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ABSTRACT
Microbial diversity is strongly affected by the bottom-up effects of resource availability.
However, because resource pools often exist as heterogeneous mixtures of distinct molecules,
resource heterogeneity may also affect community diversity. To test this hypothesis, we surveyed
bacterial communitiesin lakes that varied in resource concentration. In addition, we
characterized resource heterogeneity in these lakes using an ecosystem metabol omics approach.
Overall, resource concentration and resource heterogeneity affected bacterial resource-diversity
relationships. We found strong relationships between bacterial alpha-diversity (richness and
evenness) and resource concentration and richness, but richness and evenness responded in
different ways. Likewise, we found associations between the composition of the bacterial
community and both resource concentration and composition, but the relationship with resource
composition was stronger. Last, in the surveyed communities the presence of resource generalists
may have reduced the effect of resource heterogeneity on community composition. These results
have implications for understanding the interactions between bacteria and organic matter and
suggest that changes in organic matter composition may alter the structure and function of

bacterial communities.
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INTRODUCTION

Resource availability is a bottom-up control that has strong effects on the diversity of
consumer communities. Theory suggests that resource enrichment promotes diversity and food-
web complexity (Rosenzweig, 1971; Hairston and Hairston, 1993; Abrams and Roth, 1994; Polis
and Strong, 1996; Worm et al., 2002), and empirical studies have shown that, in the absence of
top-down control, ecosystems with higher resource concentrations support more diverse and
productive communities (Leibold et al., 1997; Leibold, 1999; Hulot et al., 2000; Waldrop et al.,
2006). However, the relationship between resources and diversity can be complex (Mittelbach et
al., 2001; Tilman et al., 1982). For example, while diversity often increases linearly with
resource concentration (Stevens and Carson, 2002), it can also exhibit more complex, non-linear
relationships where diversity peaks at intermediate concentrations (Leibold, 1999). Such
responses have been attributed to a range of processes including variation in competitive ability
among consumers (Leibold, 1999), shared limitations across species (Stevens and Carson, 2002),
and trophic interactions (Holt et al., 1994; Carpenter et al., 2001).

Another feature that may influence resource-diversity relationshipsis the heterogeneity
of the resource pool. Resources are often considered as homogenous pools, but many resources
exist as heterogeneous mixtures of multiple forms (Ashton et al., 2010; Schoener, 1974; Turner,
2008). Resource heterogeneity has the potential to promote consumer diversity vianiche
partitioning (Schoener, 1974; Finke and Snyder, 2008). For example, plants have been shown to
partition different forms of nitrogen (e.g., NH4, NOg3, organic N) in ways that may promote
species coexistence (McKane et al., 2002; Schimel and Bennett, 2004; Andersen and Turner,
2013). Likewise, different phosphorus resources (e.g., phosphate vs. phytic acid) can alter the

diversity and function of aguatic bacterial communities (Muscarella et al., 2014), taxain
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microbial biocrusts have non-overlapping resource preferences (Baran et al., 2015), and
phytoplankton are capable of partitioning the light spectrum in ways that allow for species
coexistence (Stomp et al., 2004).

The effects of resource heterogeneity may depend on the degree to which communities
are comprised of generalist or specialists. If communities are made up primarily of resource
generalists, then the total concentration of aresource should have a stronger influence on
diversity because species do not differ in their response to different resources (Stevens and
Carson, 2002). In contragt, if communities are made up of resource specialists, then resource
heterogeneity may promote consumer diversity by providing unique resource niches for
consumers to partition (Glasser, 1984; Levine and HilleRisLambers, 2009). Together, resource
heterogeneity and resource acquisition strategy (i.e., generalists versus specialist) may help
resolve unexplained variation in resource—diversity relationships.

For heterotrophic organisms, an important resource used for growth and physiological
maintenance is organic matter. Organic matter is heterogeneous and consists of molecules that
differ in chemical structure, origin, and age (Stevenson, 1994). In aguatic ecosystems, dissolved
organic matter (DOM) is often classified based on origin (autochthonous vs. allochthonous) and
bioavailability (labile vs. recalcitrant). DOM can also be characterized based on its optical
properties (Fellman et al., 2009; Weishaar et al., 2003) and functional groups (e.g., humic acids)
(Croué, 2004). However, these characterizations may not adequately describe DOM composition
because other chemical features, including molecular weight, oxidation state, stoichiometry, and
chemical structure, can influence the metabolism of organisms that consume DOM, (Cory and
McKnight, 2005; Cherif and Loreau, 2007; Lennon and Pfaff, 2005; Berggren et al., 2010).

