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ABSTRACT

Whether a bacterial pathogen establishes an infection and/or evolves antibiotic resistance
depends on successful survival while experiencing stress from for instance the host immune
system and/or antibiotics. Predictions on bacterial survival and adaptive outcomes could thus
have great prognostic value. However, it is unknown what information is required to enable such
predictions. By developing a novel network-based analysis method, a bacterium's phenotypic and
transcriptional response can be objectively quantified in temporal 3D-feature space. The
resulting trajectories can be interpreted as a degree of coordination, where a focused and
coordinated response predicts bacterial survival-success, and a random uncoordinated response
predicts survival-failure. These predictions extend to both antibiotic resistance and in vivo
infection conditions and are applicable to both Gram-positive and Gram-negative bacteria.
Moreover, through experimental evolution we show that the degree of coordination is an
adaptive outcome - an uncoordinated response evolves into a coordinated response when a
bacterium adapts to its environment. Most surprisingly, it turns out that phenotypic and
transcriptional response data, network features and genome plasticity data can be used to train a
machine learning model that is able to predict which genes in the genome will adapt under
nutrient or antibiotic selection. Importantly, this suggests that deterministic factors help drive
adaptation and that evolution is, at least partially, predictable. This work demonstrates that with
the right information predictions on bacterial short-term survival and long-term adaptive
outcomes are feasible, which underscores that personalized infectious disease diagnostics and

treatments are possible, and should be developed.
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INTRODUCTION

The ability to predict whether a bacterial pathogen is successfully establishing an infection, will
adapt to the stress it encounters in the host and/or progress to cause disease could have great
diagnostic value. However, it is unknown whether such predictions are entirely possible and
what information they would require. As a consequence, most diagnostics today come from a
physician’s deductive reasoning, which can lead to sub-optimal antibiotic treatments and may
contribute to the emergence and spread of antibiotic resistance [1, 2]. Alternatively, in cancer
diagnostics transcriptional changes in specific genes of cancerous tissue, in addition to changes
in the host response, are used to provide prognostic information beyond standard clinical
assessment [3-6]. Moreover, integration of systems-level data, machine learning, and various
network/graph-based approaches have been employed to classify cancer subtypes and identify
subtype-specific drug targets, enhancing the diagnostic power of current approaches and leading
to more effective treatment options [7, 8]. With analogy to cancer diagnostics, a systems-wide
understanding of the state of a bacterial infection and how the infection may possibly progress
under pressure of the host-immune system and/or other stresses, could similarly aid in providing

targeted and personalized infectious-disease treatments.

Our previous work has indicated that advanced infectious-disease prognostics may be possible
by combining bacterial stress-response monitoring with network analyses [9]. A commonly
applied approach for characterizing bacterial stress responses is through RNA-Seq, which
measures genome-wide transcriptional changes upon an environmental perturbation. With the
advent of transposon-insertion sequencing (Tn-Seq), it has now also become relatively easy to
determine, on a genome-wide scale, the phenotypic importance of a gene, i.e. a gene’s
contribution to fitness in a specific environment [10, 11]. Importantly, direct comparisons
between data from these different omics-approaches has shown, contrary to expectations, that
genes that change in transcription are poor indicators of what matters phenotypically. In other
words, phenotypically important and transcriptionally important genes (PIGs and TIGs) rarely
overlap [9, 12-18]. However, when integrated into a network, highly coordinated patterns
between PIGs and TIGs surface when the organism is challenged with an evolutionarily familiar
stress (i.e. one that has been experienced for many generations, e.g. nutrient depletion), while the

response becomes less coordinated when the bacterium is challenged with and responds to a
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81 relatively new stress (e.g. antibiotics) [9]. This means that the degree of network coordination
82  between PIGs and TIGs originates from the bacterium’s ‘adaptive past’ and should thus be
83 indicative of the degree to which the bacterium is adapted to a specific stress and will survive the
84  challenge (short-term survival outcome). Moreover, since evolution is a continuing process,
85  survival outcome - influenced by past adaptation - is ultimately related to future adaptive
86  outcomes; i.e. network coordination is indicative of where and how stress is experienced in the
87  genome, while selection drives adaptive evolution to resolve this stress. Thus, it may be possible
88 to predict where in the network innovation (adaptation) is most likely to occur to optimize
89  network coordination and increase survival success (long-term adaptive outcome).
90
91 Here we develop a novel integrated approach that combines genome-wide profiling, network
92  analyses and machine learning, which enables predictions on bacterial short-term survival and
93 long-term adaptive outcomes. As our model system, we use the respiratory pathogen
94  Streptococcus pneumoniae, which on a yearly basis causes ~1 million fatalities worldwide [19]
95 and ~4 million disease episodes in the US alone, among which ~40% are caused by strains that
96 are resistant to at least one antibiotic [20]. To develop this predictive strategy, we first establish
97  the transcriptionally and phenotypically important genes using temporal RNA-Seq and Tn-Seq
98 respectively in different S. pneumoniae strains that have different survival outcomes under
99  nutrient stress conditions and in the presence of antibiotics. By overlaying data onto newly
100  developed strain-specific networks and applying network analyses, we find that distinct network
101  patterns emerge that can be depicted as temporal trajectories that move through a specially
102  constructed feature space. Importantly, these patterns are predictive of whether or not a
103  bacterium is successfully surviving in its environment. Moreover, we apply the approach to in
104  vitro and in vivo data from Pseudomonas aeruginosa, highlighting its generalizability and the
105  possibility to predict bacterial survival-success in the host. Lastly, the development of a support
106  vector machine (SVM) leads to the ability to predict which genes acquire adaptive mutations
107  while adapting to nutrient stress or while evolving antibiotic resistance. This study shows that
108 infectious-disease prognostics is feasible through the implementation of different omics-
109  approaches, network analyses and machine learning, enabling the prediction of whether a
110  bacterium will survive or not under a given stress and where in the genome it is most likely to

111  adapt.
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112 RESULTS AND DISCUSSION

113  Strain specific metabolic networks are insufficient in defining nutrient dependency or
114  predicting survival outcomes in three strains of S. pneumoniae.

115  Streptococcus pneumoniae on average contains 2100 genes and harbors considerable genetic
116  diversity, with two strains differing on average by 250 genes (presence and absence), and a pan-
117  genome (collection of all genes across all strains) that is approximately double the size of the
118 genome of any given strain. S. pneumoniae designates ~30% of its genome to metabolic
119  functions, which enables growth on different carbon sources and in the presence and absence of
120  different substrates (e.g. amino acids, lipids). This ‘strategy’ all but guarantees the bacterium’s
121  survival in a variety of host-niches, including the nasopharynx, inner-ear and lungs. Since
122 different host niches have different nutrient availability [21], nutrient depletion is evolutionarily
123  an important stress to the obligate non-motile human pathogen S. pneumoniae and has shaped its
124  genetic composition. We thus reasoned that strain-specific nutrient dependencies must exist and
125  that such dependencies can be used as a testing-ground to predict whether a strain will survive in
126  a specific environment and what information is needed to make such predictions.

