO1 are significant in RE on the metabolic
366 network, and in the case of an acute infection the response is also significant in CN (Figure 6B).
367 The higher coordination in the acute infection suggests that the pathogen is more likely to
368 survive in this condition. Indeed, acute burn infections tend to spread and deteriorate rapidly
369 [30], indicating a more successful outcome (at least with respect to short-term bacterial survival)
370 for the pathogen *P. aeruginosa*, and thus suggesting that network analyses can be applied to infer
371 disease progression, although more time-points would most likely be more informative.
372

373 **Integration of machine learning, genome-wide profiles, and network characteristics enables
374 prediction of adaptive evolution.**

375 Network analyses thus reveal where on the genetic network stress is experienced, while the level
376 of coordination is indicative of how stress is processed. Importantly, adaptive mutations are
377 generally localized in genetic regions that resolve (part of) the experienced stress. It may thus be
378 possible, that with the right information (e.g. where is stress experienced in the genome, how
379 evolvable is that part of the genome, how is it connected in a network context), we can predict
380 which parts of the genome are most likely to contribute to adaptive evolution. Since there are no
381 obvious patterns in our data (e.g. TIGs, PIGs, network connectivity) that are predictive of
382 adaptation we test this hypothesis by training a support vector machine (SVM) - one of the most
383 established supervised classifiers in machine learning [31], with the goal to develop a model that
384 is able to predict which genes will acquire adaptive mutations.
385

386 Adaptive mutations are defined as non-synonymous mutations in coding regions that went to
387 fixation or reached a frequency > 50% during experimental evolution in the absence of uracil and
388 L-Valine and in the presence of vancomycin, determined through whole-genome sequencing on

389 the adapted populations. In total, four mutations (in three genes) were identified in uracil-adapted
390 populations, three mutations (in two genes) in L-Valine-adapted populations, and seven
391 mutations (in five genes) in vancomycin-adapted populations (indicated by radial lines in
392 lavender in Figure 7A-C). The mutations' high frequency and condition-specificity are indicative
393 of their adaptive nature. Furthermore, in the nutrient (uracil and L-Valine) adapted populations
394 the mutated genes are involved in the metabolic pathways of the depleted nutrient
395 (Supplementary Table 3). Additionally, in the vancomycin adapted populations, mutated genes
396 are involved in capsule metabolism (SP_0350/cps4E), cell division/cell-wall synthesis
397 (SP_1067/ftsW), stringent response (SP_1645/relA), membrane transport (SP_1796), and
398 carbohydrate metabolism (SP_2107/malM). Although few cases of vancomycin
399 resistance/tolerance have been reported in *S. pneumoniae*, the capsule influences sensitivity to
400 this antibiotic [24, 32, 33], while reduced sensitivity to vancomycin has been reported in *relA*
401 mutants of other Gram-Positive cocci, including *Enterococcus faecalis* [34], vancomycin-
402 resistant *E. faecium* [35], *Staphylococcus aureus* [36], and cell wall modifications (e.g.
403 thickening) are common features for vancomycin resistance [37, 38].

404

405 Genotypes of the mutated genes were compared to their homologous genes in 371 *S. pneumoniae*
406 strains that cover the variation present in the pan-genome [39]. Interestingly, the adaptive
407 mutations that arose in the nutrient experiments always resulted in the acquisition of the nutrient-
408 insensitive T4 genotype at these loci (Supplementary Table 3), which is also the shared genotype
409 among the majority of the pan-genome strains, indicative of most strains being tolerant to
410 nutrient deprivation of uracil and L-Valine. In contrast, adaptation to vancomycin results in the
411 acquisition of novel genotypes; i.e. none of the 371 strains carry any of the aT4-vanc mutations,
412 indicative of the fact that very few vancomycin-resistant/tolerant clinical strains have been
413 reported for *S. pneumoniae*. Despite this difference between nutrient and antibiotic adaptive
414 patterns, there are common features to all mutations from all three conditions. For instance, they
415 appear in highly conserved genes, i.e. core genes with high sequence similarity. Next, adaptation
416 data was overlaid with genome-wide profiles and sequence conservation data (Figure 7A-C) in
417 order to visually inspect whether adapted genes overlap with drastic phenotypic changes,
418 transcriptional changes and/or sequence conservation. For example, *carA* (SP_1275) is an
419 adapted gene in the uracil adaptation experiment and it also has both transcriptional and

420 phenotypic importance. While this is a suggestive pattern, at a genome-wide level it is hard to
421 detect such consistent patterns across all three experiments that could be indicative of other
422 likely candidates for adaptive evolution (Figure 7A-C).

423

424 To generate a classifier that is able to separate adapted genes (AGs) from non-adapted genes by
425 uncovering hidden patterns in our data, an SVM was built on the Tn-Seq and RNA-Seq profiles,
426 the network characteristics as well as the species-wide sequence conservation data. Importantly,
427 the latter datatype is included because sequence conservation is indicative of genomic plasticity,
428 i.e. it gives insight into the genomic regions that change the most/least and thereby potentially
429 influences the adaptability of each gene. Subsequently, the SVM was trained on the aggregation
430 of all adaptation experiments (uracil, L-Valine and vancomycin), with oversampling of the AGs
431 (see Methods). A total of 1409 data points and 18 features were used, with 10-fold cross-
432 validation and no parameter tuning. In total, 5 out of 6 adapted genes that are on our network are
433 successfully identified as adapted with 3 false positives and 1 false negative (Supplementary
434 Table 3). In cases where one class dominates the dataset (e.g. here we have >99% non-AGs) a
435 high accuracy can even be achieved by a naïve classifier that only selects the more numerous
436 class. Therefore, the observed accuracy of the classifier (99.69%) is compared to a naïve
437 classifier, which performs significantly worse (98.91%, Cohen's kappa=0.7128, p=0).
438 Furthermore, the sensitivity of the SVM (true positive rate: the proportion of true AGs that are
439 correctly identified) is 83.33%, the specificity (true negative rate: the proportion of true non-AGs
440 that are correctly identified) is 99.77% and the classifier achieved an AUROC (Area Under
441 Receiver Operating Characteristic curve, representing the tradeoff between true positive and
442 false positive rates) of 0.9978, which significantly outperforms a random classifier
443 (AUROC=0.5) and thus indicates that AGs are successfully distinguished from non-AGs (Figure
444 7D). Importantly, this means that adapted genes indeed share certain common features that are
445 not immediately obvious but can be detected using machine learning. Prior studies of adaptive
446 evolution focus on interpreting adaptive mutations only after they have been acquired, and these
447 interpretations are very specific to the selective pressure under which adaptation has happened in
448 a particular study [40-42]. Instead, the classifier presented here can make *a priori* predictions on
449 which genes will adapt under stress/selective pressure, regardless of the nature of this stress.

450 Thus, we demonstrate that incorporation of different data-types reveals that deterministic factors
451 exist that shape adaptive evolution thereby making it predictable.

452

453 CONCLUSIONS

454 An important goal here is to determine what type of data is needed to predict a bacterium's
455 chances of surviving in its environment. We show that a comparison of transcriptional responses
456 between a stress-sensitive and insensitive strain by itself shows stark differences in the number,
457 magnitude and functional tags that are involved in responding to the environment, which are
458 suggestive for their differences in survival-success. The full response thus carries important
459 information; however, a more granular analysis of the response is no less interesting. For
460 instance, both T4 and D39 respond very similarly early on to uracil depletion by 'appropriately'
461 upregulating expression of the UMP-pathway, and while T4 maintains a similar response over
462 time, D39's response is overwhelmed by genome-wide differential expression, resulting in
463 chaos. In addition, components of the stringent response (which is not understood in detail in *S.*
464 *pneumoniae*) such as genes involved in purine biosynthesis (SP_0044-0056) are down-regulated
465 in both T4 and D39 under amino acid depletion (L-Valine and Glycine; Supplementary file 3).
466 While this shows that particular response mechanisms are activated under stress, it turns out that
467 this is only a partial view. We show that by extending our focus and by taking the temporal
468 genome-wide response into account, it is possible to paint a global and detailed picture of how
469 the organism senses and processes stress. Moreover, we showed previously that it is important to
470 interrogate a bacterial response at both the transcriptional and phenotypic level to uncover
471 network patterns [9], and also here we find that PIGs are critical in enhancing our network
472 coordination analyses, especially when there are a few TIGs (Supplementary File 4). Overall our
473 strategy demonstrates that by integrating temporal transcriptional and phenotypic changes into
474 strain-specific networks, distinct patterns emerge that can be depicted as trajectories in feature
475 space. These temporal trajectories are composed of three types of measurements, Connectedness,
476 Closeness and Representation (CC, CN, RE) that capture the defining network characteristics of
477 a response and objectively quantify a strain's response into a degree of coordination that reflects
478 survival success. Importantly, we show that the degree of coordination is an evolvable trait;
479 when strains evolve the ability to grow in the absence of a nutrient, or when antibiotic resistance
480 emerges, the network is rewired, increasing coordination and unfolding a focused and targeted
481 response. In other words, selective pressure optimizes a strain's network coordination, which in
482 turn increases survival success; explaining why network coordination can be used to predict
483 short-term survival outcome. Past adaptation and future adaptive outcome are thereby intricately

484 linked, leading to the possibility of predicting where innovation (adaptation) in the network is
485 most likely to occur. Indeed, we show that by developing a support vector machine that
486 incorporates a wide array of data-types, genes that adapt can be distinguished from those that do
487 not. This indicates that with the right information, adaptation becomes a predictable process.

488

489 To improve on the short-term survival outcome and long-term adaptive outcome predictions, it is
490 likely that additional types of data as well as genome-wide networks will be beneficial. For
491 instance, epistatic and regulatory interactions have been shown to influence adaptive evolution
492 [43-46]. It is also possible to include information pertaining to the external environment that the
493 pathogen experiences into a predictive framework. The simultaneous transcriptomic profiling of
494 the host via dual RNA-Seq [47] and cytokine profiling (e.g. determining the state of the host
495 response can allow us to infer the magnitude of host-associated stress the pathogen is
496 experiencing) could also be informative and is something we are currently exploring. Along with
497 the host-response, the infection-causing pathogen potentially experiences competition or
498 participates in cooperation with the resident microbiota of the infection site, which can influence
499 the effectiveness of a given antimicrobial treatment [48]. Therefore, metagenomic profiling of
500 the microbiota from the site of infection may also aid in predicting the survival of a specific
501 pathogen.