However, recent technological advances have made it possible to more thoroughly characterize
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86 DOM diversity at the molecular level (Moran et al., 2016; Petras et al., 2017; Broeckling et al .,
2008). Therefore, there is now the opportunity to understand the linkages between DOM

88  heterogeneity and consumer diversity and characterize resource-diversity relationships (TOpper
et al., 2012; Alonso-Saez and Gasol, 2007; Gomez-Consarnau et al., 2012; Osterholz et al.,

90  2018).

In this study, we measured aquatic microbial communities and DOM chemistry to

92  understand how resource heterogeneity contributes to resource—diversity relationships. We
measured bulk resource concentration measurements and used high-resolution mass

94  spectrometry to quantify resource heterogeneity. We also characterized aquatic bacterial
community diversity using 16S rRNA sequencing. Furthermore, we used species-resource co-

96  occurrenceto test the hypothesis that communities dominated by specialists would respond
stronger to resource heterogeneity than to resource availability. Our results support the view that

98  resource heterogeneity promotes bacterial community diversity, but the contribution of DOM
resource heterogeneity may be dampened when DOM generalists dominate bacterial

100 communities.

102 METHODS
Study System and Sampling — The Huron Mountains nature preserve is a 5300 hatract of

104  private land in the upper peninsula of Michigan, USA. The areais part of the Superior Bedrock
Uplands region (Schaetzl et al., 2013). The surrounding forests are primarily old-growth

106  hemlock-northern hardwoods (Woods, 2000), and the inland water bodies are part of the Pine
River Watershed, which drainsinto Lake Superior. Using avan Dorn sampler, we obtained

108  surface water samples (0.5 m) from 10 lakes in the Huron Mountains during July 2011 (Fig. S1,
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Table 1). In addition, we measured dissolved oxygen concentrations, temperature, pH, and
110  conductivity at the time of sampling using Quanta Hydrolab water quality sonde, and we
measured chlorophyll a concentration in the |ab after cold ethanol extraction of 0.7 pm-filtered

112  (Whatman GF/F) water samples using a Turner Biosystems Fluorometer (Table 1).

114  Resource Concentrations — With the water samples, we measured the concentrations of
dissolved organic carbon (DOC), total nitrogen (TN) and total phosphorus (TP). We measured

116  DOC concentrations by oxidation and non-dispersive infrared detection on 0.7 um-filtered
(Whatman, GF/F) samples using a Shimadzu TOC-V carbon analyzer. We measured TN on

118  unfiltered samples using a Lachat FIA 8500 auto-analyzer (Hach, Loveland CO) after
ammonium peroxydisulfate/sulfuric acid digestion (Lachat, 2005). We measured TP on

120  unfiltered samples spectrophotometrically using the ammonium molybdate method and oxidation
by persulfate digestion (Wetzel and Likens, 2000).

122
Resour ce Heter ogeneity — To estimate resource heterogeneity, we characterized the

124  composition of dissolved organic matter (DOM) for each lake using ecosystem metabolomics.
We extracted DOM from each sample using solid phase extraction (SPE) (Dittmar et al., 2008).

126  Briefly, weacidified 1 L of 0.7 um-filtered (Whatman, GF/F) water to pH 3.0 with 4N HCI. We
then passed the water sample through an SPE cartridge (Discovery-18, Supelco, Bellefonte PA)

128  ataflow rate<5mL min™ using vacuum pressure. Columns were pre-conditioned using 6 mL
100% methanol followed by 6 mL pH 3.0 ultra-pure H,O. We filtered the sample until no sample

130  remained or until the cartridge became clogged (recording the final volume filtered) and dried

the filter with N, gas for 5 minutes. We eluted the DOM from the column using 100 % methanol
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132  and evaporated the methanol at 25 °C using vacuum centrifugation. A consistent amount of
purified DOM was then separated on Waters Acquity ultra-performance liquid chromatography

134 T3 column (1.8 uM, 1.0 x 100 mm) using water with a 0.1% formic acid-acetonitrile gradient
and analyzed using negative electrospray ionization with quadrupole time of flight mass