127

128  Three strains (TIGR4 [T4], Taiwan-19F [19F] and D39) that differ in ~7% of their genetic
129  content (presence or absence of genes; [9]), were assayed to identify essential nutrients for
130  growth. Single nutrients were sequentially removed from a chemically defined medium (CDM)
131  and the effect on the growth rate was calculated. A nutrient is defined as essential if its removal
132 causes a >70% reduction in the bacterium’s growth rate, and important if the reduction is
133 between 50-70% (Supplementary Figure 1, detailed explanation of definitions in this study can
134  be found in Supplementary Information). In total, four amino acids are essential to all three
135  strains: (L-Arginine, L-Cysteine, L-Histidine, and L-Leucine; Supplementary Figure 1A), while
136 6 nutrients have strain-specific requirements: 1) three amino acids (Glycine, L-Isoleucine and L-
137  Valine) and the nucleobase uracil are essential to D39; 2) Pantothenate is important to T4; 3) L-
138  Glutamine is important for T4 and D39 (Supplementary Figure 1A). At least two possible
139  explanations for this strain-specific nutrient dependency are that a strain either lacks certain
140  genes that are required to synthesize the nutrient or the respective metabolic network is
141  differentially wired. For instance, a metabolic gene might encode isoforms of an enzyme that

142  catalyze different reactions in different strains [22]. To determine the origin of the strain-specific
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143  nutrient dependency we expanded the S. pneumoniae metabolic model we previously built for T4
144  [9] with two additional strain-specific models for D39 and 19F (Supplementary Figure 2;
145  Supplementary File 2). The three models are highly conserved, sharing 96% of all metabolic
146  genes across all strains (i.e. 431 metabolic genes/868 metabolic reactions), however, neither the
147  presence of strain-specific metabolism genes nor differences in the metabolic network topology
148  can sufficiently explain the observed strain-specific nutrient requirements.

149

150 Genome-wide profiling reveals distinct transcriptional patterns between a nutrient
151  dependent strain and an independent strain.

152  Genomic content and network architecture are thus not enough to consistently predict bacterial
153  survival and growth in a certain environment. We previously demonstrated that the degree of
154  network coordination between phenotypic and transcriptional responses distinguishes
155  evolutionarily familiar stresses from relatively novel ones [9]. Such network patterns could thus
156  be key to predicting whether a bacterium is successfully surviving in a specific environment.

157

158  To uncover genes that are phenotypically important (PIGs), we performed Tn-Seq on T4 in the
159  absence of either uracil, L-Valine or Glycine (i.e. nutrients essential for D39 but not T4). Tn-Seq
160  measures, in a highly quantitative fashion and on a genome-wide scale, which genes and
161  pathways are important for growth in a specific environment [11, 23]. By comparing fitness in
162  the presence and absence of a nutrient, genes that are important for T4’s survival in the absence
163  of the nutrient are identified, which leads to a total of 134 PIGs that contribute to growth of T4
164 (15 genes for Glycine, 75 genes for uracil, 44 genes for L-Valine). All of these genes have
165 homologs in D39 and thus do not directly explain the different dependencies between T4 and
166  D39. Subsequently, we profiled the manner in which T4 and D39 transcriptionally respond to the
167  absence of the D39-specific essential nutrients. Genome-wide transcriptional responses were
168  determined by temporal RNA-Seq for T4 (the nutrient-independent strain) and D39 (the nutrient-
169  dependent strain) at 30 and 90 min after nutrient depletion (Supplementary Table 1).

170

171  Three distinct transcriptional patterns emerge that differentiate a nutrient-dependent from an
172  independent strain: 1) A dependent strain tends to trigger a greater number of expression changes

173  under nutrient depletion (Supplementary Table 2). For instance, in the absence of L-Valine or
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174  Glycine, D39 triggers significantly more TIGs than T4 at both the early and the late time points
175  (two proportion Z-test, p<0.01) (Supplementary Table 2). Additionally, in the absence of uracil,
176 D39 and T4 trigger similar numbers of TIGs at 30min, however at 90min, the number of TIGs in
177 T4 decrease (from 22 to 13), while in D39 the number of differentially expressed genes increases
178  to 857 (nearly 40% of the genome); 2) In each single nutrient-depletion condition, magnitude
179  distributions of differential expression are significantly wider in D39 than in T4 (Figure 2A,
180 Kolmogorov-Smirnov test, p<0.01, Supplementary Table 2), indicating that the extent of
181  genome-wide transcriptional change is much larger in the dependent strain; 3) A functional
182  distribution analysis of TIGs shows that at 30 and 90 min after the depletion of Glycine or L-
183  Valine, and at 90 min after the depletion of uracil more TIGs per functional tag are differentially
184  regulated in the dependent strain (Figure 2B; Supplementary File 3). Furthermore, the TIGs are
185  distributed across more functional categories indicating that nutrient depletion has a greater
186  impact on most cellular systems of the dependent strain (Figure 2C; Supplementary File 3). If we
187  directly compare the TIGs of the independent with the dependent strain, it turns out that the T4-
188  TIGs (both early and late) are also TIGs in D39. This suggests that the dependent strain can raise
189  asimilar ‘appropriate response’ as the independent strain to the endured stress. To obtain slightly
190  higher temporal resolution we additionally profiled 60 min after uracil depletion, which triggers
191 20 TIGs in D39, the majority of which are involved in uracil uptake (uracil permease SP_1286)
192  and the metabolic pathway that generates the pyrimidine precursor uridine monophosphate
193 (UMP) (SP_0701-0702, SP_0963-0964, SP_1275-1278, SP_1288; Supplementary File 3). These
194  exact uracil-related genes are also up-regulated in T4 and form the majority of T4’s response to
195  wracil depletion at both early and late time points (Supplementary File 3, Figure 2D).
196  Importantly, this further shows that D39 is actually able to generate an appropriate
197  transcriptional response, but only over a limited amount of time. Instead, somewhere between 60
198 and 90 minutes D39’s response is washed out by a rapidly expanding genome-wide
199  dysregulation (Figure 2E-F).

200

201 Network analyses of the transcriptional and phenotypic responses can be visualized in a
202  temporal feature space and define survival as a coordinated response.

203 To enable detailed network analyses and determine the degree of network coordination, the

204  strain-specific metabolic network models were converted into genetic networks where each gene
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205 s represented as a node, and two gene nodes are connected if the proteins encoded by these
206  genes are involved in the same or in subsequent reactions. Overlaying TIGs and PIGs on the
207  network shows very little overlap and when genome-wide fitness is plotted against expression
208 change most genes distribute along the horizontal and vertical axes (Supplementary Figure 3).
209 This means that genes that change in expression rarely change in fitness, indicating that
210  transcriptional importance is a poor indicator of what matters phenotypically (Supplementary
211  Table 2, Supplementary Figure 3), which is consistent with our previous observations [9]. When
212  the independent and dependent strains’ responses are plotted on a network, visual inspection
213  suggests that the independent response remains contained to a specific part of the network over
214  time (Figure 3A), while the dependent strain’s response becomes increasingly scattered across
215  the entirety of the network (Figure 3B). In order to objectively quantify these responses we
216  devised three types of measurements that capture the defining network characteristics of a
217  response:

218 1) Connectedness (CC): the number of connected components is calculated by removing all
219  nodes from the network that are neither PIGs nor TIGs. This leaves a collection of sub-networks
220  (or components) that are separated and unreachable from one another. In a network sense, this
221 means that information may flow within a component but not between components due to
222  missing connections. The number of components thus explains the cohesiveness and continuity
223  of the response. For instance, in the absence of uracil in T4 we observe one large component
224  which corresponds to the UMP biosynthesis pathway, and several small (single-node)
225  components (Figure 3C). In contrast, the dependent D39-uracil at 90 min response is defined by
226  a large number of small components consisting of 1 or 2 genes (Figure 3D), however a large
227  dominating component consisting of 121 TIGs and PIGs is also observed (Figure 3D). This large
228  component potentially results from the presence of few highly connected “hub” genes. It is thus
229  important to evaluate whether the number of connected components formed in an observed
230  response are significantly different from a random response, which is achieved by permutation
231 testing (see Methods).

