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Abstract

Brain atrophy as measured from structural MR images, is one of the primary imaging
biomarkers used to track neurodegenerative disease progression. In diseases such as
frontotemporal dementia or Alzheimer’s disease, atrophy can be observed in key brain
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structures years before any clinical symptoms are present. Atrophy is most commonly
captured as volume change of key structures and the shape changes of these structures
are typically not analysed despite being potentially more sensitive than summary volume
statistics over the entire structure.

In this paper we propose a spatiotemporal analysis pipeline based Large Diffeomorphic
Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI
scans. We applied our framework to a cohort of individuals with genetic variants of
frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFTI)
study. Our method, take full advantage of the LDDMM framework, and relies on the
creation of a population specific average spatiotemporal trajectory of a relevant brain
structure of interest, the thalamus in our case. The residuals from each patient data
to the average spatiotemporal trajectory are then clustered and studied to assess when
presymptomatic mutation carriers differ from healthy control subjects.

We found statistical differences in shape in the anterior region of the thalamus at
least five years before the mutation carrier subjects develop any clinical symptoms. This
region of the thalamus has been shown to be predominantly connected to the frontal
lobe, consistent with the pattern of cortical atrophy seen in the disease.

Keywords: Shape, thalamus, spatiotemporal geodesic regression, parallel transport

1 1. Introduction

2 Neurodegenerative diseases such as frontotemporal dementia (FTD) present with pro-
s gressive symptoms of behavioural and cognitive dysfunction. These changes follow many
+ years of a clinically silent phase in the disease, where abnormal protein pathology slowly
s accumulates within the brain, leading to neurodegenerative processes that ultimately
s result in loss of function. Reliably identifying presymptomatic changes in individuals
7 could lead to intervention with therapies that could slow, or even halt, the onset of these
s diseases. However, finding a cohort of presymptomatic individuals guaranteed to develop
o a form of dementia can be challenging. One common strategy is to investigate people
10 who are at-risk for rare autosomal dominant forms of dementia. Half of these individuals
u are carriers of the mutation, allowing for comparisons between carriers and non-carriers
2 at various stages within the disease process. In the case of genetic FTD, roughly one
13 third of all cases are caused by autosomal dominant mutations, primarily in three genes:
1 chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule
15 associated protein tau (MAPT) [I]. As the name would suggest, in all mutations, there
16 is early involvement of both the frontal and temporal lobes, as well as the insula where
17 differences can be observed as early as ten years before estimated age of expected symp-
18 tom onset, as shown in Rohrer et al. [2]. However, there are additional structures, such as
19 the thalamus, which also appear to be implicated to some degree early on in the disease
20 process [3]. In many forms of FTD, clinical presentations suggest a left /right asymmetry
a1 in terms of which hemisphere is more affected, and this is often supported by evidence
» of increased atrophy within the affected hemisphere [4]. However, the affected side is
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23 not consistent across all cases, and in some cases, there is no evidence of an asymmetry.
2 As this asymmetry is likely to start early in the disease process, it must be taken into
s account when looking to detect early changes with any sensitivity.
2% One biomarker that shows promise during the presymptomatic phase is measurement
2 of atrophy derived from structural magnetic resonance imaging (MRI) [B] [2 [6] Volumes
s summarizing change within a region of interest (ROI) tend to be more sensitive to early
2 change than voxelwise approaches, but they do not provide any spatial localisation as
»  to where the atrophy is occurring within the ROI. Conversely, voxelwise analysis can
a1 provide better spatial localisation, but the mass univariate nature of the analysis requires
» correction for multiple comparisons to control for false positive findings, which often
13 results in reduced sensitivity. As loss of brain volume will imply a change in the shape of
s the structure, a third option is to perform the shape analysis over time for a structure of
s interest. This could provide more spatial information than a single summary measure of
s volume alone, but does not require the same level of multiple comparisons as a voxelwise
s analyses. Given the decades long nature of the disease process, it is not yet feasible
s to measure the complete time course within one individual. Therefore, the pattern
3 of atrophy over the course of the disease must be estimated through spatiotemporal
w0 regression models based on large populations of either cross-sectional data or through
s longitudinal data that covers a smaller segment (i.e. a few years) of the disease process
« within each individual.
a3 There have been numerous approaches to spatiotemporally model trajectories of age-
w ing and dementia. Some methods model this evolution using dense 4D deformation fields
s to measure change between timepoints. Lorenzi et al. [7] modelled the 4D deformation
« fields within a population to obtain subject-specific measurements of atrophy. An ex-
« tension of this work discriminated spatiotemporal patterns that could be attributed to
s natural ageing versus to those that were related to disease [8]. Other groups estab-
2 lish point correspondences between subjects on a surface representation, and then apply
so mixed effects models at those points [9, 10} [IT], providing fixed effects that represent the
s1  change across the overall population while allowing individual longitudinal trajectories
»» as random effects. Using more complex representations of surfaces, Durrleman et al. [12]
53 proposed a spatiotemporal regression approach to estimate continuous subject-specific
sa trajectories of longitudinal data.
55 In our previous work [I3], we defined the shape of the structure of interest as its 3D
ss outline that is rotation and translation invariant. Differences between shapes were quan-
sv  tified using the Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
s work [I4], 15 [I6], producing a smooth and invertible continuum between all possible
5o shapes within the population. The smooth representation of these deformations also
s acted as low-pass filter, reducing the effects of irregularities and errors in the surface
&1 boundaries. Overall, our approach consisted of three main steps. First, using all avail-
& able data, we compute an average shape spatiotemporal trajectory. Second, for every
63 individual shape we evaluate its distance from the mean trajectory. Last, after spatially
s normalising all the subject-specific distances to the mean, we run a statistical analysis
e on the subject-specific residuals to assess when a shape starts diverging from normality.
6 This previous work presented a global spatio-temporal analysis, on one side of the brain,
ez without considering a potential asymmetry of the disease. In this paper, we build on
e the aforementioned framework, which we altered in two main ways. First, we take into
e consideration the potential asymmetry of FTD by considering the left and right struc-
3
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7 tures using a common shape representation. Second, we modified our feature extraction
7 method using a clustering approach to ensure we can attribute the recovered differences
7 to substructure of the shape under study, and made a novel local analysis, based on
7 cluster of deformations, taking better advantage of the LDDMM framework.