136  spectrometry (Q-TOF MS; Waters G2 Q-TOF) and indiscriminate tandem M S (idMS/MS) at the
Colorado State University Proteomics and Metabolomics Facility. Q-TOF M S provides high

138  resolution, accurate mass quantification and idM S/M S provides high collision energy
fragmentation without precursor ion selection acquired concurrently with low-collision energy

140 MSdata. For each sample, raw datafiles were converted to .cdf format, and a matrix of
molecular features as defined by retention time and ion mass (nVz) was generated using the

142 XCMSpackagein R (Smith et al., 2016) for feature detection and alignment. Raw peak areas
were normalized to total ion signal, and the mean area of the chromatographic peak was

144  calculated from duplicate injections. Features were grouped based on an in-house clustering tool,
RAMCIlustR, which groups features into spectra based co-elution and covariance across the fulll

146  dataset, whereby spectra are used to determine the identity of observed compoundsin the
experiment (Broeckling et al., 2014). We used field-prepared ultrapure water as controls and

148  subtracted control peaks from sample peak heights. We multiplied control peaksby 1.1to
provide conservative blank subtraction. A subset of the clustered dataset was referenced to the

150 NISTv14 tandem (MS/MYS) library, which contains 193,119 spectra of 43,912 precursor ions
from 8,531 chemical compounds, and also screened for matchesin Metlin for putative compound

152  identification. Retention time was used as a proxy for polarity, and the heaviest ion (m/z) in the
clustered spectrawas used as a proxy for molecular weight. We recognize that the heaviest ion

154  may not be representative of the molecular weight in all cases dueto, for example, the formation
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of dimers and potential in-source fragmentation, however, electrospray is the gentlest type of

156 ionization and is often related to the mass of the analytes. We define “DOM components’ as the
chemical featuresidentified in DOM samples by ecosystem metabolomics.

158
Microbial Composition — We used an RNA based approach to characterize bacterial

160  community composition by sequencing the 16S rRNA gene transcript. We extracted total nucleic
acids using the MoBio Power Water RNA extraction kit (Carlsbad, CA). Nucleic acid extracts

162  were cleaned viaethanol precipitation and RNA extracts were treated with DNase | (Invitrogen)
to degrade residual DNA. We synthesized cDNA viathe SuperScript |11 First Strand Synthesis

164  Kit using random hexamer primers (Invitrogen). Once cDNA samples were cleaned and
guantified, we amplified the 16S rRNA gene transcript (cDNA) using barcoded primers (515F

166  and 806R) designed to work with the Illumina MiSeq platform (Caporaso et al., 2012). We
purified the sequence libraries using the AM Pure XP purification kit, quantified using the

168  Quantlt PicoGreen kit (Invitrogen), and pooled libraries at equal molar ratios (final
concentration: 20 ng per). After pooling, we sequenced the libraries on the Illumina MiSeq

170  platform using 250 x 250 bp paired end reads (Illumina Reagent Kit v2) at the Indiana University
Center for Genomics and Bioinformatics Sequencing Facility. Paired-end raw 16S rRNA

172 sequence reads were assembled into contigs and filtered based on quality score, length, and
ambiguous base calls. After filtering, we aligned our sequences to the Silva Database (version

174  123). Chimeric sequences were detected and removed using the VSEARCH algorithm (Rognes
et al., 2016). We then created operational taxonomic units OTUs by first splitting the sequences

176  based on taxonomic class (using the RDP taxonomy) and the binning sequencesin OTUs based
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on 97% sequence similarity. All initial sequence processing was completed using the software

178  package mothur (version 1.40.5; Schloss et al., 2009).

180 Resource Heter ogeneity and Community Diver Sty — First, we tested the hypothesis that
resource heterogeneity affects bacterial community alpha diversity. We used linear models to

182  determineif higher resource concentrations or more types of DOM resources (i.e., resource
richness) would affect the richness and evenness of bacterial communities. We transformed

184  (Box-Cox), centered, and scaled (i.e., divided by standard deviation) resource concentration and
species richness to meet model assumptions of equal variance and normality (Neter et al., 1996).

186  We subsampled bacterial communities using rarefication to correct for differencesin sample size
due to sequencing depth (Hughes and Hellmann, 2005; James and Rathbun, 1981). We rarefied

188  communities and calculated species richness as the number of OTUs observed and species
evenness using Simpson’ s evenness (Smith and Wilson, 1996). We used the Box-Cox-

190 transformed DOC concentration as the measure of resource concentration and we cal cul ated
resource richness as the number of distinct DOM peaks observed in each sample.