232 2) Closeness (CN): while a small number of components may indicate that a response is
233  contained to a few network modules, it is equally important to take into account the relative
234  position, or closeness, of the components, where highly related (sub)pathways are generally

235  closer to each other than unrelated pathways. This measure thus explains whether components
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236  are functionally related and a response is targeted. For instance, out of the 13 components in the
237 T4 uracil depletion response 12 are only 2-3 edges away from their nearest component (Figure
238  3E), which is significantly smaller than the distances between randomized responses (obtained
239  through permutation testing). This indicates that the response, while not fully connected, is
240  contained and targeted in a relatively small area of the full metabolic network. In contrast, the
241  distances between the components of the D39-uracil response are not significantly smaller than a
242  random response (Figure 3F).

243  3) Representation (RE): while our network is limited to metabolism, the observed TIGs and PIGs
244  are genome-wide (Figure 2). For instance, D39’s response to Glycine depletion is significantly
245  connected, however the metabolic portion of the response comprises only ~20% of the full
246  response. Importantly, since only the part of the response that falls on the network is considered,
247  the majority of the response in this case is thus ignored. This heavily skewed off-network
248  response is problematic because while the 20% on-network may give an indication of being
249  connected and/or close, in reality the true response could be random. This is illustrated with
250 respect to the earlier observation that even though the dependent strain may trigger an
251 appropriate transcriptional response that suggests survival-success, when the entire response is
252 considered it becomes clear that the transcriptional dysregulation is scattered across many other
253  non-metabolic pathways, processes and genes that are overwhelming the “appropriate response”
254  (Figure 2). To account for this, the RE is calculated, which defines a response as “metabolically
255  represented” if a significant proportion of the responsive genes fall on the metabolic network
256  (see Methods).

257  Lastly, to incorporate the manner in which the response changes over-time the log-transformed
258  p-values for CC, CN and RE calculated from each time point are plotted in a feature space,
259  where each of the three characteristics are placed along separate axes (Figure 3G; Supplementary
260  Figure 4). In this scheme, the region around the origin (grey box, Figure 3G) represents a
261  response that is non-significant in terms of CC, CN, and RE.

262

263  For all three depletion conditions (L-Valine, Glycine and uracil), the response of the nutrient-
264  independent strain (T4) tends to move away from the origin over time, and the responses are
265  characterized by significant CC, CN and/or RE (Figure 3H-J). In contrast, the nutrient-dependent

266  D39’s responses are mostly confined to the non-significant regions near the origin (Figure 3H-J).
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267  This is especially well illustrated by the uracil depletion experiment, where T4 and D39 strains
268  are situated at a very similar location at 30 min (Figure 3J). However, while the independent
269  strain T4 moves towards a higher CC, CN and RE, D39 moves in the opposite direction and into
270  the non-significant space. Thus, coordination between the transcriptional and phenotypic
271  response is maintained and strengthened over time in strains that can tolerate and survive in a
272  particular environment but weakened in strains that cannot (Figure 3H-J). Importantly, this
273  trajectory reinforces quantitatively what was suggested by the transcriptional response where
274  both strains start out in a very similar manner, and while the T4 response remains targeted, the
275 D39 response ends in uncoordinated dysregulation (Figure 2-uracil depletion). The temporal
276  trajectory formed by three network parameters (CC, CN, RE) thus characterizes the stress-
277  response of a strain as coordinated or uncoordinated, corresponding to survival success or
278  failure.

279

280 Experimental evolution of a sensitive strain reverts nutrient dependencies and rewires
281  stress responses into a coordinated response.

282  In order to test whether a dependent strain that becomes adapted to the absence of a nutrient (i.e.
283 it becomes independent) acquires network coordination, two short-term evolution experiments
284  were designed in which D39 was adapted to grow in the absence of uracil or L-Valine separately.
285  Four replicate populations were established for each experiment and cultured by serial passaging
286 in CDM in which either nutrient was decreased by approximately 15% every 3 days until
287  populations were obtained that are able to robustly grow in the absence of either nutrient (~40
288  generations each; Supplementary Figure 1C; Figure 4A).

289

290  To determine the adapted strains’ transcriptional response, temporal RNA-Seq was performed on
291  a uracil-adapted (aD39-uracil) and a L-Valine-adapted strain (aD39-val) in the presence and
292  absence of the respective nutrient. Similar to the original independent strain T4, the two adapted
293 D39 strains now exhibit only a small number of differentially expressed genes (Supplementary
294 Table 2; Supplementary File 3), the magnitude of differential expression has a narrow
295  distribution, and TIGs in the adapted strains show specific function distributions similar to the
296  ‘original’ independent strain T4 (Figure 4C and Figure 2B). On a network level, coordination
297  profiles and trajectories arise that are highly similar to T4 (Figure 4D and E). For instance, the

10
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298 trajectory of aD39-val tracks along a higher RE and CC, resembling T4 (Figure 4D), and the
299  trajectory of aD39-uracil moves in the opposite direction of D39 with higher CC, CN and RE
300 and is almost indistinguishable from T4 (Figure 4E). Our analyses thus show that adaptation to
301 nutrient depletion stress leads to transcriptional rewiring and that adapted strains gain highly
302 targeted and coordinated responses, predictive of their ability to survive in an environment.

303

304 Rewiring of genome-wide transcriptional and phenotypic responses to achieve coordination
305 extends to the evolution of antibiotic resistance.

306 To test if network trajectories can also predict survival outcomes in a more complex
307 environment, we extended our approach to the evolution of antibiotic-resistance by challenging
308 T4 with vancomycin. Vancomycin is often used in treating infections caused by beta lactam-
309 resistant S. pneumoniae especially during sepsis and meningitis [24, 25]. The MIC of T4 is
310  0.24ug/mL (Supplementary Figure 1C) and in order to obtain a vancomycin-adapted strain a
311  short-term evolution experiment was performed. Four replicate populations were adapted to
312  vancomycin for ~70 generations (Supplementary Figure 1C), and an adapted strain (aT4-vanc)
313  was isolated, which can grow at 1XMIC with a relative fitness of W,rsyane = 0.88 compared to the
314  no drug control (Figure 5A; i.e. a 12% relative growth defect). Fluorescence microscopy on T4
315  (wild-type) and aT4-vanc reveal significantly longer cell chains for T4 in the absence of
316  vancomycin (p<0.0001 in t-test; Figure 5B and C). After one-hour exposure to vancomycin
317  (1xMIC), the wildtype loses the long chain morphology and often exhibits a bulging phenotype
318  (Figure 5B), which is in agreement with previous reports [26], while aT4-vanc cells under
319 vancomycin treatment are indistinguishable from untreated cells (Two-sample t-test, p=0.6001 )
320 confirming their adapted state.