7 We apply this approach to data from the Genetic FTD Initiative (GENFI), an in-
75 ternational study of autosomal dominant forms of FTD aimed at collecting multimodal
% neuroimaging, alongside other biomarkers with the objective of obtaining an improved
7 understanding of the changes that are occurring during the presymptomatic phase of
s the disease. In general, the expected age of onset of clinical symptoms is estimated by
7 using the average age of onset in the family of the subject, allowing to align the different
s subjects onto a single time axis. We applied our method to a subcortical structure, the
a1 thalamus, which has been shown to present volumetric differences before onset in Rohrer
22 et al. [2]. We used the expected age to onset to characterise the time progression. In the
s next section, we will present the different steps of the proposed framework before then
s further describing the experiment and associated results.

s 2. Method

We indicate with {(S;,%;)}ico;...n—13 @ set of N shapes associated with a corre-
sponding time point ¢;. With analogy to classical random-effect-modelling approaches,
we assume that each shape is a random realisation of a common underlying spatiotem-
poral process ¢(t):

Si = pi(¢(Bo, t;)) + €,

86 where By is a common reference frame, and p; is a subject-specific "residual” defor-
sz  mation accounting for individual deviation from the mean shape. We characterise this
s residual through the diffeomorphism linking the shape S; to the corresponding sample of
s the common spatiotemporal trajectory at time point ¢;. We also assume that ¢; is Gaus-
o sian randomly distributed noise. In order to identify group-wise differences between the
o1 given populations, we rely on the analysis of the subjects-specific residuals deformations
92  Pj.

