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Abstract (143)

Searching for items that are useful given current goals, or “target” recognition, requires an observer to
generalize across identity-preserving transformations such as viewpoint changes, as well as to
incorporate contextual information. While past work has found target recognition signals in areas of
ventral visual cortex, it is not clear whether these signals support performance on demanding tasks that
require invariant, flexible search. Here, we used a task that required subjects to match novel object
stimuli based on invariant features (identity and viewpoint). Based on multivariate fMRI analyses, the
data suggest that the multiple-demand (MD) network, including sub-regions of parietal and frontal
cortex, encodes invariant representations of an object’s status as a target. Furthermore, target
information in MD regions, but not early or ventral visual cortex, was higher on correct compared to

incorrect trials, suggesting a strong link between MD target signals and behavior.
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Introduction

Humans can hold information about relevant objects in mind for long periods of time, despite
the presence of distracting visual inputs, and can use this stored information to flexibly guide behavior.
This ability is critical for everyday search tasks, in which a viewer needs to identify a target item based
on its similarity to an item held in working memory. In the simplest case, this task can be accomplished
by comparing simple features of the template and viewed items (e.g., finding a photograph based on
memory of the same photograph). However, this comparison problem is much more complex under
natural viewing conditions, where the retinal projection of a sought object can have considerable
variability due to changes in pose, position, and environmental conditions (DiCarlo & Cox, 2007; Ito,
Tamura, Fujita, & Tanaka, 1995; Lueschow, Miller, & Desimone, 1994; Marr & Nishihara, 1978; Tanaka,
1993). Adding an additional challenge, the features that define a target object may depend on learned
associations, and can vary with task demands (e.g., when selecting a mango at the supermarket, the
ideal appearance depends on your knowledge about ripe mangoes, as well as how quickly you plan to
eat it). Thus, to accomplish target identification in real-world scenarios, representations of object target
status must be invariant to low-level visual features, and able to integrate both visual and cognitive
information. It is not yet known how these signals are generated in cortex, and how they give rise to

behavioral outcomes.

Signals related to an object’s status as a target, or “match”, have been repeatedly reported in
single units in feature and object selective visual areas. For instance, firing rate modulations in the
middle temporal area (MT) signal when two directions of motion match (Lui & Pasternak, 2011), and
changes in the gain and in the structure of V4 receptive fields selectively encode matches in shape and
color (Bichot & Schall, 1999; Hayden & Gallant, 2013; Kosai, EI-Shamayleh, Fyall, & Pasupathy, 2014).
Many neurons in subregions of inferotemporal (IT) and entorhinal cortex also signal matches in the
identity of complex objects (Miller & Desimone, 1994; Pagan, Urban, Wohl, & Rust, 2013; Woloszyn &
Sheinberg, 2009). However, these match signals may not be invariant to low-level changes in object
appearance, as most of these studies used targets that could be identified based on an exact match of
retinal input patterns (Miller & Desimone, 1994; Pagan et al., 2013; Woloszyn & Sheinberg, 2009).
Though basic invariance to many of these identity-preserving transformations has been demonstrated in
subregions of the ventral visual stream (Anzellotti, Fairhall, & Caramazza, 2014; J. Erez, Cusack, Kendall,
& Barense, 2016; Freiwald & Tsao, 2010; Tanaka, 1996), these past studies have all focused on

representations of object identity itself, rather than investigating how target status is computed across
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changes in viewpoint. A few studies have addressed this gap by investigating the identification of
relevant targets across changes in attributes like size and position (Lueschow et al., 1994; Roth & Rust,
2018). However, these studies focused exclusively on neural responses in sub-regions of the ventral
visual stream and, importantly, did not examine target identification across changes in viewpoint.
Because changes to an object’s viewpoint result in drastic differences in the 2D shape cast onto the
retina, achieving target recognition across changes in viewpoint is likely to require more high-level,
abstract search templates compared to when view invariance is not required (Biederman, 2001;

Freiwald & Tsao, 2010; Riesenhuber & Poggio, 2000; Tarr, Williams, Hayward, & Gauthier, 1998).

While often considered a separate literature, studies focusing on the categorization of arbitrarily
learned stimulus dimensions provide some indication that areas outside of ventral visual cortex may
play a key role in generating viewpoint invariant target signals. For example, neurons in parietal and
frontal cortex represent the membership of stimuli to learned categories, even when category
membership is not predicted from visual similarity (Fitzgerald, Swaminathan, & Freedman, 2012;
Freedman & Assad, 2016). Neurons in these regions may be selective to different directions of motion
that belong to the same target category (Freedman & Assad, 2006), or even to different complex objects
that belong to the same conceptual category (Freedman, Riesenhuber, Poggio, & Miller, 2001, 2003;
Roy, Riesenhuber, Poggio, & Miller, 2010). Furthermore, in tasks that require identifying targets based
on their membership to abstract categories, neurons in both prefrontal cortex (PFC) (Cromer, Roy, &
Miller, 2010; Freedman et al., 2001, 2003; Roy et al., 2010) and premotor cortex (Cromer, Roy,
Buschman, & Miller, 2011) encode objects’ target status. These findings suggest that when an object
must be recognized based on abstract learned dimensions, target recognition may rely on computations

that take place in areas outside of the ventral visual stream.

In addition to their ability to represent abstract visual information, regions of frontal and
parietal cortex are also known to exhibit flexible coding, meaning their response properties are
dependent on task context (Duncan, 2001; Miller, 2000; Miller & Cohen, 2001; Raposo, Kaufman, &
Churchland, 2014). This makes them well suited for accomplishing target recognition under changing
task demands. In particular, adaptive coding properties have been demonstrated in a set of parietal and
frontal regions that are collectively referred to as the Multiple-Demand (MD) network (Duncan, 2010;
Fedorenko, Duncan, & Kanwisher, 2013; Mitchell et al., 2016). Some sub-regions of the MD network
have been previously shown to encode information about abstract task rules and response mappings

(Harel, Kravitz, & Baker, 2014; Waskom, Kumaran, Gordon, Rissman, & Wagner, 2014; Woolgar,
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Thompson, Bor, & Duncan, 2011), as well as representations of relevant visual object properties (Y. Erez
& Duncan, 2015; Jackson, Rich, Williams, & Woolgar, 2017; Vaziri-Pashkam & Xu, 2017). Though its role
in invariant target recognition has not yet been tested, based on these coding properties, the MD
network may play an important role in recognizing relevant objects during search, especially when

successful search relies on flexibly updating the set of features that define the current target.

Given these gaps in the current knowledge about how invariant and flexible target
representations are encoded to guide search behavior, we tested the hypothesis that regions of the MD
network support performance during a target search task. To create a task scenario that required both
invariance and flexibility, we generated a novel object stimulus set (Figure 1), in which 3D objects of
multiple categories were rendered at multiple viewpoints. Subjects viewed sequentially presented
objects while performing a one-back matching task in which they reported the status of each object as a
match to the previous object in either identity (Identity Task) or viewpoint (Viewpoint Task), while
ignoring similarity in the other dimension. Critically, this paradigm required subjects to form
representations of abstract object dimensions that were invariant to the object’s retinal projection, and
to flexibly attend to one object dimension depending on task instructions. We used MVPA on single-trial
voxel activation patterns to decode the status of each image as a match in each dimension and
compared decoding performance for matches in the task-relevant dimension versus the task-irrelevant
dimension. Moreover, we compared the strength of decoding on correct and incorrect trials to assess
the relative association of modulations in different cortical regions with behavior. Our findings suggest
that, while ventral visual cortex exhibits some sensitivity to an object’s status as a target, regions of the
MD network encode robust, invariant target representations that are sensitive to changes in task

demands and that are selectively linked with behavioral performance.
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Figure 1. Example set of images shown to a subject during scanning, consisting of six unique object
identities, each rendered at four viewpoints. Subjects were instructed either to match the exact identity
of the object irrespective of viewpoint (shown in rows of the matrix) or to match the viewpoint of the
object irrespective of identity (columns of the matrix). The six identities comprised two exemplars in
each of three categories, with categories defined by overall body shape, and exemplars defined by
details of the peripheral features (see inset panels for examples of differentiating features). Object
viewpoint was generated in an arbitrarily-defined coordinate system so that low-level visual features
had a minimal contribution to the viewpoint matching task (see Methods for details). Two complete sets
of novel objects (Set A and Set B) were generated, with half the subjects (5/10) viewing set A, and half
viewing Set B. These images are from Object Set B, see Supplementary Figure 1 for examples of Object
Set A.
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Results