192 Next, we tested the hypothesis that resource heterogeneity affects community beta
diversity by comparing resource concentrations and DOM composition to bacterial community

194  composition. We used distance-based redundancy analysis (dbRDA; Legendre and Anderson,
1999) to test for relationships between: 1) resource concentration and community composition

196  and 2) resource composition and community composition. doRDA is a multivariate linear model
technique that uses quantitative factors explaining differences in multivariate community

198  composition data. We used the Box-Cox-transformed DOC concentration as the measure of

resource concentration. To use DOM composition as a predictor in our dbRDA model, we used
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200  principal coordinates analysis (PCoA), based on relative abundances and Bray-Curtis
dissimilarity, to decompose DOM composition into orthogonal linear components (Legendre and

202  Legendre, 2012). To represent the DOM composition, we used the DOM PCoA axis scores for
each sample. Asthe response in the dbRDA model, we relativized OTU abundances and used

204  Bray-Curtis distances to compare community composition across samples. Significance tests of
our dbRDA model were conducted based on 10,000 permutations. All calculations were donein

206 theR satistical environment (R Core Team, 2012) using the ‘vegan’ package (Oksanen et al.,
2013).

208
Consumer -Resour ce Specialization — To test the hypothesis that the response to resource

210  heterogeneity depends on whether communities were dominated by generalists or specialists, we
used consumer-resource co-occurrence to define generalists and specialists. We defined resource

212  generaists and specialists based on co-occurrence analysis, which was performed using
Spearman’ s rank correlations between DOM components and bacterial OTUs. We used the

214  relative abundances of DOM components and the relative transcript abundances of bacterial
OTUs. We inferred interactions based on correlations with coefficients > [0.7| (Williams et al .,

216  2014), and we tested for significance using a permutation test based on randomizations with the
independent-swap algorithm (Gotelli, 2000). We defined resource generalists as those taxa with

218  four or more significant negative resource interactions. We used the negative interaction as a
proxy for potential resource consumption. To understand the spatial extent of individual taxa, we

220  defined cosmopolitan taxa as those found in > 90 % of the sampled lakes and we determined
how many resource generalists were also cosmopolitan taxa. All calculations were doneintheR

222  statistical environment.
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RESULTS

224  Resource Composition and Heterogeneity — The lakes sampled captured a range of bulk
resource concentrations (Table 1), and many bulk resource concentrations were correlated. For

226  example, the concentrations of dissolved organic carbon (DOC) and total nitrogen (TN) were
highly correlated (rho = 0.97, p < 0.001, Fig. S2). Using ecosystem metabolomics, we

228  characterized the dissolved organic matter (DOM) pool and detected 712 compounds across the
sites. We refer to these molecules as DOM components. Based on the relative abundances of

230 DOM components, sites were on average 37 % dissimilar in DOM composition. Using principal
coordinates analysis (PCoA), we could explain 71 % of the variation in DOM composition

232  across sites using three dimensions (Fig. 1). The variation in DOM composition was significantly
related to DOC (r* = 0.68, p = 0.01), TN (r* = 0.70, p = 0.01), Chl a (r* = 0.69, p = 0.02), and pH

234  (r*=0.58, p = 0.03), but there were no significant relationshipswith TP (r* = 0.27, p = 0.34) or
surface area (r* = 0.30, p = 0.26). In addition, we found a negative relationship between the

236  richness of DOM components and the concentration of DOC (p < 0.01). We used DOC to
represent resource concentration and the DOM PCoA scores to represent DOM composition in

238  further analyses. We identified influential DOM components as those correlated (rho > [0.70])
with variation in the DOM PCoA axes (Fig. S3). We identified 172 influential DOM

240  components.

