

1

2 ***Carbon starvation-induced lipoprotein Slp directs the synthesis of***
3 ***catalase and expression of OxyR regulator to protect against hydrogen***
4 ***peroxide stress in Escherichia coli***

5

6

7 Xiaoxia Li¹¶, Yuanhong Xie¹¶, Junhua Jin¹, Hui Liu¹, Xiuzhi Gao¹, Lixia Xiong¹, and Hongxing Zhang^{1*} #a

8

9

10 1 Department, Institution, City, State, Country

11 Department

12 #a Current Address: Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product

13 Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing

14 University of Agriculture, Beijing 102206, People's Republic of China

15 *Corresponding author.

16 Tel: +86 10 80794124; Fax: +86 10 80799170;

17 E-mail: hxhang511@163.com.

18

19 ¶These authors contributed equally to this work.

21

22 **Abstract**

23 *Escherichia coli* can induce a group of stress-response proteins, including carbon starvation-induced lipoprotein
24 (Slp), which is an outer membrane lipoprotein expressed in response to stressful environments. In this paper, *slp* null mutant
25 *E. coli* were constructed by insertion of the group II intron, and then the growth sensitivity of the *slp* mutant strain was
26 measured under 0.6% (vol/vol) hydrogen peroxide. The changes in resistance to hydrogen peroxide stress were investigated
27 by detecting antioxidant activity and gene expression in the *slp* mutant strain. The results showed that deletion of the *slp*
28 gene increased the sensitivity of *E. coli* under 0.6% (vol/vol) hydrogen peroxide oxidative stress. Analysis of the unique
29 mapping rates from the transcriptome libraries revealed that four of thirteen remarkably up/down-regulated genes in *E. coli*
30 were involved in antioxidant enzymes after mutation of the *slp* gene. Mutation of the *slp* gene caused a significant increase
31 in catalase activity, which contributed to an increase in glutathione peroxidase activity. The *katG* gene was activated by the
32 OxyR regulator, which was activated directly by 0.6% (vol/vol) hydrogen peroxide, and HPI encoded by *katG* was induced
33 against oxidative stress. Therefore, the carbon starvation-induced lipoprotein Slp regulates the expression of antioxidant
34 enzymes and the transcriptional activator OxyR in response to the hydrogen peroxide environment, ensuring that cells are
35 protected from hydrogen peroxide oxidative stress at the level of enzyme activity and gene expression.

36 Keywords: Carbon starvation-induced lipoprotein, *Escherichia coli*, Oxidative stress, Antioxidase activity

37

38 **Introduction**

39

40 In nature, bacteria are often subjected to adverse environmental conditions, such as high temperature, osmotic stress or
41 oxidative stress [1, 2]. When non-differentiating bacteria such as *E. coli* are exposed to environmental stress, it could induce

42 the synthesis of more than 50 different types of stress-response proteins, and the accumulation and degradation rates of
43 induced partial proteins have a great effect on cell survival, including the Slp protein [3]. The *slp* gene is located at 78.6
44 centrosomes on the *Escherichia coli* genetic map, and the -10 and -35 regions upstream of the mRNA start site are
45 characteristic of the σ^{70} promoter. Comparison of the *slp* region to *E. coli* sequences in the GenBank database indicated that
46 this carbon starvation-inducible gene encoded a protein with an unprocessed molecular mass of 25 kDa [4]. Slp protein was
47 localized in the outer membrane fraction since it remained in the pelleted membrane fraction following solubilization of the
48 cytoplasmic membrane proteins with 1% Triton X-100 [5]. Bacterial lipoproteins contain an *N*-terminal cysteine residue,
49 which is linked to diglyceride through the thiol group and to a fatty acid on the terminal amino group, consistent with the
50 Slp protein having such an *N*-terminal modification, and the protein was resistant to standard Edman degradation; these
51 criteria indicate that the *slp* gene encodes a new lipoprotein [4, 6]. Early studies found that *E. coli* regulation of the reverse
52 environment mainly depends on the following three notions: the cAMP-dependent protein involved in the absorption and
53 utilization of alternative carbon sources to ensure cell survival, termed as Cst [7]; and the induced expression mechanism of
54 Pex protein was similar to the generalized resistance state of the cell survival characteristics in the stationary phase [1, 8].
55 Expression of Slp protein during carbon starvation and the stationary phase was dependent on neither cAMP/CRP nor σ^S
56 [9].

57 In recent years, it has been found that the regulation of oxidative stress in *E. coli* is mainly mediated by alkyl peroxide
58 reductase AhpCF and the OxyR stress regulator as well as the catalase family [10]. Alkyl peroxide reductase is a highly
59 efficient two-component disulfide oxidoreductase that relies solely on the AhpC subunit (22 kDa) and the AhpF subunit (52
60 kDa) for the reduction of bacterial intracellular peroxide substrates [11]. The AhpF subunit transfers electrons via NADH
61 and specifically catalyzes the non-peroxidase AhpC subunit to convert low concentrations (less than 20 μ M) of hydrogen
62 peroxide and organic peroxides into water, to protect cells against oxidative stress [12]. However, OxyR, a positive
63 regulator of hydrogen peroxide-inducible protein, can be activated by increases in the hydrogen peroxide concentration or

64 decreases in the thiol/disulfide ratio, and the OxyR regulator senses low concentrations of peroxidation and induces the
65 decomposition of hydrogen peroxide when *E. coli* is grown in an oxidative stress environment of hydrogen peroxide [13,
66 14]. At the same time, the catalase family HPI (*katG*) and HPII (*katE*) also plays an indispensable role in oxidative stress
67 [10, 15]. Bifunctional catalase/peroxidase (HPI) was encoded by *katG* and monofunctional catalase (HPII) encoded by *katE*,
68 all of which are heme-containing enzymes involved in the dismutation of H₂O₂ into O₂ and H₂O [15]. In response to low
69 molar concentrations of H₂O₂, OxyR regulator protein, which controls the expression of the *katG* gene, is activated during
70 environmental stimulation. Further HPI (*katG*) was induced by transcription during logarithmic growth [16]. HPII is not
71 peroxide inducible, and its gene, *katE*, is transcribed by RNA polymerase containing the alternative σ^S [10].

72 In this paper, the *slp* gene of mutant *E. coli* was constructed by the Targetron technique, and the sensitivity of the *slp*
73 mutant strain to hydrogen stress was investigated to explore the regulation mechanism of Slp on oxidative stress in *E. coli*.

74

75 Materials and methods

76 Strains, media, and cultivation conditions

77

78 *E. coli* BL21(DE3) wild-type (F⁻ ompT hsdS_B(r_B⁻ m_B⁻) gal dcm(DE3) pLysS Cam^r) was grown in Luria-Bertani (LB)
79 medium at 37°C with aeration at 200 rpm in ambient atmosphere. When necessary, kanamycin (Kan) (Sigma) and
80 chloramphenicol (Chl) (Sigma) were added at concentrations of 50 μg/ml and 25 μg/ml, respectively. Recombinant *E. coli*
81 strains were selected and maintained on 25 μg/ml chloramphenicol where indicated.

82

83 Construction of *slp* null mutant *E. coli*

84

85 The Targetron plasmid pADC4k-C was used to disrupt the genes in *E. coli* BL21(DE3) according to the Targetron™
86 Gene Knockout System Kit protocol (Sigma). Group II intron sequences of the gene encoding the carbon starvation-induced
87 lipoprotein Slp (CAQ33824.1) were amplified using the primers listed in Table 1 as designed by
88 sigma-aldrich.com/targetronaccess. Amplification of the Group II intron was performed with a PCR thermocycler (Bio-Rad
89 Co., America) with the following program: 1 cycle at 95°C for 30 seconds, followed by 34 cycles at 95°C for 30 seconds,
90 55°C for 30 seconds and 72°C for 45 seconds, ending with one final elongation step at 72°C for 5 minutes. The PCR
91 products were cleaved with *Hind*III (20 U/ml) and *Bsr*GI (10 U/ml) restriction endonucleases and ligated to the *Hind*III and
92 *Bsr*GI sites of the pADC4k-C linearized plasmid to construct the plasmid pADC4k-C-slp. The pADC4k-C-slp plasmid was
93 thermally transferred into wild-type *E. coli* BL21(DE3) using a heat shock method [17]. The transformation reaction was
94 carried out at 37 °C in LB containing 25 mg/ml chloramphenicol and 1% glucose with shaking overnight. Forty microliters
95 of overnight culture was added to 2 ml of LB broth containing 25 µg/ml chloramphenicol and 1% glucose and grown to an
96 optical density at 560 nm of 0.2 at 37 °C, and then the incubator was cooled to 30 °C. Bacterial solution containing 0.5 mM
97 IPTG was incubated at 30 °C for 30 minutes with shaking and grown overnight at 30 °C. The *slp* null mutant *E. coli* was
98 selected and named *E. coli* BL21(DE3)^{Δslp}.

99

Table 1 Names and sequences of the *slp* gene mutation primers

Primer	DNA sequence (5' → 3')
IBS-slp	AAAAAAAGCTTATAATTATCCTTAAAAAGCTTGTGCGCCAGATAGGGTG
EBS1d-slp	ACAAAGAAAGGTAAGTTAGCAACAAAGACTATCTGTTATCACCACATTGTACAATCTG
EBS2-slp	TGAACGCAAGTTCTAATT CGTTCTTCCGATAGAGGAAAGTGTCT
EBS Universal	CGAAATTAGAAACTTGC GTTCAGTAAAC

100 Width: 4362 pixels. Height: 1541 pixels.

101

102 **Identification of *slp* null mutant strains**

103

104 The *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3) were inoculated into LB medium with an initial
105 concentration of 10⁹ CFU/ml and cultured at 37 °C for 12 hours. The genomic DNA of *E. coli* was isolated using a
106 TIANamp Bacteria DNA Kit (Tiangen Biotech Co., Beijing, China) according to the manufacturer's instructions. The
107 mutations of the *slp* gene insertion site were verified by PCR using the primers slpF (5'-
108 TGGGGTGGAAATAGAAATAC-3') and slpR (5'-GCCGCTTCAGGCACAGAG-3') at the intron-gene linker with the
109 following program: 1 cycle at 95°C for 30 seconds, followed by 34 cycles at 95°C for 30 seconds, 58°C for 30 seconds and
110 72°C for 1 minute, ending with one final elongation step at 72°C for 5 minutes.

111 The expression of *slp* in *E. coli* was also examined. The total RNA of *E. coli* was extracted using a TIANamp total
112 RNA extraction kit (Tiangen Biotech Co., Beijing, China) according to the manufacturer's instructions. The cDNA was
113 synthesized using a PrimeScript™ 1st Strand cDNA Synthesis Kit (Takara, Dalian, China). Real-Time PCR was used to
114 analyze the transcript expression of the *slp* gene in *E. coli* using the primers yzF (5'- CACTCATCCTCAGCCTTCAT -3')
115 and yzR (5'- CGGTAATACAGCGATTCTAACCA -3'). Amplification of the *slp* gene was performed using the 7500 Fast
116 Real-Time PCR System (Applied Biosystems) with the following program: 1 cycle at 95 °C for 20 seconds, and 40 cycles at
117 95 °C for 15 seconds, 60 °C for 1 minute and 72 °C for 30 seconds. The amplification reactions were carried out with a
118 real-time PCR Premix for SYBR Green II (takara) in a final volume of 20 μl. Quantification of the tested gene expression
119 was done using the comparative 2(-Delta Delta C(T)) method [18].

120

121 **Generation of Growth Curves under hydrogen peroxide stress**

122

123 Subcultures of *E. coli* were grown overnight in LB medium at 37 °C. Then, the *E. coli* BL21(DE3)^{Δslp} and wild-type
124 *E. coli* BL21(DE3) were inoculated with an initial concentration of 10⁹ CFU/ml in LB medium containing 0.6% (vol/vol)
125 H₂O₂ and cultured at 37°C for 3 hours. The OD₆₀₀ (optical densities 600nm) of cultures were measured every half hour, and
126 the mean value of the triplicate cultures was plotted. All experiments were repeated three times.