03 This is a challenging problem, since all p; are defined at different time points along
o the common spatiotemporal trajectory, and therefore cannot be directly compared in a
os common anatomical framework. Moreover, the optimisation of the functional for the
o simultaneous estimation of the group-wise trajectory and random effects is not trivial,
o and would ultimately result in expensive and thus impractical numerical schemes. For
9 these reasons, we propose a serial optimisation of the problem by introducing an efficient
9 numerical framework composed of three steps illustrated in Figure

100 (i) First, we assume that the residuals deformations p; are fixed, and we estimate the
1 common trajectory ¢(t). (ii) Second, given the modelled trajectory ¢, we estimate the
w2 residuals deformations p; through non-linear registration between the trajectory point
w0 ¢(Bo,t;) and S;. (iii) Third, we spatially normalise the residual deformations in the
s common initial reference space By using parallel transport.

105 The proposed framework relies on the mathematical setting of the Large Diffeomor-
s phic Deformation Metric Mapping (LDDMM) framework and the varifold representation
w7 of shapes (section . This choice allows a mathematically consistent definition of all
s steps (section , namely: (i) the spatiotemporal regression, (ii) the p; deformations
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Figure 1: Overview of the proposed regression approach. The temporal axis indicates the time variable
attached to the data. The residual deformations (step 2) p; parametrised by (¢(Bo,t;); a*(0)) computed
from the common trajectory (step 1) ¢ parametrised by (Bp;3°), can not be analysed because they are
defined on different spaces i.e. ¢(Bo,t;). They have to be transported to a common space (i.e. Bp)
along the geodesic ¢, so they can be analysed (step 3).
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wm 2.1. Large diffeomorphic deformation metric mapping and varifold representation

12 The LDDMM framework [I4, [I5] is a mathematical and algorithmic framework based
u3  on flows of diffeomorphisms, which allows comparing anatomical shapes as well as per-
s forming statistics. The framework used in this paper is a discrete parametrisation of
us  the LDDMM framework, as proposed by Durrleman et al. [I7], based on a finite set of
us Np, control points overlaid on the 3D space enclosing the initial shape By. The control
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w7 points number and position are independent from the shapes being deformed as they do
us  not require to be aligned with the shapes’ vertices. They are used to define a potentially
ne infinite-dimensional basis for the parametrization of the deformation. Momentum vec-
10 tors are associated with the control points and are used as weights for the decomposition
1w of a given deformations onto this basis.
Deformation maps ¢, : R? — R? are built by integrating time-varying vector fields
(ve)o<t<1, such that each v(-,t) belongs to a Reproducing Kernel Hilbert Space (RKHS)
V with kernel Ky . We use a Gaussian kernel for all control points x, y:

a2
kv (z,y) = exp (I)\2y|> Id,

with Id the identity matrix, and A a scale factor which determines the size of the kernel
and therefore the degree of smoothness of the deformations. We define ¢, (x) = ¢y, (z, 1)
as the diffeomorphism induced by v(z,t) where ¢,(x,1) is the unique solution of the
differential equation:

d
iv (z,t) = v(¢o(x,1),1),Vt € [0,1] with ¢, (z,0) = z,Va € R3.
Velocity fields v(+, t) are controlled via an energy functional fol lo(-,t)||3 dt, where | - ||y

is a Hilbert norm defined on vector fields of R?, which is used as a regularity term in the
matching functional to penalises non-regularity. In the LDDMM framework, matching
two shapes S and T requires estimating an optimal deformation map ¢ : R? — R3 such
that ¢(S) is close to T'. This is achieved by optimising

d([u(S)], [T])? +7/0 [, D1 dt,

122 where 7 balances the regularity of ¢, against the spatial proximity d, a similarity measure
13 between the varifold representation of ¢, (S) and T noted respectively [p,(S)] and [T].
In a discrete setting, the vector fields v(x,t) corresponding to optimal maps are
expressed as combinations of spline parametrised fields that involve the reproducing
kernel Ky of the space V:

NBO

v(w,t) = Z Ky (z,2p(t))ap(t),
p=1

e where x,(t) = ¢, (xp,t) are the trajectories of control points x,. The control points are
s regularly spaced on a 3D grid overlaid on the space that contains the mesh of the subject
6 S. The control point spacing is defined by the size of the kernel Ky,. The time-dependent
127 vectors ap(t) € R® are referred to as momentum vectors attached to x,. The full de-
s formation can be encoded by the set of initial momentum vectors a(0) = {a,(0)}1<p<n
s located at the points {zp}1<p<n. This allows to analyse the set of deformation maps
10 from a given template to the observed shapes by performing statistics on the initial
11 momentum vectors defined on control points located around the template shape. The
12 process of generating back any deformation maps from initial conditions (z,(0), a,(0)),
133 i.e. integrating the geodesic equations, is called geodesic shooting or exponential map
1w and is noted exp, (o) (a(0)). .
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135 As previously stated, varifolds are used to represent shapes [I8]. They are non-
136 oriented versions of the representation with currents [19], which are used to efficiently
17 model a large range of shapes. To represent a shape S as a varifold, the shape space is
s embedded into the dual space of a Reproducing Kernel Hilbert Space (RKHS) W, noted
1o W*, and encoded using a set of non-oriented unit normals attached on each vertices of
o the shape. This kernel-based embedding allows to define a distance between different
1w embedded shapes. Varifolds are robust to varying topologies, do not require point to
w2 point correspondences, and embed the shapes in a vector space, which facilitate the
3 interpretation of results. The varifold representation of a discretised mesh composed by
u M triangles S is noted [S] and writes: [S](w) = Z,]C\/[:l wleg)T(er)? /|| (ek)|| with w a
s vector field in W, ¢ the centre of the triangle k, and 7(ci) the tangent of the surface S
s at point cg.

w  2.2. Residual extraction framework

148 Due to the asymmetry of the disease, the proposed framework has been designed so
u that it is unbiased to the affected side. For each subject, rather than considering the
10 left or right structure, we build a mean shape by averaging both sides. First, we flip all
151 input T1w brain images, in order to have all structures, left and right, on the same side,
152 right. Second, we affinely align the T1w brain images (the original and the flipped once)
153 to a subject-specific mid-space [20] before rigidly refining the alignment of the structure
s of interest, that has been segmented using the method proposed by Cardoso et al. [21].
155 Third, we extract the meshes of the left (flipped, L;) and right structures (R;), and

156 compute the mean shape, by estimating the diffeomorphisms Xq(f) for each subject 7, such

aras X = argmind (e, (L)) = [S13- + Do, (R)] = [S:113-) + f; o 6)l2 dt with
158 9; the mean shape of subject i and W* the space of varifolds. The obtained subject-
150 specific average shape of the structure of interest is noted S; and is associated with a
10 temporal information ¢;, the number of years to the expected onset (EYO) of the subject
161 2.
162 The computation of the spatiotemporal regression [12] requires an initial shape By =
6 {Tptp=1,.., Np, 88 reference. To avoid any bias towards a subject selected as the initial
14 shape, we estimate the initial shape from the 10 subjects who are the furthest away from
165 expected symptom onset, so located in time around -40 years before EYO. We estimate
166 the centroid of those 10 subjects using the diffeomorphic Iterative Centroid method [22],
17 which estimate a centre of a given population in a reasonable computation time [23].
The spatiotemporal regression of the set of shapes {(Si,?;)}ieqo;...n—1} is imple-
mented in the Deformetrica software [24] 25@ The EYO values are discretised into
T time points. Starting from By at time ¢ = 0, a geodesic moving through the positions
¢(Bo,t), Vt € {0;...;T} is computed by minimising the discrepancy between the model
at time t (i.e. ¢(Bg,t)) and the observed shapes S;:

E(¢u) =) dl[¢o(Bo, t:)), [Si) +Allvlf5e,

s with v the time-varying velocity vector field that belongs to the RKHS V' determined
o by the Gaussian Kernel K. The initial momentum vectors 3°(0) = {8(0)}1<p< s, i

2http://www.deformetrica.org/
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o defined on the control point grid overlay on the baseline shape By and fully encodes the
m geodesic regression parametrised by {By;8°(0)}.

172 We then compute the residuals diffeomorphic deformations p; between every obser-
s vation and the spatio-temporal average shape by estimating a geodesic between ¢(Bo, t;)
wand {S;, ¢;}. This yields a set of trajectories parametrised by {¢(Bo, t;); @' (0) }iefo;...N—1}
s that encodes the deformations p; from the spatio-temporal regression to all subjects, with
s at(0) the initial momentum vectors, where the varying parameter is the step of the defor-
177 mation. This should not be confused with the time we used until now which corresponds
s to EYO and time varying deformation of the main spatio-temporal trajectory.

In order to be able to compare this set of momenta, we gather them in the same
Fuclidean space. This is achieved by transporting all momenta into the initial space
of By = ¢(By,0), using a parallel transport method based on Jacobi fields as intro-
duced in [26]. Parallel transporting a vector along a curve (the computed trajectory
parametrised by (By; ﬁO(O))) consists in translating it across the tangent spaces along
the curve by preserving its parallelism, according to a given connection. The Levi-Civita
connection is used in the LDDMM framework. The vector is parallel transported along
the curve if the connection is null for all steps along the curve [27]. We use Jacobi
field instead of the Schild’s Ladder method [28], to avoid the cumulative errors and the
excessive computation time due to the computation of Riemannian Logarithms in the
LDDMM framework, required for the Schild’s Ladder. The cumulative errors would have
differed from subject to subject and thus introduce a bias. Indeed, their distances from
the baseline shape vary, as they all are at different points along the temporal axis. The
Jacobi field, used to transport a vector a(0) from a time ¢ to the time to = 0 along the
geodesic 7, is defined as:

To0(0,~8%(0),04(0) = - exp ) (/T(~8°(1) + cen(0))).

ws  The transported initial momentum vector o;(0) is noted 6;(0). After parallel transport-
180 ing all residuals, all initial momentum vectors are defined in By.

w1 2.3. Feature extraction for statistical analysis

182 Each transported initial momentum vectors 8;(0) is of size 3 x Np,, where Np, is the
183 number of control point used to parametrise the geodesics.
184 Jacobian determinants are commonly used to study shrinkage or growth of the surface,

185 and are a geometric measure derived from the full deformation tensor. In this work we
186 propose an analysis framework where we decouple the amplitude and the orientation
17 of the deformation. Such approach still analyse growth and shrinkage, but also other
188 geometric aspects, such as rotation and torsion, not captured by the surface Jacobian.
189 To analyse direct measures from deformation and to avoid losing statistical power
1w from doing a large number of comparisons, we propose an original clustering by grouping
w1 the parametrisation (By; 8°(0)) of the spatio-temporal regression ¢ into clusters.