502

503 To conclude, we demonstrate that network analyses and machine learning make short-term
504 survival outcome and long-term adaptive outcome predictable. Most importantly, the approach is
505 generalizable with respect to the applicability to Gram-positive and Gram-negative bacteria, the
506 emergence of antibiotic resistance, and the applicability to *in vivo* host infection. Thus, our
507 approach offers a primary gateway towards the development of highly accurate infectious
508 disease prognostics.

509

510

511 **MATERIALS AND METHODS**

512 **Bacterial strains, culture media and growth curve assays**

513 *S. pneumoniae* strain TIGR4 (T4; NC_003028.3) is a serotype 4 strain originally isolated from a
514 Norwegian patient [49, 50], Taiwan-19F (19F; NC_012469.1) is a multi-drug resistant strain [51,
515 52] and D39 (NC_008533) is a commonly used serotype 2 strain originally isolated from a
516 patient about 90 years ago [53]. All gene numbers refer to the T4 genome. Correspondence
517 between homologous genes among the three strains and gene function annotations are described
518 in Supplementary File 3. Unless otherwise specified, *S. pneumoniae* strains were cultivated in
519 Todd Hewitt medium with 5% yeast extract (THY) with 5uL/mL oxyrase (Oxyrase, Inc) or on
520 sheep's blood agar plates (Northeastern Laboratories) at 37°C with 5% CO2. Tn-Seq and RNA-
521 Seq experiments under nutrient-depletion and vancomycin conditions were performed in
522 chemically defined medium (CDM; [9]) and semi-defined minimal medium (SDMM; [21]),
523 respectively. Single strain growth assays were performed at least three times using 96-well plates
524 by taking OD₆₀₀ measurements on a Tecan Infinite 200 PRO plate reader.

525

526 **Tn-Seq experiments, sample preparation and analysis**

527 Six independent transposon libraries were constructed in T4 using transposon Magellan 6 as
528 previously described [10, 11, 21]. Tn-Seq experiments under single nutrient depletion conditions
529 were performed in CDM in the presence or absence of one of the three nutrients: Glycine, uracil
530 and L-Valine. Vancomycin Tn-Seq experiment were performed in SDMM in the presence or
531 absence of 0.1ug/mL vancomycin (MP Biomedicals).

532

533 Library preparation, Illumina sequencing, data processing and fitness calculations (W_i ;
534 representing the growth rate) were performed as previously described [10, 11, 21]. Genes with
535 significant fitness change must satisfy three criteria: 1) Fitness of a gene must be calculated from
536 at least three insertion mutants in both control and experimental conditions. 2) A gene must have
537 a fitness difference greater than 15% ($|W_{Control} - W_{Experimental}| > 0.15$). 3) $W_{Control}$ and $W_{Experimental}$
538 must significantly differ in a one sample t-test with Bonferroni correction for multiple testing.

539

540 **Temporal RNA-Seq sample collection, preparation and analysis**

541 In nutrient RNA-Seq experiments, T4, D39 and adapted D39 were collected at 30 and 90min
542 after depletion of D39-essential nutrients (Supplementary Table 1). In vancomycin RNA-Seq
543 experiment, T4 and adapted T4 were collected at 10, 20, 30, 45, 60 and 90min post-vancomycin
544 (1x MIC) treatment. Cell pellets were collected by centrifugation at 4000 rpm at 4°C and snap
545 frozen and stored at -80°C until RNA isolation by RNeasy Mini Kit (Qiagen). 400ng of total
546 RNA from each sample was used for generating cDNA libraries following the RNAtag-Seq
547 protocol [54] as previously described [9]. PCR amplified cDNA libraries were sequenced on an
548 Illumina NextSeq500 generating a high sequencing depth of ~7.5 million reads per sample [55].
549 RNA-Seq data was analyzed using an in-house developed analysis pipeline. In brief, raw reads
550 are demultiplexed by 5' and 3' indices [54], trimmed to 59 base pairs, and quality filtered (96%
551 sequence quality>Q14). Filtered reads are mapped to the corresponding reference genomes using
552 bowtie2 with the --very-sensitive option (-D 20 -R 3 -N 0 -L 20 -i S, 1, 0.50) [56]. Mapped
553 reads are aggregated by featureCount and differential expression is calculated with DESeq2 [57,
554 58]. In each pair-wise differential expression comparison, significant differential expression is
555 filtered based on two criteria: $|\log_{2}\text{foldchange}| > 1$ and adjusted p-value (padj) <0.05. All
556 differential expression comparisons are made between the presence and absence of the nutrient at
557 the same time point.

558

559 **Experimental evolution and whole-genome sequencing**

560 D39 and T4 were used as parental strains in nutrient-depletion and vancomycin evolution
561 experiments, respectively. Four replicate populations were grown in fresh CDM with decreasing
562 concentration of uracil or L-Val for nutrient adaptation populations, or increasing concentration
563 of vancomycin for antibiotic adaptation populations. Four replicate populations were serial
564 passaged in CDM as controls for background adaptations in nutrient adaptation experiments.
565 When populations had adapted a single colony was picked from each experiment, checked for its
566 adaptive phenotype by growth curve experiments. Genomic DNA was isolated from adapted
567 populations and single strains using a DNase Blood and Tissue kit (Qiagen), concentrations of
568 genomic DNA were measured on a Qubit 3.0 fluorometer (Invitrogen) and diluted to 5ng/uL for
569 library preparation using a Nextera kit (Illumina). Libraries were sequenced on an Illumina
570 NextSeq500 and reads were mapped to their corresponding reference genomes. Mutations were
571 identified using the breseq pipeline with polymorphism mode for populations and consensus

572 mode for adapted strains [59]. Adaptive mutations in each experiment are determined based on
573 the following criteria: 1) mutation frequency is greater than 50% in at least one replicate
574 population, and 2) this mutation is not present in any CDM-background adapted populations and
575 3) the mutation is a nonsense or missense mutation.

576

577 **Determination of relative minimal inhibitory concentration (MIC) by microdilution**

578 1 to 5×10^5 CFU of mid-exponential T4 in 100uL was diluted with 100uL of fresh medium with
579 vancomycin to achieve a gradient of final concentrations from 0 to 0.5ug/mL in 96-well plates.
580 Each concentration was tested in triplicates. Growth was monitored on a Tecan Infinite 200 PRO
581 plate reader at 37°C for 16 hours. MIC is determined as the lowest concentration that abolishes
582 bacterial growth (Supplementary Figure 1C).

583

584 **Fluorescent microscopy**

585 Wild-type and vancomycin adapted T4 were grown to mid-exponential phase. Half of the culture
586 was left untreated, while the other half was exposed to 0.24ug/mL of vancomycin for 60 minutes.
587 1×10^8 CFUs were collected by centrifugation, resuspended in 20uL of PBS and stained with
588 Syto9 (DNA stain) and FM4-64 (cell membrane stain) for 10 minutes at room temperature. 1uL
589 of stained cells were imaged on an Olympus IX83 microscope system with an ORCA-Flash4.0
590 camera (Hamamatsu) and a 60x oil immersion objective. Phase contrast and fluorescence images
591 through GFP and RFP channels were taken for each sample. Microscopy of each sample was
592 repeated with at least three technical replicates. Images were modified for publication using Fiji
593 [60]. Cell numbers per chain was visually quantified based on 1000 *S. pneumoniae* chains from
594 each treatment group using at least three technical replicate micrographs.

595

596 **Strain-specific metabolic model construction**

597 Thirty-six reactions were manually added to the previously described T4 model [9] using the
598 COBRA toolbox based on updated information from three databases (NCBI, KEGG and BiGG)
599 and literature [61, 62]. Metabolite and reaction IDs were cross-referenced to follow the BiGG
600 naming convention [63]. Gene-reaction associations in the updated T4 metabolic model were
601 adjusted into three strain-specific models based on the correspondence table (Supplementary

602 Table 1). For visualization of the metabolic models, a map of the *S. pneumoniae* metabolism was
603 constructed using Escher [64] referencing the KEGG pathway base (Supplementary Figure 2).

604

605 **Spectral Clustering of the *S. pneumoniae* pan-genome**

606 Complete, annotated genomes from 22 reference strains (RefSeq 58) and contigs from 350
607 clinical strains [39] were assembled for data analysis. The contigs were annotated using the
608 PATRIC Genome annotation service to identify coding sequences [65]. A total of 820,754 amino
609 acid sequences from the 372 strains were assembled. In order to reduce redundancy and expedite
610 clustering, representative sequences were selected using a boundary forest algorithm [66], with
611 Smith-Waterman distance as the similarity measure. This decreased the number of sequences to
612 17,000 representatives. Pairwise distances between representatives were computed to generate a
613 sequence similarity matrix (S). The gaussian kernel of S was thresholded and transformed to an
614 adjacency matrix. Spectral clustering with normalization of the Laplacian was performed to
615 generate sequence clusters [67]. Since we had no prior knowledge of what the most appropriate
616 number of clusters would be, we scanned the range of 1000 to 10,000 clusters, and computed the
617 sum of squared errors (SSE) on all clusters, for each cluster set. SSE was minimized at 4300
618 clusters, therefore, we determined this to be the appropriate number of clusters of homologous
619 genes in the *S. pneumoniae* pan-genome. Sequences in each gene cluster were aligned using
620 Clustal Omega [68], and the average pairwise Smith-Waterman distance within each cluster was
621 computed. In the case of large clusters (containing >50 sequences), 50 random sequences were
622 selected for pairwise distance calculation. We define gene conservation as $-\log(\text{mean}(\text{distance}))$
623 within a cluster, and count (number of strains that share the gene) of sequences in each cluster.

