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ABSTRACT 

Formalin-fixed paraffin-embedded (FFPE) tissue, the most common tissue specimen 

stored in clinical practice, presents challenges in the analysis due to formalin-induced 

artifacts. Here we present SOBDetector, that is designed to remove these artifacts from 

a list of variants, which were extracted from next-generation sequencing data, using the 

posterior predictive distribution of a Bayesian logistic regression model trained on TCGA 

whole exomes. Based on a concordance analysis, SOBDetector outperforms the 

currently publicly available FFPE-filtration techniques (Accuracy: 0.9 ± 0.015, AUC = 

0.96). SOBDetector is implemented in Java 1.8 and is freely available online. 
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INTRODUCTION 

Because of their wide availability, formalin-fixed paraffin-embedded tissues (FFPE) are 

valuable resources of translational and clinical research. Next generation sequencing of 

DNA extracted from such samples is often performed for exploratory or validation 

purposes. The chemical processes fixating the tissue material, however, introduce a 

significant amount of DNA damage that manifests as misread bases during sequencing, 

which makes the analysis of such samples a challenging task. The most prominent of 

these is the deamination of cytosines, which introduces C→T/G→A mutations. (1-3)  

Since formalin likely affects only one of the strands (e.g. a C|G pair becomes T|G), a 

paired-end next generation sequencing approach can be utilized to remove such 

sequencing artifacts (Supplementary Figure 1). When considering not just the number of 

reads that support the alternative allele, but also their relative orientation (Forward-

Reverse:FR or Reverse-Forward:RF), the FFPE artifacts will likely have a strand/read 

orientation bias towards one of the directions, while true mutations, provided their loci 

have sufficient coverage, should have approximately the same amount of FR and RF 

reads. 

 

MATERIAL AND METHODS 

Sample collection 

The cohort of patients (N = 47) with matched FF and FFPE-derived variant files was 

determined using the GDC Data Portal (https://portal.gdc.cancer.gov/). Since most of 

these donors had multiple FF and/or FFPE tumors, and in some cases even multiple 

germline samples, altogether 235 somatic VCFs were available (Supplementary Table 1). 

For the initial investigations all the variants (N = 163,000) from these files had been 

merged into a single data table. Since these mutations were all identified using the 

default filters of MuTect2 (nightly-2016-02-25-gf39d340 built, which was closest to GATK 

3.7(4)), additional common filters were defined over them: Within both the tumor and 

normal samples the sequencing depths were required to be at least 20, and the 

minimum of the variant allele-frequencies was set to 0.05, which has reduced the total 

number of variants to N = 120,948. 

In order to create a trainable dataset, the likely artifacts and likely novel mutations were 

collected into a subset of this table. Variants that were present in at least one FFPE 

sample, and at least 2 FF samples (derived from different tumor BAMs, but of the same 

tumor and the same donor) had been marked as likely novel mutations. Altogether 8672 

unique variant positions met this criterion, which were present in ⟨NFF⟩=4.84 fresh 

frozen and ⟨NFFPE⟩=1.86 FFPE specimens on average, resulting in 56,108 observations. 

Variants, that were present in only one FFPE sample, and none of the FF counterparts of 

the same tumor and the same donor had been marked as likely FFPE artifacts. 

Altogether 7599 variant positions met this condition, resulting in 7599 unique 

observations (since ⟨NFF⟩=0 and ⟨NFFPE⟩=1.00). In order to minimalize the chance that 

genuine mutations are categorized as likely artifacts due to intratumor heterogeneity, 

other mutations, such as those that were only present in 1 FF and 1 FFPE, or in two FFPE 

samples, were categorized as unknown variants.  
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Training attributes, and separability 

SOBDetector was designed to require only the locus (chromosome and position), the 

reference allele and the alternate allele of the variant, everything else it collects from 

the alignment files, or it calculates on its own. Originally the following 11 features had 

been considered as predictors: TUMOR.depth, i.e. the coverage at the given position in 

the tumor BAM, NORMAL.depth, i.e. the coverage at the given position in the normal 

