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Abstract

Basal ganglia output neurons transmit motor signals by decreasing their firing rate
during movement. This decrease can lead to post-inhibitory rebound spikes in
thalamocortical neurons in motor thalamus (Mthal). While in healthy animals neural
activity in the basal ganglia is markedly uncorrelated, in Parkinson’s disease neural
activity becomes pathologically correlated. Here we investigated the impact of
correlations in the basal ganglia output on the transmission of motor signals to Mthal
using a Hodgkin-Huxley model of a thalamocortical neuron. We found that correlations
in the basal ganglia output disrupt the transmission of motor signals via rebound spikes
by increasing the signal-to-noise ratio and trial-to-trial variability. We further examined
the role of brief sensory responses in basal ganglia output neurons and the effect of
cortical excitation of Mthal in modulating rebound spiking. Interestingly, both the
sensory responses and cortical inputs could either promote or suppress the generation of
rebound spikes depending on their timing relative to the motor signal. Finally, in the
model rebound spiking occurred despite the presence of moderate levels of excitation,
indicating that rebound spiking might be feasible in a parameter regime relevant also in
vivo. Overall, our model provides novel insights into the transmission of motor signals
from the basal ganglia to Mthal by suggesting new functional roles for active
decorrelation and sensory responses in the basal ganglia, as well as cortical excitation of
Mthal.

Author summary

The output of the basal ganglia might act like a brake on our brain’s motor circuits such
as motor thalamus. When we move, this brake is released, letting motor thalamus
execute the selected movement. However, the neural processes that underlie the
communication of the basal ganglia with the motor thalamus during movement are
unclear. We utilise a computational model of a neuron in motor thalamus to investigate
how this transmission might work, how it can be modulated by sensory and cortical
inputs, and how it is compromised in Parkinson’s disease. Our results explain how
pathological correlations in the neural activity in Parkinson’s disease disturb the
transmission of motor signals, which might underlie some of the motor symptoms.

Introduction 1

The basal ganglia (BG) have long been implicated in the selection and execution of 2

voluntary movements [1–4]. Classic “box-and-arrow” models of the BG [5,6] presume a 3

propagation of motor signals through the so-called direct pathway. Increased activity in 4

the striatum, the input region of the BG, reduces the activity in BG output regions 5

(e.g. substantia nigra pars reticulata, SNr), which in turn disinhibits the motor 6

thalamus (Mthal) [7], and thereby enables movement. BG output neurons often have 7

high baseline firing rates and decrease their rate during movement in both rodents and 8

primates [8–11]. However, recent studies have suggested a more complex picture on how 9

BG output affects Mthal and motor cortex [12,13]. 10

Three different modes have been proposed for how the BG output can affect 11

thalamic targets [13]. In the first mode sudden pauses in BG inhibition of thalamus lead 12

to “rebound” spikes, which have been described in thalamocortical neurons in the 13

thalamus due to their intrinsic T-type Ca2+ channels [14]. Release from long-lasting 14

hyperpolarisation (e.g. during movement) de-inactivates the T-type Ca2+ channels and 15

depolarises the membrane potential. For strong enough preceding hyperpolarisation, the 16
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membrane potential can even reach the spike threshold without any excitation [15–18]. 17

However, thalamocortical neurons also receive excitatory input from cortex, which can 18

affect the transmission mode. In the “disinhibition” mode the BG inhibition can gate 19

cortical excitation so that during pauses of inhibition the excitatory inputs can evoke 20

spikes in the thalamocortical neuron [19–21]. If these excitatory inputs are strong 21

enough, the thalamocortical neuron fires also during the presence of inhibitory inputs 22

with fixed short latency after the inhibitory input spikes from SNr [22,23]. 23

One prominent feature of the BG network is that neurons fire in an uncorrelated 24

fashion, despite the overlapping dendritic fields and local recurrent connections [24]. 25

Specific features of the BG such as pacemaking neurons and high firing rate 26

heterogeneity may act as mechanisms for active decorrelation of activity. This 27

effectively prevents correlations among neurons, and a disruption of this mechanism 28

leads to pathologically correlated activity as in Parkinson’s disease [25]. Increased 29

correlated activity has also been observed in BG output neurons in Parkinson’s 30

disease [26], which may compromise the transmission of motor signals. Currently, 31

however, we do not know whether active decorrelation serves a function in BG output 32

and whether this function is compromised in Parkinson’s disease. 33

In addition to transmitting motor signals, BG output neurons may also be involved 34

in further sensory and cognitive processing. For example, SNr neurons also respond to 35

salient sensory stimuli instructing the initiation or stopping of movements [11,27]. 36

However, how these sensory responses affect thalamic motor circuits remains unclear. 37

In the present study we used computational modelling to study the information 38

transmission from the BG to the thalamus via postinhibitory rebound spikes. We found 39

that uncorrelated BG output ensures a clear transmission of motor commands with low 40

trial-to-trial variability in the thalamic response latency. In contrast, pathological 41

correlations in SNr lead to a noisy transmission with high trial-to-trial variability. In 42

addition, we found that sensory responses in SNr can, depending on their timing 43

relative to the movement-related decrease, either facilitate or suppress rebound spikes 44

leading to promote or suppress movement. Therefore, in the rebound transmission 45

mode, uncorrelated activity and sensory responses in the BG output serve functional 46

roles in the coordinated transmission of motor signals. Finally, we found that the 47

rebound spiking mode persisted in the presence of excitation, strong enough to maintain 48

baseline firing rates reported in vivo [20]. 49

Materials and methods 50

Model neuron 51

In this study we used a Hodgkin-Huxley type model of a thalamocortical neuron [28]. 52

The model has four different ionic currents: a leak current (IL), a Na+ current (INa), a 53

K+ current (IK), and a T-type Ca2+ current (IT ), which are determined by the 54

membrane potential and the channel conductances and reversal potentials (E). While 55

the conductance of the leak current (gmax) is constant, the conductance for Na+, K+
56

and T-type Ca2+ currents depends on the membrane potential and varies over time. 57

These voltage-dependent conductances are formed by the product of maximum channel 58

conductance (gmax) and voltage-dependent (in)activation variables (m, h, p and r). 59