624

625 **Network coordination analysis**

626 We define 3 criteria for metabolic coordination: connectedness (CC), closeness (CN) and
627 representation (RE) in the metabolic network. Number of connected components (NCC) is used
628 as the metric for connectedness. For each experiment, connected components were determined
629 using the components function in the igraph package [69]. Since the expected NCC heavily
630 depends on the number of nodes selected, and the network architecture, in order to test whether
631 the observed NCC is significantly lower than expected, we apply permutation testing on random
632 selection of nodes on the network as follows: In an experiment with M responsive genes on the

633 network, we generate 1000 sets of M random genes, and compute the NCC for each permutation.
634 The empirical one-tailed p-value for this experiment is the proportion of permutations in which
635 we observed fewer NCC than the responsive genes in the experiment. A response is connected if
636 the empirical p-value for the NCC permutation testing is <0.01 . To determine closeness of
637 responsive genes, the average length of shortest paths is computed for each pair of genes. Since
638 biological pathways may appear as long chains with few branches, it is possible to have a
639 connected component of TIGs and/or PIGs arranged in a line, with a high average pairwise
640 distance. In order to avoid such skew, we considered any responsive gene pairs that appear in the
641 same component to be at distance 0 to each other by assigning each edge on the network a
642 weight of 0 if it connects two responsive genes, and 1 otherwise. If there is no path connecting
643 the two components, the distance between this pair is replaced by the diameter of the network+1
644 (i.e. 21 in our network), to avoid infinite values. Similar to connectedness evaluation,
645 permutation testing is applied to the average network distance. A response is “close” if the
646 empirical p-value for the distance permutation testing is <0.01 . To assess whether TIGs and PIGs
647 were significantly highly represented in the metabolic network we consider N, the total number
648 of responsive genes, and M, the subset of N that appear on the network. The probability of
649 observing M or more genes on the network, given N total responsive genes in the genome
650 ($p(m \geq M | N)$) is computed assuming a hypergeometric distribution. A response is metabolically
651 well-represented if this probability is <0.01 .

652

653 **Support Vector Machine Classification of Adapted Genes**

654 A support vector machine (SVM) using a gaussian kernel is trained and cross-validated using the
655 fitcsvm function in MATLAB to distinguish whether a gene will contain adaptive mutations or
656 not. The model was trained on network parameters (degree, transitivity, centrality), TnSeq,
657 RNAseq and sequence conservation (count, or number of occurrences across the pan-genome,
658 and sequence similarity) of each gene. Data from the dependent (parental) strains from the uracil
659 (D39), L-Valine (D39) and vancomycin (T4) experiments were assembled into a set of 1283 data
660 points with 18 features that were standardized. Genes that were not represented on the metabolic
661 network were excluded. Each observation was then labeled as AG or non-AG. Because the
662 number of AGs is very small (6 out of 1283), we applied synthetic minority oversampling [70]
663 until 10% of the observations were AGs. The SVM was trained on a total of 1409 data points

664 (1283 experimental and 126 synthetic) using 10-fold cross-validation, and report the average
665 accuracy, kappa, precision and recall on the 10 cross-validation sets.

666

667 **Statistical analysis**

668 Quantification and statistical analysis are described in the above Method Details section,
669 Supplementary Table2 and in figure legends (Figures 2, 3, 5, S4).

670

671 **List of abbreviations**

672 AG: adapted gene

673 AUROC: area under receiver operating characteristic curve

674 CC: connectedness

675 CDM: chemically defined medium

676 CFU: colony forming unit

677 CN: closeness

678 MIC: minimum inhibitory concentration

679 NCC: number of connected components

680 PIG: phenotypically important gene

681 RE: representation

682 RNA-Seq: RNA-Sequencing

683 SDMM: semi-defined minimal medium

684 SSE: sum of squared errors

685 SVM: support vector machine

686 TIG: transcriptionally important gene

687 Tn-Seq: transposon insertion sequencing

688 UMP: uridine monophosphate

689

690 **Accession numbers.** The datasets generated during the current study are available as
691 Supplementary Files and in the Sequence Read Archive (SRX2039176, SRX2039177,
692 SRP156493 and SRP156489).

693

694 **Funding.** This work was supported by NIH R01 AI110724 and U01 AI124302.

695 **Authors' contributions.** TvO devised the study, ZZ performed the wet-lab experiments, DS
696 performed the network analyses, clustering and machine learning. JB consulted on the clustering
697 and machine learning. AP constructed the metabolic maps. ZZ, DS and TvO analyzed data,
698 interpreted results and wrote the manuscript. ZZ, DS, AP, JB and TvO approved the final
699 manuscript.

700

701 **Acknowledgements.** DNA sequencing was performed at the Boston College Sequencing Core.
702 The authors wish to thank Jon Anthony for running the Aerobio sequencing analyses pipeline.

703

704 **Conflict of interest.**

705 The authors declare that they have no conflict of interest.

706 REFERENCES

707 1. Lopez-Gongora S, Puig I, Calvet X, Villoria A, Baylina M, Munoz N, Sanchez-Delgado
708 J, Suarez D, Garcia-Hernando V, Gisbert JP: Systematic review and meta-analysis:
709 susceptibility-guided versus empirical antibiotic treatment for Helicobacter pylori
710 infection. *J Antimicrob Chemother* 2015, 70:2447-2455.

711 2. Scholte JB, Duong HL, Linssen C, Van Dessel H, Bergmans D, van der Horst R,
712 Savelkoul P, Roekaerts P, van Mook W: Empirical antibiotic therapy for pneumonia in
713 intensive care units: a multicentre, retrospective analysis of potentially pathogenic
714 microorganisms identified by endotracheal aspirates cultures. *Eur J Clin Microbiol Infect
715 Dis* 2015, 34:2295-2305.

716 3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van
717 de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish
718 tumor subclasses with clinical implications. *Proc Natl Acad Sci U S A* 2001, 98:10869-
719 10874.

720 4. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der
721 Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling predicts clinical
722 outcome of breast cancer. *Nature* 2002, 415:530-536.

723 5. van't Veer LJ, Paik S, Hayes DF: Gene expression profiling of breast cancer: a new tumor
724 marker. *J Clin Oncol* 2005, 23:1631-1635.

725 6. Penthaloudakis G, Raptou G, Kotoula V, Wirtz RM, Vrettou E, Karavasilis V, Gourgioti
726 G, Gakou C, Syrigos KN, Bournakis E, et al: Immune response gene expression in
727 colorectal cancer carries distinct prognostic implications according to tissue, stage and
728 site: a prospective retrospective translational study in the context of a hellenic
729 cooperative oncology group randomised trial. *PLoS One* 2015, 10:e0124612.

730 7. Agrahari R, Foroushani A, Docking TR, Chang L, Duns G, Hudoba M, Karsan A, Zare
731 H: Applications of Bayesian network models in predicting types of hematological
732 malignancies. *Sci Rep* 2018, 8:6951.

733 8. Zaman N, Li L, Jaramillo ML, Sun Z, Tibiche C, Banville M, Collins C, Trifiro M,
734 Paliouras M, Nantel A, et al: Signaling network assessment of mutations and copy
735 number variations predict breast cancer subtype-specific drug targets. *Cell Rep* 2013,
736 5:216-223.

737 9. Jensen PA, Zhu Z, van Opijnen T: Antibiotics Disrupt Coordination between
738 Transcriptional and Phenotypic Stress Responses in Pathogenic Bacteria. *Cell Rep* 2017,
739 20:1705-1716.

740 10. van Opijnen T, Bodi KL, Camilli A: Tn-seq: high-throughput parallel sequencing for
741 fitness and genetic interaction studies in microorganisms. *Nat Methods* 2009, 6:767-772.

742 11. van Opijnen T, Camilli A: Transposon insertion sequencing: a new tool for systems-level
743 analysis of microorganisms. *Nat Rev Microbiol* 2013, 11:435-442.

744 12. Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM:
745 Transcriptional response of *Saccharomyces cerevisiae* to DNA-damaging agents does not
746 identify the genes that protect against these agents. *Proc Natl Acad Sci U S A* 2002,
747 99:8778-8783.

748 13. Smith JJ, Sydorskyy Y, Marelli M, Hwang D, Bolouri H, Rachubinski RA, Aitchison JD:
749 Expression and functional profiling reveal distinct gene classes involved in fatty acid
750 metabolism. *Mol Syst Biol* 2006, 2:2006 0009.

751 14. Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, Xu Z, Nguyen M,
752 Tamse R, Davis RW, Arkin AP: Evidence-based annotation of gene function in
753 *Shewanella oneidensis* MR-1 using genome-wide fitness profiling across 121 conditions.
754 *PLoS Genet* 2011, 7:e1002385.

755 15. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A,
756 Anderson K, Andre B, et al: Functional profiling of the *Saccharomyces cerevisiae*
757 genome. *Nature* 2002, 418:387-391.

758 16. Price MN, Deutschbauer AM, Skerker JM, Wetmore KM, Ruths T, Mar JS, Kuehl JV,
759 Shao W, Arkin AP: Indirect and suboptimal control of gene expression is widespread in
760 bacteria. *Mol Syst Biol* 2013, 9:660.

761 17. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M: Requirements for
762 *Pseudomonas aeruginosa* acute burn and chronic surgical wound infection. *PLoS Genet*
763 2014, 10:e1004518.

764 18. Keren L, Hausser J, Lotan-Pompan M, Vainberg Slutskin I, Alisar H, Kaminski S,
765 Weinberger A, Alon U, Milo R, Segal E: Massively Parallel Interrogation of the Effects
766 of Gene Expression Levels on Fitness. *Cell* 2016, 166:1282-1294 e1218.

767 19. O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E,
768 Mulholland K, Levine OS, Cherian T, et al: Burden of disease caused by *Streptococcus*
769 *pneumoniae* in children younger than 5 years: global estimates. *Lancet* 2009, 374:893-
770 902.

771 20. CDC: Antibiotic Resistance Threats in the United States. Centers for Disease Control and
772 Prevention Threat Report. 2013, 1:1-114.

773 21. van Opijnen T, Camilli A: A fine scale phenotype-genotype virulence map of a bacterial
774 pathogen. *Genome Res* 2012, 22:2541-2551.

775 22. Gisk B, Wiethaus J, Aras M, Frankenberg-Dinkel N: Variable composition of heme
776 oxygenases with different regiospecificities in *Pseudomonas* species. *Arch Microbiol*
777 2012, 194:597-606.