242  Community Composition and Resour ce-Diver sity Relationships — Across the 10 lakes, we
identified 5,085 bacterial operational taxonomic units (OTUs) based on 16S rRNA transcript

244  sequencing. When rarified, lakes varied in taxonomic richness and evenness (Fig. 2). Using
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Bray-Curtis distances and relative transcript abundances, |akes were on average 62 % dissmilar
246  toone another based on bacterial community composition.
First, we tested for relationships between resources and bacterial alpha-diversity. We
248  used linear regression to test for resource-diversity relationships between bacterial community
diversity (richness and evenness) and both resource concentration and DOM richness. As
250  predicted, bacterial alpha-diversity was affected by resource concentration (Fig. 2). OTU
richness was positively related to resource concentration (r2 = 0.66, p = 0.008) but
252  negatively related to DOM richness (r?2 = 0.50, p = 0.023). In contrast, OTU evenness was
positively related to DOM richness (r? = 0.67, p = 0.003) but negatively related to resource
254  concentration (r? = 0.49, p = 0.022).
Next, we tested for relationships between resources (concentrations and composition) and
256  bacterial beta-diversity using distance-based redundancy analysis (dbRDA). Based on the
dbRDA modéls, resource concentrations explained 28 % of the variation in bacterial community
258  composition (p = 0.002), and DOM composition explained 45 % of the variation in bacterial
community composition (p = 0.03, Fig. 3). However, when we partitioned the explained
260  variation among the DOM PCoA axes, only DOM Axis 2 was significant (r* = 0.70, p = 0.017).
In addition, this DOM axis was correlated to variation dong OTU PCoA Axis 1 (rho=0.83,
262 p=0.002; Fig. 3). Last, we tested for relationships between resource concentration and DOM
composition. We found a significant correlation between resource concentration and DOM Axis

264 2 (rho=0.69, p = 0.03).

266  Consumer—Resour ce Specialization — Based on consumer-resource co-occurrence analysis

and spatial occurrence, we classified generalist and cosmopolitan bacteria. We found that 1.3%
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268  of taxa (68 OTUs) were resource generalists, and 4.5 % (233 OTUs) were cosmopolitan taxa. Of
the resource generalists, 74 % were also found to be cosmopolitan taxa. Proportionally, resource

270  generalists and cosmopolitan taxa were substantial across all lakes (Fig. 4). For both groups,
there was a significant negative relationship between relative abundance and resource

272  concentration (Fig. 4). In addition, the proportion of resource generalists was related to DOM
composition based on DOM Axis 2 (rho = 0.81, p = 0.004), but not DOM Axis 1 (rho = 0.08,

274 p=0.82). Taxonomically, both resource generalists and cosmopolitan taxa were diverse. For the
resource generalists, the majority belonged to the classes Alphaproteobacteria (14) and

276  Planctomycetacia (11), but Verrucomicrobiae (8) and Actinobacteria (7) were also common. At
the family level, the resource generalists represented groups including Acetobacteraceae,

278  Caulobacteraceae, Planctomycetaceae, Sphinomonadaceae, and Verrucomicrobiaceae. For the
cosmopolitan taxa, the mgority belonged to the classes Alphaproteobacteria (58) and

280  Betaproteobacteria (50), but Gammaproteobacteria (14), Actinobacteria (21), Planctomycetacia
(17), and Sphingobacteria (12) were also common. At the family level, the cosmopolitan taxa

282 represent groups including Acetobacteraceaea, Alcaligenaceae, Bulkholderiaceae,
Caulobacteraceae, Chitinophagaceae, Comomonadaceae, Flavobacteriaceae, Planctomycetaceae,

284  Rhodobacteraceae, Spartobacteria, Sphinomonadaceae, and V errucomicrobiaceae.

286
DISCUSSION
288 We found evidence that resource concentration and resource heterogeneity affect
bacterial resource—diversity relationships. Our data suggest that there is a significant relationship

290  between resources (concentration and richness) and bacterial community alpha diversity.
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Likewise, resource concentration and composition explained variation in bacterial community
292  composition (beta-diversity), athough to differing degrees. Last, DOM generalists were
prevalent in the surveyed microbial communities and that there was a negative relationship
294  between the proportion of generalists and the concentration and composition of DOM. Together,
our results suggest that DOM resource heterogeneity affects aquatic microbial communities, and
296  that DOM resources may influence aspects of community diversity (e.g., species evenness) and
community composition. However, when generalists dominate communities, the effects may be
298 limited potentially due to complex food-web interactions. Based on our findings, we argue that
organic matter composition plays an important role in structuring aguatic microbial communities,
300 andthat changesin organic matter composition owing to land use modifications and changing
terrestrial plant communities may alter the structure and function of aquatic bacterial

302 communities.