Behavioral Performance. Subjects (n=10) performed alternating runs of the Identity Task and the
Viewpoint Task while undergoing fMRI. Runs were always presented in matched pairs, so that the object
sequence and visual stimulation was identical between runs of the Identity Task and Viewpoint Task. We
found no significant difference in performance (Figure 2A; d’ for Identity: 1.47 + 0.24, d’ for Viewpoint:
1.81 + 0.34; paired two-tailed t-test, p=0.2054), and no significance difference in response times (Figure
2B, RT for Identity: 1.46 + 0.05 s, RT for Viewpoint: 1.35 + 0.03 s; paired two-tailed t-test, p=0.1313) on
the two tasks across subjects. Performance and response time for each task also did not differ as a
function of the object set subjects had been assigned to (d’ for Identity, Set A: 1.50 + 0.22, d’ for
Identity, Set B: 1.43 + 0.27, p=0.8930; d’ for Viewpoint, Set A: 1.76 + 0.30, d’ for Viewpoint, Set B: 1.86 +
0.42, p=0.9024; RT for Identity, Set A: 1.38 + 0.03 s, RT for Identity, Set B: 1.54 + 0.06 s, p=0.1486; RT for
Viewpoint, Set A: 1.36 + 0.03, RT for Viewpoint, Set B: 1.35 + 0.04, p=0.8758; all are two-tailed t-tests).
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Figure 2. Behavioral performance (d’) and response time (RT) were similar across tasks and stimulus
sets. Each line represents performance of a single subject, averaged over runs of each task. Error bars
indicate + 1 SEM.
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Univariate BOLD Signal does Not Show Match Suppression. First, we examined whether the status of
each image as a match in the task-relevant dimension (e.g., identity match status during the Identity
Task; viewpoint match status during the Viewpoint Task) was reflected in a change in the mean
amplitude of BOLD response in any visual area. Based on previous fMRI studies (Grill-Spector et al.,
1999; Henson, 2003) and electrophysiology studies (Meyer & Rust, 2018; Miller, Li, & Desimone, 1991),
we predicted that the repetition of object identity or viewpoint might result in response suppression
(often referred to as repetition suppression). In all but one of the 14 ROIs we examined (Figure 3), we
found no significant difference in the mean signal amplitude between matches and non-matches. This
indicates a lack of evidence for repetition suppression based on match status at the level of the
univariate BOLD signal. In the one ROI showing a significant effect (Al-FO), mean signal was actually
higher on match trials than non-match trials. We suspect that the absence of repetition suppression is
due to differences in task demands between our experiment and previous work, particularly the fact
that identity and viewpoint matches were task-relevant in our paradigm (see Discussion for details).
Note that this analysis was performed before the data were de-meaned; in all subsequent multivariate
analyses, we de-meaned the data so that each single trial voxel activation pattern was centered at zero

and any small univariate effects could not contribute to decoding performance (see Methods).
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Figure 3. Match status in the current task cannot be determined solely from mean signal change. Mean
beta weights are plotted on the Y axis, and individual ROls are plotted on the X axis. In all fMRI analyses,
we used 14 ROIs: early visual cortex (V1, V2, V3, V3AB, and V4), the lateral occipital complex (LO, pFus),
the intraparietal sulcus (IPS0-1, IPS2-3, superior IPS/sIPS), and the multiple-demand network (superior
precentral sulcus/sPCS, inferior precentral sulcus/iPCS, anterior insula-frontal operculum/AI-FO, and
inferior frontal sulcus/IFS), all of which were defined using functional localizers (see Methods). ROls are
organized into four groups for convenience. Note that though we have visually separated them in all
figures, we consider IPS to be a part of the MD network. (a) In the Identity Task, in all but one ROI,
univariate activation (mean beta weight) did not differ between trials according to their status as an
identity match. (b) Similarly, in the Viewpoint Task, univariate activation in most ROIs did not reflect
viewpoint match status. Match and non-match trials were compared using paired t-tests, p-values were
FDR corrected over all conditions; solid circles indicate significance at q=0.01. Error bars indicate + 1
SEM.
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Multivariate Activation Patterns Reflect Task-Relevant Match Status. Next, we examined how voxel
activation patterns in each ROl reflected the status of a stimulus as a match in viewpoint and identity,
and how representations of viewpoint and identity match status were influenced by the task-relevance
of each dimension. During each task, a correct behavioral response depended on the object being a
match to the previous object in the relevant dimension (identity or viewpoint), while match status in the
other dimension was irrelevant. Therefore, we expected that information about the match status of an

object in each dimension would be more strongly represented when that dimension was task-relevant.

Indeed, status as a match along the task-relevant dimension, measured by classifier
performance (d’), was represented widely within the ROIs we examined, while the irrelevant match was
not represented at an above-chance level in any ROI (Figure 4). Information about the task-relevant
match increased along a posterior-to-anterior axis, such that match status was represented most
strongly in MD and IPS ROls, but was comparatively weaker in early visual cortex and the LOC. Relevant
match decoding performance was above chance for all MD ROIs for both the identity and viewpoint
task, and was also above chance for LO, V3AB, and V2 for both tasks. Decoding performance was above

chance in V1, V4, and pFus for the identity task only.

The general pattern of decoding performance was similar across tasks, though there was a trend
toward higher relevant match decoding performance in IPS for the viewpoint task than the identity task.
There was also an opposite trend in V4 and pFus for higher relevant match decoding during the identity
task than the viewpoint task. A three-way repeated measures ANOVA with factors of Task, ROl and
Relevance revealed a main effect of Relevance (F(1,9) = 46.348, p=10"*), a main effect of ROI (F(13,117) =
9.918, p<10™), and a Relevance x ROl interaction (F(13,117) = 13.976, p<10™), but no main effect of Task
or Task-related interactions were observed. We further investigated the ROl x Relevance interaction
using paired t-tests to compare decoding of the relevant and irrelevant dimensions, and found that the
effect of relevance was significant for all MD regions in both tasks, LO in both tasks, as well as V3AB, V4,

and pFus for the identity task only (Figure 4).
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Figure 4. Task-relevant matches are represented more strongly than task-irrelevant matches. A linear
classifier was trained to discriminate between voxel activation patterns measured during each task,
according to whether the viewed image was a match in the task-relevant and the task-irrelevant
dimension. Classifier performance (d’) is plotted on the Y axis. Circles above individual bars indicate
above-chance classification performance (test against zero); circles above pairs of bars indicate
significant differences between bars (paired t-test). P-values were FDR corrected over all conditions;
open circles indicate significance at q=0.05, solid circles indicate significance at q=0.01. Error bars
indicate + 1 SEM.
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Control Analyses for Visually-Driven Match Representations. To perform the identity and the
viewpoint tasks, subjects were required to use representations of object identity and viewpoint that
were largely invariant to shape. However, given a limited number of trials, each task could, in principle,
be solved based only on shape similarity between the previous and current objects. In the viewpoint
task, since subtle differences between exemplars were not task-relevant, the group of trials that could
be solved based only on shape similarity included all trials that were matches in both category and
viewpoint. In the identity task, the group of trials that could be solved based on shape similarity
included all trials that were an exact match to the previous image in category, exemplar, and viewpoint.
Therefore, it is possible that some of the match status classification we observed (Figure 4) was driven
by the detection of shape similarity. To test for this possibility, we removed all trials that were a match
in both category and viewpoint, leaving a set of trials in which the shape similarity was entirely

uninformative about match status. We then performed classification on this reduced dataset as before.

For the viewpoint task, we now found an important difference between visual and MD regions:
While decoding of viewpoint matches remained above chance in all MD and IPS regions, it dropped to
chance in LOC and early visual cortex (Figure 5B). Thus, while early visual and LOC representations of
viewpoint match status appeared to rely on low-level shape similarity, MD regions encoded viewpoint

match status even when shape similarity could not be used to define a match.