The model neuron’s membrane potential is described by 60

Cm
dv

dt
+ IL + INa + IK + IT + ISNr→TC + ICX→TC = 0 (1)

with a leak current IL = gmaxL [v −EL]. The Na+ current INa = gmaxNa m3
∞(v)h[v −ENa] 61

has an instantaneous activation gating variable m∞(v) = 1
1+exp(−(v+37)/7) and a slow 62

November 3, 2018 3/22

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2018. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


inactivation gating variable h with dh
dt = h∞(v)−h

τh(v)
and steady-state 63

h∞(v) = 1
1+exp((v+41/4)) that is approached with a time constant τh(v) = 1

ah(v)+bh(v)
; 64

ah(v) = 0.128exp(−(v + 46)/18); bh(v) = 4
1+exp(−(v+84)/4) . 65

The activation variable in K+ current IK = gmaxK [0.75(1− h)4][v − EK ] is described 66

in analogy to Na+ inactivation variable (h) which reduces the dimensionality of the 67

model by one differential equation [29]. 68

The T-type Ca2+ channel IT = gmaxT p2∞(v)r[v −ET ] has an instantaneous activation 69

p∞(v) = 1
1+exp(−(v+60)/6.2) and slow inactivation dr

dt = r∞(v)−r
τr(v)

with the steady-state 70

r∞(v) = 1
1+exp((v+84)/4) and time constant τr(v) = 28 + 0.3(−(v + 25)/10.5). 71

The T-type Ca2+ channel can cause post-inhibitory rebound spikes by the following 72

mechanism. Prolonged hyperpolarisation leads to de-inactivation of the T-type Ca2+ 73

channel, i.e. the inactivation gate (r) opens while the activation gate (p) closes. After 74

shutting down the hyperpolarisation, the inactivation gate closes slowly whereas the 75

activation gate opens very fast. Therefore, while both gates are open, the T-type Ca2+ 76

channel briefly opens leading to membrane depolarisation. Strong enough depolarisation 77

can lead to Na+ spikes which are referred to as post-inhibitory rebound spikes. 78

The thalamic model neuron receives two types of synaptic inputs; one inhibitory 79

from BG output (SNr → TC) and one excitatory from cortex (CX → TC). Synaptic 80

currents (IX) are described by a simple exponential decay with the decay rate βX , 81

where X denotes the synapse type [30]. Similar to the intrinsic ionic currents, each 82

synaptic current is described in terms of membrane potential and channel conductance 83

(gmax) and reversal potential (vX): IX = gmaxX [v − vX ]
∑
j sj ; 84

X = {SNr → TC,CX → TC}. When a presynaptic neuron j spikes at time ti, sj 85

becomes 1 and decays with time constant β afterwards
dsj
dt = (1− sj)δ(t− ti)− βXsj , 86

where δ(t) is the Dirac delta function. The maximum conductance caused by a single 87

presynaptic spike (sj = 1) is represented as gmaxX . The net synaptic current is the 88

summation of all presynaptic events sj multiplied by the difference of the membrane 89

potential and synaptic reversal potential. Therefore, the reversal potential can change 90

the synaptic current. The inhibitory reversal potential used in this model 91

(vSNr→TC = −85mV ) with gSNr→TC ≈ 1.2nS/µm2 can reproduce the inhibitory 92

current (∼ 100 pA when membrane potential is held at 0 mV for minimal stimulation 93

intensity) reported in vitro [31]. The intrinsic and synaptic parameters of the model 94

neuron are described in Table 1. 95

Table 1. Model parameters: intrinsic, inhibitory synapses [28] and excitatory synapses [32].

gL = 0.05 nS/µm2 EL = −70 mV gNa = 3 nS/µm2 ENa = 50 mV
gT = 5 nS/µm2 ET = 0 mV gK = 5 nS/µm2 EK = −90 mV

vSNr→TC = −85 mV βSNr→TC = 0.08 ms−1 vCX→TC = 0 mV βCX→TC = 0.18 ms−1

g: Ionic channel conductance; E: ionic channel reversal potential; v: synaptic reversal potential; β: decay rate of synaptic
current.

Input spike trains 96

We generated uncorrelated and correlated Poisson spike trains as inputs to the model 97

neuron. To generate uncorrelated spike trains we simulated N independent Poisson 98

processes, each with the firing rate r. To quantify correlation in spike trains, we used 99

the average pairwise correlation among them, denoted by ε. However, for N ≥ 3 and a 100

pairwise correlation of ε0, different realisations of spike trains with different correlations 101

of order 3 or higher are possible. For a convenient parametrisation of the order of 102

correlation, we used the distribution of coincident spikes (“amplitude”, A) in a model of 103
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interacting Poisson processes [33]. For a homogeneous population of spike trains, the 104

average pairwise correlation depends on the first two moments of the random amplitude 105

A: 106

ε =

E[A2]
E[A] − 1

N − 1
(2)

One can consider different amplitude distributions for Poisson spike trains with a 107

given rate r and pairwise correlation ε. In the present study, we specifically used 108

binomial and exponential amplitude distributions (Figure 1). While the binomial 109

amplitude distribution has a high probability density around the mean of the 110

distribution (Figure 1A), the exponential distribution has a higher probability density 111

toward lower amplitudes [34] (Figure 1B). 112

To generate spike trains with a binomial amplitude distribution we implemented a 113

multiple interaction process [35] (Figure 1A). For correlated outputs (ε > 0), the 114

algorithm starts from a Poisson spike train with rate λ, the so called “mother” spike 115

train. We derived neuronal spike trains by randomly and independently copying spikes 116

of the “mother” spike train with probability ε, leading to spike trains of rate r = ελ. 117

We also generated spike trains using exponentially distributed amplitudes described 118

by: 119

fA(ξ; τ) =
e−τξ∑N
k=1 e

−τk
; ξ ∈ [1, N ] (3)

where f(ξ; τ) is the probability density for each amplitude ξ with the parameter τ . 120

According to Eq. 2, to compute ε for this distribution, we needed to compute the 121

proportion of the second moment to the first moment for this distribution. We used 122