127

128 **The RNA-sequencing of transcriptome libraries**

129

130 *E. coli* BL21(DE3)^{Δslp} and *E. coli* BL21(DE3) were grown in LB medium containing non-hydrogen peroxide or 0.6%
131 (vol/vol) H₂O₂ with an initial concentration of 10⁹ CFU/ml and cultured at 37 °C for 3 hours. Total RNA from 3 biological
132 replicate samples (Wild-type *E. coli* BL21(DE3) of the C1 group grown in a non-hydrogen peroxide environment; *E. coli*
133 BL21(DE3)^{Δslp} of the C2 group grown in a non-hydrogen peroxide environment; Wild-type *E. coli* BL21(DE3) of the C3
134 group grown in a 0.6% (vol/vol) H₂O₂ environment; *E. coli* BL21(DE3)^{Δslp} of the C4 group grown in a 0.6% (vol/vol) H₂O₂
135 environment was extracted from each group, and the ribosomal RNA from the total RNA was removed by the Ribo-Zero
136 rRNA Removal Kit (Epicentre Biotech Co., Germany). The total RNA Library was constructed using a TruSeqTM Stranded
137 Total RNA Library Prep Kit for the experiment. After purification of the cDNA using the MinElute PCR Purification kit
138 (Qiagen Biotech Co., Germany), bands of approximately 150-200 bp were recovered. The cDNA was amplified with 15
139 PCR cycles and quantified withTBS380 (Picogreen). Clusters were generated by bridge PCR on the cBot. A cDNA library
140 was sequenced on an Illumina HiSeqTM 2000 using Illumina's protocol (IGENCODE Technology Co., Ltd (Beijing)). The
141 details of the methods for alignment of the read and quantitation of gene expression were represented according to the
142 method [19].

143 Quality control of the microarray was performed using Bead Studio (Illumina Genome Studio Software), and
144 microarray data normalization on the median and background was conducted. Microarray statistical analyses were
145 performed by Biometric Research Branch array tools (<http://linus.nci.nih.gov/BRB-ArrayTools.html>) and the Multi
146 Experiment Viewer software [20]. General filters were applied before analysis, and probes were excluded if the percentage
147 missing exceeded 50%. If they had a fold difference >2.0, if the univariate p-value was <0.05, and if the false discovery rate
148 (FDR) was <0.001, then genes were identified as differentially expressed.

149
150 **Antioxidase activity assays**

151
152 *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3) were grown in LB medium containing 0.6% (vol/vol) H₂O₂
153 with an initial concentration of 10⁹ CFU/ml and cultured at 37 °C for 3 hours. Ten milliliters of the fermentation were taken
154 at intervals of 0.5 hours. After centrifugation at 10,000 rpm for 5 minutes, the pellets were re-suspended in 20 mM
155 Tris–HCl buffer, pH 8.5, and lysed by a Mini-BeadBeater-16 (BioSpec products) grinding beads homogenizer for 2×15
156 seconds. The lysate was then centrifuged at 10,000 rpm for 5 minutes, the supernatant was filtered through a 0.22μm filter
157 and was stored at –80 °C [21]. With bovine serum albumin (BSA) as a standard protein, the protein content of the samples
158 was determined by the Micro BCA method Protein Quantitative Detection Kit C503061 (Sangon Biotech (Shanghai) Co.,
159 Ltd.).

160 Antioxidase activities of *E. coli* were examined using the relevant kits (Nanjing Bioengineering Research Institute,
161 Nanjing, China). Mainly, the catalase activities of the samples were determined with the visible light method using the
162 catalase detection kit (A007-1). The glutathione S-transferase and peroxidase activity of samples were determined with the
163 visible light method using the glutathione S-transferase detection kit (A004) and glutathione peroxidase detection kit

164 (A005). The superoxide dismutase activity of the samples was determined with the hydroxylamine method by using the
165 superoxide dismutase detection kit (A001-1). The malondialdehyde content of the samples was examined with the
166 thiobarbituric acid method by using the malondialdehyde detection kit (A003-2). All of these experiments were repeated
167 three times.

168

169 **Detection of oxidative stress gene expression**

170

171 The *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3) were grown in LB medium containing 0.6% (vol/vol)
172 H₂O₂ with an initial concentration of 10⁹ CFU/ml and cultured at 37 °C for 3 hours. The extraction of total RNA and
173 synthesis of cDNA were performed as previously described. Primers used for real-time PCR are listed in Table 2.

174 Table 2 Primers used for the detection of hydrogen peroxide response genes during real-time PCR

Gene name	Description or predictend function	DNA sequence (5'→3')
<i>rpoS</i>	RNA polymerase, σS factor, subunit of RNA polymerase/ RNA polymerase nonessential primary-like sigma factor	F: AGACGATTGAACGGGCGATT
		R: TGTCCAGCAACGCTTTTCG
<i>ahpC</i>	ahpC component, subunit of alkylhydroperoxide reductase	F: AAAAGATACCGAAGGCCGCT
		R: GTCGAAGTTACGGGTCAGGG
<i>ahpF</i>	ahpF component, subunit of alkylhydroperoxide reductase	F: GGGCGAAGATCAGTATCGCA
		R: AATATGCCGCTGACACGAT
<i>yqiG</i>	predicted S-transferase/glutathionyl-hydroquinone reductase	F: TCCGCATTCGTAACTGGCT
		R: AGCACGGAACAGTAACCTCG
<i>btuE</i>	thioredoxin/glutathione peroxidase	F: GAAGTTGCCGGTAATGTGC

		R: TGCTGACCATACTGGGCATAG
<i>katE</i>	hydroperoxidase / heme d synthase catalase	F: TACCGTGCCTGATATCCGTG
		R: CCTTCCATGGTGCCTGAACT
<i>katG</i>	hydroperoxidase I /catalase-peroxidase	F: CGATCTACAACCCGACCGAG
		R: CACACCAGCCAGCACTATGA
<i>sodA</i>	superoxide dismutase (Mn) /superoxide dismutase, Fe-Mn family	F: AAACCGTACTGCGCAACAAAC
		R: CAGTAGAAACCACCGCCAGT
<i>sodB</i>	superoxide dismutase (Fe) /superoxide dismutase, Fe-Mn family	F: CTGAAGCTATCGCCGCATCT
		F: CTGAAGCTATCGCCGCATCT
<i>sodC</i>	superoxide dismutase precursor (Cu-Zn) /superoxide dismutase, Cu-Zn family	F: CTGGAGTTTCGCCCGATCT
		R: ATGACGGCATCGGTAGCTTT

175 Width: 4362 pixels. Height: 5795 pixels.

176

177 Results

178 Construction and Identification of the *E. coli* BL21(DE3)^{Δslp}

179

180 The *slp* gene mutant *E. coli* was constructed by the Targetron technique. Three positive mutant *E. coli* were selected.

181 Genomic DNA of *E. coli* was extracted, and *slp* mutations were verified by PCR. As shown in Fig 1A, an approximately 1.5

182 kb gene fragment was amplified from the wild-type *E. coli* BL21(DE3) (Lane 1), and a 3.5 kb product was amplified from *E.*

183 *coli* BL21(DE3)^{Δslp}, which is 2kb larger than that in wild-type *E. coli* BL21(DE3), suggesting that the group II intron

184 sequence was successfully inserted into the ORF (open reading frame) of the *slp* gene of *E. coli* BL21(DE3)^{Δslp} (Lanes 2-4).

185 Sequencing revealed that the insertion site of the Group II intron was located at 161-162 bases in the open reading frame of
186 the *slp* gene (data not shown). Real-time PCR was used to further examine the transcript expression of the *slp* gene in *E.*
187 *coli*. The relative transcript expression of the *slp* gene in *E. coli* BL21(DE3)^{Δslp} was approximately 0.15-fold compared to
188 the wild-type *E. coli* BL21(DE3) (Fig 1B). Therefore, *E. coli* BL21(DE3)^{Δslp} was successfully constructed.

189 **Fig 1. Identification of *Escherichia coli* *slp* gene mutation.**

190 **(A) Molecular weight changes of the *slp* gene in the genomic DNA.** Width: 2250 pixels (at 300 dpi). Height: 1797 pixels
191 (at 300 dpi). M: 5000 DNA marker; Lane 1: *slp* gene identification of wild-type *E. coli* BL21(DE3); Lanes 2-4: *slp* gene
192 identification of *E. coli* BL21(DE3)^{Δslp}. **(B) The relative transcript expression of the *slp* gene.** Width: 1889 pixels (at 600
193 dpi). Height: 1686 pixels (at 600 dpi).

194

195 **The growth curves of *E. coli* under hydrogen peroxide stress**

196

197 Cultured in LB liquid medium, there was no significant difference in the growth of *E. coli* BL21(DE3)^{Δslp} and
198 wild-type *E. coli* BL21(DE3). Under 0.6% (v/v) H₂O₂ stress, the growths of *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli*
199 BL21(DE3) were significantly inhibited (p<0.05), and *E. coli* BL21(DE3)^{Δslp} was significantly more sensitive than
200 wild-type *E. coli* BL21(DE3) (p<0.05) (Fig 2). The result indicated that the mutation of the *slp* gene increased the
201 sensitivity of *E. coli* under hydrogen peroxide stress.

202 **Fig 2. Growth curve of *E. coli* under hydrogen peroxide stress.** Width: 1889 pixels (at 600 dpi). Height: 1299 pixels (at
203 600 dpi).

204

205 **The output of RNA sequencing**

206

207 Twelve transcriptome libraries were constructed with mRNA from *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli*
208 BL21(DE3) in four groups, and three parallel libraries were included in each group. These libraries were sequenced using
209 the Illumina HiSeqTM 2000 sequencing platform, and a total of 178,618,054 single raw reads were obtained. The read
210 numbers in each library are shown in Table 3. After removing the non-coding RNA, the remaining clean reads in each
211 library were mapped to wild-type *E. coli* BL21(DE3), and the mapping rates ranged from 86.52% to 90.43% (Table 3). The
212 unique mapping rates from 12 libraries fluctuated within a relatively small range (from 86.52% to 89.67%, Table 3).

213

Table 3 The overview of RNA-Seq

Treatment	Raw reads	Mapping reads	Mapping rate	Unique mapping
C1- 1	15,520,272	14,034,449	90.43%	89.67%
C1- 2	13,514,612	12,162,831	90.00%	89.28%
C1- 3	15,227,790	13,666,726	89.75%	89.06%
C2- 1	14,417,058	12,716,132	88.20%	87.53%
C2- 2	14,026,030	12,398,647	88.40%	87.73%
C2- 3	14,674,680	12,981,235	88.46%	87.79%
C3- 1	15,069,934	13,451,699	89.26%	88.72%
C3- 2	15,238,702	13,717,877	90.02%	89.49%
C3- 3	15,245,556	13,713,991	89.95%	89.41%
C4- 1	15,242,142	13,187,067	86.52%	86.06%
C4- 2	15,334,084	13,354,249	87.09%	86.62%
C4- 3	15,107,194	13,142,434	86.99%	86.52%

214 Width: 4362 pixels. Height:2043 pixels.

215 Wild-type *E. coli* BL21(DE3) of the C1 group grown in a non-hydrogen peroxide environment; *E. coli* BL21(DE3)^{Δslp} of
216 the C2 group grown in a non-hydrogen peroxide environment; Wild-type *E. coli* BL21(DE3) of the C3 group grown in
217 0.6% (vol/vol) H₂O₂; *E. coli* BL21(DE3)^{Δslp} of the C4 group grown in a 0.6% (vol/vol) H₂O₂. Three biological replicates per
218 sample.

219

220 Identification of the differentially expressed genes

221

222 To identify the gene expression signature induced by oxidative stress in *E. coli*, after the *slp* gene was mutated, the
223 mutant and control strains were grown under 0.6% (vol/vol) hydrogen peroxide for three hours. Twelve samples passed our
224 quality control criteria and were retained for further analyses (F test, univariate $p < 0.05$, FDR < 0.001 ; Fig 3A). After
225 filtering, we found 17,302 probes that were significantly deregulated at different time points, 1,879 that were upregulated
226 and 1,625 downregulated (Fig 3B). Among all of these up/down-regulated genes, mutation of the *slp* gene directly caused
227 the up-regulation of 13 genes (Fig 4A, C1 Vs C2) and down-regulation of 8 genes (Fig 4B, C1 Vs C2). In the hydrogen
228 peroxide environment, the mutation of the *slp* gene caused an up-regulation of 63 genes (Fig 4A, C3 Vs C4). Hydrogen
229 peroxide caused a significant up-regulation of 921 genes (Fig 4A, C1 Vs C3) and down-regulation of 839 genes (Fig 4B, C1
230 Vs C3) in wild-type *E. coli* BL21(DE3). In *E. coli* BL21(DE3)^{Δslp}, hydrogen peroxide caused a significant up-regulation of
231 882 genes (Fig 4A, C2 Vs C4) and down-regulation of 778 genes (Fig 4B, C2 Vs C4).