During the identity task, however, even when shape similarity could not be used to define
match status, decoding of identity match status remained above-chance in all ROIs examined (Figure
5A). The observation of above-chance identity match decoding in early visual areas was surprising given
that these areas are not expected to encode abstract, viewpoint independent representations of object
identity. Therefore, we wondered whether either of our stimulus sets made it possible for identity
match status to be inferred based on shape similarity. Though we had already removed all trials in
which the previous and current images were highly similar in shape, the remaining set of images may
have had some shared features that supported match classification. Indeed, when we assessed the
pixel-wise similarity between images (see Methods) belonging to each stimulus set, we found that in 4 of
the subjects assigned to Object Set A, pixel-wise similarity between images was significantly predictive
of identity match status (Supplementary Figure 2). We thus hypothesized that the above-chance
decoding of identity match status observed in early visual areas might be driven by this group of

subjects.
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In line with this prediction, when we re-analyzed decoding performance using only subjects
from Set B, identity match decoding was no longer significant in V1, V2, V3, V4, and pFus, suggesting
that the above-chance decoding accuracy for identity match status in these ROIs had been driven at
least in part by low-level image features (Figure 5C). Despite this drop, identity match decoding
performance remained above chance in all MD and IPS ROIs. Therefore, when low-level image features
were uninformative about identity match status (Object Set B), MD and IPS regions still encoded robust

representations of identity match status, while early visual cortex did not.
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Figure 5. Control analyses related to Figure 4: viewpoint and identity match information in MD regions is
not driven by low-level image statistics. (a and b) To address the possibility that match status could have
been inferred from low-level visual properties, we removed all trials in which an object had a high
degree of shape similarity to the previous object, and repeated the analyses of Figure 4. (a) Identity
match information remained above chance in all regions. (b) Viewpoint match information dropped to
chance in the early visual cortex and LOC, but remained above chance in MD regions. (c) After
identifying that the pairwise similarity between images in Object Set A was informative about identity
match status, we re-analyzed the identity task data using only the subjects shown Object Set B. Identity
match classification in early visual and ventral visual cortex drops below significance when subjects in
Object Set A are removed, but remains above chance in MD regions. P-values were computed at the
subject level over these 5 subjects and FDR corrected across ROls; open circles indicate significance at
g=0.05, solid circles indicate significance at q=0.01. Error bars indicate + 1 SEM.
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Behavioral Performance is Closely Linked to Activation Patterns in the MD Network. Having
established that several ROls, including all MD network ROlIs, represent the status of an object as a
match in the task-relevant dimension, we next sought to determine whether these representations were
related to task performance. To answer this question, we used the normalized Euclidean distance to
calculate a continuous measure of the classifier’s evidence at predicting the correct label for each trial in
the test set (see Methods). We then calculated the mean classifier evidence for all correct and incorrect
trials. Because the previous analysis (Figure 4) indicated no significant effect of task on relevant match

decoding, we combined all trials across the identity and viewpoint tasks for this analysis (Figure 6).

In all regions of the MDD network and IPS, we found that classifier evidence was significantly
higher on correct than incorrect trials. In contrast, we found no significant effect of behavior on classifier
evidence in early visual cortex or the LOC. Thus, representations in IPS and MD ROls, but not any of the

other regions that we evaluated, were significantly associated with task performance.
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Figure 6. Classifier evidence is associated with task performance. Trials were classified according to their
status as a match in the task-relevant feature, and the normalized Euclidean distance was used as a
metric of evidence in favor of the correct classification (distance to incorrect label — distance to correct
label, plotted on the Y axis). Circles above pairs of bars indicate a significant difference between correct
and incorrect trials (paired t-test). Solid circles indicate significance at q=0.01 (FDR corrected). Error bars
indicate + 1 SEM.
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Discussion

Here we used fMRI and pattern classification methods to investigate the role of different brain
areas in signaling task-relevant matches across identity preserving transformations. Specifically, subjects
performed a task that required them to identify matches in either the identity or the viewpoint of novel
objects. Consistent with previous work, we found that areas of ventral visual cortex represent
information about the status of an object as a relevant match (Figure 4; Lueschow et al., 1994; Miller &
Desimone, 1994; Pagan et al., 2013; Woloszyn & Sheinberg, 2009). However, our results also suggest a
key role for the MD network in match identification, with MD match representations showing specificity
to task-relevant dimensions (Figure 4), as well as invariance to low-level visual features (Figure 5).
Additionally, there was a significant link between task performance and the strength of MD match
representations (Figure 6). In contrast, in early visual and ventral object-selective cortex, we found
comparatively weaker evidence for representation of match status, and no association with task
performance. These results suggest that MD regions play a key role in computing flexible and abstract

target representations and have a gating influence on task performance.

In contrast to our MVPA results, univariate signal amplitude in almost all ROls was not
significantly modulated by match status. This finding differs from many past fMRI studies (Grill-Spector
et al., 1999; Henson, 2003; Turk-Browne, Yi, Leber, & Chun, 2007) which have observed response
suppression as a result of object repetition (or “repetition suppression”). One explanation for this
divergence in findings is that in our task, the repetition of identity and viewpoint is task-relevant,
meaning that repetition related signals are mixed with signals related to task performance. Many
electrophysiology studies have found that when an object’s match status is task-relevant, neural
response modulations are heterogeneous, including both enhancement and suppression (Engel & Wang,
2011; Lui & Pasternak, 2011; Miller & Desimone, 1994; Pagan et al., 2013; Roth & Rust, 2018). This type
of signal would be detectable using multivariate decoding methods, but in univariate analyses may be
obscured by averaging across all voxels in an ROI (Serences & Saproo, 2012). Therefore, our data are
consistent with the interpretation that match representations are not an automatic by-product of

stimulus repetition, but are linked to the task-relevance of each stimulus.

Representations of identity and viewpoint match status were weaker in early visual and ventral
ROIs compared to ROIs in the MD network. Moreover, several control analyses suggest that the
representations in some of these occipital and ventral regions were driven primarily by low-level image

statistics, as opposed to an object’s status as a match in the task-relevant dimension. First, after
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removing all trials in which the current and previous objects were matches in both category and
viewpoint, we found that viewpoint match decoding during the viewpoint task dropped to chance in all
ROIs except for those in the MD network. Additionally, a post-hoc image-based analysis revealed that
one of our stimulus sets had a systematic bias in pixel-similarity, such that the degree of image similarity
between each pair of objects was informative about the status of the pair as an identity match. When
we repeated our decoding analysis using only subjects who had seen the non-biased set, we found that
identity match decoding dropped to chance in V1, V2, V3, V4, and pFus, though it remained above
chance in V3AB and LO. Together, these findings suggest that low-level visual features were at least
partially responsible for the viewpoint and identity match representations we initially observed in early

visual and ventral visual areas.

While match representations in early visual cortex and the LOC were weaker than those
measured in MD regions, we did observe a consistent modulation of these representations by task, such
that the relevant match was generally represented more strongly than the irrelevant match. This
modulation was significant in LO during both tasks, and in V3, V3AB, and pFus during the identity task
(Figure 4). One interpretation for the enhanced representation of relevant match status is the presence
of non-specific reverberating activity related to relevant match representations computed at higher
levels of processing. This is supported by the observation that the match representations in early and
ventral ROIs were not, in general, significantly associated with behavior. Alternatively, the observation
of task-related modulations suggests a role for top-down feedback in determining the content of visual
representations in early visual and ventral object selective cortex. This feedback could act to enhance
representations of visual properties that are informative for computing match status, which would

result in an enhancement of signals related to repetition of these properties

Overall, our results suggest that relevant match representations in MD regions were significantly
associated with behavior, more so than in regions of occipital or ventral visual cortex. Moreover,
representations of match status in occipital and ventral ROls may have been driven primarily by low-
level shape information, while representations in the MD network were largely unaffected by the
removal of such low-level information. Together, these findings suggest that frontoparietal MD regions
tend to represent objects in a more abstract, task-dependent way, while ventral regions tend to be

more visually driven and shape-dependent.

This view is supported by several previous studies. A recent fMRI study found that abstract face-

identity information is represented more strongly in IPS than in LO and the FFA (Jeong & Xu, 2016).
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Another study found that during the delay period of a working memory task, object information could
be decoded from PFC only when the task was nonvisual, and from the posterior fusiform area only when
the task was visual, supporting a dissociation between these regions in representing abstract and visual
object information respectively (Lee, Kravitz, & Baker, 2013). In another study, primates were trained to
perform categorization on a set of morphed animal stimuli designed so that category membership was
not predicted by visual similarity of individual images (Freedman et al., 2003). They found that the visual
responses of IT cortex neurons could be explained by selectivity for individual images, while responses
of PFC neurons showed category selectivity above that expected from a purely stimulus-selective
population. Furthermore, when monkeys performed a category matching task, the amount of match
selectivity observed in ITC was lower than a previous study which had used an identity matching
paradigm, suggesting that ITC might be more involved in comparison of identities than categories (Miller
& Desimone, 1994; Miller et al., 1991). Overall, our findings provide additional support for the
conclusion that frontoparietal cortex represents abstract object dimensions and task-relevant
information, while ventral regions are more involved in representing the details of currently-viewed

images.