E[An] =
∑N
ξ=1 ξ

nfA(ξ) to compute the first and second moments of the distribution 123

and then applied it into Eq. 2, rewriting it to 124

ε =

∑N
ξ=1

ξ2e−τξ

ξe−τξ
− 1

N − 1
(4)

This equation shows that ε depends on τ and we took a simple numerical approach 125

to find τ for each desired ε. We computed ε for a range of τ (from 0 to 5 with steps of 126

0.001) and then selected the τ that yielded an ε closest to our desired ε (Figure 1C). The 127

maximum error between the ε we calculated using Eq. 4 and the desired ε was 5× 10−4. 128

The next step was to generate the population spike trains using the probability 129

distribution determined by the τ we already computed. We drew N independent Poisson 130

spike trains each with rate rξ = NrfA(ξ)/ξ; ξ ∈ [1, N ]. Since ξ represents the number 131

of coincident spikes in a time bin, spike times from independent spike trains should be 132

copied ξ times to get the final population spike train. As the amplitude distribution 133

described in Eq. 3 has a high probability density toward lower amplitudes, high average 134

pairwise correlations cannot be achieved. For typical parameters of the inhibitory input 135

spike trains in this study (N = 30, r = 50Hz), the maximum average pairwise 136

correlation was 0.65 for τ = 0 (Figure 1C). The number of SNr neurons projecting to 137

the same Mthal neuron is currently not known. However, current estimates based on 138

optogenetic stimulation of nigral terminals in the ventromedial thalamus in mouse brain 139

slices suggest that there might be more than 20 different inputs from SNr [21]. In our 140

model, each inhibitory input spike lead to an inhibitory post-synaptic potential (IPSP) 141

with amplitude 1 mV under gSNr→TC = 1nS/µm2. Since the hyperpolarisation caused 142

by inhibition cannot go below -85mV due the inhibitory reversal potential, 18 143

synchronous inhibitory inputs exerted the maximal hyperpolarisation from the resting 144

potential to -85mV (-85mV - (-67mV) = -18mV corresponding to 18 IPSPs). As a 145
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consequence, although we did all simulations throughout this study using 30 inhibitory 146

inputs, similar results would be achieved with fewer inputs, too.
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Fig 1. Generation of correlated Poisson spike trains used as input to the model neuron.
(A, top) Amplitude distribution of the higher-order correlations in spike trains
generated by the multiple interaction process with with ε = 0.3 and r = 50 Hz. Bottom
panel shows the raster plot of 30 respective example spike trains. (B, top) Amplitude
distribution of higher-order correlations in spike trains generated by an exponential
amplitude distribution with ε = 0.3 and r = 50 Hz, and corresponding example spike
trains (bottom panel). (C) Relation between the parameter τ of an exponential
amplitude distribution and the resulting average pairwise correlation ε (red trace).
Black dots represent the average pairwise correlations that we used to generate input
spike trains with exponential amplitude distribution.

147

Data analysis 148

Identifying rebound spikes 149

The model neuron can spike in response to excitatory input or due to release from 150

inhibition with post-inhibitory rebound spikes. To distinguish “normal” spikes driven by 151

excitatory inputs from post-inhibitory rebound spikes, we repeated simulations with 152

exactly the same input (identical seed for the random number generator), but with a 153

modified model that is unable to create rebound spikes. Post-inhibitory rebound spikes 154

are due to the de-inactivation of T-type Ca2+ channels, so without this channel rebound 155

spikes cannot occur. Therefore, we classified spikes as rebound spikes, if they 156

disappeared after the removal of T-type Ca2+ channels (i.e. gT = 0 nS/µm2). However, 157

to reduce potentially confounding effects, we ensured that the overall spiking behaviour 158

remained similar by increasing the Na+ channel conductance to gNa = 6 nS/µm2. 159

Due to the randomness of the inhibitory input spike trains, the generation of a 160

rebound spike was probabilistic. This was in particular prominent in simulations with 161

weak inhibition (see e.g. Figure 6A). Therefore, we measured the effect of sensory 162

responses (Figure 4) and single excitatory spikes (Figure 5) by the change in the 163

probability of rebound spikes. 164

In the simulations in which we investigated the effect of ongoing excitation, we 165

observed that for some parameters rebound and disinhibition modes overlapped. To 166
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characterise this concurrence, we computed the firing rate in a scenario with only 167

inhibitory inputs to achieve the time interval where rebound spikes occured. Then we 168

ran the same simulation again, but this time with only ongoing excitation, and again 169

computed the firing rate in the same interval. Finally, we ran the simulation in a 170

scenario including both inhibitory and excitatory inputs, and again computed the firing 171

rate in this interval. We then subtracted the firing rate of the excitation-only simulation 172

from the firing rate from the simulation with both inhibitory and excitatory input. The 173

resulting firing rate difference indicated the contribution of the rebound activity. We 174

compared this rate difference with the rate we computed in the scenario with only 175

inhibitory inputs to compute the proportion of trials in rebound mode. 176

Transmission quality 177

For our simulations shown in Figure 2, we needed to quantify the transmission quality 178

for a variety of inputs strengths and degrees of correlation. For a clear transmission of 179

the motor signal the thalamocortical neuron would ideally respond only to the 180

movement-related decrease of activity in SNr neurons with a rebound spike, and be 181

silent otherwise. Any rebound spike before the movement-related decrease would make 182

the transmission noisy, in the sense that the decoding of the presence and timing of the 183

motor signal in thalamic activity would be less accurate. Therefore, we used the number 184

of spikes after the onset of the movement-related decrease, normalised by the total 185

number of spikes within -1 s to 0.5 s around the onset of the movement-related decrease 186

as a measure of the transmission quality. 187

Software packages 188

We implemented the model neuron in Simulink, a simulation package in MATLAB 189

(R2016b) and used a 4th-order Runge-Kutta method to numerically solve the 190

differential equations (time step = 0.01 ms). We wrote all scripts to generate input 191

spike trains, handle simulations and analyse and visualise the simulation data in 192