321

322  The transcriptional response of T4 and aT4-vanc was determined with RNA-Seq at six time
323  points post-vancomycin treatment (10, 20, 30, 45, 60, and 90 min at 1xMIC). Overall, the
324  distinct patterns that are observed under nutrient-depletion are observed in the presence of
325 vancomycin as well: 1) aT4-vanc triggers fewer differential expression than T4 (Supplementary
326 Table 2); 2) aT4-vanc has significantly narrower magnitude distributions of differential
327  expression (Figure 5D, Supplementary Table 2; Kolmogorov-Smirnov test, p<0.02); 3) aT4-vanc

11
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328  triggers significantly fewer TIGs in most functional tags (Figure SE and Supplementary Table 2;
329  p<0.002 with Bonferroni correction for multiple testing).

330

331 To generate the phenotypic response and enable network analyses Tn-Seq was performed in the
332 presence of vancomycin, which, as expected, reveals little overlap between PIGs and TIGs
333  (Supplementary Table 2). The CC, CN and RE trajectories for T4 and aT4-vanc at 1xMIC start at
334  very similar coordinates in the feature space with high RE (Figure 6A). However, T4 rapidly
335 transitions to a less-represented space, displaying an erratic trajectory that ends in a non-
336  significant and uncoordinated response, indicative of survival-failure. On the other hand, aT4-
337 vanc moves away from the origin, to a state where it is significantly connected, close and
338 represented over the first 30 minutes. Between 30 and 90 minutes, aT4-vanc then follows an arc
339  where it gradually becomes less represented, close or connected, and eventually ends just below
340 the significance threshold for all three characteristics (Figure 6A). Thus, while aT4-vanc can
341 maintain a highly coordinated response for at least 60 minutes, this coordination is still partially
342 lost at the 90-minute time point, most likely because aT4-vanc is not fully adapted to
343  vancomycin, displaying a detectable growth defect in the presence of 1xMIC compared to the no
344  drug control (Figure 5A). We reasoned that at a higher vancomycin concentration, aT4-vanc
345  would start to behave more similarly to the sensitive T4 at 1xMIC. When challenged with
346  1.4xMIC of vancomycin, aT4-vanc initially shows a similar trajectory to 1xMIC (Figure 6A) but
347  traverses the same arc faster, i.e. at 1XMIC aT4-vanc traverses an arc over 60 minutes whereas at
348  1.4xMIC the traversal of the same arc is completed in 30-45 minutes. Finally, at 1.4xMIC,
349  between 45 and 90 minutes, the trajectory stays near the non-significant space. Thus, aT4-vanc at
350 1.4xMIC displays similarities to both the wild-type and aT4-vanc at 1xMIC where it has a
351 coordinated response at earlier time points but loses its coordination relatively fast (over fewer
352  number of line segments) and behaves erratically (similar to T4) at the later time points. This
353  means that, similar to nutrient-depletion, the direction of the trajectory but also the shape and the
354  speed at which it moves along a trajectory has predictive value concerning short-term survival
355  success under antibiotic exposure.

356

357  Network coordination is predictive of survival outcome in other bacterial pathogens.
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358 In order to determine whether our findings are applicable to other bacterial species, network
359 analyses were extended to the evolutionarily distant opportunistic pathogen Pseudomonas
360 aeruginosa [27]. Tn-Seq and RNA-Seq data collected for strain PAO1 tested against 14
361 antimicrobials [28] and for strain PA14 tested in 2 in vivo wound infections (chronic and acute)
362  [17] were overlaid onto their respective strain-specific metabolic models [29]. In none of the 14
363 antimicrobial conditions PA14 elicits a coordinated response, i.e. CC, CN and RE of the PIGs
364 and TIGs are never significant (Figure 6B). On the other hand, during an infection, the
365  transcriptional and phenotypic responses of PAOI are significant in RE on the metabolic
366 network, and in the case of an acute infection the response is also significant in CN (Figure 6B).
367  The higher coordination in the acute infection suggests that the pathogen is more likely to
368 survive in this condition. Indeed, acute burn infections tend to spread and deteriorate rapidly
369 [30], indicating a more successful outcome (at least with respect to short-term bacterial survival)
370  for the pathogen P. aeruginosa, and thus suggesting that network analyses can be applied to infer
371  disease progression, although more time-points would most likely be more informative.

372

373  Integration of machine learning, genome-wide profiles, and network characteristics enables
374  prediction of adaptive evolution.

375  Network analyses thus reveal where on the genetic network stress is experienced, while the level
376  of coordination is indicative of how stress is processed. Importantly, adaptive mutations are
377  generally localized in genetic regions that resolve (part of) the experienced stress. It may thus be
378  possible, that with the right information (e.g. where is stress experienced in the genome, how
379  evolvable is that part of the genome, how is it connected in a network context), we can predict
380  which parts of the genome are most likely to contribute to adaptive evolution. Since there are no
381 obvious patterns in our data (e.g. TIGs, PIGs, network connectivity) that are predictive of
382  adaptation we test this hypothesis by training a support vector machine (SVM) - one of the most
383  established supervised classifiers in machine learning [31], with the goal to develop a model that
384  isable to predict which genes will acquire adaptive mutations-

385

386  Adaptive mutations are defined as non-synonymous mutations in coding regions that went to
387  fixation or reached a frequency > 50% during experimental evolution in the absence of uracil and

388 L-Valine and in the presence of vancomycin, determined through whole-genome sequencing on
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389  the adapted populations. In total, four mutations (in three genes) were identified in uracil-adapted
390 populations, three mutations (in two genes) in L-Valine-adapted populations, and seven
391 mutations (in five genes) in vancomycin-adapted populations (indicated by radial lines in
392  lavender in Figure 7A-C). The mutations’ high frequency and condition-specificity are indicative
393  of their adaptive nature. Furthermore, in the nutrient (uracil and L-Valine) adapted populations
394 the mutated genes are involved in the metabolic pathways of the depleted nutrient
395  (Supplementary Table 3). Additionally, in the vancomycin adapted populations, mutated genes
396 are involved in capsule metabolism (SP_0350/cps4E), cell division/cell-wall synthesis
397  (SP_1067/ftsW), stringent response (SP_1645/reld), membrane transport (SP_1796), and
398 carbohydrate metabolism (SP_2107/malM). Although few cases of vancomycin
399 resistance/tolerance have been reported in S. pneumoniae, the capsule influences sensitivity to
400 this antibiotic [24, 32, 33], while reduced sensitivity to vancomycin has been reported in reld
401 mutants of other Gram-Positive cocci, including Enterococcus faecalis [34], vancomycin-
402  resistant E.faecium [35], Staphylococcus aeurus [36], and cell wall modifications (e.g.
403  thickening) are common features for vancomycin resistance [37, 38].