That said, our results do not rule out the possibility of abstract object information in any portion
of the ventral stream. Many past studies have demonstrated viewpoint-invariant object information in
human and primate ventral visual cortex (Anzellotti et al., 2014, J. Erez et al., 2016; Freiwald & Tsao,
2010; Tanaka, 1996). In agreement with this role in object processing, our univariate analysis (Figure 3)
showed the highest mean signal amplitude in area LO during both the identity and viewpoint tasks.
Despite this, our multivariate decoding analysis failed to detect an association with behavior in any
ventral ROI. One explanation for this finding is that target information was present at a level of
granularity below what is detectable with our methods, or that the signal to noise regime in ventral
object selective cortex prevented us from detecting abstract object representations (Dubois, de Berker,
& Tsao, 2015). Furthermore, it is possible that linearly-decodable information about abstract object
properties may be more readily detectable at later stages of the ventral visual stream, such as perirhinal
cortex, as compared to LO and pFus (J. Erez et al., 2016; Pagan et al., 2013). Future studies will be
needed to determine the extent to which abstract matches in identity and viewpoint may be

represented within ventral visual cortex.

Finally, a novel finding of this study is that MD regions contain representations of matches in

viewpoint across objects, in addition to matches in identity. This suggests that beyond just representing
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abstract object identity, MD network regions may be capable of representing object viewpoint in a
format that is invariant to the identity and shape of objects. A recent modeling study found that at

|”

ascending positions in the ventral visual stream, information about “category-orthogonal” object
properties such as viewpoint, position, and size increases in parallel to information about object
category and identity, and is extracted by the same computational mechanisms that compute invariant
object identity representations (Hong, Yamins, Majaj, & Dicarlo, 2016). Our finding of both viewpoint-
invariant identity information and identity-invariant viewpoint information in MD regions supports the

idea that these two orthogonal types of information may be computed by related mechanisms.

In conclusion, our findings support a role of MD network regions in the comparison of high-level
object dimensions, such as viewpoint and identity, between remembered and viewed visual objects. The
match representations in these regions are modulated by task-relevance, and are associated with
subject behavior on a trial-by-trial basis. In contrast, early visual and ventral object selective cortex
contained weaker evidence for match representations, with some modulation by task, consistent with a
role for top-down feedback in enhancing representations of relevant information at the earliest levels of

processing.
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Methods

Participants. 10 subjects (3 male) between the ages of 20 and 34 were recruited from the UCSD
community (mean age 24.7 + 4.7 years), having normal or corrected-to-normal vision. This sample size
was determined before starting data collection, based on sample sizes used by past experiments with
similar methodology. All participants provided written informed consent in accordance with the local
Institutional Review Board at UCSD. Each subject performed a behavioral training session lasting
approximately 1 hour, followed by 1 or 2 scan sessions, each lasting approximately 2 hours. Participants

were compensated at a rate of $10/hour for behavioral training and $20/hour for the scanning sessions.

Novel Object Sets and One-Back Tasks. We generated two novel object stimulus sets for this study (see
Figure 1 and Supplementary Figure 1), which had several advantages. First, designing the objects in-
house allowed us to select body configurations that would have drastically different shapes when
viewed from different viewpoints, making it challenging to use the 2D shape of an object to determine
its identity. Second, we were able to define object viewpoint in an arbitrarily defined coordinate system,
so that it was impossible for subjects to determine object viewpoint based on 2D object shape. This
coordinate system was defined as follows. For each object category, we defined a single viewpoint of
the object as its “frontal” viewpoint, or a rotation of [0°,0°] about the Y and Z axes. We assigned an
arbitrary viewpoint as “frontal” so that this canonical viewpoint was not systematically predictable from
the overall axis of elongation of the main body. As a result, the frontal viewpoints of the objects in
different categories differed dramatically in the shape they produced when projected onto a 2D plane.
This ensured that subjects formed a representation of viewpoint as an [X®, Y°] pair that was largely

invariant to 2D shape.

Prior to scanning, subjects participated in a self-guided exercise to familiarize them with the
novel object viewpoints. During the first half of this training, subjects viewed a 3D model of each of the
three novel object categories, and were able to rotate the model around two axes using the arrow keys
on a keyboard (each key press gave a rotation of 30 degrees about either the Y or Z axis). During this
entire exercise, the angular position of the object, expressed using the format “Y rotation = m degrees, X
rotation = n degrees”, was displayed at the top of the screen. Subjects were encouraged to use the
angular coordinates to learn how each view of the object was defined relative to the frontal ([0°,0°])
position. During the second half of this training, subjects were presented with images of all three
categories simultaneously, at matching viewpoints, and encouraged to study how the same viewpoint

was defined across categories. Subjects performed both parts of this training at least once, and were
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allowed to return to it as many times as they wished. On average subjects spent approximately 20

minutes on the self-guided training.

All objects were generated and rendered using Strata 3D CX software (version 7.6; Santa Clara,
UT). To ensure that our results were not an artifact of any idiosyncratic aspect of one stimulus set, we
generated two unique sets of objects, and assigned half of our subjects (five out of 10) to Object Set A,
and half to Object Set B (since we did not observe a difference in performance between the two
stimulus sets for either task, we combined our analyses across all subjects). Each stimulus set comprised
3 categories of objects, each with 36 total exemplars. Objects within a category shared a common body
plan, including the shape of the main body and the configuration of peripheral features around the
body. All objects in a given set had the same peripheral features, which differed across categories only in
how they were attached to the body. There were two peripheral feature types, each of which appeared
twice on each object. Pairs of matching features were attached symmetrically to the body, making the
overall objects bilaterally symmetric. Exemplars in each category were differentiated by small variations
in the details of peripheral features, such as the size or shape of a spike. There were 6 variants for each
feature pair, giving 36 total exemplars of each category. Feature details were always matched within
each peripheral feature pair, assuring that even when one feature in a pair was occluded at a particular

viewpoint, the details could always be discerned from the other feature in the pair.

Though there were 36 exemplars per category in each full object set, each subject only viewed
two exemplars of each category during scanning. The selection of these two exemplars allowed us to
manipulate the difficulty of the task for each subject, by selecting exemplar pairs that were ~70%
confusable. To select these exemplars, each subject participated in a behavioral experiment before the
scan. This task was identical to the one-back Identity task used during scanning, but it employed a
limited stimulus set in which objects were drawn from a single category and only differed in one of the
two peripheral feature pairs. Subjects were told at the start of this task which of the feature pairs was
relevant for task performance, and that changes in viewpoint were task-irrelevant. Each subject
completed six runs of this training task, with each object category and each feature type serving as the
main focus for each run. In analyzing the confusability of variants of the two feature types, we collapsed
across object category. We then selected, for each feature type, three pairs of variants that were
confused approximately 70% of the time. These three pairs were then randomly assigned to the three

object categories, giving two total exemplars per object category. Exemplars in the same category

23


https://doi.org/10.1101/387498
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/387498; this version posted August 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

always differed in both feature types, but exemplars in different categories could have the same variant

of one or both feature types.

While in the scanner, each subject performed two different one-back tasks (ldentity Task and
Viewpoint Task). Task runs always occurred in pairs with the identity task followed by the viewpoint
task, and each subject performed between 8 and 11 pairs of runs in total. An identical sequence of visual
stimuli was presented on both runs in each pair, so that visual stimulation was perfectly matched

between conditions.

Each run consisted of 48 trials, and each trial consisted of a single image presentation. During
each run, six different objects were shown (two exemplars in each of three categories), from four
different viewpoints; each image was shown twice. The sequence of image presentations was generated
using a pseudo-randomization procedure, with the constraint that the probability of the current
stimulus being from the same category as the previous stimulus (within-category trials) was
approximately 0.50. This constraint was used to more closely equate the difficulty of the two tasks, as
the viewpoint task was more difficult to solve on across-category trials, and the identity task was more
difficult to solve on within-category trials. This resulted in a probability of 0.23 of any trial being a match

in either viewpoint or identity, and a probability of 0.04 of a match in both dimensions.