232 **Fig 3. Differential gene analysis.**

233 **(A) Heatmap plot for the correlation coefficient between samples.** Width: 2250 pixels (at 300 dpi). Height: 2250 pixels
234 (at 300 dpi). The closer the linear relationship number of three biological samples is to 1, the higher the similarity between
235 the parallel samples. Wild-type *E. coli* BL21(DE3) of the C1 group grown in a non-hydrogen peroxide environment; *E. coli*
236 BL21(DE3)^{Δslp} of the C2 group grown in a non-hydrogen peroxide environment. Wild-type *E. coli* BL21(DE3) of the C3
237 group grown in a 0.6% (vol/vol) H₂O₂ environment. *E. coli* BL21(DE3)^{Δslp} of the C4 group grown in a 0.6% (vol/vol) H₂O₂
238 environment.

239 **(B) Visualization of differentially expressed genes.** Width: 1181 pixels (at 300 dpi). Height: 1181 pixels (at 300 dpi).

240 -genes that were significantly up-regulated. -genes that were significantly down-regulated. -genes that were not
241 significantly changed. a: Differentially expressed genes that were significantly altered after mutation of the *slp* gene. b:
242 Differentially expressed genes caused by 0.6% (vol/vol) H₂O₂ environment in wild-type *E. coli* BL21(DE3). c:
243 Differentially expressed genes caused by 0.6% (vol/vol) H₂O₂ in *E. coli* BL21(DE3)^{Δslp}. d: Differentially expressed genes
244 that were significantly altered after mutation of the *slp* gene under 0.6% (vol/vol) H₂O₂.

245 **Fig 4. Venn map of the up/down-regulated genes.**

246 **(A) Up-regulated genes.** Width: 2250 pixels (at 300 dpi). Height: 2250 pixels (at 300 dpi). **(B) Down-regulated genes.**
247 Width: 2250 pixels (at 300 dpi). Height: 2250 pixels (at 300 dpi). Wild-type *E. coli* BL21(DE3) of the C1 group grown in a
248 non-hydrogen peroxide environment; *E. coli* BL21(DE3)^{Δslp} of the C2 group grown in a non-hydrogen peroxide
249 environment; Wild-type *E. coli* BL21(DE3) of the C3 group grown in 0.6% (vol/vol) H₂O₂; *E. coli* BL21(DE3)^{Δslp} of the C4
250 group grown in 0.6% (vol/vol) H₂O₂.

251

252 **The differentially expressed genes related to the hydrogen peroxide**
253 **oxidative stress pathway**

254

255 Significant changes in oxidative stress, glucose metabolism, and energy metabolism pathways were observed after the
256 *slp* gene was mutated (Table 4). After the *slp* gene was mutated, it mainly resulted in a significant increase in the genes in
257 the glucose metabolism pathway (GO: 0004641; GO: 0004637; GO: 0004644; GO: 0009401) (Table 4). In the energy
258 metabolism pathway, it caused a significant decrease in the gene (GO: 0015419; GO: 0005524); however, there was
259 dramatically increased expression of the genes in the energy metabolism pathway when *E. coli* BL21(DE3)^{Δslp} was grown in
260 a 0.6% (vol/vol) hydrogen peroxide environment (Table 4).

Table 4-The major significantly represented GO terms of the genes

Pathway	GO id	GO description		log2Fold Change	q value	Up/Down-Regulation
Oxidative stress	GO:0004364	glutathione transferase activity	C1 Vs C2	-1.0148	8.28E-202	Down
			C2 Vs C4	2.7097	7.65E-164	Up
			C1 Vs C3	1.0146	8.28E-202	*
			C3 Vs C4	-	-	-
	GO:0004602	glutathione peroxidase activity	C1 Vs C2	2.2073	1.42E-38	Up
			C2 Vs C4	1.003	2.52E-37	*
			C1 Vs C3	1.0288	1.42E-38	*
			C3 Vs C4	-	-	-
	GO:0004096	catalase activity	C1 Vs C2	2.8124	1.80E-238	Up
			C2 Vs C4	3.9789	0	Up
			C1 Vs C3	1.2577	1.80E-238	Up
			C3 Vs C4	-	-	-
	GO:0055114	oxidation-reduction process	C1 Vs C2	1.1566	4.18E-07	Up
			C2 Vs C4	-3.9447	5.65E-296	Down
			C1 Vs C3	-2.5204	1.57E-18	Down
			C3 Vs C4	-	-	-
Sugar metabolism	GO:0004641	phosphoribosyl formylglycinamide cyclo-ligase activity	C1 Vs C2	1.0378	6.81E-28	Up
			C2 Vs C4	-	-	-
			C1 Vs C3	-	-	-

			C3 Vs C4	-	-	-
GO:0004637		phosphoribosylamine-glycine ligase activity	C1 Vs C2	1.3473	1.27E-31	Up
			C2 Vs C4	-2.8232	8.34E-163	Down
			C1 Vs C3	-1.6542	4.02E-31	Down
			C3 Vs C4	-	-	-
GO:0004644		phosphoribosyl lycinamide formyltransferase activity	C1 Vs C2	1.1033	4.25E-26	Up
			C2 Vs C4	-	-	-
			C1 Vs C3	-	-	-
			C3 Vs C4	-	-	-
GO:0009401		phosphoenolpyruvate-dependent sugar phosphotransferase system	C1 Vs C2	1.2398	1.58E-18	Up
			C2 Vs C4	-	-	-
			C1 Vs C3	-	-	-
			C3 Vs C4	-	-	-
Energy metabolism	GO:0015419	sulfate transmembrane-transporting ATPase activity	C1 Vs C2	-1.0169	2.21E-15	Down
			C2 Vs C4	3.9955	2.98E-289	Up
			C1 Vs C3	1.8282	5.36E-79	Up
			C3 Vs C4	-	-	-
	GO:0005524	ATP binding	C1 Vs C2	-1.0825	1.09E-05	Down
			C2 Vs C4	4.8281	8.14E-71	Up
			C1 Vs C3	2.4912	1.50E-16	Up
			C3 Vs C4	-	-	-

262 Width: 4362 pixels. Height: 6314 pixels.

263 * represents no significant change; - represents no detected change. Wild-type *E. coli* BL21(DE3) of the C1 group grown
264 in a non-hydrogen peroxide environment; *E. coli* BL21(DE3)^{Δslp} of the C2 group grown in a non-hydrogen peroxide
265 environment; Wild-type *E. coli* BL21(DE3) of the C3 group grown in 0.6% (vol/vol) H₂O₂; *E. coli* BL21(DE3)^{Δslp} of the C4
266 group grown in 0.6% (vol/vol) H₂O₂.

267 In the oxidative stress pathway, the change in antioxidant enzymes was the main concern. When wild-type *E. coli*
268 BL21(DE3) was exposed to a 0.6% (vol/vol) hydrogen peroxide environment, the gene encoding glutathione transferase
269 (GO:0004364) or glutathione peroxidase (GO:0004602) was not changed, and the gene encoding catalase (GO:0004096)
270 was increased approximately 1.26-fold (Table 4). Catalase (approximately 2.81-fold) and glutathione peroxidase
271 (approximately 2.21-fold) were significantly increased after *slp* gene mutation, while glutathione transferase decreased
272 (approximately 1.01-fold) (Table 4). When *E. coli* BL21(DE3)^{Δslp} was cultured in 0.6% (vol/vol) hydrogen peroxide, the
273 expression of genes encoding catalase (approximately 3.98-fold) and glutathione transferase (approximately 2.71-fold) were
274 dramatically increased, while the glutathione peroxidase gene had normal expression (Table 4). These antioxidant enzymes
275 were characterized by the significantly represented GO terms of *E. coli* BL21(DE3)^{Δslp}, which were responsive to 0.6%
276 (vol/vol) H₂O₂ oxidative stress.

277

278 Enzyme activity

279

280 We further examined the oxidative stress-related activities. As shown in Fig 5, catalase activities in *E. coli*
281 BL21(DE3)^{Δslp} were significantly higher (p<0.05) than in wild-type *E. coli* BL21(DE3) during 3 hours of culture, which
282 suggested that the mutation of the *slp* gene caused a marked increase in the catalase activity in *Escherichia coli*. Under
283 0.6% (vol/vol) H₂O₂ oxidative stress, the catalase activities of *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3) were

284 significantly increased ($p<0.05$), and the catalase activities in *E. coli* BL21(DE3)^{Δslp} were obviously higher than those in the
285 wild-type strain from 1 to 3 hours ($p <0.05$).

286 **Fig 5. Catalase activity of *E. coli* under hydrogen peroxide stress.** Width: 1889 pixels (at 600 dpi). Height:1516 pixels
287 (at 600 dpi).

288 The glutathione enzyme activity of *E. coli* is shown in Fig 6A, and the glutathione S-transferase activities in *E. coli*
289 BL21(DE3)^{Δslp} were markedly lower ($p<0.05$) than that in wild-type *E. coli* BL21(DE3), which suggested that the mutation
290 of the *slp* gene caused a marked decrease in the glutathione S-transferase activity in *Escherichia coli*. Under 0.6% (vol/vol)
291 H_2O_2 oxidative stress, no change was found in *E. coli* BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3). Moreover, the
292 mutation of the *slp* gene caused a significant increase in glutathione peroxidase activity in *E. coli* compared to the control.
293 Additionally, 0.6% (vol/vol) H_2O_2 addition did not influence the activity of glutathione peroxidase both in *E. coli*
294 BL21(DE3)^{Δslp} or wild-type *E. coli* BL21(DE3) (Fig 6B).

295 **Fig 6. Glutathione activity of *E. coli* under hydrogen peroxide stress.**

296 **(A) Glutathione S-transferase activity.** Width: 1889 pixels (at 600 dpi). Height:1410 pixels (at 600 dpi). **(B) Glutathione**
297 **peroxidase activity.** Width: 1889 pixels (at 600 dpi). Height:1410 pixels (at 600 dpi).

298

299 **Trace Malondialdehyde contents in *E. coli***

300

301 As shown in Fig 7, mutations of the *slp* gene in wild-type *E. coli* BL21(DE3) had no significant effect on the content
302 of trace malondialdehyde during 3 hours of culture compared with the control. The content of trace malondialdehyde in *E.*
303 *coli* BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3) significantly increased from 0.5 hours to 2 hours under 0.6% (vol/vol)
304 H_2O_2 oxidative stress ($p<0.05$); however, the content of malondialdehyde in *E. coli* BL21(DE3)^{Δslp} was significantly higher

305 between 1.5 hours and 2 hours than wild-type *E. coli* BL21(DE3) ($p < 0.05$).

306 **Fig 7. Trace malondialdehyde content of *E. coli* under hydrogen peroxide stress.** Width: 1889 pixels (at 600 dpi).

307 Height: 1471 pixels (at 600 dpi).

308

309 **Transcript expression of antioxidant-related genes**

310

311 Among all of the detected genes, as shown in Fig 8, after the *slp* gene mutation, there was no significant change in the
312 *katE* gene encoding the HPII family and the *ahpCF* gene encoding alkyl peroxide reductase AhpCF, as well as in the
313 expression of the *RpoS* (encoding σ^S regulator) ($P < 0.05$). But the expression of the genes encoding glutathione (*yqiG*, *btuE*)
314 and superoxide dismutase (*sodB*, *sodC*) increased remarkably. Simultaneously, the transcript expression of *katG* (encoding
315 HPI family) also significantly increased ($P < 0.05$). When wild-type *E. coli* BL21(DE3) was grown in 0.6% (v/v) H_2O_2
316 oxidative stress, the *sodB* gene was significantly down-regulated, and the expression of the *RpoS* gene was not changed,
317 while all of the other genes were significantly increased ($P < 0.05$). With the exception of the *sodB* gene, which was
318 significantly down-regulated, all other genes were remarkably increased when *E. coli* BL21(DE3)^{Δslp} was grown in 0.6%
319 (vol/vol) H_2O_2 oxidative stress. The expression levels of the *katG* and *butE* genes were increased in both *E. coli*
320 BL21(DE3)^{Δslp} and wild-type *E. coli* BL21(DE3) under 0.6% (vol/vol) H_2O_2 oxidative stress, but the expression of these
321 two genes increased more in the mutant. Additionally, the expression of the *katE* gene in wild-type *E. coli* BL21(DE3)
322 increased more obviously.