MATLAB. To run the simulations we used the “NEMO” high-performance computing 193

cluster in the state of Baden-Wuerttemberg (bwHPC) in Germany. 194

Data availability 195

We provided our simulation scripts (in “BasicModelSimulations” directory) including 196

the scripts generating input spike trains (in “SpikeTrains” directory) accessible via a git 197

repository https://github.com/mmohaghegh/NigrothalamicTransmission.git 198

Results 199

Uncorrelated activity promotes transmission of motor signals 200

To determine whether uncorrelated activity in BG output is important for the 201

transmission of motor signals, we simulated a thalamocortical neuron exposed to 202

inhibitory Poisson input spike trains with varying degrees of correlation (Figure 2). We 203

used binomial and exponential amplitude distributions to generate correlated Poisson 204

spike trains (see Materials and Methods). In addition, we modulated the input firing 205

rate so that it mimicked the prominent movement-related decrease of BG output 206

neurons observed in experimental studies [8–11]. 207

For uncorrelated inputs the model responded to the movement-related decrease with 208

a single rebound spike (Figure 2A, left panel). However, for correlated inputs rebound 209

spikes appeared not only after the movement-related decrease, but also at random times 210
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Fig 2. Input spike correlations impair transmission quality (TQ) of motor signals from SNr to thalamus. (A) Top panels
show the intracellular response of the thalamocortical model neuron to the inhibitory input spike trains from SNr displayed in
the bottom panel. Uncorrelated Poisson spike trains (ε = 0) lead to clear transmission via a single rebound spike after the
firing rate decrease in the input (left panel). Correlated Poisson spike trains, however, lead to rebound spikes at random
times, whenever there is a pause in the input spike trains (middle panel: ε = 0.35 and right panel: ε = 0.7). (B) TQ
drastically decreases for correlated input spike trains generated according to the multiple interaction process (MIP; dark blue).
This holds also for the multiple interaction process whose synchroneous spike times are jittered in a 5 ms window (MIP-jit;
light blue). Data shown is an average of 100 trials with GSNr→TC = 0.70 nS/µm2. TQ only slightly decreases for the spike
trains generated by exponential amplitude distributions (EXP; grey), which is dominated by lower-order instead of
higher-order correlations. Note that the exponential amplitude distribution leads to the maximum average pairwise
correlation of 0.65 (see Materials and Methods). The black dot marks the TQ for the spike trains generated using the
amplitude distribution shown in (D). For amplitude distributions with binomial and exponential components of similar
proportion (D), TQ decreases drastically for correlated inputs (MIP&EXP; red). (C) Threshold correlation at which the
transmission quality deteriorates (TQ < 0.95) only weakly depends on the inhibitory input strength. For the scenarios
involving higher-order correlations (blue and red lines), already weak correlations are sufficient to deteriorate transmission.
(D) The simulation of Parkinson’s disease in a large-scale model of the BG yielded an amplitude distribution of SNr spike
times that corresponded to a mixture of the exponential and binomial amplitude distributions.
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during baseline activity (Figure 2A, middle and right panels). The reason for this was 211

that correlated SNr activity lead not only to epochs with many synchronous spikes, but 212

also to pauses in the population activity that were long enough to trigger rebound 213

spikes. 214

In mammals multiple inhibitory projections from SNr converge on a single 215

thalamocortical neuron [21], which affects the strength of the inhibition on the 216

thalamocortical neuron. Since the degree of convergence is not clear, we repeated our 217

simulations for different inhibitory strengths, but found that the transmission quality 218

did not depend on the inhibitory strength as long as the inhibition was strong enough to 219

lead to rebound spikes (Figure 2C). Furthermore, as for more than two inputs the input 220

spike trains cannot be uniquely characterised by pairwise correlations, we considered 221

two different possibilities for higher-order correlations (see Materials and Methods). We 222

found that the transmission quality strongly depended on both the input average 223

pairwise correlation and higher-order correlations among input spike trains (Figure 2B). 224

Pairwise correlations affected the transmission only for a binomial amplitude 225

distribution (Figure 2B, dark blue trace), but not for an exponential amplitude 226

distribution (Figure 2B, grey trace). For the binomial amplitude distribution 227

higher-order events (“population bursts”) are common, which increases the probability 228

for pauses in the population activity. Thereby, even weak correlations among SNr spike 229

trains lead to a sharp decrease in the transmission quality. In contrast, for spike train 230

correlations with an exponential amplitude distribution, the decrease in transmission 231

quality was less pronounced (Figure 2B, grey trace). This was because for the 232

exponential amplitude distribution lower-order events are more common, which are not 233

sufficient for pauses in the population activity of SNr neurons leading to thalamic 234

rebound spikes. Therefore, in particular higher-order correlations may be detrimental 235

for the transmission of motor commands. 236

We further investigated whether the sharp decrease in the transmission quality 237

observed for the binomial amplitude distribution was due the perfect synchrony of 238

correlated spike times. So we jittered the synchronous events by randomly displacing 239

individual spikes by up to 5ms (2B, light blue trace). We found a similar transmission 240

quality (2B, light blue trace vs. dark blue trace) confirming that the sharp decrease was 241

not due to the perfect synchrony. 242

The purpose of our simulation of correlated activity was to mimic BG output 243

patterns in Parkinson’s disease. However, as the amplitude distribution of pathologically 244

correlated activity in SNr is currently unknown, we employed a large-scale model of the 245

BG [36], in which beta oscillations propagate through cortico-basal ganglia circuits. 246

Beta oscillations are widely observed in animals with dopamine-depleted basal ganglia 247

including their output nuclei [37, 38]. While beta oscillations can be generated in the 248

pallido-subthalamic loop [39], here we do not assume a specific mechanism for the 249

generation of correlated activity in Parkinson’s disease, but focussed on the amplitude 250

distribution in SNr in a simulation of Parkinson’s disease. We found that the amplitude 251

distributions in the dopamine-depleted state of the large-scale model were somewhere 252

between binomial and exponential (Figure 2D). Therefore, to investigate the model with 253

a correlation structure that might be relevant for Parkinson’s disease, we generated 254

input spike trains based on this distribution (see Materials and Methods). We found 255

that this input led to a low transmission quality (Figure 2B, black dot). In addition, we 256

investigated the effect of average pairwise correlation, if the amplitude distribution was 257

a mixture of binomial and exponential distributions. To achieve this, we changed the 258

pairwise correlation for the binomial component of the distribution, while keeping the 259

pairwise correlation for the exponential component unchanged (Figure 2B, red trace). 260