In the Identity Task, subjects responded to each image based on whether it matched the identity
of the immediately preceding image. Identity matches had to be both from the same category and the
same exemplar, but did not have to match in viewpoint. In the Viewpoint Task, subjects responded
based on whether the current image matched the viewpoint of the immediately preceding image, while
both category and exemplar status was irrelevant. For instance, an object from category A presented at
a viewpoint of [30°, 150°] would be a viewpoint match to an object from category B presented at [30°,

150°].

Before scanning, subjects performed several practice runs of both the Identity Task and the
Viewpoint Task. During these runs, the four object viewpoints that were used during scanning were
never used. After each Viewpoint Task practice run, subjects could return to the self-guided viewpoint
training, and repeated as many iterations of self-guided training and practice runs as were necessary to

reach 70% performance.

Immediately prior to each scanning session, subjects performed another short self-guided

training exercise (~5 minutes), in which they were shown examples of the exact images they would see
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during scanning. First, they were presented with the two exemplars in each object category, side-by-
side, and allowed to freely rotate the models using the arrow keys and compare the appearance of the
two exemplars from many viewpoints. Next, they were presented with images from each category, side-
by-side, at each of the four viewpoints they would see during the task, and encouraged to use this

information to prepare for the viewpoint task.

In both tasks, subjects responded to every image by pressing a button using either their index
finger (“1”) or their middle finger (“2”), depending on the current response mapping rule. Response
mapping rules were counterbalanced within each subject, so that on half the runs the subject responded
with 1 for “match” and 2 for “non-match”, and on the other half of runs they responded with 1 for “non-
match” and 2 for “match”. The purpose of these different response mapping rules was to ensure that

match-related information was not confounded with motor response.

Magnetic Resonance Imaging. All MRI scanning was performed on a General Electric (GE) Discovery
MR750 3.0T research-dedicated scanner at the UC San Diego Keck Center for Functional Magnetic
Resonance Imaging (CFMRI). Functional echo-planar imaging (EPI) data were acquired using a Nova
Medical 32-channel head coil (NMSC075-32-3GE-MR750) and the Stanford Simultaneous Multi-Slice
(SMS) EPI sequence (MUX EPI), with a multiband factor of 8 and 9 axial slices per band (total slices = 72;
2 mm?3 isotropic; 0 mm gap; matrix = 104 x 104; FOV = 20.8 cm; TR/TE = 800/35 ms; flip angle = 52°;
inplane acceleration = 1). Image reconstruction procedures and un-aliasing procedures were performed
on local servers using reconstruction code from CNI (Center for Neural Imaging at Stanford). The initial
16 TRs collected at sequence onset served as reference images required for the transformation from k-
space to the image space. Two short (17 s) “topup” datasets were collected during each session, using
forward and reverse phase-encoding directions. These images were used to estimate susceptibility-
induced off-resonance fields (Andersson, Skare, & Ashburner, 2003) and correct signal distortion in EPI

sequences, using FSL topup functionality (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012).

During each functional session, we also acquired an accelerated anatomical scan using parallel
imaging (GE ASSET on a FSPGR T1-weighted sequence; 1x1x1 mm?3 voxel size; 8136 ms TR; 3172 ms TE;
8° flip angle; 172 slices; 1 mm slice gap; 256x192 cm matrix size) using the same 32-channel head coil.
We also acquired an additional high-resolution anatomical scan (1x1x1 mm? voxel size; 8136 ms TR;
3172 ms TE; 8° flip angle; 172 slices; 1 mm slice gap; 256x192 cm matrix size) during a separate

retinotopic mapping session using an Invivo 8-channel head coil. This scan produced higher quality
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contrast between grey and white matter and was used for segmentation, flattening, and visualizing

retinotopic mapping data.

In addition to the multiband scan protocol described above, several subjects participated in
retinotopic mapping experiments using a different scan protocol, previously reported (Sprague &
Serences, 2013). Where appropriate, the data used to generate retinotopic maps (see Retinotopic

Mapping) was combined across these sessions.

Pre-Processing. First, the structural scan from each session was processed in BrainVoyager 2.6.1 to align
the anatomical and the functional datasets. Automatic algorithms were used to adjust the structural
image intensity to correct for inhomogeneities, as well as remove the head and skull tissue. Structural
scans were then aligned to the AC-PC plane using manual landmark identification. Finally, an automatic
registration algorithm was used to align the structural scan to the high-definition structural scan

collected during each subject’s retinotopic mapping session.

Next, each functional run was aligned to the same-session structural scan. We then
performed slice-time correction, affine motion correction, and temporal high-pass filtering to remove
slow signal drifts over the course of each session in BrainVoyager 2.6.1. These data were spatially
transformed into Talairach space. Finally, the BOLD signal in each voxel was z-transformed within each
run. Single-trial activation estimates (beta weights), which were used for MVPA analyses, were obtained
by solving a general linear model (GLM) with a design matrix created by convolving trial events with a
canonical two-gamma HRF (peak at 5 s, undershoot peak at 15 s, response undershoot ratio 6, response
dispersion 1, undershoot dispersion 1). Throughout this paper, the same HRF parameters were used for

all GLM analyses.

Retinotopic Mapping. We followed previously published retinotopic mapping protocols to define the
ROIs reported here (Jerde & Curtis, 2013; Swisher, Halko, Merabet, McMains, & Somers, 2007; Wandell,
Dumoulin, & Brewer, 2007; Winawer & Witthoft, 2015). Subjects performed mapping runs in which they
viewed either rotating wedge (10 cycles, 36 s/cycle), expanding ring (10 cycles, 36 s/cycle), or bowtie (8
cycles, 40 s/cycle) stimuli. To increase the quality of data from parietal regions, subjects performed a
covert attention task on the rotating wedge stimulus, which required them to detect contrast dimming
events in a row of the checkerboard (mean accuracy = 61.8 + 13.9%). This stimulus was limited to 22° by

22° FOV.
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Multiple-Demand (MD) Localizer. To define ROIs in the MD network, we used a functional localizer to
identify voxels whose BOLD response was significantly modulated by the load of a spatial working
memory task (Duncan, 2010; Fedorenko et al., 2013). Subjects performed 1-2 runs of this task during
each functional scanning session. During each trial of this task, subjects were first presented with an
empty rectangular grid comprising either 8 or 16 squares. Half of the squares in the grid were then
highlighted one at a time, and subjects were required to remember the locations of the highlighted
squares. Subjects were then shown a probe grid and asked to report whether the highlighted squares
matched the remembered locations. Runs were divided into blocks with either high or low load.
Performance was significantly poorer on high load blocks (mean d’ for low load = 2.48 + 0.28, mean d’

for high load =1.04 + 0.21, p < 0.001; paired two-tailed t-test).

We used the data from these runs to generate a statistical parametric map for each subject,
which expressed the degree to which each voxel showed elevated BOLD signal for high versus low load
working memory blocks. We defined a GLM with a regressor for each block type, and solved for the beta
coefficients corresponding to each load condition. Coefficients were then entered into a one-tailed,
repeated-measures t-test against a distribution with a mean of 0 (FDR corrected q=0.05). This resulted in

a single mask of load-selective voxels for each subject.

To subdivide this mask into the MD ROls, we used a group-level parcellation from a previously
published data set (Fedorenko et al., 2013). We used this parcellation to generate masks for five ROls of
interest: the intraparietal sulcus (IPS), the superior precentral sulcus (sPCS), the inferior precentral
sulcus (iPCS), the anterior insula/frontal operculum (Al/FO) and the inferior frontal sulcus (IFS). Because
we had already defined two posterior subregions of the IPS, IPSO-1 and IPS2-3 (see Retinotopic
Mapping), we removed all voxels belonging to these retinotopic regions from the larger IPS mask, and
used the remaining voxels to define a region that we refer to as the superior IPS (sIPS). This was done
within each subject separately. We intersected each subject’s mask of load-selective voxels with the

mask for each ROI to generate the final MD ROI definitions.