323 **Fig 8. Expression of antioxidant-related genes in *E. coli* under hydrogen peroxide stress.** Width: 1889 pixels (at 600
324 dpi). Height: 1334 pixels (at 600 dpi).

325

326

Discussion

327

328 The localization of carbon starvation-induced lipoprotein Slp in the outer membrane suggests a potential role in
329 protecting stationary phase cells from environmental stress or facilitating nutrient availability in the periplasm [9]. A
330 previous study suggested that it could be induced by carbon deficiency or oxidative stress [4]. However, there was no clear
331 conclusion about the oxidative stress induction mechanism of carbon starvation-induced lipoprotein Slp.

332 In this study, we first constructed an *slp* null mutant *E. coli* using the Group II intron insertion method (Fig 1). Group
333 II introns use a remarkable mobility mechanism in which the excised intron RNA uses its ribozyme activity to insert
334 directly into a DNA target site by reverse-splicing, termed retro-homing [22]. Most of the target specificity comes from the
335 base-pairing of the intron RNA to the DNA target sequence, which means that it is possible to reprogram group II introns to
336 insert into desired sites simply by modifying the intron RNA [23]. Group II introns are minimally dependent on host factors
337 and widely applicable to a wide variety of bacteria. Mutants have been successfully constructed in various strains, such as *E.*
338 *coli*, *S. typhimurium* and *L. lactis* [23, 24].

339 We discovered that the *slp* gene mutant strain had increased susceptibility to 0.6% (vol/vol) H₂O₂ oxidative stress and
340 grew poorly with oxygen during the logarithmic phase (Fig 2). Gregory found that there are no significant changes in
341 resistance to oxidative stress by measuring zones of inhibition surrounding disks containing 10 µl of 50% peroxide in the *slp*
342 gene mutant strain; however, this study was not designed to measure slight differences in the sensitivity of the *slp* gene
343 mutant to stress treatments [9]. During entry into the stationary phase, *E. coli* including *E. coli* BL21(DE3)^{Δslp} devoted a
344 considerable amount of synthetic protein to resist adverse environments during long-term exposure to hydrogen peroxide
345 [2]. After *slp::phoA* strains were subjected to oxidative challenge and followed for 4 hours of glucose starvation during
346 exponential growth, Alexander indicated that alteration of Slp did not change starvation-induced cross resistance to osmotic,
347 thermal or oxidative stress [4]. Unfortunately, Alexander studied whether *slp::phoA* strains could depend on Pex protein

348 protection and thus produce starvation-induced cross-resistance. No studies confirmed that carbon starvation
349 induced-lipoprotein Slp is dependent on cAMP/CRP, Pex or cross-protection.

350 The function of Slp protein was predicted at the transcript level in *E. coli*, and it was found that the mutation of the
351 *slp* gene caused a change in the oxidative stress pathway, among which the expression of antioxidant enzyme genes was the
352 most obvious, indicating that the Slp protein had an effect on the antioxidant process (Table 4). In addition, the function of
353 the Slp protein may also involve sugar metabolism and energy metabolism pathways (Table 4). Membrane lipoproteins in *E.*
354 *coli* play an important physiological role in signal transduction, substance transport and so on [25]. In the hydrogen
355 peroxide environment, mutations of the *slp* gene caused increased expression of iron-related genes (data not shown), and we
356 speculate that the Slp protein has a similar function as the Dps protein and could chelate free iron to reduce the damage of
357 hydrogen peroxide on cells [26]. Free iron ions could promote the Fenton reaction of hydrogen peroxide, causing serious
358 production of proteins, nucleic acids, and lipid molecules [27].

359 Indeed, H₂O₂ itself can potentially damage enzymes by oxidizing sulfhydryl and iron-sulfur moieties. Upon conversion
360 to a hydroxyl radical, it produces mutagenic and lethal lesions [28]. Catalase in the body uses iron porphyrin as the auxiliary
361 base, and catalytic decomposition of H₂O₂ and removal from the body of H₂O₂ prevents cells from experiencing toxic
362 oxygen poisoning [29]. When 0.6% (vol/vol) H₂O₂ was added, the concentration of hydrogen peroxide in the culture
363 medium was greater than a certain value (25 μM), and *Escherichia coli* could induce resistance to oxidative stress, with
364 catalase becoming the main hydrogen peroxide scavenger [15, 30]. Catalase was significantly increased in *E. coli*
365 BL21(DE3)^{Δslp} compared to wild-type *E. coli* BL21(DE3) (Fig 5), indicating that *E. coli* BL21(DE3)^{Δslp} can induce catalase
366 to resist the harmful hydrogen peroxide environment. The mutation of the *slp* gene caused a marked (p<0.05) decrease in
367 the glutathione S-transferase activity (Fig 6A), while it caused significantly (p<0.05) increased glutathione peroxidase
368 activity in *Escherichia coli* (Fig 6B). An increase in catalase activity may contribute to an increase in peroxidase activity,
369 although glutathione is not necessary for *E. coli* resistance to oxidative stress. Glutathione also may protect cells from

370 radiation damage during oxidative stress. Thus, due to the mutation of the *slp* gene, highly expressed catalase and
371 glutathione were synergistic in decomposing the hydrogen peroxide.

372 Another destruction system of H₂O₂ is the catalase family. In detecting catalase encoding genes, the expression of the
373 *katE* gene did not change significantly (Fig 8). HPII is not peroxide inducible, and its gene, *katE*, is transcribed at the
374 transition from the exponential phase to the stationary growth phase [16, 31]. At the same time, the expression level of the
375 *ahpCF* gene encoding the alkyl hydroperoxide reductase system, which was initially characterized as rapidly reducing
376 diverse organic hydroperoxides, was not changed (Fig 8). High extracellular levels of H₂O₂ diffuse into the cell, and the
377 scavenging ability of *ahpCF* can be overwhelmed [2]. *Escherichia coli* can activate major regulatory factors in the body to
378 perceive hydrogen peroxide, such as the OxyR regulator. HPI (*katG*), which requires the positive transcriptional activator
379 OxyR, was transcriptionally induced during the exponential phase in response to low micromolar concentrations of H₂O₂
380 [15, 32]. The markedly high expression of the *katG* gene (Fig 8), indicating that OxyR was directly oxidized by 0.6%
381 (vol/vol) H₂O₂, leads to disulfide bond formation and OxyR regulator activation of HPI to resist hydrogen peroxide
382 oxidative stress. Cells were resistant to oxidative stress in the hydrogen peroxide environment, and the degree to which the
383 cells were attacked by free radicals was significantly reduced (Fig 7).