In this mixed distribution we found that changing only the pairwise correlation of the 261

binomial component had a similar effect on the transmission quality as in the standard 262
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binomial amplitude distribution (Figure 2B, red and blue traces). This confirms that 263

under a correlation structure similar to Parkinson’s disease, even weak correlations in 264

BG output can impair the transmission of motor signals, potentially related to motor 265

symptoms such as tremor or akinesia [18,21,40]. 266

Uncorrelated activity enhances transmission speed 267

To study the effect of input correlations on transmission speed, we used the same 268

scenario as above (Figure 2) and measured the time between the onset of the 269

movement-related decrease and the rebound spike. We found that for no or weak 270

correlations the transmission speed was fast, but it decreased for stronger correlations 271

(Figure 3A). Therefore, uncorrelated activity in BG output regions may also promote 272

fast transmission of motor signals. To generalise our findings on the transmission speed 273

beyond the scenario using the movement-related decrease, we further examined 274

transmission speed using (rebound) spike-triggered averages of inputs. Instead of 275

simulating a movement-related decrease, we exposed the model neuron to inhibitory 276

inputs with a constant firing rate. To compute the spike-triggered average, we used the 277

peak of each rebound spike as the reference time point to compute the average of the 278

preceding input. Since rebound spikes occurred more often for stronger input 279

correlations, we performed this analysis on inputs having a correlation coefficient of 280

either 0.3 or 1.0. These simulations confirmed that weak input correlations induce faster 281

transmission than strong correlations (Figure 3C). 282

Uncorrelated activity enhances transmission precision 283

For the transmission of motor signals via rebound spikes the trial-to-trial variability of 284

the transmission may be important. For example, for the coordination of motor signals 285

across different neural pathways a small variability (i.e. high precision) of the 286

transmission speed might be important. To investigate the nigrothalamic transmission 287

variability, we computed the variance over the latencies across 100 trials with 288

movement-related decreases in SNr activity (i.e. the same scenario as in Figure 3A). We 289

found that for uncorrelated inputs transmission was very precise in the sense that the 290

trial-to-trial variability of the response latency was small (Figure 3B). In contrast, even 291

weak correlations led to a high transmission variability due to changes in the amount of 292

hyperpolarisation caused by correlated inputs preceding rebound spikes. We conclude 293

that uncorrelated inputs ensure a high precision of the transmission via rebound spikes 294

by reducing the trial-to-trial variability in response latency. 295

Sensory responses can promote or suppress rebound spiking 296

SNr neurons often have short-latency responses to salient sensory stimuli characterised 297

by brief increases in firing rate [27]. In rats performing a stop-signal task these 298

responses also occurred in neurons that decreased their activity during movement [11]. 299

This included responses to auditory stimuli, which cued the initiation of a movement 300

(Go cue) or the cancellation of an upcoming movement (Stop cue). We examined how 301

such brief increases in SNr activity affect rebound spiking in the thalamocortical model 302

neuron (Figure 4). The thalamocortical model neuron received inputs similar to the SNr 303

firing patterns recorded in rats during movement initiation (i.e. uncorrelated inputs 304

with high baseline firing rate and a sudden movement-related decrease). To model 305

sensory responses in the SNr neurons, we added a brief increase in firing rate at 306

different time points relative to the movement-related decrease (Figure 4A). We 307

generated the brief increase by adding a single spike in each spike train having the 308
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Fig 3. Correlated SNr spike trains decrease transmission speed and temporal precision of rebound spikes. Systematic
investigation of average transmission latency (A) and its variance (B) for different degrees of correlation and inhibitory
strengths identifies the range with fastest transmission speed and highest transmission precision, respectively. (C) Left panel
shows a sample membrane potential (GSNr→TC = 0.70 nS/µm2, ε = 0.7; top) of the thalamocortical model neuron and the
corresponding inhibitory inputs (bottom). Note that rebound spikes are preceded by pauses in the input raster plot (indicated
by black horizontal bars). However, for very short pauses (indicated by grey horizontal bars) no rebound spikes occur. (C)
Averages triggered by rebound spikes for weakly correlated inputs (middle panel) and strongly correlated inputs (right panel)
confirm that pauses in the inhibitory input precede rebound spikes. The duration of the pause preceding the rebound spikes
indicates the transmission latency. The inset symbols in (A) indicate the parameters used for the corresponding
spike-triggered averages in (C).
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Fig 4. Sensory responses simulated as phasic increases in SNr firing rate change the probability of rebound spikes in the
thalamocortical model neuron. (A) Average firing rate of example inputs used for simulation experiments. Black solid line
shows the inputs average firing rate without sensory responses. Colored solid lines shows the average firing rate with sensory
responses in blue when the increase appears after the decrease and in red when the increase appears before the decrease. (B)
Changes in the probability of a rebound spike for two different inhibitory input strengths. For the simulation scenario with
the inhibitory input strength shown in red, the large probability change indicates that the sensory responses not only
facilitated rebound spikes, but they were actually required for their generation. In contrast, for the simulation scenario shown
in blue, precisely timed sensory responses almost completely suppressed rebound spikes. (C) Average changes in the
probability of rebound spike generation against different inhibitory input strengths. The average is computed over all inputs
with sensory responses in a specific time interval (for facilitation from -30 ms to 0 ms and for suppression from 10 ms to 30
ms). (D) Systematic investigation of the effect of sensory responses in a parameter regime, in which the suppression and
facilitation of rebound spikes was possible (GSNr→TC = 0.30 nS/µm2). Note the large impact of the timing of the sensory
response, even if it occurs only in a small subset of neurons, on the probability of rebound spikes.

sensory response at the desired time point. This allowed us to observe the effect of the 309

timing of sensory responses on rebound spiking. 310

To quantify the effect of sensory responses, we measured the difference in the 311

probability of generating a rebound spike after the movement-related decrease in 312

simulations with and without sensory responses. Interestingly, the sensory responses 313

could either increase or decrease the probability of generating a rebound spike, 314

depending on their relative timing to the movement-related decrease (Figure 4B, D). 315