For one subject, this procedure failed to yield any voxels in the sPCS ROL. In all analyses of sPCS,
we used the remaining 9 subjects. When performing group-level ANOVA analyses of decoding
performance, we performed linear interpolation based on sPCS in the remaining 9 subjects to generate
an estimate of the missing value. We did this by calculating a t-score comparing the missing subject’s d’
score to the other 9 subjects in each ROl and condition where it was defined, and using the mean of

these t-scores to estimate d’ in sPCS for each condition.
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Lateral Occipital Complex Localizer. We identified two subregions of the lateral occipital complex, LO
and pFus, using a functional localizer developed by the Stanford Vision and Perception Lab (Stigliani,
Weiner, & Grill-Spector, 2015) to identify voxels that showed enhanced response for intact objects (cars
and guitars) versus phase-scrambled versions of the same images. Between 2-4 runs of this task were
performed during functional scanning sessions. During each run, subjects viewed blocks of sequentially
presented images in a particular category (cars, guitars, faces, houses, body parts, scrambled objects),
and performed a one-back repeat detection task (mean d’ = 3.09 + 0.49). We used a GLM to define
voxels that showed significantly higher BOLD during car/guitar blocks versus scrambled blocks (FDR
corrected g=0.05). We then projected this mask onto a computationally-inflated mesh of the gray
matter-white matter boundary in each subject, and defined LO and pFus on this mesh based on the

mask in conjunction with anatomical landmarks (Vinberg & Grill-Spector, 2008).

Object Localizer Task. After defining the ROIs described above, voxels within each ROl were
thresholded based on their visual responsiveness during performance of an independent novel object
matching task. Subjects performed 2-3 runs of this task during each scanning session. This task was
identical to the Identity Task described above, except that the alternate object set was used (e.g, if the
subject viewed Set A during the main one-back task runs, they viewed Set B during the localizer). The
object exemplars shown during this task were randomly selected for each run. Performance on this task
was consistently lower than performance on the main one-back tasks, due to the fact that subjects had

not been trained on this stimulus set (mean d’ =-0.23 + 0.14).

For each subject, we combined data from all object localizer runs to generate a statistical
parametric map of voxel responsiveness, based on a GLM in which all image presentations were
modeled as a single predictor. We then selected only the voxels whose BOLD signal was significantly
modulated by image presentation events (FDR corrected q=0.05). This limited our voxel population to
those that were responsive to object stimuli that were visually similar to those presented during the
main task. For one ROl in the MD network (Al-FO), this thresholding procedure yielded fewer than 10
voxels for several subjects, so for this ROl we chose to analyze the entirety of the ROl as defined by the
MD localizer. The final definitions of each ROI (centers and sizes), following this thresholding procedure

are summarized in Supplementary Table 1.

MVPA Decoding. The goal of our MVPA analysis was to estimate the amount of linearly-decodable

information about viewpoint match status and identity match status that was represented within each
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ROI during each task, and determine how this information content was affected by the task-relevance of

each match dimension, as well as how it differed between correct and incorrect trials.

Before performing MVPA, we first mean-centered each single-trial voxel activation pattern, by
calculating the mean across voxels on each trial, and subtracting this value from the voxel activation
pattern measured on the same trial. The purpose of this was to ensure that we were measuring
information related to the relative pattern of activity across voxels in each ROI, rather than information
solely due to mean signal changes across conditions. Several ROls did show a significant difference in
mean signal between the identity and viewpoint tasks (see Supplementary Figure 3), however, this

mean-centering step ensured that such differences did not contribute to our classification accuracy.

We performed all decoding analyses using a binary classifier based on the normalized Euclidean
distance. To avoid overfitting, we used a leave-one-run-out cross-validation scheme, so that each run
served as the test set once. Before starting this analysis, we removed all trials that were the first in a
block, because they could not be labeled as a match or non-match, and removed all trials where the
subject was incorrect or did not respond. Next, we divided data in the training set into two groups based
on status as a match in the dimension of interest. For each of these two groups, we then calculated a
mean voxel activation pattern (e.g., averaging the response of each voxel over all trials in the group). We
also calculated the pooled variance of each voxel’s response across the two groups. Then, for each trial
in the test set, we calculated the normalized Euclidean distance to each of the mean patterns of the
training set groups, weighting each voxel’s contribution based on its pooled variance. We then assigned
each test set trial to the group with the minimum normalized Euclidean distance. Specifically, for a
training set including n total trials, with n, trials in condition A and ny, trials in condition B, and v voxels
in each activation pattern, we can define @, g,2, b, and 0,2 as vectors of size [1 x v] describing the
mean and variance of each voxel’s response within conditions A and B, respectively. If x isa [1 x V]
vector describing a voxel activation pattern from a single trial in the test set, the normalized Euclidean

distance from x to each of the two training set conditions is:

dx—>a

dyop =
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Where apz is a [1 x v] vector describing the pooled variance of each voxel over conditions A

and B:

naO'aZ + leO'bZ
ng +ny
The final label assigned to each test set trial by the classifier was obtained by finding the
minimum value between d,_,, and d,._,,. Finally, we computed a single value for classifier performance

across the entire data set by calculating d’ with the formula:
d' = Z(hit rate) — Z(f alse positive rate)

Where the hit rate is defined as the proportion of test samples in condition A accurately
classified as belonging to condition A, and the false positive rate is the proportion of test samples in
condition B inaccurately classified as belonging to condition A. The function Z(p),p € [0,1] is the

inverse of the cumulative distribution of the Gaussian distribution.

Because the frequency of matches in our task was less than 50%, the training set for the
classifier was initially unbalanced. To correct for this, we performed downsampling on the larger training
set group (non-match trials), by randomly sampling N trials without replacement from the larger set,
where N is the number of samples in the smaller set. We performed 1000 iterations of this random

downsampling and averaged the results for d’ over all iterations.

We assessed the significance of classifier decoding performance in each ROI using a permutation
test in which we shuffled the labels of all trials in the training set and computed decoding performance
on this shuffled data set. We repeated this procedure over 1000 iterations to compute a null distribution
of d’ for each subject and each ROI. For each shuffling iteration, we performed downsampling to balance
the training set as described above, but to reduce the computational time, we used only 100 iterations.
To compute significance at the group level, we averaged the null distributions over all subjects to obtain
a single distribution of 1000 d’ values, and averaged the d’ values for the real data set over all subjects
to obtain a subject-average d’ value. We obtained a p-value by calculating the proportion of shuffling
iterations on which the shuffled d’ exceeded the real d’, and the proportion on which the real d’
exceeded the shuffled d’, and taking the minimum value multiplied by 2. We then performed FDR
correction across ROIs within each condition and match type, at the 0.01 and 0.05 significance levels
(Benjamini & Yekutieli, 2001). We chose two thresholds because the 0.05 value provides slightly more

power to detect weaker effects, while the 0.01 value provides a more conservative threshold.
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The above analysis was carried out within each ROI, task, and match dimension separately. Next,
to assess how decoding performance was affected by task, ROI, and the task-relevance of each match-
dimension, we entered all d’ values into a three-way repeated measures ANOVA with factors of Task,
ROI, and Relevance. Following this, to more closely investigate the interaction between ROl and
Relevance, we used a nonparametric paired t-test to compare the d’ distributions for the relevant match
dimension versus the irrelevant match dimension, within each task and ROl separately. This test
consisted of performing 10,000 iterations in which we randomly swapped the Relevance labels
corresponding to the d’ values, maintaining the subject labels. After randomly swapping, we calculated
the difference in d’ between the two conditions for each subject, and used these 10 difference values to
calculate a t-statistic. We then compared the distribution of these null t-statistics to the value of the t-
statistic found with the real Relevance labels, and used this to generate a two-tailed p-value. These p-

values were FDR corrected across ROls.

In addition to the overall performance of the classifier, we were also interested in whether
neural information about the task-relevant match dimension was associated with task performance. To
evaluate this, we performed decoding of the task-relevant match dimension as described above, but
here we included incorrect and no-response trials in both the training and testing sets. We considered
all incorrect and no-response trials as a single group which we refer to as “incorrect”. Then, for each trial
in the test set, we used the normalized Euclidean distance (calculations described above) as a metric of

classifier evidence in favor of the correct trial label, where:

dx—>incorrect - dx—>correct = evidence

We then compared the distributions of evidence between correct and incorrect test set trials.
Since there were many more correct than incorrect test set trials, we performed an additional step of
downsampling to balance the training set. We divided training set trials into four groups based on their
status as a match and the correctness of the subject’s response, and downsampled the number of trials
in all four groups to match the number of trials in the smallest set. This was performed over 1000
iterations and the resulting values for classifier evidence were averaged. We assessed significance using
a permutation test as described above. Finally, we performed a three-way ANOVA on all classifier

evidence values with factors of Task, ROI, and Correctness.