384

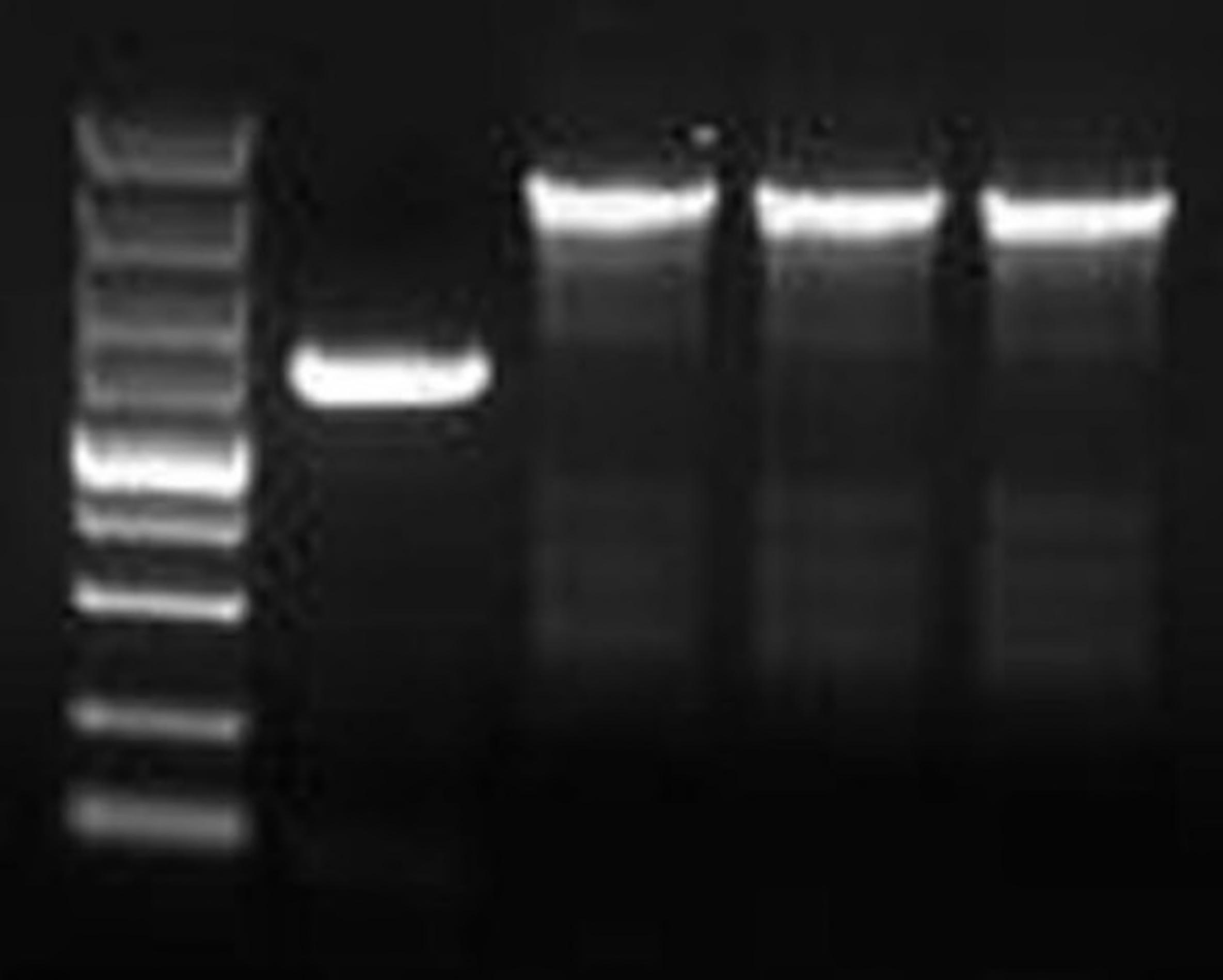
385 Acknowledgement

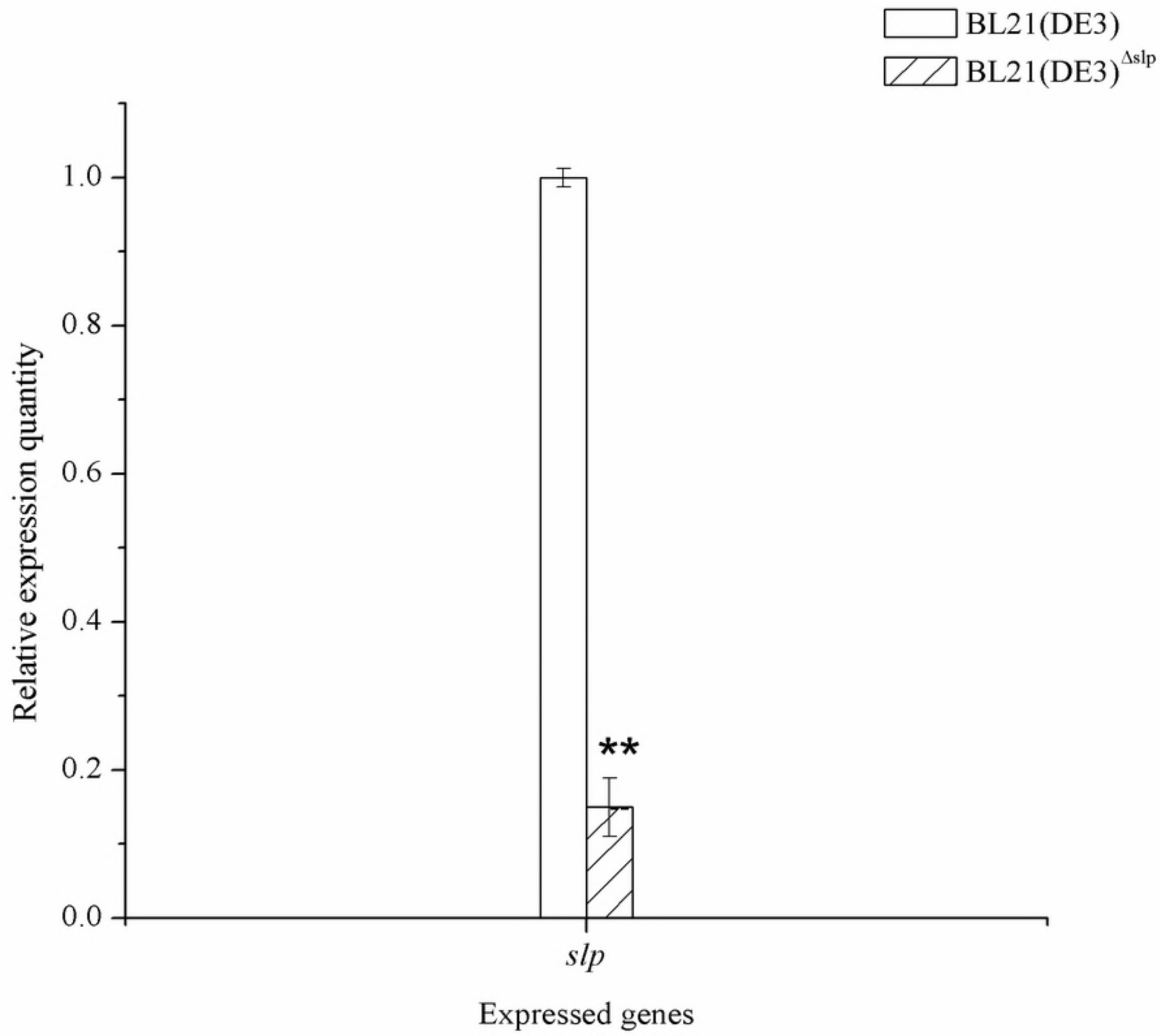
386

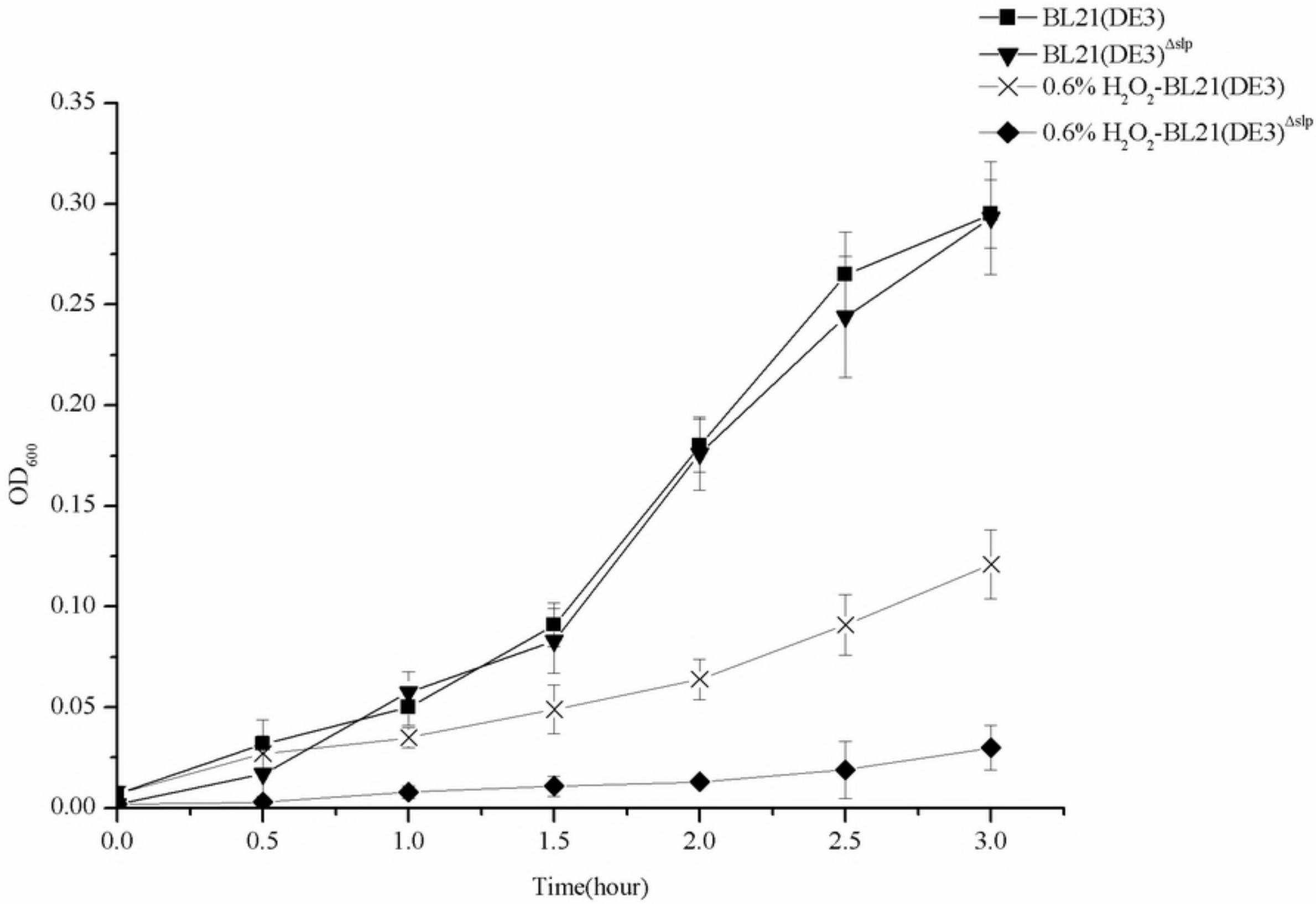
387 The research was financially supported by The Importation and Development of High-Caliber Talents Project of
388 Beijing Municipal Institutions (CIT&TCD20140315).