BAM, TUMOR.ALT, i.e. the number of reads (out of TUMOR.depth) that support the 

alternative allele in the tumor, TUMOR.AF, the tumor allelic frequency at the given 

position, and SOB score, i.e. the strand orientation bias score of the variant, plus the 6 

non-redundant mutational directions. These have been collected using a 1 of K encoding 

strategy. This meant, that instead of a single column containing the direction of the 

mutation, 6 new columns have been defined, each corresponding to one of the 

directions. For a variant, only one of these attributes (the one that corresponded the 

REF>ALT direction) was set to 1, all the others were set to zero. 

Since the distribution of these attributes (xi) were skewed and failed the test of 

normality, they had been log-transformed and standardized prior training, using the 

following formulas 

�� � ln�1 � ��	, 
 

�� � ��� � 
���		
����	 , 

Where µ(.) and σ(.) are the mean and standard deviation functions respectively. Figure 

2B shows the kernel-smoothed density approximations of these zi transformed 

attributes. 

 

In order to assess the feasibility of a linear separator, the principal components of the 

trainable dataset were analyzed. It was found, that the first seven principal components 

(PCs) were responsible for ~ 90% of the variance within the set, and while the first 

eigenvector was dominated by the non-directional attributes, from the second, each 

principal component had major contributions from at least one of the mutational 

directions. The visual inspection of the two dimensional projections of the data onto its 

principal components revealed that although the dataset could not be separated 

perfectly using a linear separator, a logistic regression model with a soft-threshold 

defined between the groups might work adequately (Supplementary Figure 6). 

The training model 

Given the dataset � � ��� , �������
, where �� � �0,1�, encodes whether a variant is a 

likely genuine mutation (y = 0) or an artifact (y = 1), and �� �  ��, are the log-

transformed, and standardized features defined above. The aim is to calculate the joint 

posterior distribution of the binary logistic regression model (Supplementary Figure 7): 
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where α is the intercept and β is a vector containing the weights of the linear separator. 

µ and σ indicate the location and scale parameters of the initial (prior) distributions of 

the intercept and of the weights. The lhs is the posterior distribution given the set of the 

standardized and log-transformed features and their assumed classes (Z and y 

respectively), while the rhs contains a product of the prior on α and β, multiplied by the 

likelihoods that a certain combination of the bias, the weights and the features result in 

a particular class y. In case of the logistic regression model, this likelihood is a Bernoulli 

density: 

 

����|�, �, �_%	 � Bernoulli� ��|,�� � �	��	 	   
 

where θ(s) represents the logistic function: 

 

,�-	 �  1
1 � exp ��-	. 

 

The priors defined over the weights act as regularizers, and they can help in feature 

selection, and to avoid the overfitting of the data. We have decided to implement a 

horseshoe prior, which is a heavy tailed mixture distribution, belonging into the family of 

multivariate scale mixture normals. Its generative process is the following: 

 

    βi|λi ∼ Normal(0,λiτi) 

        λi ~ Cauchy+(0,1) 

        τ ~ Cauchy+(0,1) 

 

Although this regularizer was originally designed for sparse datasets, it has similar 

properties to a LASSO regularizer in classical machine learning models, hence it can be 

effectively used for feature selection in Bayesian models. However, despite of the 

LASSO’s unit constraint on all of the weights, the horseshoe prior operates with both a 

global, and a set of feature-specific, so called local shrinkage parameters, giving the 

model a refined feature selection property. The code of the model was written in 

standard stan format, and trained from R, using rstan. For training a model, 6 random 

walkers had been initiated, each set to 2000 iterations, with warm-up lengths equal to 

five hundred iterations(5). Since in the final trainable set the likely novel mutation group 

had almost twice as many variants as the likely artifact group, the former was randomly 

under sampled to the same number of the likely artifacts. 90% of these observations had 

been collected into a training set (N = 32444), while the remaining (N = 5726) variants 

had been set aside for evaluation purposes. 