In all analyses reported in the main text, we performed MVPA using all voxels from each

localized ROI. Additionally, in the interest of making classification performance more comparable across
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ROIs, we repeated all analyses after restricting the number of voxels to 50 in each area. Overall,
reducing the voxel number did not cause a dramatic change in the patterns of decoding performance

across ROIs. These analyses are all reported in the Supplementary Figures 4,5, and 7.

Image Similarity Analysis. The Viewpoint and Identity tasks were designed so that the low-level shape
similarity of the images would not be explicitly informative about the status of each image as a match.
Thus, when we performed classification on the status of each image as a target in each dimension, we
intended to capture information that was related to perception of the abstract dimensions of each
object, rather than low-level properties such as its shape in a two-dimensional projection. However, due
to factors such as the small number of objects in our stimulus set, it is possible that there was some
coincidental, systematic structure in the similarity between pairs of objects, such that low-level image
similarity was partially informative about the status of each image as a match in either identity or

viewpoint.

To evaluate this possibility, for each trial in the sequence of images shown to each subject, we
determined the image similarity between the current and previous images by unwrapping each image
(1000 pixels x 1000 pixels) into a single vector, and calculating the Pearson correlation coefficient
between each pair of vectors. For this analysis, we removed trials that were a match in both category
and viewpoint (identical images by design), and sorted the remaining trials according to whether the
current and previous images were actually a match in the dimension of interest. Mean image similarity
between match and nonmatch trials was compared using a one-tailed t-test (Supplementary Figure 2).
This resulted in a p-value for each subject in each condition, which was used to evaluate the extent to

which low-level image similarity may have been informative about match status.

In addition to using the Pearson correlation to measure similarity, we also assessed similarity by
passing each image through a Gabor wavelet model meant to simulate the responses of V1 neurons to
the spatial frequency and orientation content of the image (Pinto, Cox, & DiCarlo, 2008). We then
compared the effectiveness of this V1 model and the simpler pixel model at capturing the responses in
V1 from our fMRI data, by calculating a similarity matrix for each pairwise comparison of images (24 x
24), based on (1) the V1 model, (2) the pixel model, and (3) the voxel activation patterns recorded in V1
for each subject. We found that across all subjects, the pixel model was more correlated with the V1
voxel responses than was the V1 model (data not shown). Therefore, in the interest of parsimony, we

used the simpler pixel model for all image similarity analyses.
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Supplementary Figure 1. Example stimulus set from Object Set A (see Figure 1 and Methods for details).
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Supplementary Figure 2. Image correlation is predictive of identity match status for several subjects in

Object Set A. To assess the possibility that identity match classification in early visual cortex may have
been driven by low-level similarity between pairs of images, we used the Pearson correlation coefficient
to calculate the similarity between all pairs of object images (excluding image pairs that were matched
in both category and viewpoint and thus highly similar). For each subject, we calculated the mean
correlation coefficient between pairs of images that were a match in each feature versus images that
were not a match. In the plot above, solid circles indicate that this mean value was higher for matching
pairs than nonmatching pairs (a = 0.01). This finding suggests that the above-chance classification of
identity match status observed in Set A subjects may have been driven by low-level image features.
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Supplementary Figure 3. Several ROIs show a higher mean signal during the identity task than the

viewpoint task. To examine whether the mean activation level in each ROl showed an effect of task, we
calculated for each voxel the mean beta weight over all predictors in each condition. We then compared
the mean beta weight for all voxels in each ROl between the two conditions. This revealed that for all
ROIs examined, mean activation was higher during the identity task than the viewpoint task. This effect
was significant in V4, LO, and pFus (bootstrapped t-test, FDR corrected, g=0.01).

41


https://doi.org/10.1101/387498
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/387498; this version posted August 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A B
Identity Task Viewpoint Task
15 r 15
1t 1r -
° oN KR
T s . T e
. o
: 2 : oy
° o5} . . o ° o5t
Ol s o
2 s .oL o °L o
ii i. o | |
N o I 1 16 P 1 T
= 11****111111 =T I T T =
VS T T N m s T o 4wy vouw ¥ o aomaYTo Y om0
>>>2 >332 04288 58 > >> 49> 32 454899 8
27 SEETY Rz 2" sEECv Rz
EVC LocC IPS MD EVC Loc IPS MD

I Task-Relevant Match

I Task-Relevant Match
Task-Irrelevant Match

Task-Irrelevant Match

Supplementary Figure 4. Same analysis as Figure 4, with voxel number matched across all ROls. Voxels
were selected by performing a two-sample t-test on each voxel to evaluate its selectivity for matches in
the dimension of interest (e.g., the same dimension that was the target of classification), and selecting
the 50 most selective voxels. To ensure that the analysis was not circular, this selection procedure was
always done using only the training set data for each cross-validation fold. For one subject in area sPCS,
only 32 voxels passed the localizer threshold, so for this subject and ROl we used all 32 voxels. Analysis is

otherwise identical to Figure 4.
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Supplementary Figure 5. Same analysis as Figure 6, with voxel number matched across ROls. Voxels

were selected by performing a two-sample t-test on each voxel to evaluate its selectivity for matches in
the dimension of interest (e.g., the same dimension that was the target of classification), and selecting
the 50 most selective voxels. To ensure that there was no bias that might benefit performance on
correct trials, we performed this voxel selection procedure using a training set that was balanced for
correctness using downsampling over 1000 iterations, averaged the p-values for each voxel over
iterations, and selected the top 50 voxels based on the resulting p-values. Analysis is otherwise identical
to Figure 6.
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Supplementary Figure 6. Same analysis as Figure 6, but classification was performed within each
condition separately. P-values are FDR corrected across all conditions.
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Supplementary Figure 7. Same analysis as Supplementary Figure 6, with voxel number matched across

ROIs. See Supplementary Figure 5 for details of voxel selection procedure.
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Center # Voxels
Subject LH RH LH RH
1 '-16, -94, -12]" '[12,-92,-17] 331 368
2 'T-9, -82, 8]' 'l6, -82, 6]' 797 444
3 '[-15,-97, 7]' 11, -97, 5] 84 192
4 '-12, -97, -8]' '[14,-94, 4]' 249 186
Vi 5 '[-6, -95, -4]' '[16, -95, 1]' 273 164
6 '[-8, -90, -12]' '[13, -89, -1]' 269 434
7 '[-9, -88, -5]' 11, -92, -5]' 406 393
8 '[-11, -92, -8]' '[10, -91, -4]' 348 254
9 '[-12, -93, -8]' '[15, -96, -5]' 477 324
10 '[-16, -89, -18]"  '[12,-92,-9]' 299 239
1 '-23,-92,-11]" '[14,-90, -15]' 325 311
2 '[-14, -86, 7]' '[19, -82, 5]' 495 602
3 '-17,-92, 4]' '[15, -93, 3]' 271 226
4 '[-13, -93, -71' ‘118, -92, 4]' 354 212
V2 5 '[-10, -94, -8]' 119, -93, 5]' 179 167
6 '[-13, -85, -13]"  '[18, -89, -1]' 272 388
7 '[-14, -93, -6]' '[15, -93, -5]' 363 419
8 '[-14, -87,-12]" '[16, -89, -8]' 416 308
9 '[-13, -92, -6]' '[14, -90, -6]' 277 300
10 'l-20, -88, -20]" '[17,-90, -7]' 370 364
1 '[-25, -85, -8]' '[22, -88, -9]' 331 360
2 '-22, -83, 1]' 112, -88, 6]' 500 515
3 '-19, -87, 6]' 121, -89, 3]' 247 320
4 '[-20, -90, -3]' ‘122, -85, 6]' 359 216
V3 5 '[-20, -88, -7]' 129, -85, 1]' 382 292
6 '[-23, -85, -9]' ‘27, -84, -0]' 259 474
7 '[-24, -90, -3]' '[23, -88, -5]' 646 703
8 '-22, -83,-16]" '[25, -88, -7]' 432 348
9 '[-18, -89, -3]' '[22, -86, -6]' 442 318
10 '[-23,-87,-16]" '[24,-84,-8]' 366 630
1 '[-26, -84, 7]' 128, -83, 7] 136 200
2 '[-28, -85,19]' '[23,-80, 30]' 425 253
3 '[-25, -84, 21]' '[28, -85, 22]' 269 214
4 '-26, -83,11]' '[26,-77,19]' 141 167
V3AB 5 '-26, -87,17]' '[34,-79, 19]' 281 396
6 '-31, -86,12]' '[31,-78, 20]' 120 137
7 '-29, -83,12]' '[24,-78, 15]' 357 306
8 '[-36, -84, 5]' ‘136, -83, 1]' 350 474
9 '[-24, -89, 18]'  '[30, -83, 10]' 341 329
10 '[-25, -91, -2]' ‘128, -78, 18] 450 311
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Center # Voxels