778 23. van Opijnen T, Lazinski DW, Camilli A: Genome-Wide Fitness and Genetic Interactions
779 Determined by Tn-seq, a High-Throughput Massively Parallel Sequencing Method for
780 Microorganisms. *Curr Protoc Mol Biol* 2014, 106:7 16 11-24.

781 24. Moscoso M, Domenech M, Garcia E: Vancomycin tolerance in clinical and laboratory
782 *Streptococcus pneumoniae* isolates depends on reduced enzyme activity of the major
783 LytA autolysin or cooperation between CiaH histidine kinase and capsular
784 polysaccharide. *Mol Microbiol* 2010, 77:1052-1064.

785 25. Haas W, Kaushal D, Sublett J, Obert C, Tuomanen EI: Vancomycin stress response in a
786 sensitive and a tolerant strain of *Streptococcus pneumoniae*. *J Bacteriol* 2005, 187:8205-
787 8210.

788 26. Daly KE, Huang KC, Wingreen NS, Mukhopadhyay R: Mechanics of membrane bulging
789 during cell-wall disruption in gram-negative bacteria. *Phys Rev E Stat Nonlin Soft Matter
790 Phys* 2011, 83:041922.

791 27. Zavascki AP, Carvalhaes CG, Picao RC, Gales AC: Multidrug-resistant *Pseudomonas*
792 *aeruginosa* and *Acinetobacter baumannii*: resistance mechanisms and implications for
793 therapy. *Expert Rev Anti Infect Ther* 2010, 8:71-93.

794 28. Murray JL, Kwon T, Marcotte EM, Whiteley M: Intrinsic Antimicrobial Resistance
795 Determinants in the Superbug *Pseudomonas aeruginosa*. *MBio* 2015, 6:e01603-01615.

796 29. Bartell JA, Blazier AS, Yen P, Thogersen JC, Jelsbak L, Goldberg JB, Papin JA: Reconstruction of the metabolic network of *Pseudomonas aeruginosa* to interrogate virulence factor synthesis. *Nat Commun* 2017, 8:14631.

797 30. McManus AT, Mason AD, Jr., McManus WF, Pruitt BA, Jr.: Twenty-five year review of *Pseudomonas aeruginosa* bacteremia in a burn center. *Eur J Clin Microbiol* 1985, 4:219-223.

798 31. Hastie T, Tibshirani, R., Friedman, J: *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. 2 edn. New York: Springer-Verlag; 2009.

799 32. Fernebro J, Andersson I, Sublett J, Morfeldt E, Novak R, Tuomanen E, Normark S, Normark BH: Capsular expression in *Streptococcus pneumoniae* negatively affects spontaneous and antibiotic-induced lysis and contributes to antibiotic tolerance. *J Infect Dis* 2004, 189:328-338.

800 33. Henriques Normark B, Kalin M, Ortqvist A, Akerlund T, Liljequist BO, Hedlund J, Svenson SB, Zhou J, Spratt BG, Normark S, Kallenius G: Dynamics of penicillin-susceptible clones in invasive pneumococcal disease. *J Infect Dis* 2001, 184:861-869.

801 34. Abranches J, Martinez AR, Kajfasz JK, Chavez V, Garsin DA, Lemos JA: The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in *Enterococcus faecalis*. *J Bacteriol* 2009, 191:2248-2256.

802 35. Honsa ES, Cooper VS, Mhaissen MN, Frank M, Shaker J, Iverson A, Rubnitz J, Hayden RT, Lee RE, Rock CO, et al: RelA Mutant *Enterococcus faecium* with Multiantibiotic Tolerance Arising in an Immunocompromised Host. *MBio* 2017, 8.

803 36. Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C: Two small (p)ppGpp synthases in *Staphylococcus aureus* mediate tolerance against cell envelope stress conditions. *J Bacteriol* 2014, 196:894-902.

804 37. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, Gemmell CG, Kim MN, Ploy MC, El-Soh N, et al: Cell wall thickening is a common feature of vancomycin resistance in *Staphylococcus aureus*. *J Clin Microbiol* 2003, 41:5-14.

805 38. Courvalin P: Vancomycin resistance in gram-positive cocci. *Clin Infect Dis* 2006, 42 Suppl 1:S25-34.

806 39. Cremers AJ, Moberg FM, de Jonge MI, van Hujum SA, Meis JF, Hermans PW, Ferwerda G, Bentley SD, Zomer AL: The post-vaccine microevolution of invasive *Streptococcus pneumoniae*. *Sci Rep* 2015, 5:14952.

807 40. Marvig RL, Damkjaer S, Khademi SM, Markussen TM, Molin S, Jelsbak L: Within-host evolution of *Pseudomonas aeruginosa* reveals adaptation toward iron acquisition from hemoglobin. *MBio* 2014, 5:e00966-00914.

808 41. Chen FJ, Lauderdale TL, Ho M, Lo HJ: The roles of mutations in *gyrA*, *parC*, and *ompK35* in fluoroquinolone resistance in *Klebsiella pneumoniae*. *Microb Drug Resist* 2003, 9:265-271.

809 42. Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR: A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in *Geobacter sulfurreducens* revealed by adaptive evolution. *Environ Microbiol* 2011, 13:13-23.

810 43. MacLean RC: Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation. *J Evol Biol* 2010, 23:488-493.

811 44. Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, Gordo I: Positive epistasis drives the acquisition of multidrug resistance. *PLoS Genet* 2009, 5:e1000578.

842 45. Aldana M, Balleza E, Kauffman S, Resendiz O: Robustness and evolvability in genetic
843 regulatory networks. *J Theor Biol* 2007, 245:433-448.

844 46. Conant GC, Wagner A: Convergent evolution of gene circuits. *Nat Genet* 2003, 34:264-
845 266.

846 47. Aprianto R, Slager J, Holsappel S, Veening JW: Time-resolved dual RNA-seq reveals
847 extensive rewiring of lung epithelial and pneumococcal transcriptomes during early
848 infection. *Genome Biol* 2016, 17:198.

849 48. Cookson W, Cox MJ, Moffatt MF: New opportunities for managing acute and chronic
850 lung infections. *Nat Rev Microbiol* 2018, 16:111-120.

851 49. Aaberge IS, Eng J, Lermark G, Lovik M: Virulence of *Streptococcus pneumoniae* in
852 mice: a standardized method for preparation and frozen storage of the experimental
853 bacterial inoculum. In *Microbial Pathogenesis*, vol. 18. pp. 141-152; 1995:141-152.

854 50. Tettelin H, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald
855 ME, Friedlander RM, Silani V, Hayden MR, et al: Complete Genome Sequence of a
856 Virulent Isolate of *Streptococcus pneumoniae*. In *Science*, vol. 293. pp. 493-498:
857 American Association for the Advancement of Science; 2001:493-498.

858 51. McGee L, McDougal L, Zhou J, Spratt BG, Tenover FC, George R, Hakenbeck R,
859 Hryniwicz W, Lefevre JC, Tomasz A, Klugman KP: Nomenclature of major
860 antimicrobial-resistant clones of *Streptococcus pneumoniae* defined by the pneumococcal
861 molecular epidemiology network. In *Journal of Clinical Microbiology*, vol. 39. pp. 2565-
862 2571: American Society for Microbiology; 2001:2565-2571.

863 52. Shi Z-y, Enright MC, Wilkinson P, Griffiths D, Spratt BG: Identification of Three Major
864 Clones of Multiply Antibiotic- Resistant. In *Journal of Clinical Microbiology*. pp. 1-6;
865 1998:1-6.

866 53. Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ,
867 Tettelin H, Glass JI, Winkler ME: Genome Sequence of Avery's Virulent Serotype
868 2 Strain D39 of *Streptococcus pneumoniae* and Comparison with That of Unencapsulated
869 Laboratory Strain R6. In *J Bacteriol*, vol. 189. pp. 38-51; 2006:38-51.

870 54. Shishkin AA, Giannoukos G, Kucukural A, Ciulla D, Busby M, Surka C, Chen J,
871 Bhattacharyya RP, Rudy RF, Patel MM, et al: Simultaneous generation of many RNA-
872 seq libraries in a single reaction. *Nat Methods* 2015, 12:323-325.

873 55. Haas BJ, Chin M, Nusbaum C, Birren BW, Livny J: How deep is deep enough for RNA-
874 Seq profiling of bacterial transcriptomes? *BMC Genomics* 2012, 13:734.

875 56. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. *Nat Methods*
876 2012, 9:357-359.

877 57. Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program for
878 assigning sequence reads to genomic features. *Bioinformatics* 2014, 30:923-930.

879 58. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for
880 RNA-seq data with DESeq2. *Genome Biol* 2014, 15:550.

881 59. Deatherage DE, Barrick JE: Identification of mutations in laboratory-evolved microbes
882 from next-generation sequencing data using breseq. *Methods Mol Biol* 2014, 1151:165-
883 188.

884 60. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
885 Rueden C, Saalfeld S, Schmid B, et al: Fiji: an open-source platform for biological-image
886 analysis. *Nat Methods* 2012, 9:676-682.

887 61. Denapaite D, Bruckner R, Hakenbeck R, Vollmer W: Biosynthesis of teichoic acids in
888 Streptococcus pneumoniae and closely related species: lessons from genomes. *Microb*
889 *Drug Resist* 2012, 18:344-358.

890 62. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ: Quantitative
891 prediction of cellular metabolism with constraint-based models: the COBRA Toolbox.
892 *Nat Protoc* 2007, 2:727-738.

893 63. Schellenberger J, Park JO, Conrad TM, Palsson BO: BiGG: a Biochemical Genetic and
894 Genomic knowledgebase of large scale metabolic reconstructions. *BMC Bioinformatics*
895 2010, 11:213.

896 64. King ZA, Drager A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO: Escher: A
897 Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of
898 Biological Pathways. *PLoS Comput Biol* 2015, 11:e1004321.

899 65. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM,
900 Disz T, Gabbard JL, et al: Improvements to PATRIC, the all-bacterial Bioinformatics
901 Database and Analysis Resource Center. *Nucleic Acids Res* 2017, 45:D535-D542.