404

405  Genotypes of the mutated genes were compared to their homologous genes in 371 S. pneumoniae
406  strains that cover the variation present in the pan-genome [39]. Interestingly, the adaptive
407  mutations that arose in the nutrient experiments always resulted in the acquisition of the nutrient-
408 insensitive T4 genotype at these loci (Supplementary Table 3), which is also the shared genotype
409 among the majority of the pan-genome strains, indicative of most strains being tolerant to
410  nutrient deprivation of uracil and L-Valine. In contrast, adaptation to vancomycin results in the
411  acquisition of novel genotypes; i.e. none of the 371 strains carry any of the aT4-vanc mutations,
412  indicative of the fact that very few vancomycin-resistant/tolerant clinical strains have been
413  reported for S. pneumoniae. Despite this difference between nutrient and antibiotic adaptive
414  patterns, there are common features to all mutations from all three conditions. For instance, they
415  appear in highly conserved genes, i.e. core genes with high sequence similarity. Next, adaptation
416  data was overlaid with genome-wide profiles and sequence conservation data (Figure 7A-C) in
417  order to visually inspect whether adapted genes overlap with drastic phenotypic changes,
418  transcriptional changes and/or sequence conservation. For example, cardA (SP_1275) is an

419 adapted gene in the uracil adaptation experiment and it also has both transcriptional and
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420  phenotypic importance. While this is a suggestive pattern, at a genome-wide level it is hard to
421  detect such consistent patterns across all three experiments that could be indicative of other
422  likely candidates for adaptive evolution (Figure 7A-C).

423

424  To generate a classifier that is able to separate adapted genes (AGs) from non-adapted genes by
425  uncovering hidden patterns in our data, an SVM was built on the Tn-Seq and RNA-Seq profiles,
426  the network characteristics as well as the species-wide sequence conservation data. Importantly,
427  the latter datatype is included because sequence conservation is indicative of genomic plasticity,
428  i.e. it gives insight into the genomic regions that change the most/least and thereby potentially
429 influences the adaptability of each gene. Subsequently, the SVM was trained on the aggregation
430  of all adaptation experiments (uracil, L-Valine and vancomycin), with oversampling of the AGs
431  (see Methods). A total of 1409 data points and 18 features were used, with 10-fold cross-
432  validation and no parameter tuning. In total, 5 out of 6 adapted genes that are on our network are
433  successfully identified as adapted with 3 false positives and 1 false negative (Supplementary
434  Table 3). In cases where one class dominates the dataset (e.g. here we have >99% non-AGs) a
435  high accuracy can even be achieved by a naive classifier that only selects the more numerous
436  class. Therefore, the observed accuracy of the classifier (99.69%) is compared to a naive
437  classifier, which performs significantly worse (98.91%, Cohen’s kappa=0.7128, p=0).
438  Furthermore, the sensitivity of the SVM (true positive rate: the proportion of true AGs that are
439  correctly identified) is 83.33%, the specificity (true negative rate: the proportion of true non-AGs
440  that are correctly identified) is 99.77% and the classifier achieved an AUROC (Area Under
441  Receiver Operating Characteristic curve, representing the tradeoff between true positive and
442  false positive rates) of 0.9978, which significantly outperforms a random classifier
443  (AUROC=0.5) and thus indicates that AGs are successfully distinguished from non-AGs (Figure
444  7D). Importantly, this means that adapted genes indeed share certain common features that are
445 not immediately obvious but can be detected using machine learning. Prior studies of adaptive
446  evolution focus on interpreting adaptive mutations only after they have been acquired, and these
447  interpretations are very specific to the selective pressure under which adaptation has happened in
448  a particular study [40-42]. Instead, the classifier presented here can make a priori predictions on

449  which genes will adapt under stress/selective pressure, regardless of the nature of this stress.
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450  Thus, we demonstrate that incorporation of different data-types reveals that deterministic factors
451  exist that shape adaptive evolution thereby making it predictable.
452
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453 CONCLUSIONS

454  An important goal here is to determine what type of data is needed to predict a bacterium’s
455  chances of surviving in its environment. We show that a comparison of transcriptional responses
456  between a stress-sensitive and insensitive strain by itself shows stark differences in the number,
457  magnitude and functional tags that are involved in responding to the environment, which are
458  suggestive for their differences in survival-success. The full response thus carries important
459  information; however, a more granular analysis of the response is no less interesting. For
460 instance, both T4 and D39 respond very similarly early on to uracil depletion by ‘appropriately’
461  upregulating expression of the UMP-pathway, and while T4 maintains a similar response over
462 time, D39’s response is overwhelmed by genome-wide differential expression, resulting in
463  chaos. In addition, components of the stringent response (which is not understood in detail in S.
464  pneumoniae) such as genes involved in purine biosynthesis (SP_0044-0056) are down-regulated
465  in both T4 and D39 under amino acid depletion (L-Valine and Glycine; Supplementary file 3).
466  While this shows that particular response mechanisms are activated under stress, it turns out that
467  this is only a partial view. We show that by extending our focus and by taking the temporal
468 genome-wide response into account, it is possible to paint a global and detailed picture of how
469 the organism senses and processes stress. Moreover, we showed previously that it is important to
470 interrogate a bacterial response at both the transcriptional and phenotypic level to uncover
471 network patterns [9], and also here we find that PIGs are critical in enhancing our network
472  coordination analyses, especially when there are a few TIGs (Supplementary File 4). Overall our
473  strategy demonstrates that by integrating temporal transcriptional and phenotypic changes into
474  strain-specific networks, distinct patterns emerge that can be depicted as trajectories in feature
475  space. These temporal trajectories are composed of three types of measurements, Connectedness,
476  Closeness and Representation (CC, CN, RE) that capture the defining network characteristics of
477  aresponse and objectively quantify a strain’s response into a degree of coordination that reflects
478  survival success. Importantly, we show that the degree of coordination is an evolvable trait;
479  when strains evolve the ability to grow in the absence of a nutrient, or when antibiotic resistance
480 emerges, the network is rewired, increasing coordination and unfolding a focused and targeted
481 response. In other words, selective pressure optimizes a strain’s network coordination, which in
482  turn increases survival success; explaining why network coordination can be used to predict

483  short-term survival outcome. Past adaptation and future adaptive outcome are thereby intricately

17


https://doi.org/10.1101/387910
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/387910; this version posted August 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

484  linked, leading to the possibility of predicting where innovation (adaptation) in the network is
485 most likely to occur. Indeed, we show that by developing a support vector machine that
486 incorporates a wide array of data-types, genes that adapt can be distinguished from those that do
487  not. This indicates that with the right information, adaptation becomes a predictable process.