 The marginal posteriors of each of the attributes had close to 1 Rhat scores, indicating 

that the walkers have converged to the true posteriors. After training a model using the 
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11 features (Supplementary Figure 8 and Supplementary Table 2), we have concluded 

that the mutational directions and the depths in the normal sample had no predictive 

powers, hence they were removed from the list of predictors. A new, final model 

consisting only the 4 remaining features (TUMOR.ALT, TUMOR.AF, TUMOR.depth, and 

SOB scores) was trained on the same training set, and the predicted probabilities of the 

variants within the test set (evaluation set) were calculated using the following formula:  

�1 � 2 2 ���, �|�, �	,�� � �	��	d�d4

�

. 
 

Evaluating the model 

The posterior predictions of the model were estimated using the unbiased evaluation 

dataset. As a function of a discrete set of considerable thresholds, two curves: the 

 

�5678-89: � ;5<6�9-8�8=6-
;5<6�9-8�8=6- � >?@-6�9-8�8=6- 

 

and the 

567?@@ � ;5<6�9-8�8=6-
;5<6�9-8�8=6- � >?@-6:6A?�8=6- 

 

were calculated, along with the harmonic means of the two, called the F1-score (Figure 

3B):      

 

>�-7956 � 2 ��
��������
����

��
��������
����
. 

 

At the maximum of the F1-curve an evaluation set specific threshold had been 

determined, and the accuracy of the predictions have been measured (=0.904). The 

credibility interval of the model was estimated using a binomial test. 

Sample-specific thresholds:Since the SOB scores had the largest predictive power 

among the training features, not counting some minor fluctuations, the mean of the SOB 

scores of the variants that were sorted according to their prediction scores, increased 

monotonically in all of the cases. This allowed us to define a dynamic threshold at the 

point, where the moving average of the SOB scores remined consistently higher than 

0.8. The moving average (si) is defined as: 

 

-� � 1
C?��5, 0.01 E F	 G ��

�������,���.�����

���

, 
 

where M is the total number of variants in the sample, and xi is the SOB score of the 

variant at position i. This means, that for the variant at the sorted coordinate i, the tool 

considers the following at least 5, or maximum 1% of the “total number of mutations 
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present in the sample” SOB scores and calculates their average. When these averages 

reach above 0.8, the threshold gets defined. 
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Concordance Analysis 

A concordance analysis was conducted using the breast and colon cancer cohorts. These 

two were selected, because based on our initial investigations, they were affected 

differently by the fixation process. While the breast cancer formalin-fixed samples had 

significantly more mutations than their fresh frozen counterparts, indicating that they 

were enriched by FFPE artifacts, such difference was not observed among the colon 

cancer VCFs. The colon cancer cohort  in general had more shared mutations between 

the corresponding FF and FFPE pairs, and the FFPE damage was not as severe as it was in 

the breast cancer case. In this part of the analysis the performances of 10 different 

mutation calling pipelines had been compared. The major pipelines were the following: 

GATK 3.7 MuTect2 (The original TCGA VCFs), GATK 4.1.1 Mutect2 with and without a 

strand orientation bias filtering (FilteryByOrientationBias) step, and GATK 4.1.2 with and 

without a strand orientation bias (LearnReadOrientationModel) step. While using all of 

the mutation calling tools, the official GATK documentations, recommendations, and 

best practices guidelines were followed, including the creation of a panel of normal 

(PON) using the normal samples of the 47 patients. In addition, all of these pipelines had 

been complemented with an additional SOBDetector-filtration step, resulting in 10 

different sets of variants for each tumor BAMs. The following measures were used: the 

concordance between variant file1 (f1) and variant file2 (f2) was defined as the ratio of 

shared mutations by the two sets, divided by the total number of mutations present in 

file1: 

 

shared ra�o
f1-f2

� number of shared muta�ons that are present in both f1 and f2

number of muta�ons in f1
. 