For sensory responses preceding the movement-related decrease for up to 40 ms, the 316

probability of generating a rebound spike was increased. This was because the sensory 317

response lead to additional hyperpolarisation in the thalamocortical neuron, which 318

promoted rebound spiking. In contrast, for sensory responses occurring 10-40 ms after 319

the movement-related decrease, the probability of generating a rebound spike was 320

decreased. This was because the sensory response in that case partly prevented the 321

movement-related pause of SNr firing. Together, this points to the intriguing possibility 322

that sensory responses in SNr can have opposite effects on behaviour (either promoting 323

or suppressing movement), depending on their timing (Figure 4D). This could explain 324

why SNr neurons respond to both Go and Stop cues with a similar increase in firing 325
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rate [11,41], a previously puzzling finding (see Discussion). 326

In addition to the timing of sensory responses relative to the movement-related 327

decrease, also the inhibitory input strength modulated the probability of generating a 328

rebound spike (Figure 4). For weaker inhibitory inputs (GSNr→TC = 0.25nS/µm2), the 329

probability of generating a rebound spike was increased because the additional 330

inhibitory inputs contributed to the hyperpolarisation of the thalamocortical neuron. 331

However, for slightly stronger inputs (GSNr→TC ≥ 0.35nS/µm2), the sensory responses 332

could not further facilitate rebound spiking because the probability of generating a 333

rebound spike was already one. Accordingly, sensory responses were most effective in 334

reducing the probability of generating a rebound spike for medium input strengths 335

(i.e. with a relatively high probability of generating a rebound spike). We found that the 336

most effective strength for suppressing rebound spikes was at GSNr→TC = 0.35nS/µm2. 337

However, the suppressing effect vanished for GSNr→TC ≥ 0.8nS/µm2 because for this 338

strength the sensory responses themselves caused a hyperpolarization strong enough to 339

trigger a rebound spike (Figure 4C). Therefore, the effect of sensory responses in SNr on 340

motor signals strongly depended on the nigrothalamic connection strength. 341

Rebound spikes in the presence of excitation 342

Having studied basic properties of rebound spiking in the model under somewhat 343

idealised conditions, we next extended the model to account for further conditions 344

relevant in vivo. For example, when studying the response of the thalamocortical neuron 345

to inhibitory SNr inputs, we have assumed so far that the movement-related decrease is 346

present in all inputs. However, this is not the case, and the amplitude of the decrease 347

varies across neurons [11]. Therefore, we investigated the response of the thalamocortical 348

model neuron in a scenario in which only a fraction of SNr inputs decreases their firing 349

rates, while the remaining neurons do not change their rates (Figure 5). We found that 350

the thalamocortical model neuron elicits a rebound spike with high probability only 351

when a large fraction of input neurons decrease their firing rates to zero (Figure 5A). 352

The large fraction of SNr neurons required to exhibit a movement-related decrease in 353

order to elicit a rebound spike downstream constrains the scenario under which this 354

transmission is plausible in vivo. However, in a more realistic scenario the 355

thalamocortical neuron also receives excitatory inputs (e.g. from cortex). Therefore, we 356

examined whether excitatory input can, under some conditions, enhance the 357

transmission via rebound spiking (Figure 5B-D). Importantly, the excitatory inputs 358

should be weak enough in order not to elicit spikes themselves. We simulated the model 359

neuron by adding a single excitatory input spike with variable timing with respect to the 360

movement-related decrease in the inhibitory inputs, and observed whether it promoted 361

or suppressed rebound spikes. We investigated the effect of the excitatory spike on the 362

probability of generating a rebound spike by comparing a simulation including 363

excitatory and inhibitory inputs with a simulation that included only inhibitory inputs. 364

We found that for parameter regions in which the probability of generating a rebound 365

spike was usually small (i.e. in the dark blue region in Figure 5A), additional excitatory 366

spikes after the movement-related decrease increased the rebound probability 367

(Figure 5B). We confirmed that these spikes in the thalamocortical neuron are actually 368

rebound spikes (and not just driven by the excitatory input; see Materials and Methods). 369

However, for strong excitation the thalamocortical model neuron spiked even before the 370

movement-related decrease, indicating that these spikes were no longer rebound spikes. 371

For parameter regions in which the probability of generating a rebound spike was 372

high (i.e. outside the dark blue region in Figure 5A), the excitatory input spikes could 373

also suppress the generation of rebound spikes when they occurred before the 374

movement-related decrease (Figure 5C). In contrast, when the excitatory input spike 375

occurred after the movement-related decrease, it enhanced the probability of generating 376
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Fig 5. Effect of precisely timed excitatory input spikes on rebound spiking. (A) The generation of rebound spikes requires
that a large fraction of the inhibitory input spike trains exhibit a movement-related decrease in firing rate, largely
independent of their input strength. (B) Adding a single excitatory spike as input to the thalamocortical model neuron
strongly increases the probability of rebound spike generation compared to pure inhibitory inputs (letter “B” in panel A).
Note that this occurs in a regime, in which usually no rebound spike can be generated because not enough (here 22 out of 30)
neurons decrease their firing rate. (C) In a regime, in which usually rebound spikes are generated (letter “C” in panel A),
adding a single excitatory spike as input to the thalamocortical neuron decreases the probability of rebound spike generation
compared to pure inhibitory inputs. (D) Systematic investigation of the parameter space indicates a narrow regime, in which
a single excitatory spike can decrease, and a larger regime, in which it can increase the probability of a rebound spike. Here,
the probability changes are averaged over excitatory input strengths.

a rebound spike. Therefore, similar to the complex effect of sensory responses in SNr 377

neurons described above, also the excitatory input to the thalamocortical neurons could 378

either promote or prevent rebound spikes depending on its timing. Furthermore, if only 379

a fraction of SNr neurons exhibited a movement-related decrease, precisely timed 380

excitatory input could promote the transmission of the motor command to the 381

thalamocortical neuron (Figure 5D). Overall, our simulations indicate that rebound 382

spikes can occur in a broad parameter regime that also includes excitation. Furthermore, 383
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precisely timed excitation provides an additional rich repertoire of rebound spike 384

modulation, either promoting or suppressing movement-related rebound spikes. 385

Transmission modes revisited: prevalence of rebound spiking 386

The interaction of excitation and inhibition in thalamocortical neurons is important 387

because even weak excitation may change the transmission mode from rebound to 388

disinhibition [13]. As we observed rebound spiking in the presence of single excitatory 389

spikes (Figure 5), we further investigated how ongoing excitation affects the mode of 390

nigrothalamic transmission. As before, we simulated the model neuron with 391

movement-related inhibitory inputs, but added a background excitation in the form of a 392