304 Resour ce Heter ogeneity in Microbial Food Webs
Resource heterogeneity affected the diversity of aquatic bacterial communities. We found that

306 DOM resources were heterogeneous across lakes — on average lakes were 37 % dissimilar in
their DOM composition. As such, resource heterogeneity may help explain the variation in

308  resource-diversity relationships along resource concentration gradients. We tested this hypothesis
and found that while resource concentration explained 28 % of the variation, DOM resource

310 composition explained 45 % of the variation in bacterial community composition across lakes.
These findings suggest that different types of bacteria use and potentially specialize on different

312  typesof resources, which has been observed elsewhere. For example, it has been shown that

some bacteria primarily use algal-derived resources (Sarmento and Gasol, 2012; Jaspers and
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314  Overmann, 2004) while others primarily use terrestrial-derived resources (Guillemette et al .,
2015; Roehm et al., 2009). Therefore, lakes receiving different resource inputs may be expected

316 to contain different bacterial communities. Thus, DOM resource heterogeneity is a potential
mechanism to explain the diversity within and between bacterial communities.

318 Resource diversity (i.e., DOM richness) was positively correlated with OTU evenness,
but negatively correlated with OTU richness (Fig. 2). Resource diversity is likely to influence

320  OTU evenness because evenness, a measure of equitability among taxa, may reflect the
frequency of speciestraits (Hillebrand et al., 2008; Hill, 1973), such as enzymes needed to

322  uptake and metabolize different DOM components. Furthermore, changes in evenness have been
linked to altered species-interactions, coexistence, and ecosystem functions (Hillebrand et al.,

324  2008). If resources represented niches to be partitioned, resource diversity should promote
species diversity because resource diversity provides unigue niches to species to partition

326  (Werner, 1977; Glasser, 1984; Schoener, 1974). Because we observed an increase in evenness
but not in richness with greater resource diversity, our findings suggest that the increased

328  evenness observed in communities represents changes in abundances but not the addition of new
taxa Furthermore, the change in evenness — an increase — suggests that the changes in

330  abundance benefit intermediate rank taxa. Together, our results support the hypothesis that
resource heterogeneity contributes to observed resource-diversity relationships. In addition, we

332  propose that DOM resource heterogeneity may promote more diverse communities by increasing
species equitability and benefiting taxa that comprise the middle ranks of the bacterial

334  community —“The Microbial Middle Class’.

336
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Resour ce Substitutability
338  One possible explanation for why resource heterogeneity may only have weak effectsin some
habitats is that many resources are substitutable. Two resources are substitutable when either can
340  each be used for growth and reproduction while the other is absent (Tilman, 1980). For example,
some plants are able to grow using ammonium, nitrate, or even organic nitrogen as a source of
342  nitrogen (Haynes and Goh, 1978; McKane et al., 2002; Schimel and Bennett, 2004), and
zooplankton such as Daphnia can use algae, cyanobacteria, and bacteriaindependently as food
344  sources (Demott, 1998). Likewise, aguatic ecosystems contain numerous phosphorus resources
but some have similar effects on the structure and function of aguatic microbial communities
346 (Muscardlaet al., 2014).
In this study, we found numerous DOM components that appear to have similar
348  consumer-resource co-occurrence patterns (Fig. $4). One explanation is that many DOM
components are substitutable. At achemical level, resources with the same core molecule can be
350 subgtitutable. For example, vanillate and ferulate share an internal benzene structure and are used
by the same metabolic pathways (Buchan et al., 2000). In addition, extracellular enzymes often
352  degrade dliphatic polymers of different lengthsinto identical monomers (Rojo, 2009). As such,
many DOM components are likely substitutable. We used chemical databases to identify the
354  resources captured by our mass spectrometry and group possible substitutable resource; however,
we were unable to make positive identifications for many resource components in part due to the
356  low representation of environmental samplesin the available databases. In addition, we tested for
patterns based on the polarity and molecular weight estimates but found no significant

358 relationships. This does not mean relationships between DOM and bacterial composition are
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indescribable, but methods need to be developed to classify and group DOM componentsinto

meaningful categories based on functional and metabolic forms.