 

For FFPE samples file1 was the FFPE variant file, file2 was a corresponding FF sample 
of the same patient. For FF samples both file1 and file2 were fresh frozen specimens of 
the same donor. An increase in the shared ratio between the pre and post-filtering states 
indicates, that the concordance between the two samples have increased, and the filtering 
process was able to remove more false positive mutations than true positive, genuine 
variants. 
 

The ratio of remaining mutations is the number of remaining mutations that are shared 

between f1 and f2 after filtering, divided by the number of mutations that that was 

shared between them prior filtering. 
 

remaining ra�o
f1-f2

� number of shared muta�ons that are present in both f1 and f2 a�er filtra�on

number of muta�ons shared by f1 and f2 prior filtra�on
. 

 

The pre-filtering state of the remaining ratio is always 1 (i.e. 100%). A post filtering state 
less than 1 informs us, that the filtering process has affected approximately (1- 
remaining_ratio)×100 percent of the true mutations calls as well. 
Ideally, both of these ratios should be high, meaning that a filtration step removes most 

of the artifacts without removing any of the likely genuine (and hence shared) 

mutations. In addition, the ratios of the total number of post-filtering and pre-filtering 
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mutations have been evaluated as well, showing what percentage (shared or not) of the 

original mutations have remained in the variant file after the filtration process. 

Using the first two measures, an additional performance score was introduced: 

Performance scoref1‐f2   =shared ra�of1‐f2 × remaining ra�o
f1‐f2

 

When ratios are measured in percentages, this score lies in the [0; 10,000] range, and 

the larger it is, the better the performance of the given pipeline. During the evaluations, 

sample-specific thresholds were used on the estimated probabilities made by the 

SOBDetector logistic model. 

SOBDetector Tool Usage 

The documentation of the tool with examples of its usage, is available in the 

supplementary notes. 
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RESULTS AND DISCUSSION 

 

As a measure of the strand orientation, we defined the strand orientation bias (SOB) 

score, which is based on the relative orientation of the reads that are supporting the 

alternate alleles. SOBDetector was created to collect this additional information by 

reanalyzing the single-nucleotide variants stored in standard variant call format (VCF 4.0 

and newer) files, and by using a Bayesian logistic regression classification model, 

evaluate whether a given mutation is a genuine one, or merely an artifact 

(Supplementary Figure 2). SOB scores lie in the [0,1] interval, and in theory, the closer 

they are to 1, the higher the probability, that the corresponding variants are sequencing 

artifacts.  

 

In order to evaluate how reliable predictor this score is, we have used a set of TCGA 

(The Cancer Genome Atlas) donors (47 patients, 7 primary sites: Supplementary Figure 

3), who had matched FF and FFPE whole exome sequences (WES), that were extracted 

from the same tumor. All the somatic variants present in the samples (called by GATK 

MuTect2 v3.7 (4)) were collected into a single dataset. When the two-dimensional 

distributions in the Tumor LOD (the higher this value, the more confident the mutation 

caller is about the variant) vs. SOB score space were compared, it became clear, that the 

FFPE samples were enriched in low-quality SNVs that had high SOB scores, and their 

distribution was highly dissimilar to the fresh frozen samples’ (Figure 1). After the 

elimination of the variants that had higher than 0.8 strand orientation bias scores, the 

two histograms became much more similar (Figure 1). Also, the great majority of the 

variants that had high SOB scores and more than 6 alternate allele supporting reads (in 

order to minimize the probability that the strand orientation was due to random 

chance), were mostly present in the FFPE samples only (Figure 2A, Supplementary 

Figures 4-5), indicating that the number of alternate allele-supporting reads, and the 

SOB scores might be an ideal combination for FFPE-artifact filtration. Due to the 

heterogenous nature of cancer samples(6), however, even true somatic mutations can 

be supported by only a few reads, therefore by setting a simple threshold on the 

number of alternate allele supporting reads and their SOB scores, it was clear that we 

would remove many genuine mutations too. 