902 66. Mathy CD, N; Bento, J; Rosenthal, J; Yedidia, J: The Boundary Forest Algorithm for
903 Online Supervised and Unsupervised Learning. *Proceedings of the 29th National*
904 *Conference on Artificial Intelligence (AAAI)* 2015.

905 67. Yu SX, Shi J: Segmentation given partial grouping constraints. *IEEE Trans Pattern Anal*
906 *Mach Intell* 2004, 26:173-183.

907 68. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H,
908 Remmert M, Soding J, et al: Fast, scalable generation of high-quality protein multiple
909 sequence alignments using Clustal Omega. *Mol Syst Biol* 2011, 7:539.

910 69. Csardi GN, T: The igraph software package for complex network research. *InterJournal,*
911 *Complex Systems* 2006, 1695.

912 70. Taft LM, Evans RS, Shyu CR, Egger MJ, Chawla N, Mitchell JA, Thornton SN, Bray B,
913 Varner M: Countering imbalanced datasets to improve adverse drug event predictive
914 models in labor and delivery. *J Biomed Inform* 2009, 42:356-364.

915

916 **FIGURE LEGENDS**

917 **Figure 1. Study overview.** **A.** Differential survival outcomes under nutrient depletion, antibiotic
918 exposure and *in vivo* conditions from *Streptococcus pneumoniae* and *Pseudomonas aeruginosa*
919 are investigated in this study. Experimental evolution is performed on stress-sensitive strains
920 (red) to achieve adapted strains (blue). **B.** Temporal RNA-Seq data are collected from the stress-
921 insensitive (green), stress-sensitive and adapted *S. pneumoniae* strains; Tn-Seq data are collected
922 from the stress-insensitive strain. RNA-Seq and Tn-Seq data of *P. aeruginosa* are obtained from
923 published datasets (Murray *et al.*, 2015, Turner *et al.*, 2014). **C.** Data obtained from **(B.)** are
924 subjected to genome-wide analyses, network coordination analyses and machine learning to
925 generate predictive patterns of survival outcomes for the stress-sensitive, insensitive and adapted
926 strains; and adaptive outcomes for the stress-sensitive strains.

927

928 **Figure 2. Distinct patterns characterize the transcriptional response of nutrient-dependent**
929 **and nutrient-independent strains.** **A.** The magnitude of genome-wide differential expression
930 shows significantly different distributions between D39 (red) and T4 (green) in the absence of
931 Glycine (Δ Gly), uracil (Δ Uracil) or L-Valine (L-Val) at 30min and 90min in a Kolmogorov-
932 Smirnov test. **B.** D39 triggers significantly more TIGs in each functional tag than T4, compared
933 in a Z test for two population proportions with Bonferroni correction for multiple testing. **C.**
934 Genome-wide functional category distribution of TIGs in D39 and T4 after 90 minutes of uracil
935 depletion. **D.** Functional tag distribution of TIGs in D39 after 60 minutes of uracil depletion
936 resembles T4. Genome-wide differential expression of D39 under uracil depletion shows time-
937 dependent increase in magnitude **(E.)** and function distribution **(F.)**. For **A-B**, *: $0.001 < p < 0.02$;
938 **: $0.0001 < p < 0.001$; ***: $p < 0.0001$. See in-figure legend for color-coding schemes of
939 functional tags and categories in B- D, F.

940

941 **Figure 3. Network coordination analyses can be visualized in a feature space and define**
942 **survival as a coordinated response.** PIGs (red), TIGs (green) and PIG/TIG overlaps (blue)
943 from the uracil depletion experiment (at 90 minutes) are overlaid on the metabolic network for
944 TIGR4 **(A.)** and D39 **(B.)**, highlighting differences in network response. Connected components
945 (CC) formed by PIGs and TIGs and the shortest path distances between CC are calculated for
946 TIGR4 **(C. and E.)** and D39 **(D. and F.)**. **C-F.** Inset histograms show the expected results

947 (permutation testing) in comparison with experimental observations (red lines). The p-value is
948 the proportion of permutations that are more extreme than the observation. **G.** Example of the
949 integration of the three-coordination metrics (CC, CN, and RE) for an experiment (blue point) by
950 plotting the -log(p-value) in a 3-dimensional feature space. The gray box represents the
951 significance threshold for each p-value. A coordinated response is typically far away from the
952 origin. **H-J.** Response trajectories for D39 (red) and T4 (green) from 30 to 90 minutes in the
953 absence of L-Valine, Glycine or uracil, respectively. In (J.) the D39 trajectory includes the 60-
954 minute time point. For all three graphs the dependent strain D39 remains close to the origin
955 (uncoordinated response), while the independent strain T4 moves away from the origin
956 (coordinated response). An alternative visualization of the degree of coordination of each
957 individual data point can be found in Supplementary Figure 4.

958

959 **Figure 4. Experimental evolution revert nutrient dependencies and rewrites stress responses**
960 **into a coordinated response.** **A.** Adapted D39 strains recover growth in the absence of uracil
961 (top; aD39-uracil) or L-Valine (bottom; aD39-val). **B.** Differential expression magnitude
962 distributions are narrower in aD39-uracil and aD39-val compared to D39 and resemble T4
963 (Figure 2A). **C.** Functional tag distribution of TIGs in aD39-uracil and aD39-val at 90min after
964 uracil or L-Valine depletion are narrower compared to D39 and resemble T4 (Figure 2B).
965 Network trajectories of aD39-uracil (**D.** blue) and aD39-val (**E.** blue) show an increase in
966 coordination from 30 to 90 minutes that are similar to T4 (**D.** and **E.** green) and dissimilar to
967 wild-type D39 (**D.** and **E.** red).

968

969 **Figure 5. Adapted *S. pneumoniae* exhibits reduced sensitivity, changed morphology and a**
970 **rewired transcriptional response under vancomycin treatment.** Growth phenotypes (A.) and
971 morphology (B.) of wild-type (WT) and adapted T4 were examined in the absence and presence
972 of vancomycin (1xMIC) in SDMM. **B.** Cells were stained with Syto9 (green) and fm464 (red).
973 White arrowheads highlight bulging cells, typical of vancomycin sensitivity. **C.** Cell numbers per
974 chain were quantified from 1000 cell chains, indicating the adapted strain has a shorter chain-
975 length phenotype, comparable to the vancomycin-treated WT. **D.** Genome-wide differential
976 expression shows a significantly wider magnitude distribution in WT compared to adapted T4 at
977 30min post-vancomycin treatment in a Kolmogorov-Smirnov test. **E.** WT triggers significantly

978 more TIGs than adapted T4 in most functional tags in both early and late vancomycin response
979 in a Z-test for two population proportions with Bonferroni correction for multiple testing in (E.).
980 n.s.: p>0.02, *:0.001< p<0.02; **:0.0001<p<0.001, ***: p<0.0001

981

982 **Figure 6. Network coordination defines antibiotic resistance in *S. pneumoniae* and**
983 **antimicrobial and *in vivo* responses in *P. aeruginosa*.** **A.** Temporal network trajectories of the
984 vancomycin response for vancomycin-sensitive (wild-type T4, blue) and vancomycin-adapted
985 (aT4-vanc, red) strains profiled at 10, 20, 30, 45, 60 and 90 minutes after 1xMIC vancomycin
986 treatment. In addition, aT4-vanc is also profiled under 1.4xMIC vancomycin (green). All three
987 trajectories start at a significantly represented state, however the T4 response quickly becomes
988 uncoordinated and erratic. In contrast, aT4-vanc demonstrates a gradual trajectory that mainly
989 moves through significantly coordinated intermediate time points. N.B the speed at which a
990 trajectory is traversed is determined by the number of line segments, and not by the lengths of
991 segments, as each line is a separate time point. **B.** Network coordination analyses extended to *P.*
992 *aeruginosa* distinguishes between uncoordinated responses to antimicrobials (red), and
993 coordinated responses in *in vivo* wound infection models (blue).

994

995 **Figure 7. Prediction of adaptive evolution through the integration of machine learning,**
996 **genome-wide profiles, network characteristics and pan-genome sequence conservation.**
997 Pan-genome-wide sequence conservation, RNA-Seq, Tn-Seq and adaptation data are assembled
998 for the uracil (A.), L-Valine (B.) and vancomycin (C.) experiments and visualized by circular
999 plots: 1) Green bar plots represent expression change of parental (the innermost circles) and
1000 adapted strains (outside the orange trace); each circle represents a time-point. 2) The orange
1001 scatter plot indicates sequence conservation score, while the orange trace is a count of strains that
1002 share a gene; 3) Red arrows mark essential genes; 4) Red bar plot represents Tn-Seq fitness
1003 change; 5) Blue scatter plot indicates the mutation frequencies, with adapted genes marked by
1004 purple arrows and black lines. **D.** Receiver-operator curve (ROC) for SVM classifier. An SVM is
1005 trained to distinguish adapted genes from non-adapted genes with high accuracy. Cohen's kappa,
1006 precision, recall, and AUROC are reported.

1007

1008 **Supplementary File 1:** Supplementary information

1009

1010 **Supplementary File 2**: iSP16 consensus model.

1011

1012 **Supplementary File 3**: Tn-Seq and temporal RNA-Seq data in this study.

1013

1014 **Supplementary File 4**: Network analysis with TIGs and PIGs, and only TIGs.