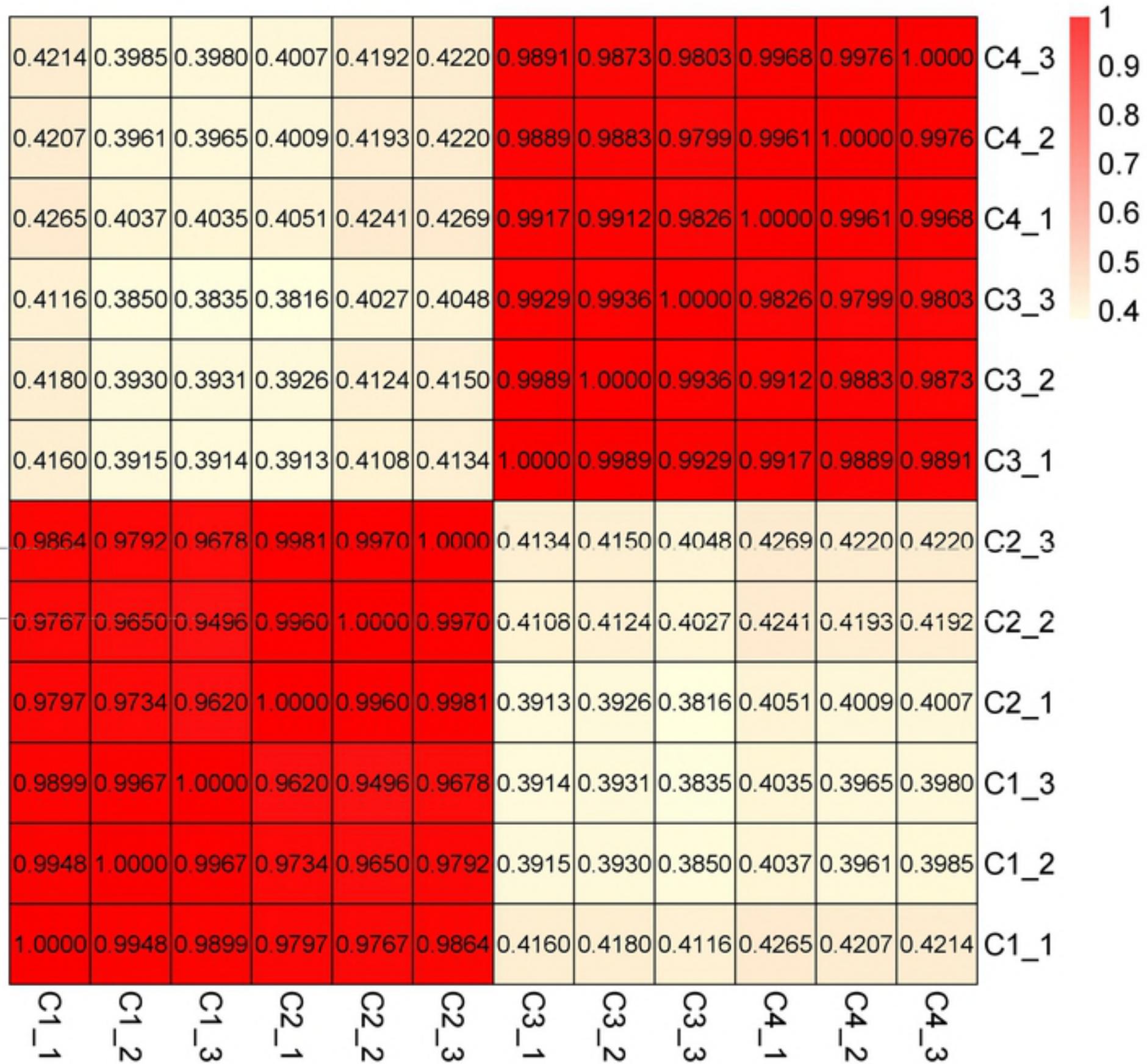
389

390 Reference

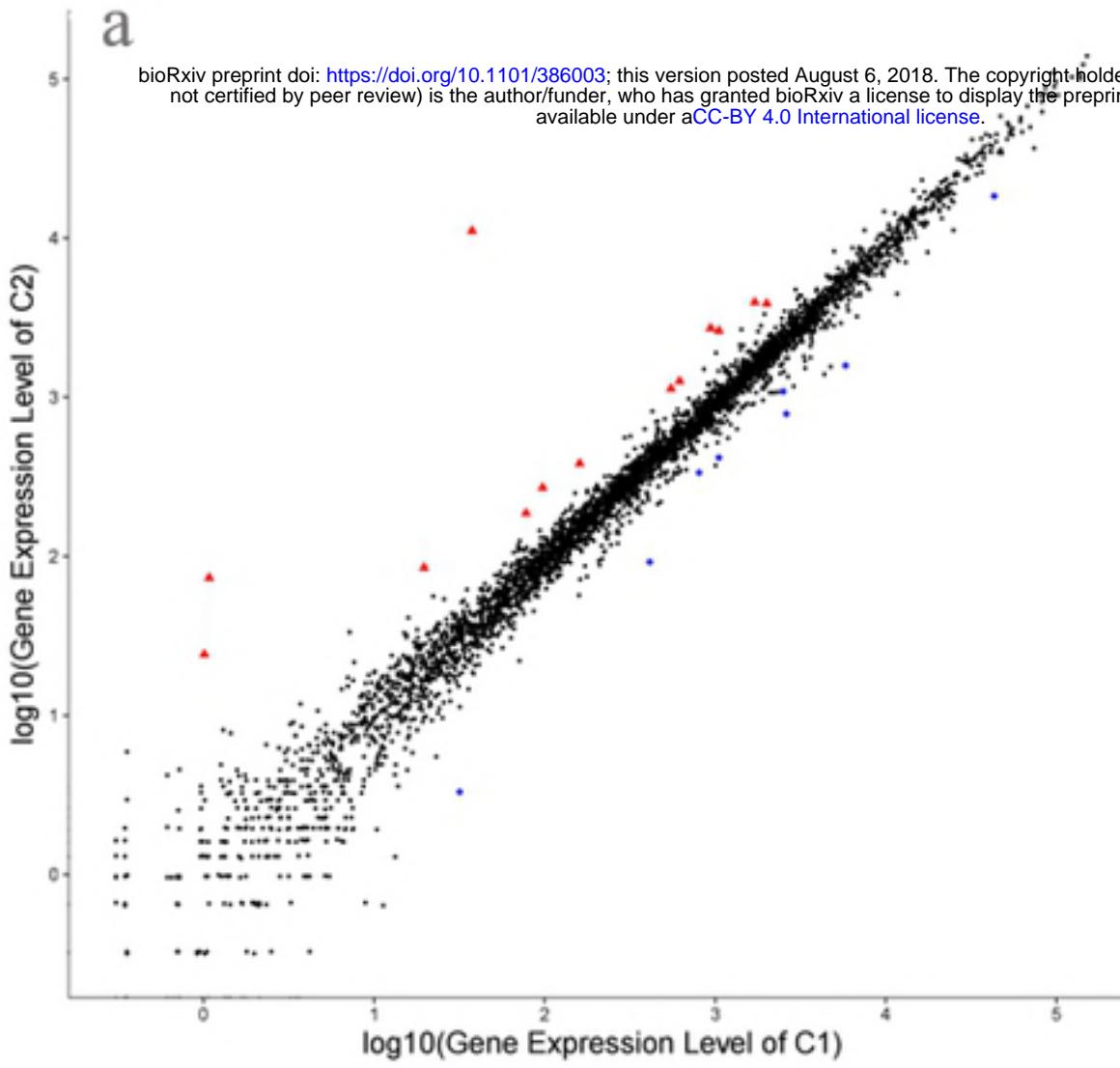
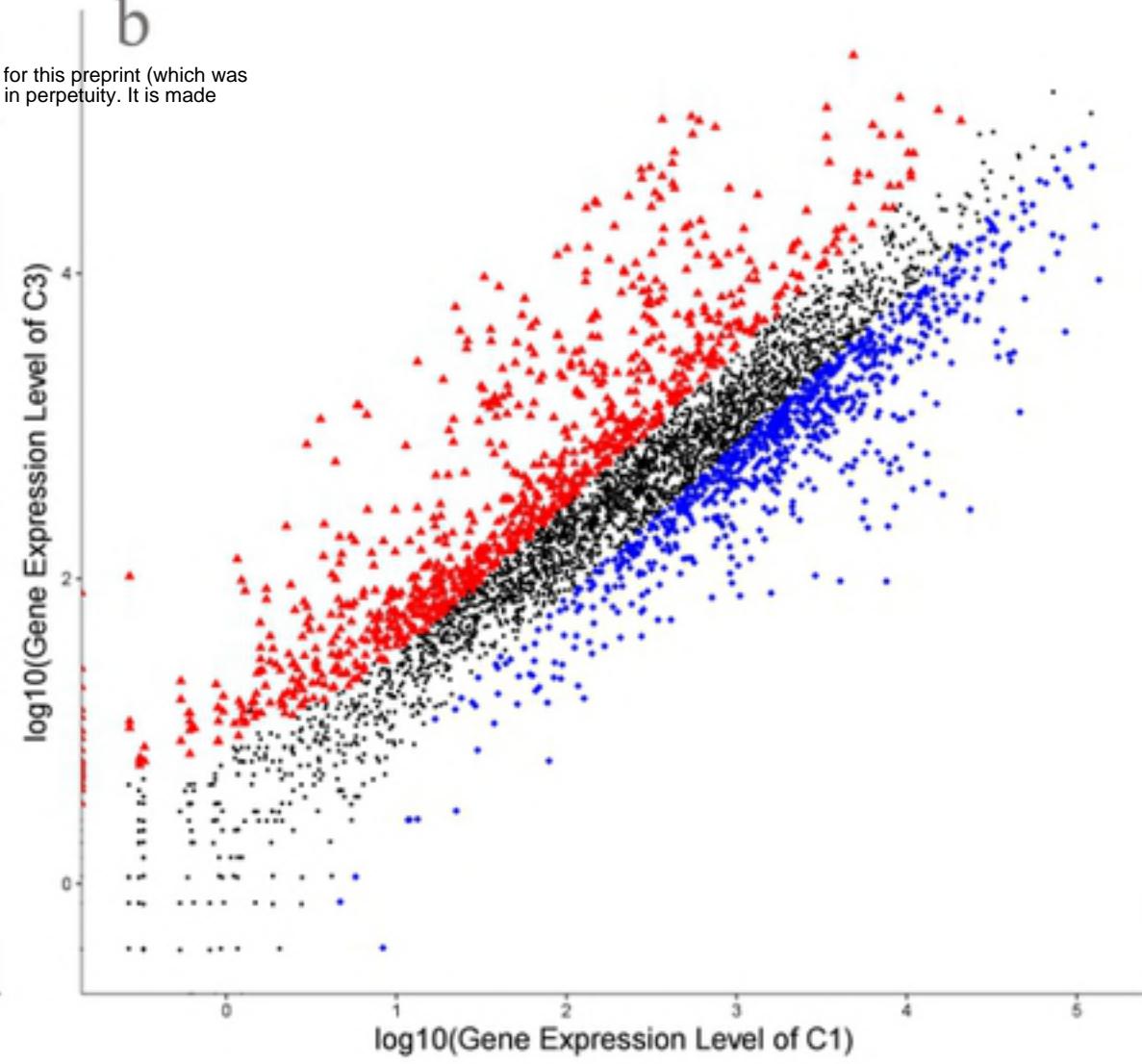
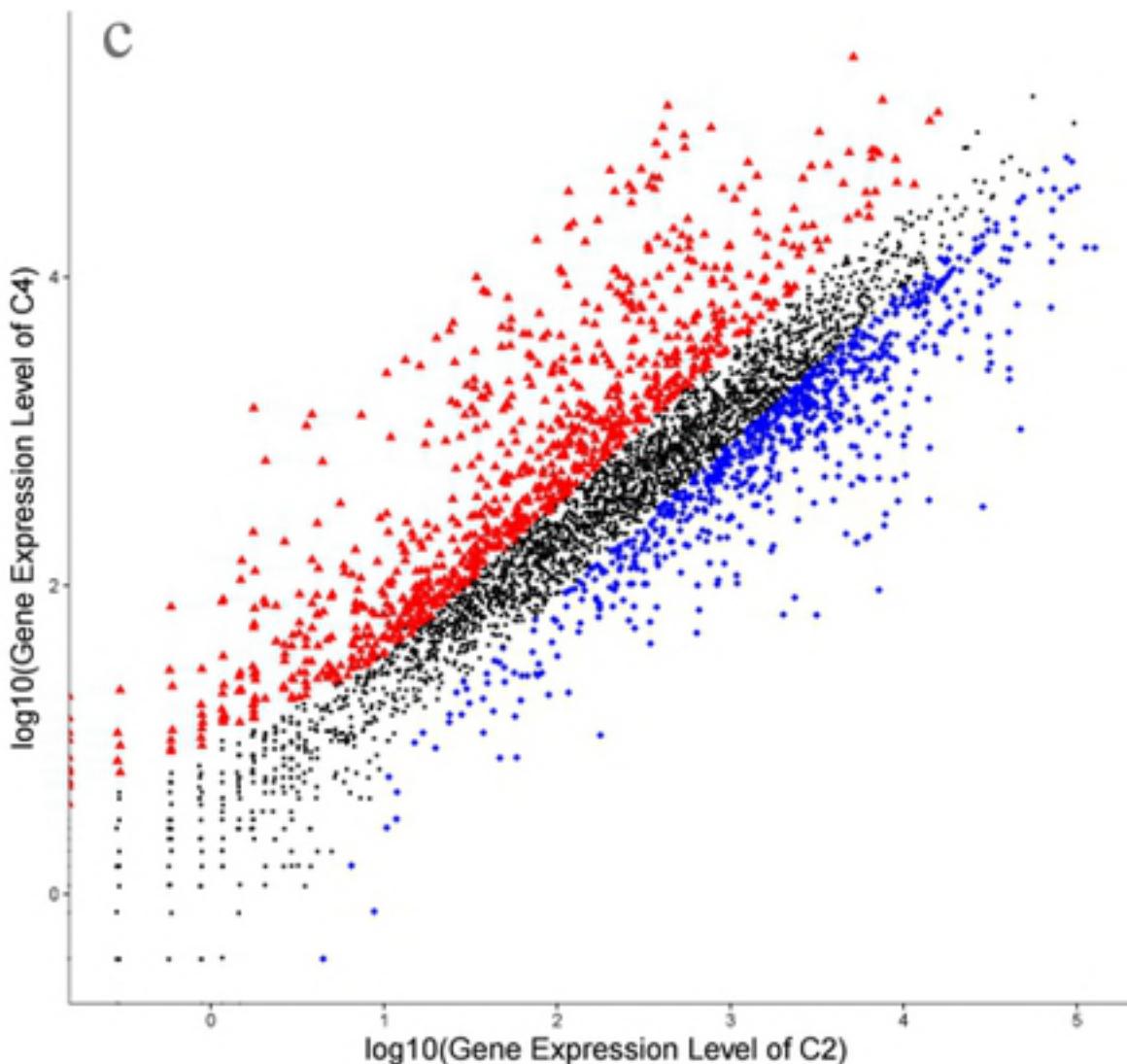
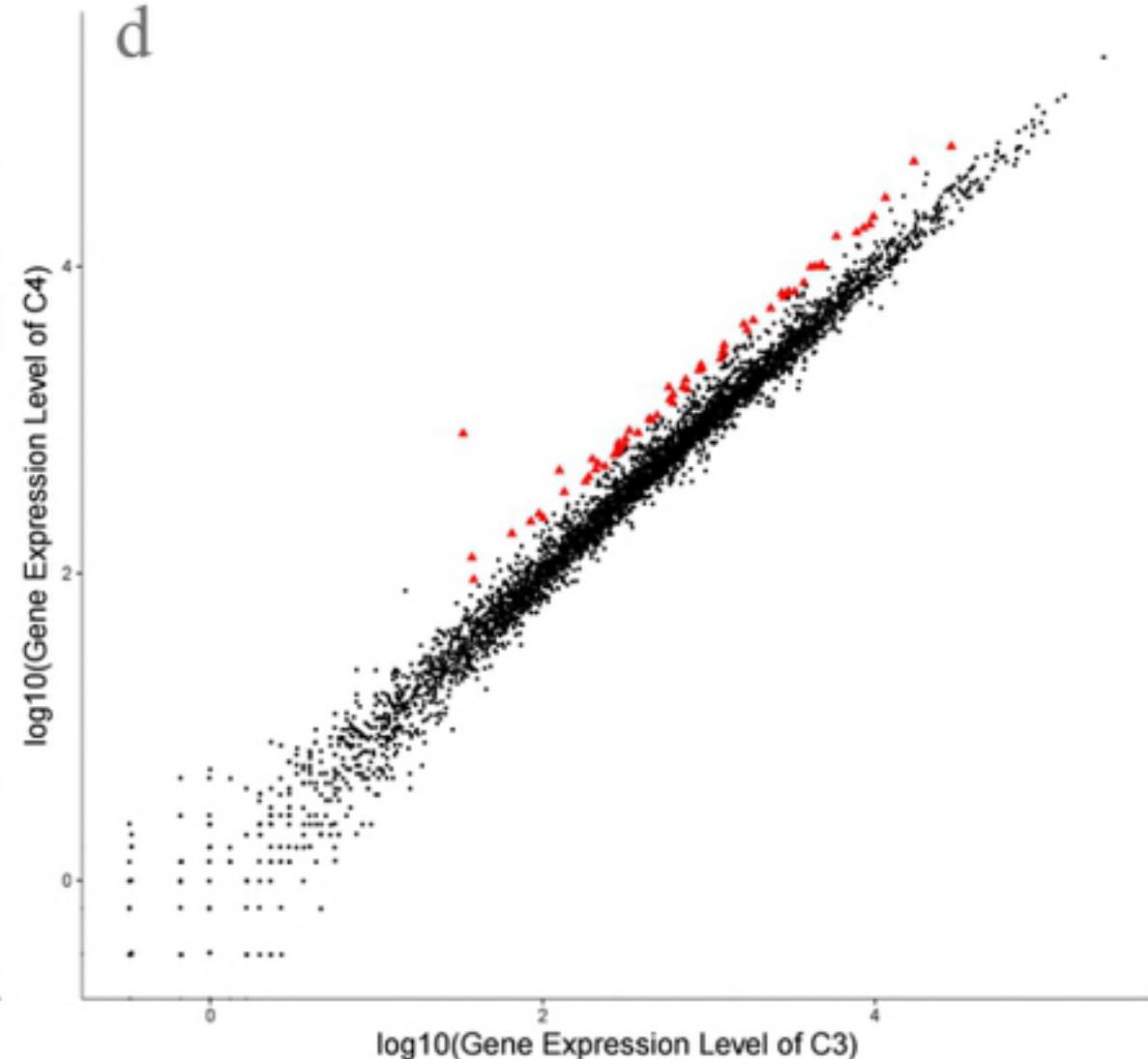