 

Therefore, in order to maximize the accuracy of the artifact filtration step, we have 

collected the most likely genuine mutations (group 0) and the most likely FFPE artifacts 

(group 1) into a subset of the original collated dataset that could be used as a basis for a 

classification model. As possible training features we concentrated on attributes that 

are common to all VCF files or that can be reliably calculated regardless of the variant 

calling pipeline. Initially, the six possible substitution subtypes (C>A, C>G, C>T, T>A, T>C, 

T>G), the sequencing depths of the loci both in the tumor and the normal BAM files, the 

alternate allele frequencies, the number of alternate allele-supporting reads, and the 
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variants’ SOB scores were considered. After investigating the linear separability of the 

two groups (Supplementary Figure 6), a Bayesian logistic regression model was selected 

for training, the weights of which were regularized by a horseshoe-prior (7). Surprisingly, 

the substitution subtypes did not turn out to be reliable predictors, indicating that the 

likely artifact group did not originate solely as the result of formalin fixation. Similarly, 

the depth of the normal BAM had no predictive power either. The most substantial 

difference between the two groups was between their SOB scores (Figure 2B, 

Supplementary Figure 8, Supplementary Table 2). The marginal posterior distributions of 

the final weights of the linear separator (Figure 2C, Supplementary Table 3) were 

determined using 32,444 variants (collected from the somatic VCFs of 44 patients with 7 

different primary sites), approximately half of which belonged to group 0, the other half 

to group 1.  

 

On an unbiased evaluation set of 5726 variants (n0 = 2832, n1=2894), which was set 

aside for evaluation purposes prior to training, the model performed reasonably well 

(Figure 3A). To estimate its predictive accuracy, an evaluation set-specific threshold was 

established at p(artifact|features) = 0.57 (Figure 3B), at which point the accuracy of the 

model was predicted to be in the [0.9, 0.91] range, with 95% credibility (Figure 3C). 

 

A universal threshold could not be determined since the predictions strongly depend on 

the sequencing-properties (such as the mean sequencing depth, the tumor 

heterogeneity, and the quality) of the samples. Therefore, we have complemented 

SOBDetector with an optional sample-specific threshold estimation step. When the 

variants are sorted according to their predicted probabilities, on average their SOB 

scores increase. The threshold is set at the probability value, where the moving average 

of at least 5 (or maximum 1% of the total number of SNVs in the sample) consecutive 

SOB scores reaches above 0.8 (Supplementary Figure 9). This strategy was designed to 

maximize the concordance between the matched FFPE and FF samples of the patients. 

In order to compare the performance of the SOBDetector model to that of the currently 

available techniques, we have selected the invasive breast carcinoma (N=11), and colon 

adenocarcinoma cohorts (N=13) for concordance analysis. While the variant files of the 

breast cancer FFPE tissues had significantly more mutations than their FF counterparts, 

the difference between the colon cancer FFPE and FF VCFs was more subtle. 

 

SOBDetector was compared to two GATK strand orientation bias filtering methods: 

FilterByOrientationBias from GATK 4.1.0, and LearnReadOrientationModel from GATK 

4.1.2, using several pipeline configurations and three types of ratios. The first of these 

was the ratio of the shared mutations between matched FF and FFPE samples before 

and after filtering. This was significantly increased (from 8% to 39.7% on average) in all 

breast cancer pipelines, (Figure 4A), and in most of the colon cancer pipelines that 

involved SOBDetector (from 65.9% to 75.9% on average Supplementary Figure 10). This 

high performance from the part of SOBDetector, however, had an unfavorable side 

effect. When the ratios of the shared mutations prior and post filtering were measured, 

SOBDetector removed significantly more true-positives (i.e. likely true variants), than 
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the GATK tools. On average, 14.3%, and 5.4% of the initially shared mutations were lost 

in the breast and colon cancer cohorts respectively (Supplementary Figures 11-12).   

 

The ratio of the total number of variants after and before filtering was also measured. 

The numbers have clearly demonstrated, that by using the dynamic threshold, 

SOBDetector removes significantly more artifacts than true-positive variants, bringing 

the FF and FFPE mutational spectra much closer to each other than the other filtration 

techniques did. On average, SOBDetector has removed 74% of the original mutations 

from the FFPE variant files of the breast, and 18.9% of the colon cancer samples 

(Supplementary Figures 13-14).  