Poisson spike train with the firing rate of 100 Hz and examined the effect of changing 393

excitatory strength (Figure 6). In the rebound and disinhibition transmission modes, in 394

an ideal scenario, the model neuron fires spikes exclusively after the movement-related 395

decrease in the firing rate of inhibitory inputs. These spikes are either generated via 396

post-inhibitory rebound spikes in the rebound mode, or via depolarisation through 397

excitation in the disinhibition mode. However, we found that rebound and disinhibition 398

modes can coexist in regimes in which the model neuron has non-zero baseline firing 399

rates (Figure 6A). 400

We characterised the nigrothalamic transmission mode (see Materials and Methods) 401

according to the proportion of trials with rebound spikes for a range of inhibitory and 402

excitatory inputs strengths (Figure 6A). Motor signals were transmitted via rebound 403

spikes even in the presence of weak excitatory inputs (GCX→TC ≤ 1.5 nS/µm2; 404

Figure 6A). Interestingly, the transition from rebound to disinhibition mode was not 405

abrupt, but there was a region where disinhibition and rebound spikes coexisted 406

(Figure 6D). In these overlapping regions rebound spiking seemed to be the dominant 407

firing pattern with a strong, transient firing rate increase in response to the 408

movement-related decrease, a phenomenon which was already observed in anesthetised 409

songbirds [19](Figure 6D; see also Discussion). We also examined the effects of varying 410

the firing rate of the excitatory inputs (200, 500, and 1000 Hz). While the rebound and 411

disinhibition spiking mode still overlapped, the corresponding parameter region was 412

shifted towards lower excitatory conductances (not shown). For moderate excitatory 413

input firing rates (100 and 200 Hz), rebound spiking occurred also in regions in which 414

the model neuron was spontaneously active (Figure 6E). This overlap happened for 415

spontaneous activities up to 3 Hz in line with the average spontaneous firing of Mthal 416

neurons in rats during open-field behavior [20]. However, for higher spontaneous 417

activities (>7 Hz) rebound spiking vanished. We conclude that the model neuron can 418

transmit motor signals in the rebound mode despite excitatory inputs. 419

In summary, our computational model suggests new functional roles for uncorrelated 420

BG output in the clear transmission of motor signals. In addition, the motor signals 421

transmitted via rebound spikes could either be suppressed or promoted through sensory 422

responses indicating that thalamocortical neurons may be a key site for the integration 423

of sensory and motor signals. Finally, excitatory inputs to the thalamocortical neurons 424

do not necessarily prevent rebound spiking, but may as well support the generation of 425

rebound spikes. 426

Discussion 427

We used computational modelling to study the impact of spike train correlations in the 428

basal ganglia output on the transmission of motor signals. Based on previous 429

studies [8–11], we focused our description on movement-related pauses in SNr that 430

potentially drive rebound spikes in Mthal. However, as e.g. also neurons in the superior 431
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Fig 6. Smooth transition of parameter regimes for rebound and disinhibition
transmission modes. (A) The probability of generating a rebound spike (colour-coded)
as a function of the strength of the inhibitory and excitatory inputs innervating the
thalamocortical neuron indicates the transmission mode. High rebound probability (red)
indicates the rebound transmission mode; low rebound probability (blue) indicates the
disinhibition transmission mode. Note the gradual transition between transmission
modes as a function of the excitatory input strength. The white isolines show the
baseline firing rate of the model neuron (i.e. the firing rate before the onset of the
movement-related decrease in the input). In the grey region the model neuron does not
fire at all. (B-F) Sample firing rate profiles and corresponding raster plots show the
activity of the thalamocortical neuron different regions of the transmission map (as
indicated by the corresponding letters in A). In the disinhibition mode the neuron fires
spontaneously after the decrease in SNr firing rate (F). In the transition regime,
rebound and disinhibition modes can coexist (D), and neurons can be spontaneously in
the regime with rebound spikes (E).
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colliculus can respond with a rebound spike after prolonged hyperpolarisation [42], our 432

modelling results might apply more generally. Furthermore, while previous studies 433

identified the important role of excitation in determining regimes in which rebound 434

spikes can occur [13,21], our model produced rebound spikes in a wider parameter 435

regime, also in the presence of excitation (Figure 6). In addition, rebound spiking 436

overlapped with the disinhibition transmission mode, indicating that rebound spiking 437

might apply more widely for nigrothalamic communication in line with recent 438

experimental evidence [18]. In our model, the impaired nigrothalamic transmission of 439

motor signals for correlated inputs also indicates a potential functional role of active 440

decorrelation in BG output regions [24]. 441

Functional role of active decorrelation in the basal ganglia 442

One prominent feature of neural activity in the healthy BG is the absence of spike 443

correlations [25]. This might be due to the autonomous pacemaking activity of neurons 444

in globus pallidus externa/interna (GPe/GPi), subthalamic nucleus (STN) and SNr, as 445

well as other properties of the network such as heterogeneity of firing rates and 446

connectivity that actively counteracts the synchronisation of activity [24]. While 447

uncorrelated BG activity may maximise information transmission [43], our simulations 448

demonstrate that it further prevents the occurrence of random pauses in SNr/GPi 449

activity that could drive thalamic rebound spikes. Thereby, uncorrelated BG output 450

activity may ensure that rebound spikes in Mthal neurons occur only upon appropriate 451

signals such as movement-related decreases in BG output firing rate. In contrast, 452

correlated BG output activity leads to rebound activity in Mthal even at baseline SNr 453

activity, i.e. also in absence of any motor signal. This increase in the signal-to-noise 454

ratio of motor signals may cause problems in motor control. 455

Evidence for the functional relevance of uncorrelated BG activity originates from the 456

prominent observation that BG activity becomes correlated e.g. in Parkinson’s 457

disease [26,44]. Therefore, our simulations with correlated BG output activity capture a 458

key aspect of neural activity in Parkinson’s disease. Interestingly, our finding that BG 459

correlations increase the rate of Mthal rebound spikes is in line with recent experimental 460

findings. In dopamine-depleted mice with Parkinson-like motor symptoms, the rate of 461