102 To do so, we defined a similarity measure derived from the positions of the con-
13 trol points z,, the pairwise angles and the magnitudes of the initial momentum vectors
e {Bp(0)}1<p<ny, attached to the control point z,. The difference between two control
s points x, and x4 Vp,q € {1;...; Np, } is defined by the euclidean distance, the angle be-
16 tween two vectors is defined by the cosine. The similarity between p and ¢ is defined
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w by 5(p,q) = —5||lzp — z4l|> + 2(cos(By, B7) + 1) — [ BglI* — 1B7]]]. Parameters are chosen
s to balance between vector similarity and control point positions and depend on the dis-
109 tance in mm between two points. The distance is determined by the kernel Ky so that
20 clusters encompass control points and their momentum vectors within the same area and
21 look alike. To estimate those clusters, we used a spectral clustering method [29] using
20 the discretisation approach presented in [30] for initialisation, as it has been shown to
203 be more stable than other approaches such as k-means for initialisation. 3000 different
24 initialisations are generated and we select the best one in term of inertia for spectral
25 clustering. We chose 10 clusters as thought this would be a good balance between re-
26 ducing the number of multiple comparisons while maintaining some spatial specificity in
27 the analyses and equitable clusters. A mean vector is then computed from the parallel
28 transported residuals defined on the control points of the cluster. This is done for each
20 cluster and for each subject. We then obtain N vectors {v; ;} per cluster k, and 10
a0 vectors per subject .

211 For the statistical analysis, we will use two uncorrelated descriptors for the vectors
n2 {v;1}: the amplitude and the orientation. The orientation of the vectors {v; } is origi-
23 nally represented by 3 angles, one per axis. The angles are then projected via a Principal
zs Component Analysis on the first eigenvector, therefore the orientation of {v; ;} consid-
a5 ered here is represented by one continuous scalar, leading to the set of responsive variable

216 {Oi,k}-

a7 3. Data and application

218 As previously mentioned, we applied the proposed framework to the GENFI study
219 and used the thalamus as structure of interest.

20 Dataset description

221 All participants included in this study come from the data freeze 1 of the GENFI
22 cohort described in detail in [2]. Initial results from this cohort [2] show volumetric
23 differences in the thalamus at least 5 years before expected age of onset with an effect in
24 all genetic subtypes, and so we chose this well-defined subcortical structure for further
»s analysis. In this paper we used 211 participants, 113 mutation carriers (MAPT=26,
2 GRN=53, C9ORF=34) and 98 non-carriers. All participants have a T1-weighted (T1w)
»r  MRI available and an associated expected years to symptom onset (EYO). The EYO is
28 calculated as the difference between the age of the participant at the time of the T1w
29 acquisition and the mean age at onset of affected family members, EYO range from -40
20 years to +20 years. Table [1f shows the demographics of the study participants used in
2 this analysis.

2 Application to the thalamus

233 T1w brain images of all subjects were affinely group-wise registered [20], before apply-
24 ing a rigid registration focused solely around the structure of interest. We then extracted
235 the meshes corresponding to the thalamus, including around 2, 300 vertices. This resulted
236 in 211 thalamus meshes, representing the mean left and the right shape. Each were asso-
237 ciated with the EYO of the corresponding subject as well as mutation status: non-carrier
28 and mutation carrier (MC). For the spatiotemporal regression, we used 30 time points,
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Table 1: Data demographics, in absolute values.

Non-carriers Mutation carriers
n=98 n=113
Males 59 56
Asymptomatic 98 76

Age in years (med (IQR)) 50.2 (36.6 - 62.1)  52.7 (41.1 - 62.7)
Years from expected onset:

< —20 years 30 21
—20 < years < —10 16 21
—10 < years <0 23 22
0 < years 29 49

239 which corresponds approximatively to one time point every two years. The space of de-
20 formations V' was defined using a 11mm width kernel, approximately half of the length
2a  of the thalamus, which leads to a set of 288 control points. For the space of varifolds we
22 used a bmm width kernel.

243 Similarly to the volumetric analysis performed by Rohrer et al. [2], we used a mixed
24 effect model to study the shape difference between the non-carriers and mutation carriers.
2 Amplitude {|v; |} and orientation {O; 1} were used as responsive variables and the fixed
xs  effects predictors of interest were mutation carrier status, EYO, interaction between
27 mutation carrier status and EYO, sex and the site in which the subject has been scanned.
28 A random intercept for family allows values of the marker to be correlated between family
29 members.