 

As a benchmarking step a performance measure that accounts for both the ratio of 

removed likely artifacts and the loss of likely novel mutations was implemented. Ideally, 

both of these ratios should remain high, and when measured in percentages, their 

product can reach a maximum of 10,000 points. The pipelines involving SOBDetector 

had performed significantly better than the ones without it in the breast cancer cohort 

(Figure 4B), however in the colon cancer cohort such an exceptional performance was 

not observed (Supplementary Figure 15). 

 

We have also investigated whether an additional filtration with SOBDetector can 

increase the concordance between matched FF samples (same patient, same tumor). 

The same ratios and performance scores have been calculated as above, and although 

SOBDetector seemed to increase the ratio of shared mutations a little, this increase 

could not compensate for the loss of likely genuine mutations, hence the performance 

scores of the pipeline with and without SOBDetector remained in the same range in 

both cohorts (Figure 4C,D). 

 

The predictive capabilities of the SOBDetector model were also tested on two non-TCGA 

cancer cohorts from previous studies (2,8), which were unrelated to the training 

process. Although the definition of likely artifacts was considerably weaker than in the 

TCGA case, and the effects of intratumor heterogeneity could not be eliminated, 

SOBDetector performed adequately well on both cohorts, and it outperformed the 

GATK strand-orientation bias filtering approach. The complete analysis of these cancer 

cases is available in the supplementary notes, in the form of separate case studies 

(Supplementary Figures 16-54). 

 

Due to the possible loss of likely genuine mutations, we recommend to use the dynamic 

threshold and hard filtering functionality of SOBDetector, when instead of the individual 

mutations, one is interested in the large scale patterns of true somatic variants, such as 

the triple-nucleotide substitution signatures (9). In such cases, the loss of a few true 

somatic mutations is less important than the removal of as many artifacts as possible. 

However, when the individual genotypes are more important, such as during the 

identification of therapeutically targetable mutations, no threshold should be used. 

Instead, the predicted probabilities of the logistic model accompanied by the SOB scores 
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of the variants should only be used as an additional information about the state of the 

mutation. 
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FIGURE LEGENDS 

Figure 1.:  

Read orientation bias detection 

 

Collated two dimensional distributions of the variants in the TLOD-SOB score space, 

before filtering on the SOB scores. The color scale corresponds to the number of 

somatic mutations identified as genuine variants by the mutation caller. The majority of 

the mutations present in the FF samples (left side) lie in the [0,0.8] SOB score range, 

while mutations in the FFPE samples concentrated at low TLOD and high SOB score 

values. The similarity between the distributions was tested using a two-dimensional 

Kolmogorov-Smirnov test, the D-statistic and p-value of which being displayed between 

the corresponding panels. The bottom panels indicate that the similarity between the 

distributions increases after variants with larger than 0.8 SOB scores are removed.  
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Figure 2.:  

Defining the Bayesian logistic regression classification model. 

 

A: Summary of the number of mutations in each mutational context that have larger 

than 0.9 SOB scores and are supported by more than 6 read-pairs. Such variants are 

almost solely present in FFPE specimens, showing that the combination of these two 

features can be used as a crude way of artifact filtration. 

 

B: Distributions of the log-transformed and standardized features within the training 

dataset, separated into likely genuine mutation and likely artifact categories. The first 

six features are the 1 of K-encoded substitution subtypes.    

The remaining five features are the following. TUMOR.depth: number of reads spanning 

over the locus of a particular variant in the tumor, NORMAL.depth: number of reads 

spanning over the locus of the variant in the normal BAM, TUMOR.ALT: number of reads 

that are supporting the variant in the tumor BAM, TUMOR.AF: allele-frequency of the 

variant in the tumor, SOB score: the strand orientation bias score). Apart of the 

NORMAL.depth, all of these features distributed differently between the likely genuine 

mutations and likely FFPE artifacts, with the SOB scores showing the most striking 

disparity. 