Mthal rebound spikes was also increased compared to healthy controls [18]. 462

Furthermore, an increased trial-to-trial variability of rebound spikes was found in 463

dopamine-depleted mice, similar to our simulations (Figure 3). 464

Therefore, our results support a functional role for active decorrelation in the clear 465

transmission of motor signals with low trial-to-trial variability from the BG to Mthal. 466

Pathological correlations lead to unreliable or noisy transmission of motor signals with 467

high trial-to-trial variability, which may contribute to motor symptoms in Parkinson’s 468

disease. 469

Role of rebound spikes for motor output 470

In our simulations we only examined the activity of a single thalamocortical neuron. 471

However, for motor signals propagating further downstream, the coordination of activity 472

among different thalamocortical neurons might be relevant. Due to the low trial-to-trial 473

variability of the response latency and the high probability of generating a rebound 474

spike in the model, pauses in population SNr activity would lead to synchronous 475

rebound spikes in different thalamocortical neurons. In contrast, the excitation-driven 476

Poisson-like cortical inputs would not lead to synchronous activity across different 477

thalamocortical neurons. Even though downstream regions cannot directly distinguish 478

thalamic rebound spikes from excitation-driven spikes, they might read out synchronous 479

activity that only occurs for rebound spikes. Thereby, only coordinated activity in 480
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different thalamocortical neurons may lead to movement initiation [45] or muscle 481

contraction [18]. Similarly, in mice optical stimulation of neurons in a BG output region 482

induces different muscular responses from a single twitch to tremor-like activity and 483

continuous contraction with increasing stimulation frequency via rebound spikes [18]. 484

Therefore, rebound activity in an individual Mthal neuron may not lead to muscle 485

contraction, but instead coordinated rebound activity in several Mthal neurons may be 486

required. 487

Impact of sensory responses on the transmission of motor 488

signals 489

SNr neurons that decrease their activity during movement also respond to salient 490

sensory stimuli such as auditory “Go” stimuli cueing movement [11,27]. One proposed 491

functional role for this brief firing rate increase is to prevent impulsive or premature 492

responses during movement preparation in SNr neurons [11]. In addition, in our model 493

we observed that, depending on the precise timing, sensory responses may also promote 494

thalamocortical rebound spikes and movement. This effect was present when the 495

sensory responses preceded the movement-related decrease by up to 40 ms (Figure 4). 496

In rats performing a stop-signal task the same SNr neurons responded to the “Go” 497

stimulus also responded to an auditory “Stop” signal, which prompted the cancellation 498

of the upcoming movement [11]. These responses were observed in trials, in which the 499

rats correctly cancelled the movement, but not in trials where they failed to cancel the 500

movement. These SNr responses to the “Stop” signal may delay movement initiation 501

allowing another slower process to completely cancel the planned movement [41]. In line 502

with this “pause-then-cancel” model of stopping [46], we observed that the SNr sensory 503

responses can also prevent rebound spikes when they occur close to the time of the 504

motor signal. In our model this suppression effect was present up to 40 ms after the 505

onset of the movement-related decrease in SNr activity (Figure 4). Thereby, our model 506

provides a prediction for the temporal window of the functional contribution of sensory 507

responses in SNr to behaviour. Importantly, sensory responses can either promote or 508

suppress movements, depending on their relative timing to the motor signal, providing a 509

highly flexible means to integrate sensory and motor signals in nigrothalamic circuits. 510

Effects of deep brain stimulation 511

Our model points to the role of correlated BG activity in increasing rebound spikes in 512

thalamocortical neurons. In particular, higher-order correlations lead to pauses in the 513

SNr population activity promoting rebound spikes, while pairwise correlations alone did 514

not affect the nigrothalamic transmission of motor signals (Figure 2B). This suggests 515

that in Parkinson’s disease higher-order correlations are relevant for motor symptoms, 516

which offers some insight into the potential mechanisms by which deep-brain 517

stimulation (DBS) might alleviate some of the motor symptoms such as rigidity and 518

tremor. DBS in the STN and GPi has complex and diverse effects on the firing rate of 519

neurons in SNr/GPi [47, 48] and thalamus [49]. According to our model strong increases 520

in SNr and GPi firing rates observed after STN DBS [50,51], would decrease the 521

duration of the spontaneous pauses in the population activity (Figure 3C). Thereby, 522

even for correlated SNr activity, the duration of the pauses would not be long enough to 523

allow the generation of a rebound spike in the thalamocortical neuron. 524

Integration of decision making systems 525

In our model the generation of a rebound spike in thalamocortical neurons was strongly 526

affected by single excitatory cortical input spikes (Figure 5). This means that the 527
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transmission of a BG motor signal could be prevented by a single, precisely-timed 528

cortical spike preceding the SNr movement-related decrease by up to 20 ms (Figure 5C). 529

This indicates a powerful mechanism by which cortex could affect BG motor output 530

signals. It has previously been argued that different decision making systems, 531

incorporating different strategies, might co-exist in the brain [3, 52] and that the 532

thalamus might be a key site for their integration [53]. Our model offers a potential 533

mechanism by which conflicts between different decision-making systems could be 534

resolved. In this case the precisely-timed cortical excitation would allow the cancellation 535

of a BG motor signal. Furthermore, it is possible that thalamocortical neurons integrate 536

habitual and goal-directed decision systems [52,54], and that cancellation of BG motor 537

signals serves as a means to prevent conflicting responses. Finally, the same mechanism 538

for cancelling BG motor signals could also be used to exert cognitive control to 539

overcome a habitual response. While this remains somewhat speculative at this point, 540

our model provides a clear description of the inhibitory and excitatory inputs that 541

would enable the modulation of a BG motor signal in thalamocortical neurons. 542
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