Subject LH RH LH RH
1 '-27, -75, -16]"  '[26, -75, -14]' 116 245

2 '[-29, -76, -8]' '[25, -76, -8]' 336 299

3 '[-29, -78, -71' 122, -78, -9]' 303 154

4 '-22, -80, -13]"  '[25, -75, -9]' 75 158
va 5 '-27,-79, -16]" '[32,-75,-12]' 243 139
6 '-29, -75,-17]" '[32,-72,-14]' 115 272

7 '-29, -76, -14]" '[29, -76, -14]' 406 380

8 '-31, -75,-23]" '[30, -83, -18]' 261 164

9 '[-24, -76, -18]" '[26,-77,-16]' 304 362

10 '-32,-76,-22]" '[24,-75,-17]' 243 329

1 '-43, -76,-13]" '[37,-78,-10]' 617 798
2 '[-40, -77, 3]' '37,-78, 5]' 911 1113

3 '[-38, -81, 5]' '135,-81, 1] 253 314

4 '[-33, -87, 1]' ‘34, -80, 0]' 163 177
Lo 5 '[-35, -84, 4]' '38,-81, 5]' 207 132
6 '[-40, -78, -7]' ‘40, -73, -3]' 933 724

7 '[-35, -88, -4]' '32,-82, -1]' 372 449

8 '-41, -73,-13]" '[38, -76, -14]' 812 347

9 '[-34, -80, -5]' '37,-78, -7]' 792 634

10 '-47, -76, -14]"  '[35, -81, 2]' 119 77

1 '[-34, -75, -16]" '[34,-51,-15]' 215 54

2 '-37,-63,-10]" '[36, -62, -9]' 354 415

3 '[-35, -69, -8]' '34, -70, -9]' 233 98

4 '-37, -80, -10]"  '[36, -67, -8]' 252 341
pFus 5 '-43, -66, -8]'  '[40, -64, -10]' 201 127
6 '-37, -63, -16]"  '[33, -55, -15]' 234 268

7 '[-38, -68, -15]' '[34,-61,-17] 87 184

8 '-37,-54, -21]" '[32,-62, -20]' 391 656

9 '-33,-63,-12]" '[35,-61, -15]' 96 447

10 '[-45, -67,-12]" '[39, -61, -15]' 207 117

1 '-26, -80, 15]'  '[25, -79, 21]' 162 236

2 '-31,-78, 27]' '[22,-61, 40]' 369 960

3 '-22,-70,32]' '[24,-75, 33]' 331 280

4 '-22, -70, 28]'  '[25, -67, 33]' 185 175
IPSO-1 5 '[-25, -70, 26]'  '[30, -67, 30]' 524 397
6 '-30, -67, 26]'  '[22,-64, 40]' 30 269

7 '[-25, -76, 25]'  '[24,-73, 28] 478 586

8 '-34, -74,15]' '[32,-71, 13]' 401 375

9 '[-24, -75, 24]'  '[30, -74, 16]' 675 482

10 '[-27, -88, 9]' ‘26, -67, 33]' 473 499
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Center # Voxels

Subject LH RH LH RH
1 '-29, -66, 32]'  '[25,-72, 39]' 140 126
2 '[-25, -63, 35]' '[24,-46,51]' 488 491
3 '[-25, -54, 46]'  '[22,-61, 44]' 283 203

4 '[-24, -62, 45]'  '[24,-60, 39]' 135 47
1PS2-3 5 '-27, -63,43]" '[22,-63, 43]' 368 270
6 '[-26, -62, 35]'  '[24,-54, 45]' 221 175
7 '-22,-71,39]' '[24,-61, 37]' 395 352
8 '[-26, -68, 27]'  '[27,-63, 23]’ 214 161
9 '-29, -62, 31]' '[25, -63, 29]' 283 388
10 '-27,-71, 23]'  '[25, -55, 45]' 390 510
1 '[-34, -55, 36]' '[34,-54, 37]' 65 204
2 '[-34, -40,42]' '[31,-47,50]' 155 283
3 '-31, -50, 43]' '[26, -60, 45]' 203 145
4 '[-24, -62,43]"  '[29, -55, 44]' 190 559
sIPS 5 '-32,-53,47]' '[34,-50, 45]' 472 708
6 '[-35, -48,43]' '[27,-51, 48]' 527 434
7 '-35, -54, 41]' '[33,-52, 44]' 335 919
8 '[-28, -60, 45]'  '[28, -59, 41]' 540 654
9 '[-34, -53,42]' '[32,-54, 40]' 486 805
10 '[-28, -55, 41]'  '[31,-51, 44]' 1057 665

1 / / / /

2 '-22, 4, 60]' ‘130, 2, 54]' 4 28

3 '[-25, -4, 54]' 129, 0, 53]' 35 19

4 '[-31, -4, 50]' ‘136, -3, 49]' 5 52
SPCS 5 '[-29, -4, 57]' 129, -4, 52]' 56 142
6 '[-33, 2, 54]' ‘136, 2, 55]' 152 172
7 '[-28, -5, 54]' 129, -1, 55]' 19 348
8 '-37, -1, 56]' 129, 1, 53]' 19 349
9 '-27, -3, 52]' 27, -3, 50]' 189 209
10 '[-25, -3, 56]' ‘126, 2, 55]' 95 109
1 '[-47, 10, 34]' 'l47, 6, 35]' 169 222

2 '[-45, 7, 35]' 'l46, 8, 37]' 25 44
3 '[-48, 8, 23]’ '47, 8, 29]' 103 121
4 '[-34, -2, 32]' ‘42, 6, 35]' 30 217
iPCS 5 '[-46, 2, 32]' '[44, 4, 28]' 66 135
6 '-47, 6, 29]' ‘46, 7, 28]' 216 150
7 '-42, -1, 33]' '41, 6, 32]' 150 422
8 '[-46, 8, 30]' '[50, 5, 32]' 124 154
9 '-43, 5, 33]' 'l42, 5, 34]' 472 483
10 '[-45, 1, 30]' '[45, 6, 33]' 130 326
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Center # Voxels
Subject LH RH LH RH
1 '[-35, 19, 4]' 37,17, 5]' 244 532
2 '-37,17, 3] '38, 18, 1]' 267 340
3 '[-35, 15, 2]' 32, 18, 5]' 120 115
4 '-37, 18, 4]' '37, 18, 3]' 354 510
AI-FO 5 '-34, 20, 11' 133, 19, -11' 47 34
6 '[-38, 18, 2]' '37, 20, 2]' 289 238
7 '-35, 17, 2] '35, 18, 2]' 145 388
8 '[-36, 16, 4]' '35, 17, 3]' 218 485
9 '-37, 19, 4] 37,17, 5]' 486 551
10 '-37,19, 3]' "33, 20, 5]' 53 150
1 '[-37, 35, 28] '[40, 30, 28] 9 46
2 '[-29, 47, 17]' ‘34, 37, 20]' 47 235
3 '[-44, 33, 22]' '42, 31, 22]' 44 55
4 '[-42, 29, 23]' ‘138, 30, 23] 5 96
IES 5 '[-28, 49, 21]' '34, 41, 18] 53 105
6 '[-35, 42, 26]"' ‘41, 39, 26]' 105 85
7 '[-40, 36, 19]' '[40, 40, 21]' 152 460
8 '[-40, 33, 18] ‘41, 33, 22" 71 308
9 '[-41, 34, 26]' '[44, 30, 27]' 242 189
10 '[-39, 37, 21]' ‘138, 43, 24]' 33 102

Supplementary Table 1. Centers and sizes of the final ROIs defined for each subject, following functional

localization and additional thresholding with a novel object localizer (see Methods for details).
Coordinates of each ROI center are described in Talairach space, where X = Left-Right axis (negative is
left), Y = Anterior-Posterior axis (negative is posterior), Z = Inferior-Superior axis (negative is inferior).
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