Figure 1

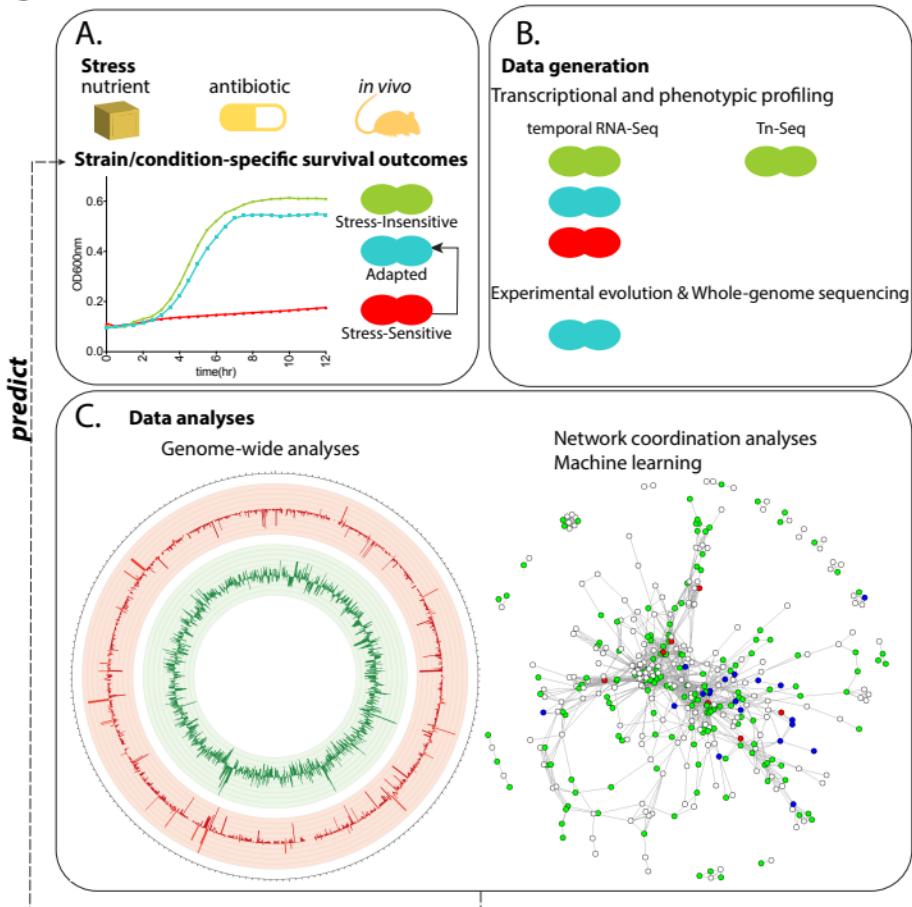


Figure 2

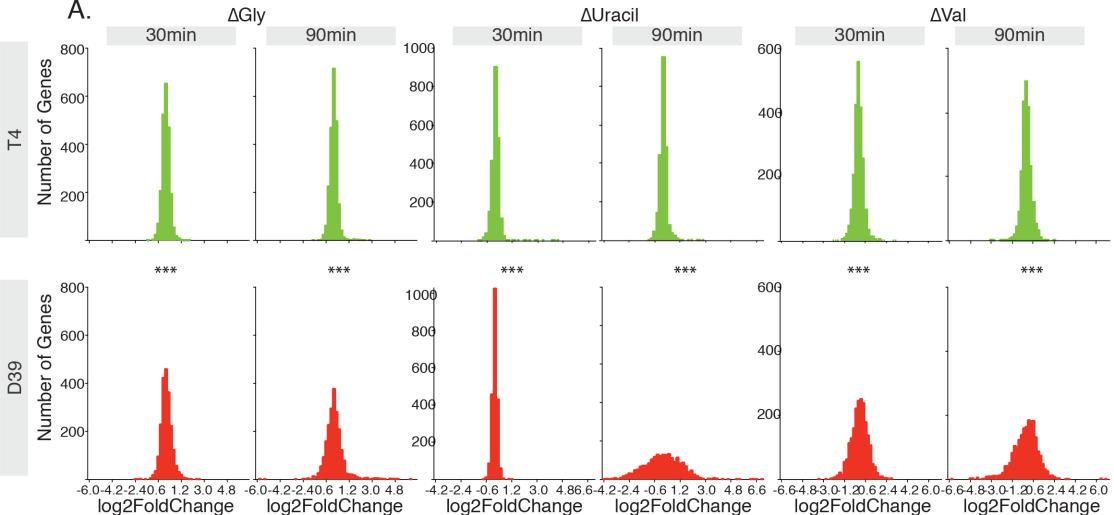
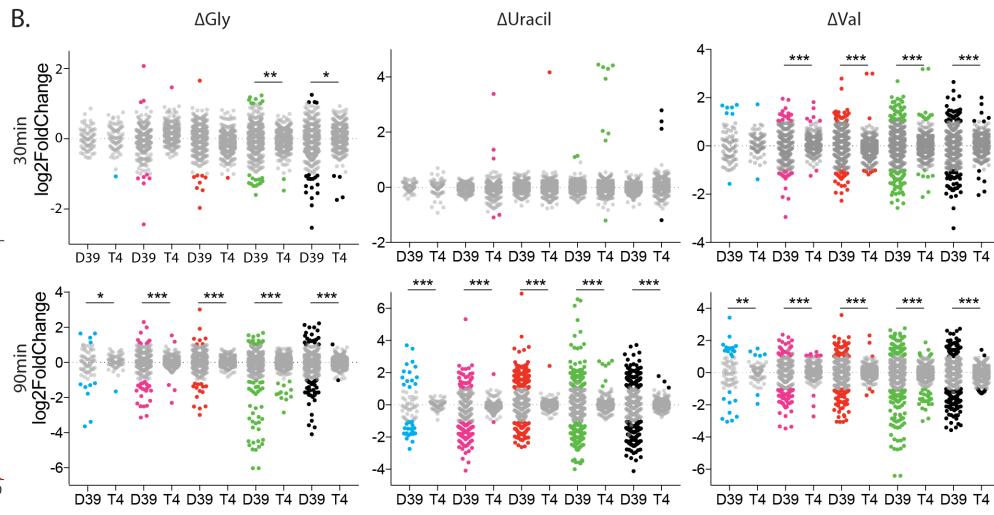
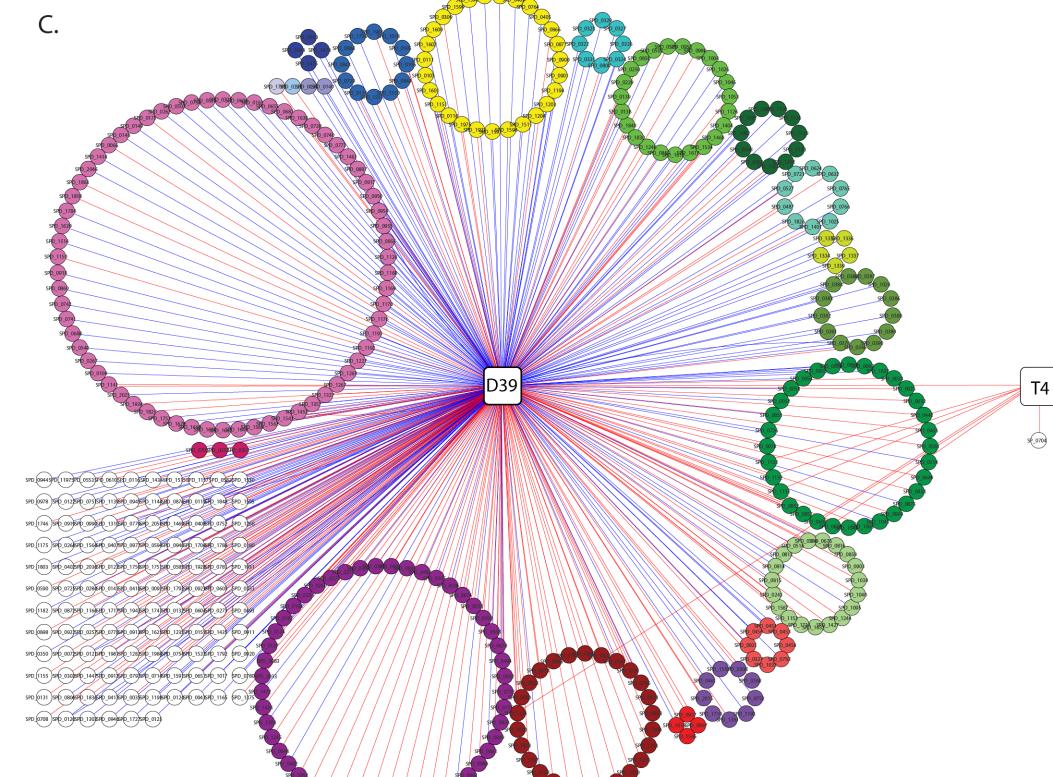
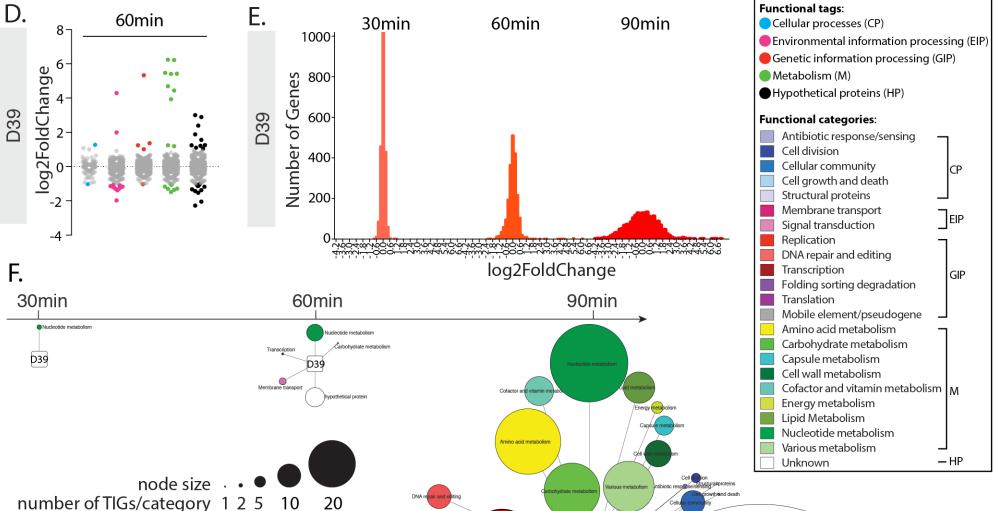


Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/387910>; this version posted August 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