 

C: On the left: The marginal posterior distributions of the weights of the final 

implementation of the logistic model.  

On the right: The marginal posterior distributions of the global (tau)- and local (lambda) 

shrinkage parameters of the horseshoe prior, that was used to ensure that the 

estimated linear-separator does not overfit the data. 

 

 

Figure 3.: 

Evaluation of the predictions made by the logistic regression model  

 

A: The predictions of the SOBDetector model on the 5726 variants of the unbiased 

evaluation set. The vertical axis shows the conditional probabilities that given a 

combination of features, the variant is an artifact. Likely artifacts with low prediction 

scores are most plausibly true mutations, that are only present in an FFPE sample due to 

intratumor heterogeneity, and were mistakenly categorized as artifacts, while likely 

genuine mutations with high prediction scores might be true mutations that have 

features resembling the FFPE artifacts’ (low number of variant-supporting reads that 

exhibit a strand orientation bias due to random chance, and hence high SOB scores). As 

a substitute for the mutation-labels, a small secondary figure is displayed below the 

bars. It follows the same color code than the main figure, and it is there to ensure, that 

the mutation/artifact states of the variants with lower predicted scores remain visible 

even for variants with lower probabilities. 
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B: Precision: TP/(TP+FP) and recall: TP/(TP+FN) curves of the SOBDetector model, along 

with the F-scores: 2*precision*recall/(precision + recall), i.e. the harmonic mean of the 

precision and the recall. An evaluation set-specific threshold is proposed at the 

maximum value of the F1-curve (threshold = 0.57). 

 

C: ROC-curve and AUC value of the model, calculated using the predictions made on the 

unbiased evaluation set. The estimated accuracy: (TP + TN)/Total was calculated at the 

0.57 threshold. The uncertainty was estimated using a binomial test. 

 

Figure 4.: 

Benchmarking 

 

A: Percentages of mutations shared by the matched FFPE and FF VCFs (n_ffpe = 15) 

derived from the same donors, using 10 different pipelines within the breast invasive 

carcinoma cohort (11 donors). When a sample had more than one FF-derived VCFs, the 

average of the shared ratio was calculated. Three major GATK implementations were 

considered. GATK 3.7, which marks the nightly-2016-02-25-gf39d340 built of the tool, 

GATK 4.1.1, GATK 4.1.2., GATK 4.1.1 + FilterByOrientationBias: FBOB, GATK 4.1.2 + 

LearnReadOrientationModel: LROM.  All of these pipelines were checked alone, and 

with an additional SOBDetector filtering step. After an additional filtration using 

SOBDetector, the ratio of shared mutations between the FFPE and FF variant files has 

increased significantly in all pipelines. 

 

B: Percentages of mutations shared between a selected FF and the other FF samples of 

the same donor. Only those donors were considered who had at least two FF-derived 

variant files. The pipelines are the same as in panel d). Although an additional filtration 

using SOBDetector increased the ratio of the shared mutations somewhat, the 

differences were not significant between any of the comparable pipelines. 

 

C: The mean performance scores of the pipelines evaluated on the FFPE-derived variant 

files of the breast invasive carcinoma cohort. The error bars represent the standard 

errors of the means. The scores were calculated by multiplying the average percentage 

of shared mutations (between the FFPE and corresponding FF VCFs) by the percentage 

of the remaining shared mutations after the artifact-filtration step (in order to account 

for the removal of genuine mutations). The achievable scores vary between 0 and 

10,000: the higher the score, the better the performance. Using this measure, the 

pipelines that were complemented with a SOBDetector filtration step, had performed 

significantly better than the ones without it. 

 

D: The mean performance scores of the pipelines on the FF-derived variant files. The 

error bars represent the standard errors of the means. The scores were calculated as it 

is described in panel e), however, instead of FFPE samples, FF originating from the same 

donors were compared. None of the pipelines performed significantly better (or worse) 

than the others. 
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