250 We performed a Wald test for every model, assessing the difference between the
;1 mutation carrier group and the non-carrier group, and the evolution of differences across
2 time. For each analysis with statistically significant differences between both groups,
253 further Wald tests were conducted every 5 years as in the volumetric analysis [2] to
4 assess how long before the expected onset we could detect changes between mutation
5 carriers and controls.

»6 4. Results

257 Results for the amplitude and the orientation of the residual momentum vectors
s are presented Table We found significant differences, after correction for multiple
59 comparisons, in cluster 1 and cluster 4, for both tests; T1:differences between MC and
x0 controls and T2: differences over time between MC and controls. Those differences
21 are significant after Bonferroni correction for multiple comparisons (20 tests). Cluster
%2 1 shows differences in the orientation, and no differences in the amplitude, whereas
%3 cluster 4 shows significant differences for those 2 tests in amplitude, and no differences
4 in orientation. Those 2 clusters are thus selected for the next wald test step. Wald
x5 tests were conducted every 5 years between 20 years before the expected onset and
w6 10 years after the expected onset to limit the number of tests, since we don’t expect
27 changes before -20 EYO, and results are shown in Figure [2] the p-values and confidence
xs intervals are corrected for multiple comparison across time using Bonferroni correction.
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Table 2: p-values with the corresponding x? value, resulting from the Wald tests testing the mutation
carrier (MC) differences (test T1), and the evolution of those differences along time (test T2), for the
amplitude of the initial momentum vector and its orientation, for the clusters showing at least one
significant test. Bold p-values: < 0.05, and starred (*) p-values indicate the corrected threshold for
multiple comparisons: < 2.5e-3.

C1 C2 C4 C6 c7

T | PF 0.48 p=0.51 p=1.5e-3 (*) p=0.08 p=0.76

c Xopmo = 143 xGo =135 X =1294 x%_5=510 x§_,=055

< o | PF 0.24 p=0.26 p=1.5e-3 (*) p=0.04 p=0.68
Xoo =137 X% =128 X%, =1008 %, =420 x%_, =017

. p=2e-4 (¥) p=0.12 p =055 p=0.63 p=0.08

g T2 1660 y2_, =417 y2_, =033 2 =092 y%_, =506

kS Xdr=2 Xdf=2 Xdf=2 Xdf=2 Xdf=2

3 To p2:9e-4 *) p2:0.05 p2: 0.62 p2: 0.34 p2:0.04
Xi_g =11.01 X% ;=385 X% ;=025 %, =091 %, =429

%9 The orientation of the cluster 1 deformation shows significant differences between the
20 mutation carriers and controls, 5 years before EYO (p = 0.03), the uncorrected for this
an cluster is p = 2e -3, to keep a head to head comparison with the previous studies on
a2 this dataset [2 3] in which the p-values at -5 EYO was significant but higher than
a3 here. The uncorrected p-values show significant differences at 10 years before EYO,
oa - with p=0.048 for the orientation of cluster 1. The amplitude between the two groups
a5 doesn’t differ significantly for the cluster 4 before EYO for corrected p-values, and differs
zs b years before onset without correction (p=0.05). Figure [3| shows the initial momentum
ar - vectors of clusters 1 and 4, and the amount of displacement due to the deformations
a3 corresponding to those clusters 1 and 4, where each cluster has its own colour scale, since
29 the maximum displacement for cluster 4 is about 3 mm, against 9 mm for cluster 1.
20 Deformations affect more the anterior part of the thalamus.