488

489  To improve on the short-term survival outcome and long-term adaptive outcome predictions, it is
490 likely that additional types of data as well as genome-wide networks will be beneficial. For
491 instance, epistatic and regulatory interactions have been shown to influence adaptive evolution
492  [43-46]. It is also possible to include information pertaining to the external environment that the
493  pathogen experiences into a predictive framework. The simultaneous transcriptomic profiling of
494  the host via dual RNA-Seq [47] and cytokine profiling (e.g. determining the state of the host
495  response can allow us to infer the magnitude of host-associated stress the pathogen is
496  experiencing) could also be informative and is something we are currently exploring. Along with
497  the host-response, the infection-causing pathogen potentially experiences competition or
498  participates in cooperation with the resident microbiota of the infection site, which can influence
499  the effectiveness of a given antimicrobial treatment [48]. Therefore, metagenomic profiling of
500 the microbiota from the site of infection may also aid in predicting the survival of a specific
501 pathogen.

502

503 To conclude, we demonstrate that network analyses and machine learning make short-term
504  survival outcome and long-term adaptive outcome predictable. Most importantly, the approach is
505 generalizable with respect to the applicability to Gram-positive and Gram-negative bacteria, the
506 emergence of antibiotic resistance, and the applicability to in vivo host infection. Thus, our
507 approach offers a primary gateway towards the development of highly accurate infectious
508 disease prognostics.

509

510
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511 MATERIALS AND METHODS

512  Bacterial strains, culture media and growth curve assays

513  S. pneumoniae strain TIGR4 (T4; NC_003028.3) is a serotype 4 strain originally isolated from a
514  Norwegian patient [49, 50], Taiwan-19F (19F; NC_012469.1) is a multi-drug resistant strain [51,
515 52] and D39 (NC 008533) is a commonly used serotype 2 strain originally isolated from a
516  patient about 90 years ago [53]. All gene numbers refer to the T4 genome. Correspondence
517  between homologous genes among the three strains and gene function annotations are described
518 in Supplementary File 3. Unless otherwise specified, S. pneumoniae strains were cultivated in
519 Todd Hewitt medium with 5% yeast extract (THY) with SuL/mL oxyrase (Oxyrase, Inc) or on
520  sheep’s blood agar plates (Northeastern Laboratories) at 37°C with 5% CO2. Tn-Seq and RNA-
521 Seq experiments under nutrient-depletion and vancomycin conditions were performed in
522  chemically defined medium (CDM; [9]) and semi-defined minimal medium (SDMM; [21]),
523  respectively. Single strain growth assays were performed at least three times using 96-well plates
524 by taking ODgyo measurements on a Tecan Infinite 200 PRO plate reader.

525

526  Tn-Seq experiments, sample preparation and analysis

527  Six independent transposon libraries were constructed in T4 using transposon Magellan 6 as
528  previously described [10, 11, 21]. Tn-Seq experiments under single nutrient depletion conditions
529  were performed in CDM in the presence or absence of one of the three nutrients: Glycine, uracil
530 and L-Valine. Vancomycin Tn-Seq experiment were performed in SDMM in the presence or
531 absence of 0.1lug/mL vancomycin (MP Biomedicals).

532

533 Library preparation, Illumina sequencing, data processing and fitness calculations (W
534  representing the growth rate) were performed as previously described [10, 11, 21]. Genes with
535 significant fitness change must satisfy three criteria: 1) Fitness of a gene must be calculated from
536 at least three insertion mutants in both control and experimental conditions. 2) A gene must have
537 a fitness difference greater than 15% (W control- WExperimental>0.15). 3) Wcontrol and Wxperimental
538  must significantly differ in a one sample t-test with Bonferroni correction for multiple testing.
539

540 Temporal RNA-Seq sample collection, preparation and analysis
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541  In nutrient RNA-Seq experiments, T4, D39 and adapted D39 were collected at 30 and 90min
542  after depletion of D39-essential nutrients (Supplementary Table 1). In vancomycin RNA-Seq
543  experiment, T4 and adapted T4 were collected at 10, 20, 30, 45, 60 and 90min post-vancomycin
544  (1x MIC) treatment. Cell pellets were collected by centrifugation at 4000 rpm at 4°C and snap
545  frozen and stored at -80°C until RNA isolation by RNeasy Mini Kit (Qiagen). 400ng of total
546 RNA from each sample was used for generating cDNA libraries following the RNAtag-Seq
547  protocol [54] as previously described [9]. PCR amplified cDNA libraries were sequenced on an
548 Illumina NextSeqS500 generating a high sequencing depth of ~7.5 million reads per sample [55].
549 RNA-Seq data was analyzed using an in-house developed analysis pipeline. In brief, raw reads
550 are demultiplexed by 5’ and 3’ indices [54], trimmed to 59 base pairs, and quality filtered (96%
551  sequence quality>Q14). Filtered reads are mapped to the corresponding reference genomes using
552 bowtie2 with the --very-sensitive option (-D 20 —R 3 -N 0 —-L 20 —i S, 1, 0.50) [56]. Mapped
553  reads are aggregated by featureCount and differential expression is calculated with DESeq2 [57,
554  58]. In each pair-wise differential expression comparison, significant differential expression is
555 filtered based on two criteria: |[log2foldchange| > 1 and adjusted p-value (padj) <0.05. All
556 differential expression comparisons are made between the presence and absence of the nutrient at
557  the same time point.

558

559  Experimental evolution and whole-genome sequencing

560 D39 and T4 were used as parental strains in nutrient-depletion and vancomycin evolution
561 experiments, respectively. Four replicate populations were grown in fresh CDM with decreasing
562  concentration of uracil or L-Val for nutrient adaptation populations, or increasing concentration
563 of vancomycin for antibiotic adaptation populations. Four replicate populations were serial
564 passaged in CDM as controls for background adaptations in nutrient adaptation experiments.
565  When populations had adapted a single colony was picked from each experiment, checked for its
566 adaptive phenotype by growth curve experiments. Genomic DNA was isolated from adapted
567  populations and single strains using a DNase Blood and Tissue kit (Qiagen), concentrations of
568 genomic DNA were measured on a Qubit 3.0 fluorometer (Invitrogen) and diluted to Sng/uL for
569 library preparation using a Nextera kit (Illumina). Libraries were sequenced on an Illumina
570 NextSeq500 and reads were mapped to their corresponding reference genomes. Mutations were

571 identified using the breseq pipeline with polymorphism mode for populations and consensus
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572  mode for adapted strains [59]. Adaptive mutations in each experiment are determined based on
573 the following criteria: 1) mutation frequency is greater than 50% in at least one replicate
574  population, and 2) this mutation is not present in any CDM-background adapted populations and
575  3) the mutation is a nonsense or missense mutation.

576

577  Determination of relative minimal inhibitory concentration (MIC) by microdilution

578 1to 5 x 10° CFU of mid-exponential T4 in 100uL was diluted with 100uL of fresh medium with
579  vancomycin to achieve a gradient of final concentrations from 0 to 0.5ug/mL in 96-well plates.
580  Each concentration was tested in triplicates. Growth was monitored on a Tecan Infinite 200 PRO
581 plate reader at 37°C for 16 hours. MIC is determined as the lowest concentration that abolishes
582  bacterial growth (Supplementary Figure 1C).