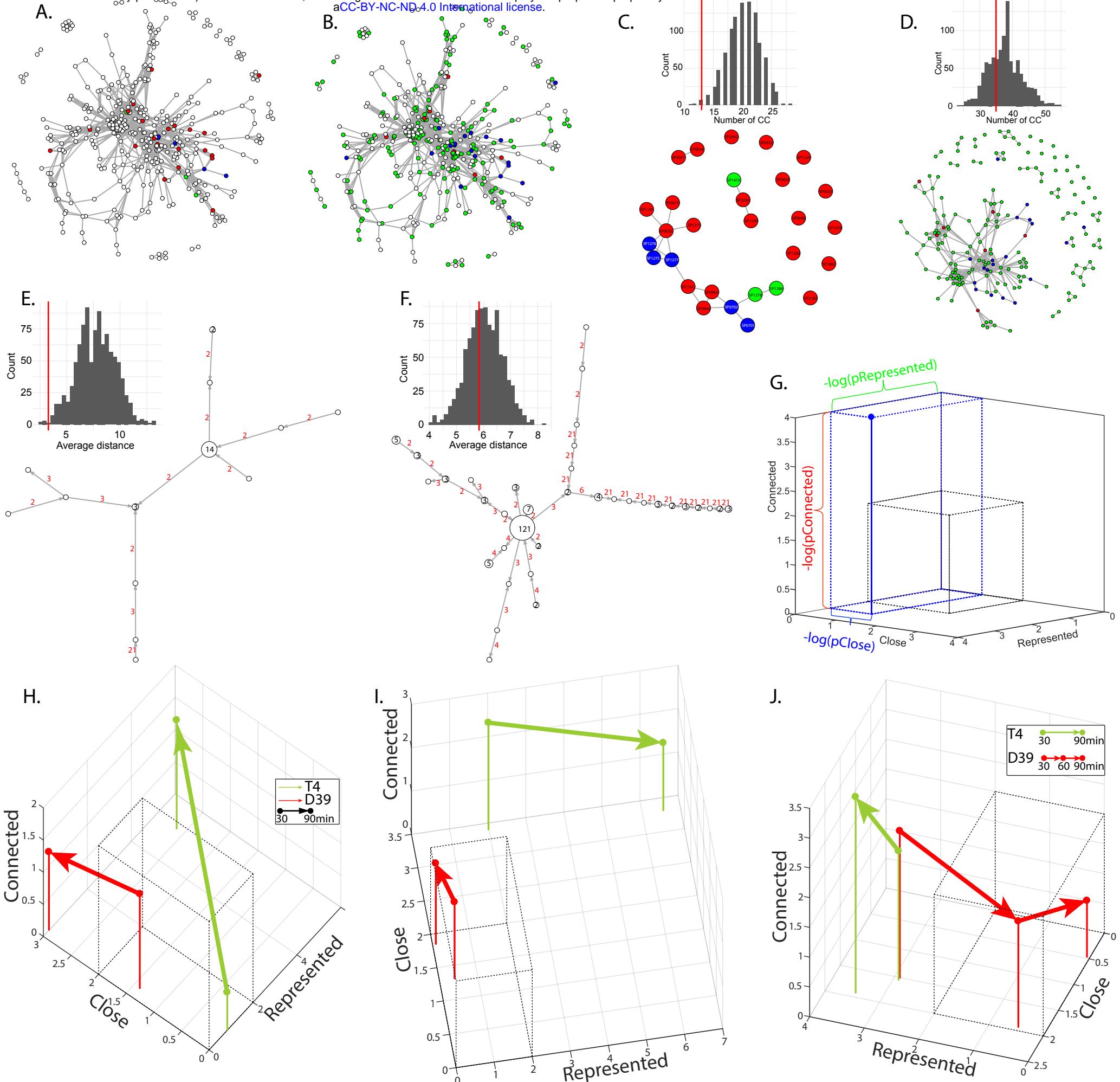


Figure 4

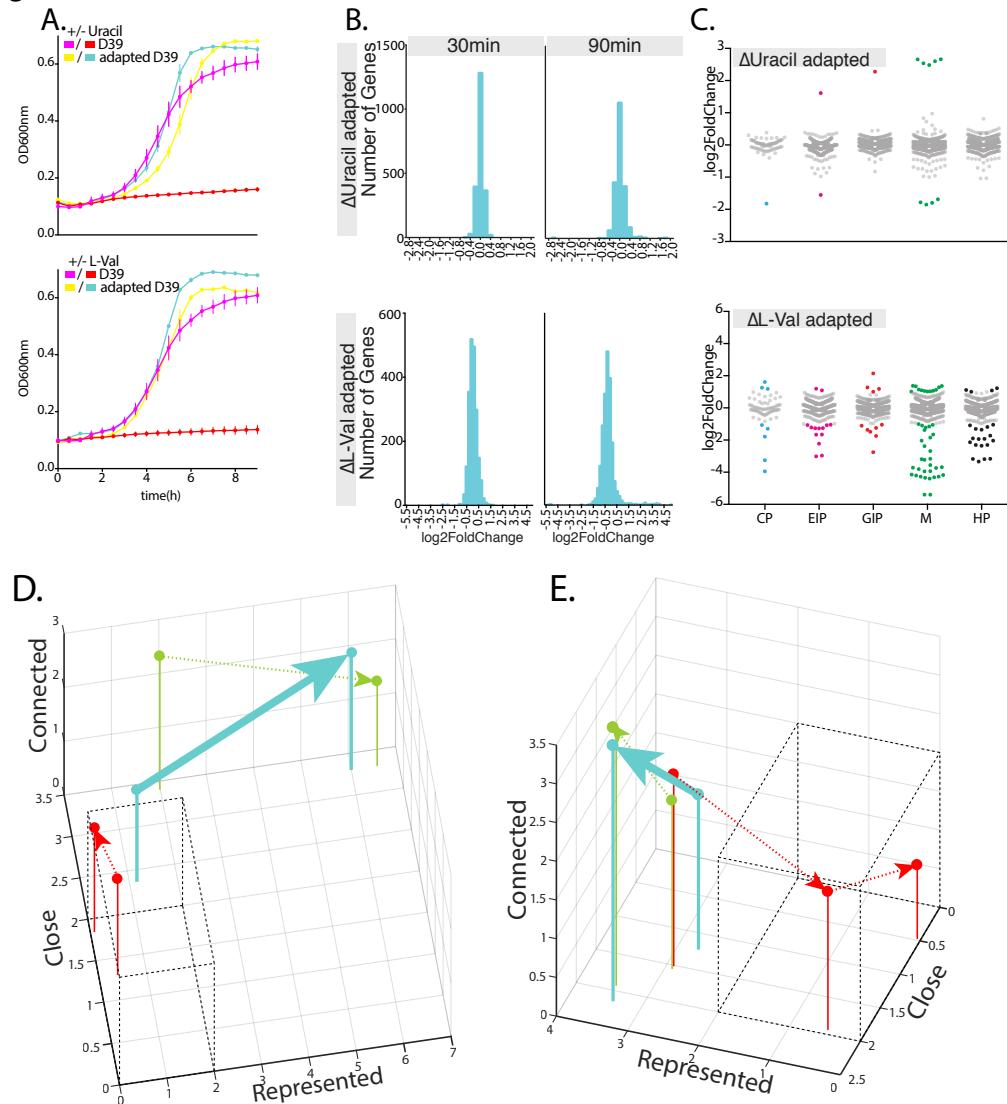


Figure 5

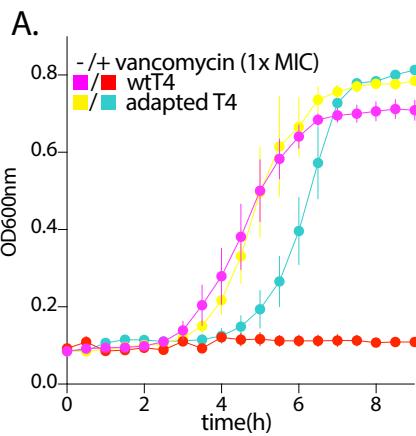
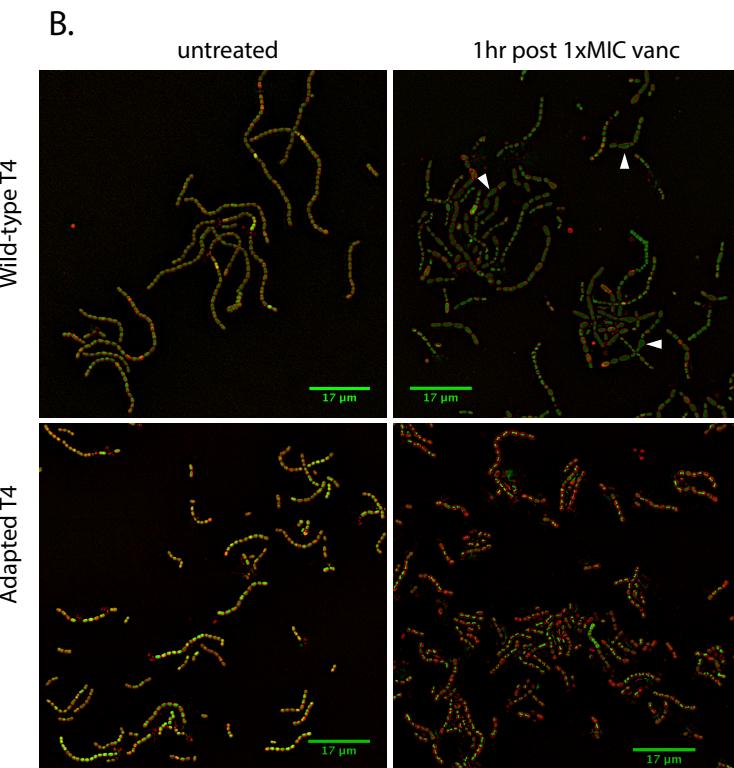
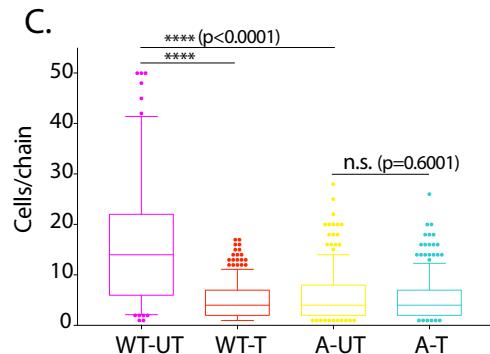
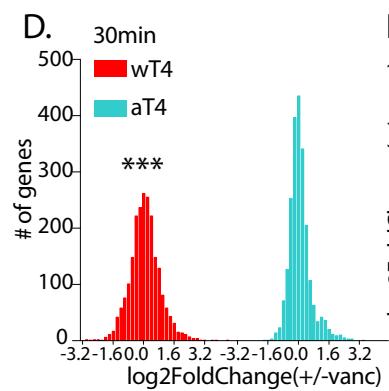
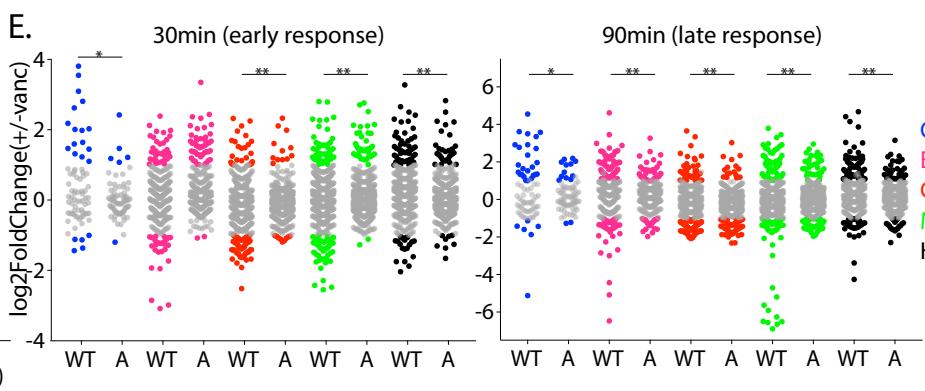