Generalist Communities
Our results suggest that resource generalists may dominate many aquatic microbial communities,
and thus may explain why the effect of resource heterogeneity on community composition is
stronger is some lakes than others. Specifically, resource heterogeneity had a weak effect on the
composition of bacteriain lakes that separate along OTU PCoA Axis 2 (Fig. 3). Across our
lakes, we found a negative relationship between the abundance of generalists and the
concentrations of resources. Thisrelationship is also correlated with the second axis of the DOM
PCoA, but not the firss DOM PCoA axis which explains the majority of the DOM variation. One
possibility isthat the mgority of DOM resources are substitutable. Alternatively, consumers
could have multiple metabolic pathways for resource acquisition. For example, evidence from
comparative genomics suggests that aquatic bacteria capable of using complex organic matter
also have the potential to use numerous different resources, and may thus be generalists
(Livermore et al., 2013; Newton et al., 2010; Lauro et al., 2009). As such, we propose that
resource generalists may be more common in aquatic ecosystems than previously thought
(Mariadassou et al., 2015).

It is often assumed that most bacteria are specialists. For example, multiple studies have
identified taxa that specialize on particular resources (Hunt et al., 2008; Mccarren et al., 2010;
Gomez-Consarnau et al., 2012; Jaspers and Overmann, 2004; Bird, 2012). The ability to use
multiple resources requires the production of extra enzymes and transporters; therefore, itis

costly to use numerous resources (Johnson et al., 2012). As such, specialists may be
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382  energetically favored in some environments. Likewise, numerous studies have indicated that
habitat specialists (e.g., sediment and aguatic) dominate bacterial communities (Székely and

384  Langenheder, 2013; Mariadassou et al., 2015; Langenheder and Ragnarsson, 2007). However,
our results suggest that generalists are common in the lakes surveyed (Fig. 4). These findings are

386  supported by another study which found that resource generalists dominated coastal bacterial
communities (Mou et al., 2008). It should be noted though, that we found both resource

388 geneaists and specidlists (Fig. $4) and therefore we are not suggesting that resource specialists
do not contribute to resource-diversity relationships. Instead, we argue that generalist may limit

390 the ability of resource heterogeneity to promote diversity when generalists are more dominant
than specialists.

392 We do acknowledge, however, that the method used to characterize DOM has some
limitations. First, the DOM extraction and detection may be biased towards some groups of

394 molecules (Dittmar et al., 2008). While we may have missed some important components of the
DOM pooal, we likely captured the complex terrestrial-derived organic matter that often

396  dominates aquatic ecosystems (Wilkinson et al., 2013). This DOM has been shown to be
important for bacterial community structure and function (Lapierre et al., 2013; Lennon and

398  Pfaff, 2005; Muscarella et al., 2016). However, these are not the only important components of
the DOM pool, and we may have missed less complex labile molecules that can also affect

400  bacterial communities (Sarmento and Gasol, 2012). However, many labile molecules would be
consumed rapidly, and thus we may not have been able to detect them. Second, our consumer-

402  resource interaction results are based on a single time point and therefore only suggest possible
bacteria-resource interactions. We use these correlations to make inferences about the degree to

404  which taxa are generalists. To make stronger inferences, we would need to conduct time-course
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experiments during resource fluctuations and perform experimental manipulations of DOM

406  concentration and composition. Last, we assume that microbial communities are under local
selection due to resource availability, but other factors such as dispersal, predation, and the

408 physical environment can affect community composition. For example, high dispersal rates can
overwhelm local selection due to mass effects (Leibold et al., 2004) which is especially

410  important in aguatic microbial communities that receive organisms from the neighboring
terrestrial landscape (Ruiz-Gonzalez et al., 2015; Crump et al., 2012). Regardless, our results,

412  and other genomic studies, suggest that resource generalist may dominate aguatic microbial
communities, and this should be investigated further.

414

Conclusions

416 Resource heterogeneity influenced the resource-diversity relationship and the
contribution of heterogeneity can be greater than concentration; however, when resource

418  generalists dominated communities the resource-diversity relationship was dampened. These
findings do not mean that there are no specialists in bacterial communities, because we find

420  evidence of resource specialist and others have found strong evidence for resource and habitat
specialists (Székely and Langenheder, 2013; Mariadassou et al., 2015; Langenheder and

42?2  Ragnarsson, 2007; Bird, 2012; Muscarella et al., 2016). These findings support the hypothesis
that generalist taxa may limit the affect resource heterogeneity has on local communities,