583

584  Fluorescent microscopy

585  Wild-type and vancomycin adapted T4 were grown to mid-exponential phase. Half of the culture
586  was left untreated, while the other half was exposed to 0.24ug/mL of vancomycin for 60 minutes.
587  1x10® CFUs were collected by centrifugation, resuspended in 20uL of PBS and stained with
588  Syto9 (DNA stain) and FM4-64 (cell membrane stain) for 10 minutes at room temperature. luL
589  of stained cells were imaged on an Olympus IX83 microscope system with an ORCA-Flash4.0
590 camera (Hamamatsu) and a 60x oil immersion objective. Phase contrast and fluorescence images
591 through GFP and RFP channels were taken for each sample. Microscopy of each sample was
592  repeated with at least three technical replicates. Images were modified for publication using Fiji
593  [60]. Cell numbers per chain was visually quantified based on 1000 S. pneumoniae chains from
594  each treatment group using at least three technical replicate micrographs.

595

596  Strain-specific metabolic model construction

597  Thirty-six reactions were manually added to the previously described T4 model [9] using the
598 COBRA toolbox based on updated information from three databases (NCBI, KEGG and BiGG)
599  and literature [61, 62]. Metabolite and reaction IDs were cross-referenced to follow the BiGG
600 naming convention [63]. Gene-reaction associations in the updated T4 metabolic model were

601 adjusted into three strain-specific models based on the correspondence table (Supplementary
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602  Table 1). For visualization of the metabolic models, a map of the S. pneumoniae metabolism was
603  constructed using Escher [64] referencing the KEGG pathway base (Supplementary Figure 2).
604

605  Spectral Clustering of the S. pneumoniae pan-genome

606 Complete, annotated genomes from 22 reference strains (RefSeq 58) and contigs from 350
607  clinical strains [39] were assembled for data analysis. The contigs were annotated using the
608 PATRIC Genome annotation service to identify coding sequences [65]. A total of 820,754 amino
609 acid sequences from the 372 strains were assembled. In order to reduce redundancy and expedite
610 clustering, representative sequences were selected using a boundary forest algorithm [66], with
611  Smith-Waterman distance as the similarity measure. This decreased the number of sequences to
612 17,000 representatives. Pairwise distances between representatives were computed to generate a
613  sequence similarity matrix (S). The gaussian kernel of S was thresholded and transformed to an
614  adjacency matrix. Spectral clustering with normalization of the Laplacian was performed to
615  generate sequence clusters [67]. Since we had no prior knowledge of what the most appropriate
616  number of clusters would be, we scanned the range of 1000 to 10,000 clusters, and computed the
617  sum of squared errors (SSE) on all clusters, for each cluster set. SSE was minimized at 4300
618  clusters, therefore, we determined this to be the appropriate number of clusters of homologous
619  genes in the S. pneumoniae pan-genome. Sequences in each gene cluster were aligned using
620  Clustal Omega [68], and the average pairwise Smith-Waterman distance within each cluster was
621 computed. In the case of large clusters (containing >50 sequences), 50 random sequences were
622  selected for pairwise distance calculation. We define gene conservation as -log(mean(distance))
623  within a cluster, and count (number of strains that share the gene) of sequences in each cluster.
624

625 Network coordination analysis

626 We define 3 criteria for metabolic coordination: connectedness (CC), closeness (CN) and
627  representation (RE) in the metabolic network. Number of connected components (NCC) is used
628 as the metric for connectedness. For each experiment, connected components were determined
629 using the components function in the igraph package [69]. Since the expected NCC heavily
630  depends on the number of nodes selected, and the network architecture, in order to test whether
631 the observed NCC is significantly lower than expected, we apply permutation testing on random

632  selection of nodes on the network as follows: In an experiment with M responsive genes on the
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633  network, we generate 1000 sets of M random genes, and compute the NCC for each permutation.
634  The empirical one-tailed p-value for this experiment is the proportion of permutations in which
635  we observed fewer NCC than the responsive genes in the experiment. A response is connected if
636 the empirical p-value for the NCC permutation testing is <0.01. To determine closeness of
637  responsive genes, the average length of shortest paths is computed for each pair of genes. Since
638  biological pathways may appear as long chains with few branches, it is possible to have a
639  connected component of TIGs and/or PIGs arranged in a line, with a high average pairwise
640 distance. In order to avoid such skew, we considered any responsive gene pairs that appear in the
641 same component to be at distance 0 to each other by assigning each edge on the network a
642  weight of 0 if it connects two responsive genes, and 1 otherwise. If there is no path connecting
643  the two components, the distance between this pair is replaced by the diameter of the network+1
644 (i.e. 21 in our network), to avoid infinite values. Similar to connectedness evaluation,
645 permutation testing is applied to the average network distance. A response is “close” if the
646  empirical p-value for the distance permutation testing is <0.01. To assess whether TIGs and PIGs
647  were significantly highly represented in the metabolic network we consider N, the total number
648  of responsive genes, and M, the subset of N that appear on the network. The probability of
649 observing M or more genes on the network, given N total responsive genes in the genome
650 (p(m>M|N)) is computed assuming a hypergeometric distribution. A response is metabolically
651  well-represented if this probability is <0.01.

652

653  Support Vector Machine Classification of Adapted Genes

654 A support vector machine (SVM) using a gaussian kernel is trained and cross-validated using the
655  fitcsvm function in MATLAB to distinguish whether a gene will contain adaptive mutations or
656 not. The model was trained on network parameters (degree, transitivity, centrality), TnSeq,
657 RNAseq and sequence conservation (count, or number of occurrences across the pan-genome,
658 and sequence similarity) of each gene. Data from the dependent (parental) strains from the uracil
659 (D39), L-Valine (D39) and vancomycin (T4) experiments were assembled into a set of 1283 data
660  points with 18 features that were standardized. Genes that were not represented on the metabolic
661 network were excluded. Each observation was then labeled as AG or non-AG. Because the
662 number of AGs is very small (6 out of 1283), we applied synthetic minority oversampling [70]
663  until 10% of the observations were AGs. The SVM was trained on a total of 1409 data points

23


https://doi.org/10.1101/387910
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/387910; this version posted August 9, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

690
691
692
693

694

aCC-BY-NC-ND 4.0 International license.

(1283 experimental and 126 synthetic) using 10-fold cross-validation, and report the average

accuracy, kappa, precision and recall on the 10 cross-validation sets.

Statistical analysis
Quantification and statistical analysis are described in the above Method Details section,

Supplementary Table2 and in figure legends (Figures 2, 3, 5, S4).
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916 FIGURE LEGENDS

917  Figure 1. Study overview. A. Differential survival outcomes under nutrient depletion, antibiotic
918  exposure and in vivo conditions from Streptococcus pneumoniae and Pseudomonas aeruginosa
919  are investigated in this study. Experimental evolution is performed on stress-sensitive strains
920 (red) to achieve adapted strains (blue). B. Temporal RNA-Seq data are collected from the stress-
921 insensitive (green), stress-sensitive and adapted S. pneumoniae strains; Tn-Seq data are collected
922  from the stress-insensitive strain. RNA-Seq and Tn-Seq data of P. aeruginosa are obtained from
923  published datasets (Murray et al., 2015, Turner et al., 2014). C. Data obtained from (B.) are
924  subjected to genome-wide analyses, network coordination analyses and machine learning to
925  generate predictive patterns of survival outcomes for the stress-sensitive, insensitive and adapted
926  strains; and adaptive outcomes for the stress-sensitive strains.