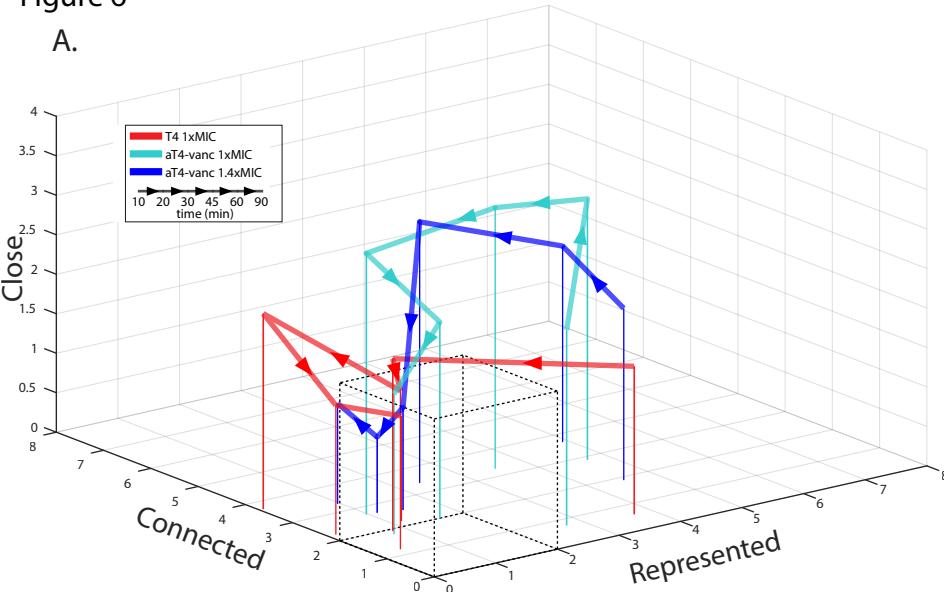
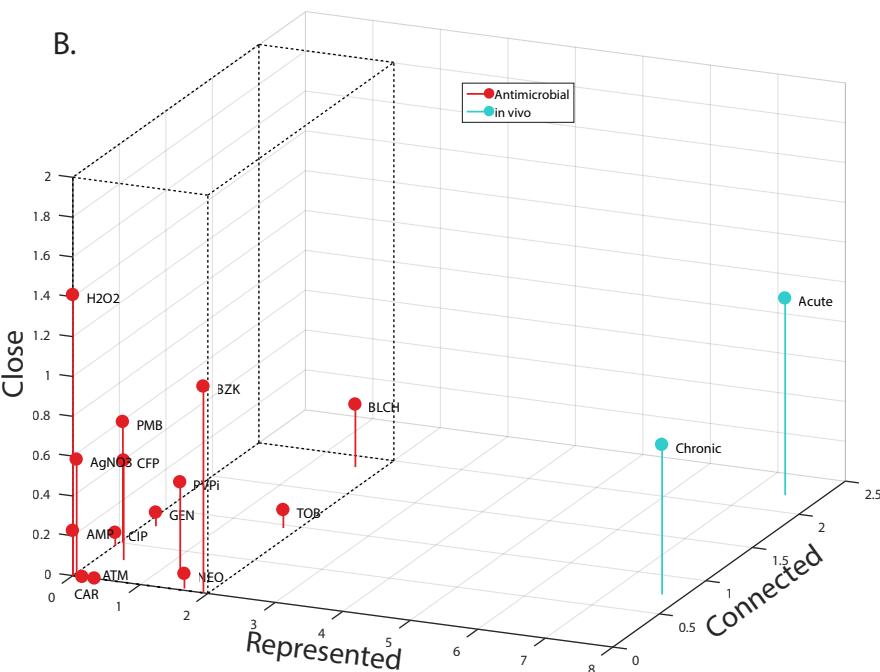
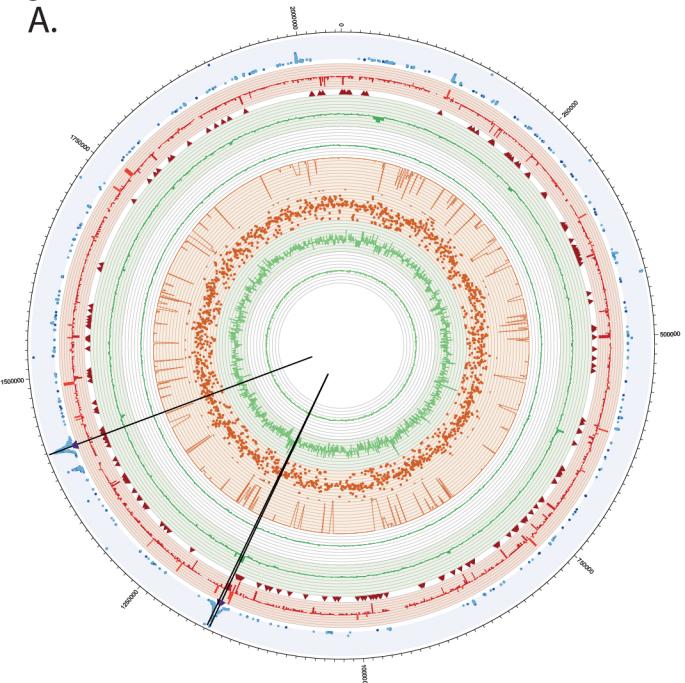
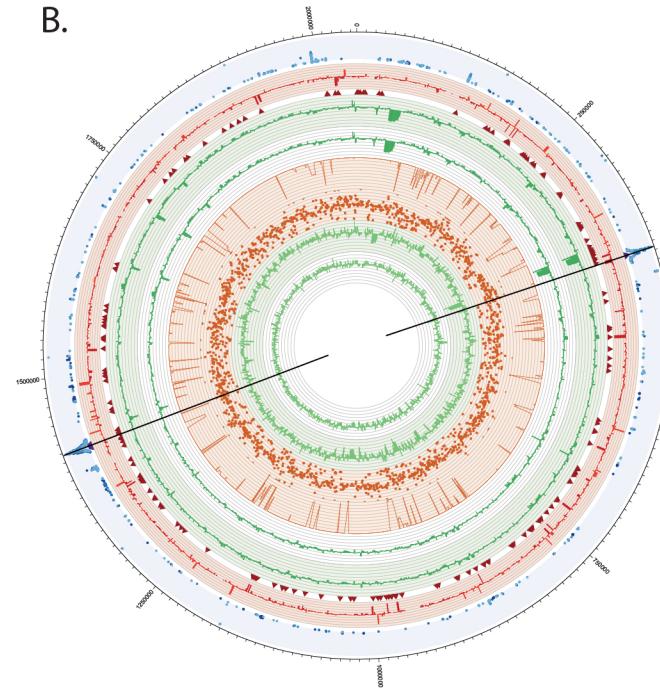
Figure 6**A.****B.**

Figure 7

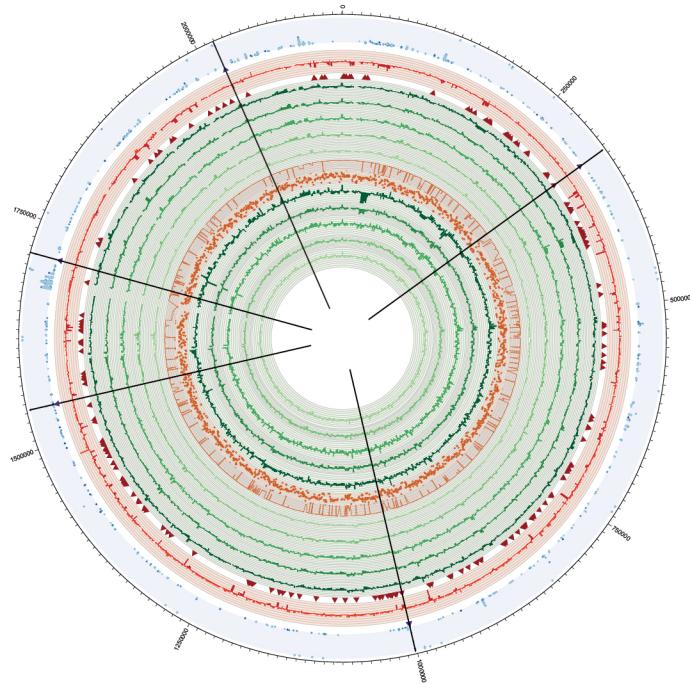
A.



B.



C.



D.