281 Since the number of clusters used (10), is an arbitrary choice, we tried to reproduce the
22 results with different number of clusters. We performed the analysis for 2, 4, 6, 8, 10, 12,
23 14 and 16 clusters. For 6 clusters and 16 clusters, there were differences in orientation for
2 one of the clusters which deformation corresponds to the one of cluster 1 (see Figure [3)).
s From 8 clusters to 14 clusters, we found a cluster with strong differences 5 years before
s the expected onset (p < 0.01) in orientation whose deformation corresponds again to
27 the one of the cluster 1 (p = 0.003). The change in orientation for the deformation
s recovered within cluster 1 (see Figure [3)) appears to be stable for different clusterings
280 of the deformation parametrisation of the global spatiotemporal trajectory. All results
200 regarding the different number of clusters can be found in supplementary material (doi.
21 org/10.5281/zenodo.1324234)).

22 5. Discussion and conclusion

203 We applied a novel method of statistical shape analysis to a cohort of individuals with
24 genetic FTD in order to localise any presymptomatic differences present in the shape of
25 the thalamus. From the analysis, we conclude that differences are observed five years
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Figure 2: cluster 1 (orientation component) and cluster 4 (amplitude component) estimates in mutation
carriers and controls, by estimated time from expected symptoms onset (EYO). p-values and confident
interval are Bonferroni corrected. * : p < 0.05, ** : p < 0.01, *** : p < 0.001
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25 before expected symptom onset. While volumetric analysis [2] and our initial shape
27 analysis [13] also found these changes, this method showed significance that survived
208 correction for multiple comparisons. The change in shape is primarily attributable to
200 differences in orientation of the deformation rather than changes in amplitude of the
s0 deformation, which would imply a simple scaling effect of the region. This result con-
sn firms our previous shape analysis in this cohort [I3] that was performed at a global
s2  level through a kernel principal component analysis. The first mode of variation which
w03 detected significant shape differences around the same point with respect to EYO did
sa not capture volume differences but only changes in the orientation of the deformation.
s The results of those studies seem to indicate that shape changes occur before volume
s changes. As many regions of the thalamus contain a mixture of grey and white matter,
a7 these shape changes may reflect subtle shifts in the ratio between these two tissue types
w8 in the areas affected.

300 The regions of the thalamus most affected in the analysis are anterior, overlapping
s with the anterior nuclei group. The main connections of these nuclei are to the pre-
su  frontal cortices, an area universally affected in all genetic forms of FTD. To illustrate
sz this purpose, we used the Oxford thalamic connectivity atlas, a thalamic atlas based on
ns  its anatomical connectivity to the cerebral cortex [31], and displayed at Figure the atlas
s next to the clusters 1 and 4. Whilst differences are seen in cortical involvement within
as  the different genetic forms of FTD [32], it may well be that this joint analysis of GRN,
a5 C9orf72 and MAPT mutations is only identifying thalamic regions jointly affected.

317 Another interesting cortical region involved in FTD, could also be analysed with this
ais method: the insula, which is located in the lateral sulci and is connected to the limbic
a9 system, and to the thalamus. It would be interesting to analyse the insula and thalamus
30 together, and the insula only, so we could investigate if shape changes in both structures
a1 are linked.
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Figure 3: Deformation obtained by the momentum vectors (displayed here and coloured by amplitude)
of Cluster 1 and Cluster 4. The colour map is in millimetres and indicates the displacement due to the
corresponding deformation (blue meshes). The scale for Cluster 1 range from 0 mm to 9 mm, and from
0 mm to 2.8 mm for Cluster 4.
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32 The small numbers in each group precluded any analysis of the individual genetic
23 types, but it will be important to investigate future data freezes from the GENFI study
324 with larger numbers, particularly the C9orf72 group who have been shown to have early
25 thalamic involvement [32].

326 Future studies should also evaluate the initial momentum vectors of individual geodesic
37 evolution of shapes from each subject, through longitudinal data. Those individual evo-
s lutions will provide information on the differences of evolutions of shape between the
0 mutation carriers and the controls.
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Figure 4: Thalamic connectivity atlas, and deformations clusters 1 and 4. The orientation of cluster 1
leads to significant differences between MC and controls 5 years before EYO.
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