391

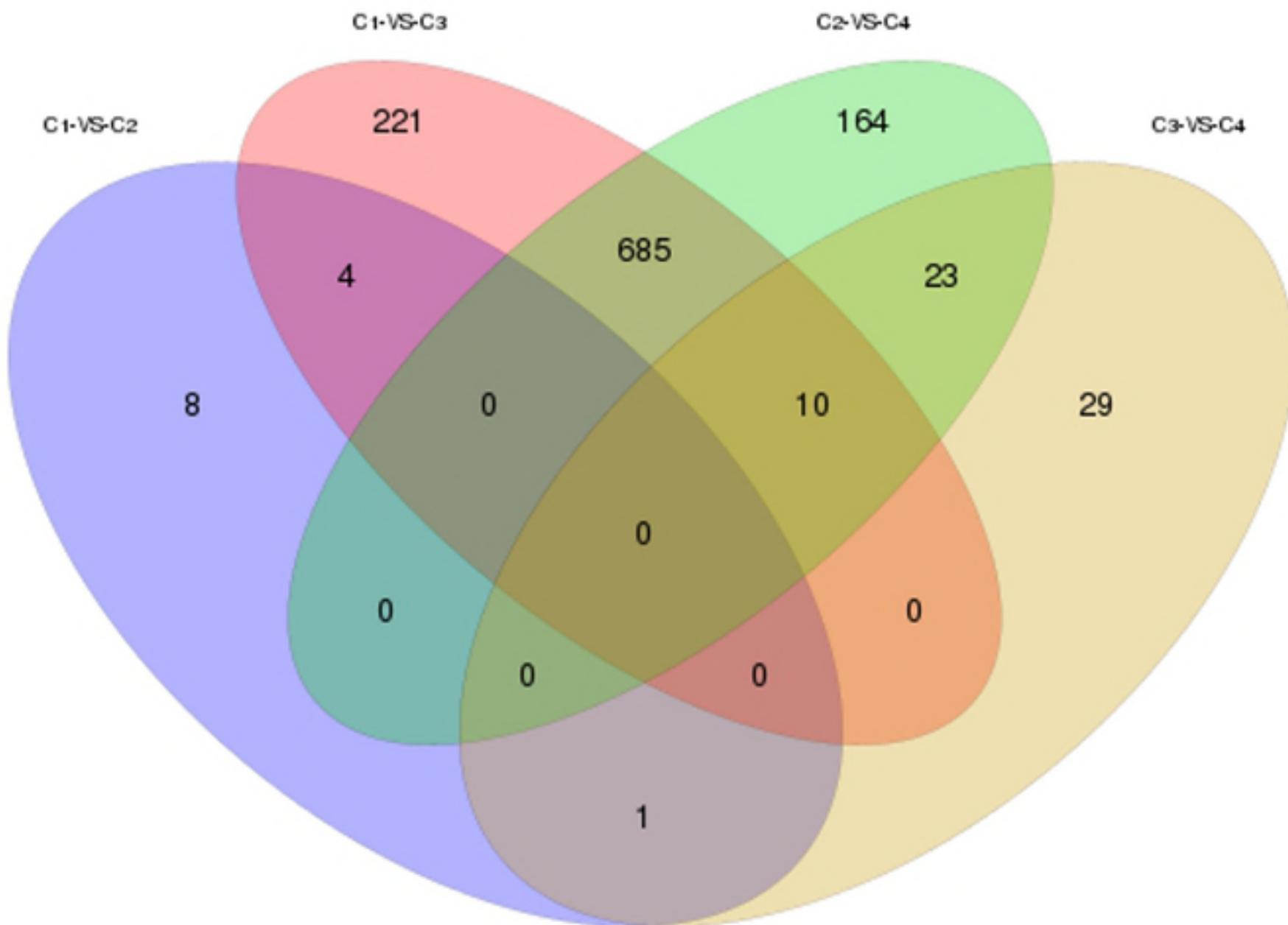

- 392 1. Matin A. The molecular basis of carbon-starvation-induced general resistance in *Escherichia coli*. *Mol Microbiol*, 1991
393 Jan; 5(1):3-10.
- 394 2. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. *Annu Rev Biochem*, 2008; 77(77):755-776.
- 395 3. Inloes DS, Smith WJ, Taylor DP, Cohen SN, Michaels AS, Robertson CR. Hollow-fiber membrane bioreactors using
396 immobilized *E. coli* for protein synthesis. *Biotechnol Bioeng*, 1983 Nov; 25(11):2653-2681.
- 397 4. Alexander DM, St John AC. Characterization of the carbon starvation-inducible and stationary phase-inducible gene *slp*
398 encoding an outer membrane lipoprotein in *Escherichia coli*. *Mol Microbiol*, 1994 Mar; 11(6):1059-1071.
- 399 5. Catron KM, Schnaitman CA. Export of protein in *Escherichia coli*: a novel mutation in *ompC* affects expression of
400 other major outer membrane proteins. *J Bacteriology*, 1987 Sep; 169(9):4327-4334.
- 401 6. Groat RG, Matin A. Synthesis of unique proteins at the onset of carbon starvation in *Escherichia coli*. *J Ind Microbiol*,
402 1986; 1(2):69-73.
- 403 7. Spence J, Cegielska A, Georgopoulos C. Role of *Escherichia coli* heat shock proteins DnaK and HtpG (C62.5) in
404 response to nutritional deprivation. *J Bacteriology*, 1990 Dec; 172(12):7157-7166.
- 405 8. Jenkins DE, Auger EA, Matin A. Role of RpoH, a heat shock regulator protein, in *Escherichia coli* carbon starvation
406 protein synthesis and survival[J]. *J Bacteriology*, 1991Mar; 173(6):1992-1996.
- 407 9. Price GP, St John AC. Purification and analysis of expression of the stationary phase-inducible *slp* lipoprotein in
408 *Escherichia coli*: role of the Mar system. *EEMS Microbiol Lett*, 2000 Dec; 193(1):51-56.
- 409 10. Chen CL, Fen SY, Chung CH, Yu SC, Chien CL, Wong HC. Function of VPA1418 and VPA0305 Catalase Genes in
410 Growth of *Vibrio parahaemolyticus* under Oxidative Stress. *Appl Environ Microbiol*, 2016 Jan; 82(6):1859-1867.
- 411 11. Dip PV, Kamariah N, Subramanian Manimekalai MS, Nartey W, Balakrishna AM, Eisenhaber F, et al. Structure,
412 mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from *Escherichia*

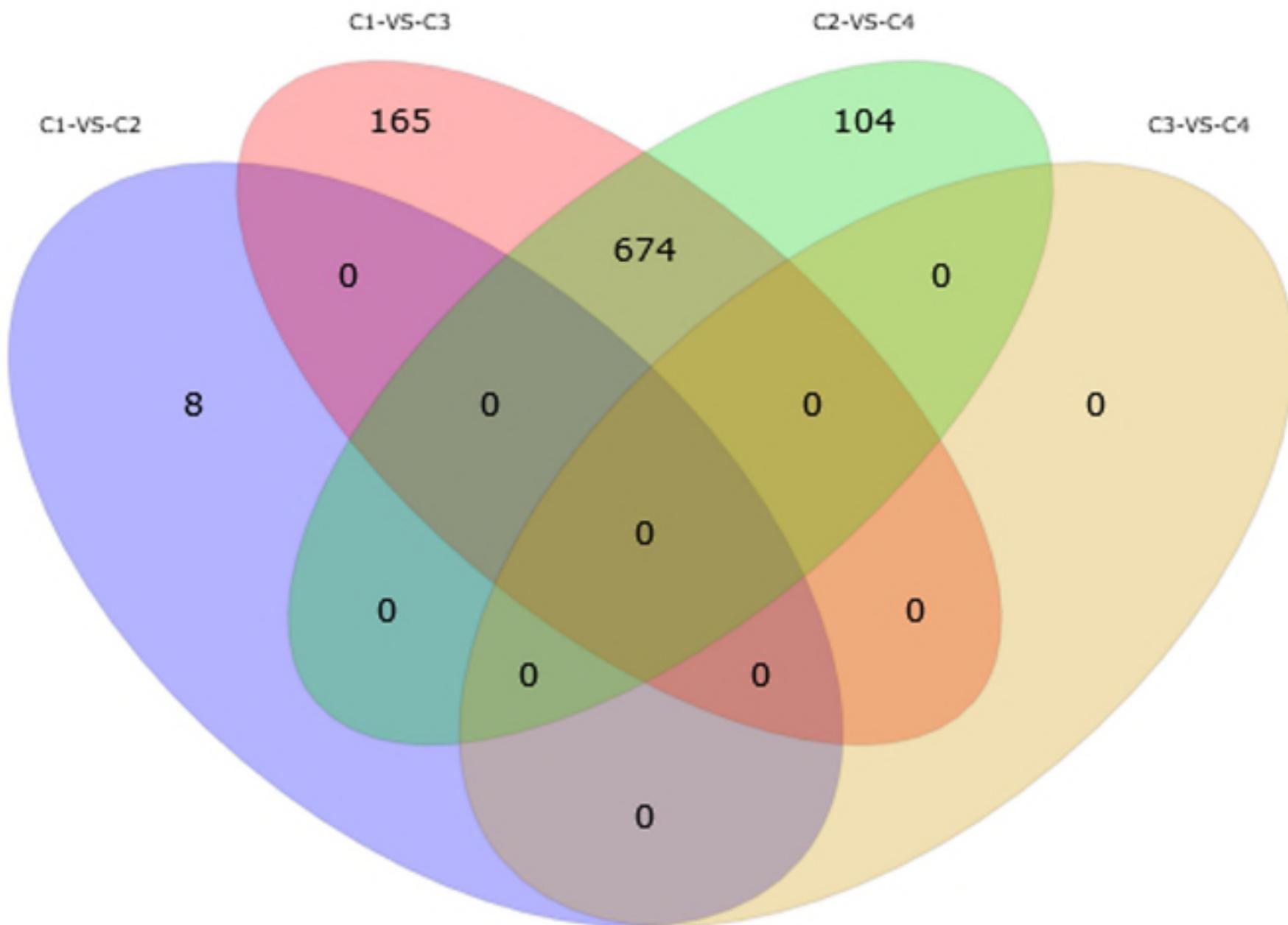

- 413 *coli*. Acta Crystallogr D Biol Crystallogr. 2014 Nov;70(Pt 11):2848-2862
- 414 12. Uhlich GA. KatP contributes to OxyR-regulated hydrogen peroxide resistance in *Escherichia coli* serotype O157:H7.
415 Microbiology. 2009 Nov;155(Pt 11):3589-3598.
- 416 13. Canmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin- dependent reduction systems in the *Escherichia*
417 *coli* and *Saccharomyces cerevisiae* responses to oxidative stress. Annu Rev Microbiol. 2000;54:439-461.
- 418 14. Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ. Role of the *Pseudomonas aeruginosa* oxyR-recG
419 operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J
420 Bacteriol. 2000 Aug;182(16):4533-4544.
- 421 15. Vergauwen B, Pauwels F, Van Beeumen JJ. Glutathione and catalase provide overlapping defenses for protection
422 against respiration-generated hydrogen peroxide in *Haemophilus influenzae*. J Bacteriol. 2003 Sep;185(18):5555-5562.
- 423 16. Uhlich GA, Chen CY, Cottrell BJ, Irwin PL, Phillips JG. Peroxide resistance in *Escherichia coli* serotype O157: H7
424 biofilms is regulated by both RpoS-dependent and -independent mechanisms. Microbiology. 2012 Sep;158(Pt
425 9):2225-2234.
- 426 17. Rhiel E, Flükiger K, Wehrli C, Emi B. The mannose transporter of *Escherichia coli* K12: oligomeric structure, and
427 function of two conserved cysteines. Biol Chem Hoppe Seyler. 1994 Aug;375(8):551-559.
- 428 18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta
429 Delta C(T)) Method. Methods. 2001 Dec;25(4):402-408.
- 430 19. Cui P1, Lin Q, Ding F, Xin C, Gong W, Zhang L, et al. A comparison between ribo-minus RNA-sequencing and
431 polyA-selected RNA-sequencing. Genomics. 2010 Nov;96(5):259-265.
- 432 20. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data
433 management and analysis. Biotechniques. 2003 Feb;34(2):374-378.
- 434 21. Baginski R, Sommerhalter M. A manganese catalase from *Thermosphaeromas Roseum* with peroxidase and catecholase
435 activity. Extremophiles. 2017 Jan;21(1):201-210.