424  furthermore, we propose that consumer properties (i.e., generalist) and resource properties (i.e.,
availability) determine how strong communities respond to resource heterogeneity. In addition,

426  inorder to understand how bacterial communities will respond to environmental changes, such

as changes in organic matter inputs due to changes in plant community distributions or global
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428 climate change, we need to consider which resources are substitutable and which resources will
change in similar and predictive ways. In doing so, we will be able to understand how microbial

430  communitieswill respond to alterations in the available resources.
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TABLES
648
Table 1. Lake Properties and Chemistry — Latitude, longitude and surface area (hectares), pH,
650 temperature (Temp.), dissolved oxygen concentration (DO), chlorophyll a concentration (Chl a),
TN: total nitrogen, TP: total phosphorus, DOC: dissolved organic carbon.

652
Lake Latitude Longitude Area pH Temp DO Chl a
(ha) (°C) (mgL™) (ugL™)
Ann 46.8715  87.9220 25 786 27.44 7.22 1.25

Canyon 46.8334  87.9224 11 7.02 23.9 1.24 1.63

Howe 46.8916  87.94/0 69 7.78 26.4 1.22 1.85
Ives 46.8440  87.8483 191 8.10 254 7.62 1.39
Lily 46.8475  87.8302 1.6 5.51 26.2 5.7 3.55

Mountain 46.8692 87.9063 338 8.31 26.5 7.93 214
Pony 46.8874  87.9175 0.5 5.39 25.3 7.04 16.35
Rush 46.8882  87.9067 127 8.14 25.7 7.74 1.23

Second Pine  46.8682  87.8572 69 8.09 26.2 7.17 3.76

Upper Pine  46.8624  87.8502 16 7.79 26.6 7.12 8.55
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656 Tablel Cont. Lake Chemistry. TN: total nitrogen, TP: total phosphorus, DOC: dissolved
organic carbon.
658

Lake DOC(mgCL™") TP(ugPL?% TN(@mgNL?

Ann 5.97 7.27 0.43
Canyon 7.23 2.64 0.38
Howe 7.04 521 0.57
Ives 6.91 9.15 0.38
Lily 14.35 11.55 0.93
Mountain 5.27 5.87 0.34
Pony 28.99 17.04 1.86
Rush 4.22 3.84 041
Second Pine 6.26 12.92 0.44
Upper Pine 7.84 11.21 0.57
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FIGURE LEGENDS
Fig. 1: Principal coordinates analysis (PCoA) ordination of dissolved organic matter (DOM).
The distances between symbols represent the dissmilarity between DOM in each lake. Using
three axes, we can explain 71% of the variation in DOM composition. The third axis (not shown)
captures 14% of the variation. Symbol sizes reflect variation in the concentration of dissolved
organic carbon (DOC). Vectors represent the correlations between DOM composition and
various physical and chemical attributes of each lake including: pH, area, DOC, total nitrogen

(TN), total phosphorus (TP), and chlorophyll a (Chl).

Fig. 2: Bacterial community diversity relationships with resource concentration and resource
richness. Resource (DOC) concentration and species richness have been Box-Cox transformed to
meet model assumptions. There are significant positive relationships between species richness
and resource concentration and between species evenness and dissolved organic matter (DOM)
richness. There are significant negative relationships between species evenness and resource
concentration and between species richness and DOM richness. Dashed line represents linear

regression fit along with 95% confidence intervals.

Fig. 3: Principal coordinates analysis (PCoA) ordination of bacterial communities. Vectors
represent the correlation between the dissolved organic matter (DOM) heterogeneity and the
bacterial community composition. The two vectors are based on correlations between community
composition and the site scores from the DOM PCoA axes one and two. We used distance-based
redundancy analysis to test the relationship between DOM site scores and bacterial community

composition.
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686  Fig. 4: The proportion of generalists and cosmopolitan taxain aquatic bacterial communities. We
defined operational taxonomic units (OTUS) as generalists using consumer-resource co-

688  occurrence (top) and as cosmopolitan based on spatial occurrence (top). We used OTU relative
abundances to calculate the proportion in each community. For both, we used a linear model to

690 determineif there was a relationship between the proportion of generalists and the concentration
of dissolved organic carbon (DOC). For both, we found a significant negative relationship.

692  Dashed line represents linear regression fit along with 95% confidence intervals. The light gray
dotted line represents 50% of the community and is used as a reference.
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FIGURES
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