927

928  Figure 2. Distinct patterns characterize the transcriptional response of nutrient-dependent
929  and nutrient-independent strains. A. The magnitude of genome-wide differential expression
930  shows significantly different distributions between D39 (red) and T4 (green) in the absence of
931 Glycine (AGly), uracil (AUracil) or L-Valine (L-Val) at 30min and 90min in a Kolmogorov-
932  Smirnov test. B. D39 triggers significantly more TIGs in each functional tag than T4, compared
933 in a Z test for two population proportions with Bonferroni correction for multiple testing. C.
934  Genome-wide functional category distribution of TIGs in D39 and T4 after 90 minutes of uracil
935  depletion. D. Functional tag distribution of TIGs in D39 after 60 minutes of uracil depletion
936 resembles T4. Genome-wide differential expression of D39 under uracil depletion shows time-
937  dependent increase in magnitude (E.) and function distribution (F.). For A-B, *: 0.001<p<0.02;
938  **: 0.0001<p<0.001; ***. p<0.0001. See in-figure legend for color-coding schemes of
939 functional tags and categories in B- D, F.

940

941  Figure 3. Network coordination analyses can be visualized in a feature space and define
942  survival as a coordinated response. PIGs (red), TIGs (green) and PIG/TIG overlaps (blue)
943  from the uracil depletion experiment (at 90 minutes) are overlaid on the metabolic network for
944  TIGR4 (A.) and D39 (B.), highlighting differences in network response. Connected components
945 (CC) formed by PIGs and TIGs and the shortest path distances between CC are calculated for
946 TIGR4 (C. and E.) and D39 (D. and F.). C-F. Inset histograms show the expected results
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947  (permutation testing) in comparison with experimental observations (red lines). The p-value is
948  the proportion of permutations that are more extreme than the observation. G. Example of the
949  integration of the three-coordination metrics (CC, CN, and RE) for an experiment (blue point) by
950 plotting the -log(p-value) in a 3-dimensional feature space. The gray box represents the
951 significance threshold for each p-value. A coordinated response is typically far away from the
952  origin. H-J. Response trajectories for D39 (red) and T4 (green) from 30 to 90 minutes in the
953  absence of L-Valine, Glycine or uracil, respectively. In (J.) the D39 trajectory includes the 60-
954  minute time point. For all three graphs the dependent strain D39 remains close to the origin
955  (uncoordinated response), while the independent strain T4 moves away from the origin
956  (coordinated response). An alternative visualization of the degree of coordination of each
957  individual data point can be found in Supplementary Figure 4.

958

959  Figure 4. Experimental evolution revert nutrient dependencies and rewires stress responses
960 into a coordinated response. A. Adapted D39 strains recover growth in the absence of uracil
961 (top; aD39-uracil) or L-Valine (bottom; aD39-val). B. Differential expression magnitude
962  distributions are narrower in aD39-uracil and aD39-val compared to D39 and resemble T4
963  (Figure 2A). C. Functional tag distribution of TIGs in aD39-uracil and aD39-val at 90min after
964  uracil or L-Valine depletion are narrower compared to D39 and resemble T4 (Figure 2B).
965  Network trajectories of aD39-uracil (D. blue) and aD39-val (E. blue) show an increase in
966  coordination from 30 to 90 minutes that are similar to T4 (D. and E. green) and dissimilar to
967  wild-type D39 (D. and E. red).

968

969  Figure S. Adapted S. pneumoniae exhibits reduced sensitivity, changed morphology and a
970  rewired transcriptional response under vancomycin treatment. Growth phenotypes (A.) and
971  morphology (B.) of wild-type (WT) and adapted T4 were examined in the absence and presence
972  of vancomycin (1xMIC) in SDMM. B. Cells were stained with Syto9 (green) and fm464 (red).
973  White arrowheads highlight bulging cells, typical of vancomycin sensitivity. C. Cell numbers per
974  chain were quantified from 1000 cell chains, indicating the adapted strain has a shorter chain-
975  length phenotype, comparable to the vancomycin-treated WT. D. Genome-wide differential
976  expression shows a significantly wider magnitude distribution in WT compared to adapted T4 at

977  30min post-vancomycin treatment in a Kolmogorov-Smirnov test. E. WT triggers significantly
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978  more TIGs than adapted T4 in most functional tags in both early and late vancomycin response
979  in a Z-test for two population proportions with Bonferroni correction for multiple testing in (E.).
980 n.s.: p>0.02, *:0.001< p<0.02; **:0.0001<p<0.001, ***: p<0.0001
981
982  Figure 6. Network coordination defines antibiotic resistance in S. pneumoniae and
983  antimicrobial and in vivo responses in P. aeruginosa. A. Temporal network trajectories of the
984  vancomycin response for vancomycin-sensitive (wild-type T4, blue) and vancomycin-adapted
985  (aT4-vanc, red) strains profiled at 10, 20, 30, 45, 60 and 90 minutes after IXMIC vancomycin
986  treatment. In addition, aT4-vanc is also profiled under 1.4xMIC vancomycin (green). All three
987 trajectories start at a significantly represented state, however the T4 response quickly becomes
988  uncoordinated and erratic. In contrast, aT4-vanc demonstrates a gradual trajectory that mainly
989 moves through significantly coordinated intermediate time points. N.B the speed at which a
990 trajectory is traversed is determined by the number of line segments, and not by the lengths of
991  segments, as each line is a separate time point. B. Network coordination analyses extended to P.
992  aeruginosa distinguishes between uncoordinated responses to antimicrobials (red), and
993  coordinated responses in in vivo wound infection models (blue).
994
995  Figure 7. Prediction of adaptive evolution through the integration of machine learning,
996 genome-wide profiles, network characteristics and pan-genome sequence conservation.
997  Pan-genome-wide sequence conservation, RNA-Seq, Tn-Seq and adaptation data are assembled
998  for the uracil (A.), L-Valine (B.) and vancomycin (C.) experiments and visualized by circular
999  plots: 1) Green bar plots represent expression change of parental (the innermost circles) and
1000 adapted strains (outside the orange trace); each circle represents a time-point. 2) The orange
1001  scatter plot indicates sequence conservation score, while the orange trace is a count of strains that
1002  share a gene; 3) Red arrows mark essential genes; 4) Red bar plot represents Tn-Seq fitness
1003  change; 5) Blue scatter plot indicates the mutation frequencies, with adapted genes marked by
1004  purple arrows and black lines. D. Receiver-operator curve (ROC) for SVM classifier. An SVM is
1005 trained to distinguish adapted genes from non-adapted genes with high accuracy. Cohen's kappa,
1006  precision, recall, and AUROC are reported.
1007
1008 Supplementary File 1: Supplementary information
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1009

1010  Supplementary File 2: iSP16 consensus model.

1011

1012  Supplementary File 3: Tn-Seq and temporal RNA-Seq data in this study.
1013

1014  Supplementary File 4: Network analysis with TIGs and PIGs, and only TIGs.
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Figure 7
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