- 436 22. Frazier CL, San Filippo J, Lambowitz AM, Mills DA. Genetic manipulation of *Lactococcus lactis* by using targeted
437 group II introns: generation of stable insertions without selection. *Appl Environ Microbiol*. 2003 Feb;69(2):1121-1128.
- 438 23. Zhong J, Karberg M, Lambowitz AM. Targeted and random bacterial gene disruption using a group II intron (targetron)
439 vector containing a retrotransposition-activated selectable marker. *Nucleic Acids Res*. 2003 Mar 15;31(6):1656-1664.
- 440 24. Yao J, Zhong J, Fang Y, Geisinger E, Novick RP, Lambowitz AM. Use of targetrons to disrupt essential and
441 nonessential genes in *Staphylococcus aureus* reveals temperature sensitivity of L1.LtrB group II intron splicing. *RNA*.
442 2006 Jul;12(7):1271-1281.
- 443 25. Tokuda H, Matsuyama S. Sorting of lipoproteins to the outer membrane in *E.coli*. *Biochim Biophys Acta*. 2004 Jul
444 23;1693(1):5-13.
- 445 26. Ishikawa T, Mizunoe Y, Kawabata S, Takade A, Harada M, Wai SN, et al. The iron-binding protein Dps confers
446 hydrogen peroxide stress resistance to *Campylobacter jejuni*. *J Bacteriol*. 2003 Feb;185(3):1010-1017.
- 447 27. Stadtman ER, Berlett BS. Fenton chemistry, Amino acid oxidation. *J Biol Chem*. 1991 Sep 15;266(26):17201-17211.
- 448 28. Seaver LC, Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in
449 *Escherichia coli*. *J Bacteriol*. 2001 Dec;183(24):7173-7181.
- 450 29. Alfonso-Prieto M, Borovik A, Carpeta X, Murshudov G, Melik-Adamyan W, Fita I, et al. The structures and electronic
451 configuration of compound I intermediates of *Helicobacter pylori* and *Penicillium vitale* catalases determined by X-ray
452 crystallography and QM/MM density functional theory calculations. *J Am Chem Soc*. 2007 Apr 11;129(14):4193-4205.
- 453 30. Mongkolsuk S, Whangsuk W, Vattanaviboon P, Loprasert S, Fuangthong M. A *Xanthomonas* alkyl hydroperoxide
454 reductase subunit C (*ahpC*) mutant showed an altered peroxide stress response and complex regulation of the
455 compensatory response of peroxide detoxification enzymes. *J Bacteriol*. 2000 Dec;182(23):6845-6849.
- 456 31. Jung IL, Kim IG. Transcription of *ahpC*, *katG*, and *katE* genes in *Escherichia coli* is regulated by polyamines:
457 polyamine-deficient mutant sensitive to H₂O₂-induced oxidative damage. *Biochem Biophys Res Commun*. 2003 Feb
458 21;301(4):915-922.

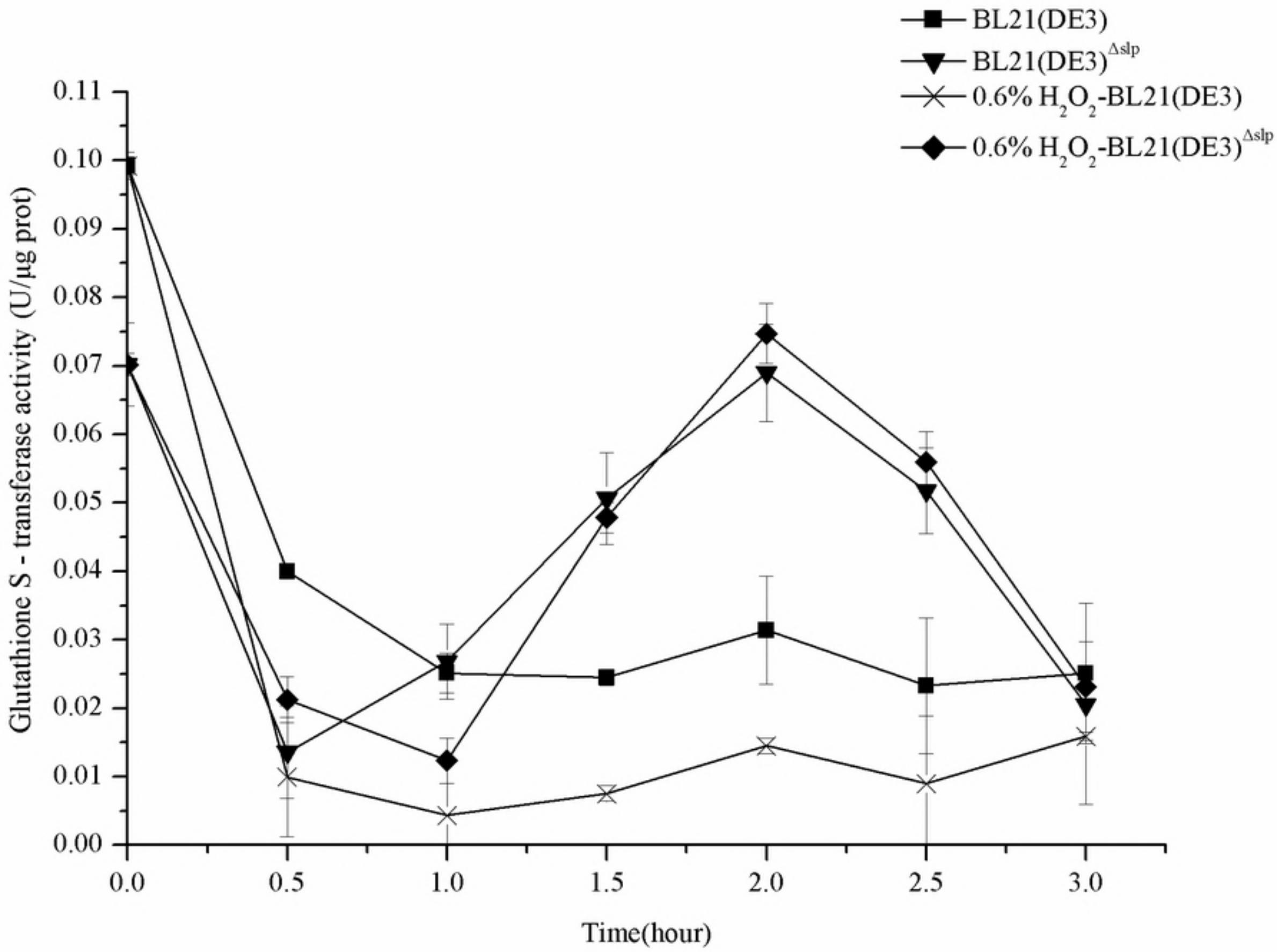
- 459 32. Hryckowian AJ, Welch RA. RpoS contributes to phagocyte oxidase-mediated stress resistance during urinary tract
- 460 infection by *Escherichia coli* CFT073. MBio. 2013 Feb 12;4(1):e00023-13.

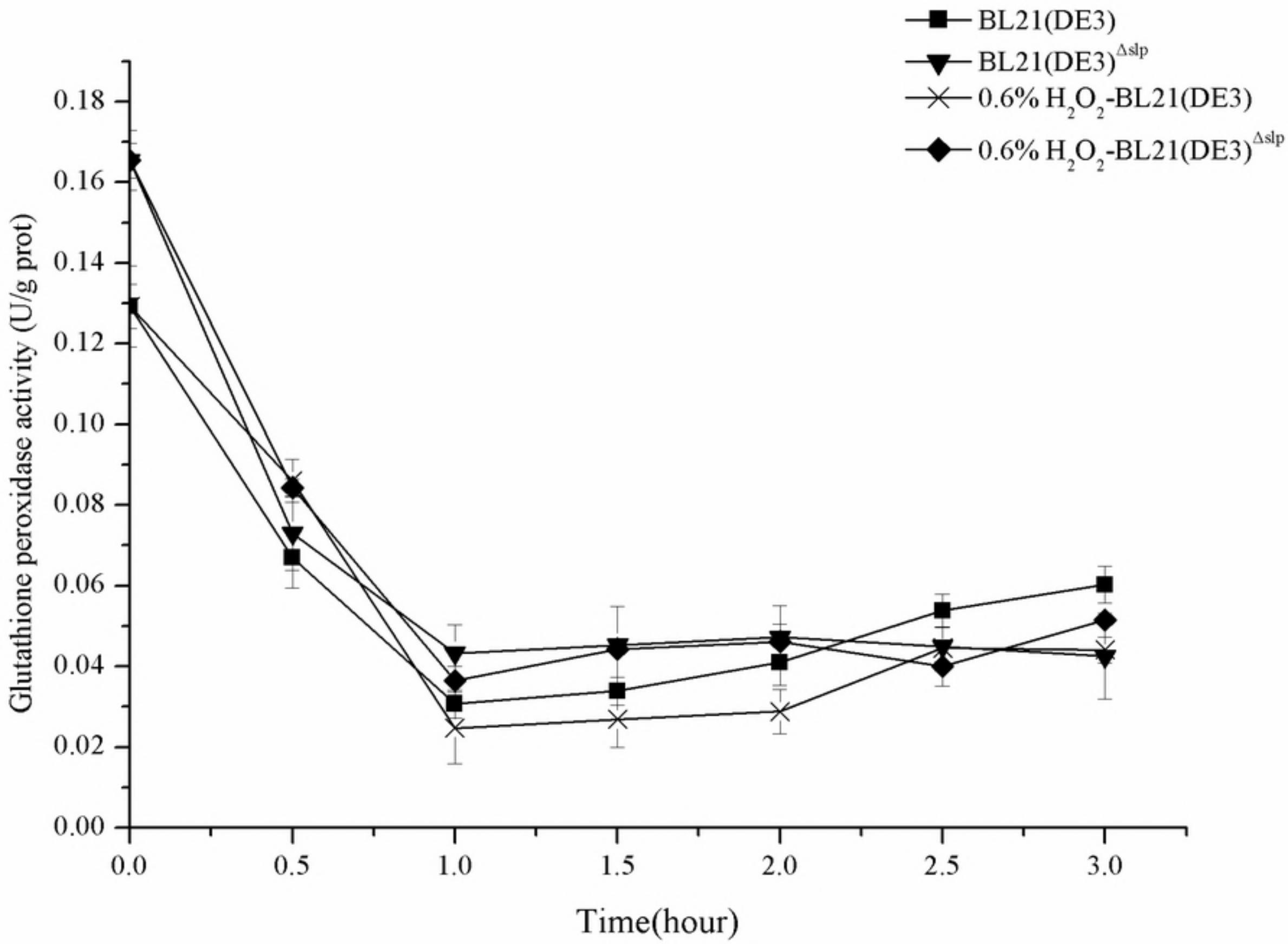









a


bioRxiv preprint doi: <https://doi.org/10.1101/386003>; this version posted August 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


b**c****d**

