
Spatiotemporal analysis for detection of pre-symptomatic
shape changes in neurodegenerative diseases: applied to

GENFI study

Claire Curya,b,c, Stanley Durrlemane, David Casha,b, Marco Lorenzia,f, Jennifer M
Nicholasb,g, Martina Bocchettab, John C. van Swietenh, Barbara Borronii, Daniela
Galimbertij, Mario Masellisk, Maria Carmela Tartaglial, James B Rowem, Caroline
Graffn,o, Fabrizio Tagliavinip, Giovanni B. Frisoniq, Robert Laforce Jrr, Elizabeth
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Abstract

Brain atrophy as measured from structural MR images, is one of the primary imaging
biomarkers used to track neurodegenerative disease progression. In diseases such as
frontotemporal dementia or Alzheimer’s disease, atrophy can be observed in key brain

1List of consortium members in appendix.
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structures years before any clinical symptoms are present. Atrophy is most commonly
captured as volume change of key structures and the shape changes of these structures
are typically not analysed despite being potentially more sensitive than summary volume
statistics over the entire structure.

In this paper we propose a spatiotemporal analysis pipeline based Large Diffeomorphic
Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI
scans. We applied our framework to a cohort of individuals with genetic variants of
frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI)
study. Our method, take full advantage of the LDDMM framework, and relies on the
creation of a population specific average spatiotemporal trajectory of a relevant brain
structure of interest, the thalamus in our case. The residuals from each patient data
to the average spatiotemporal trajectory are then clustered and studied to assess when
presymptomatic mutation carriers differ from healthy control subjects.

We found statistical differences in shape in the anterior region of the thalamus at
least five years before the mutation carrier subjects develop any clinical symptoms. This
region of the thalamus has been shown to be predominantly connected to the frontal
lobe, consistent with the pattern of cortical atrophy seen in the disease.

Keywords: Shape, thalamus, spatiotemporal geodesic regression, parallel transport

1. Introduction1

Neurodegenerative diseases such as frontotemporal dementia (FTD) present with pro-2

gressive symptoms of behavioural and cognitive dysfunction. These changes follow many3

years of a clinically silent phase in the disease, where abnormal protein pathology slowly4

accumulates within the brain, leading to neurodegenerative processes that ultimately5

result in loss of function. Reliably identifying presymptomatic changes in individuals6

could lead to intervention with therapies that could slow, or even halt, the onset of these7

diseases. However, finding a cohort of presymptomatic individuals guaranteed to develop8

a form of dementia can be challenging. One common strategy is to investigate people9

who are at-risk for rare autosomal dominant forms of dementia. Half of these individuals10

are carriers of the mutation, allowing for comparisons between carriers and non-carriers11

at various stages within the disease process. In the case of genetic FTD, roughly one12

third of all cases are caused by autosomal dominant mutations, primarily in three genes:13

chromosome 9 open reading frame 72 (C9orf72 ), progranulin (GRN ), and microtubule14

associated protein tau (MAPT ) [1]. As the name would suggest, in all mutations, there15

is early involvement of both the frontal and temporal lobes, as well as the insula where16

differences can be observed as early as ten years before estimated age of expected symp-17

tom onset, as shown in Rohrer et al. [2]. However, there are additional structures, such as18

the thalamus, which also appear to be implicated to some degree early on in the disease19

process [3]. In many forms of FTD, clinical presentations suggest a left/right asymmetry20

in terms of which hemisphere is more affected, and this is often supported by evidence21

of increased atrophy within the affected hemisphere [4]. However, the affected side is22
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not consistent across all cases, and in some cases, there is no evidence of an asymmetry.23

As this asymmetry is likely to start early in the disease process, it must be taken into24

account when looking to detect early changes with any sensitivity.25

One biomarker that shows promise during the presymptomatic phase is measurement26

of atrophy derived from structural magnetic resonance imaging (MRI) [5, 2, 6] Volumes27

summarizing change within a region of interest (ROI) tend to be more sensitive to early28

change than voxelwise approaches, but they do not provide any spatial localisation as29

to where the atrophy is occurring within the ROI. Conversely, voxelwise analysis can30

provide better spatial localisation, but the mass univariate nature of the analysis requires31

correction for multiple comparisons to control for false positive findings, which often32

results in reduced sensitivity. As loss of brain volume will imply a change in the shape of33

the structure, a third option is to perform the shape analysis over time for a structure of34

interest. This could provide more spatial information than a single summary measure of35

volume alone, but does not require the same level of multiple comparisons as a voxelwise36

analyses. Given the decades long nature of the disease process, it is not yet feasible37

to measure the complete time course within one individual. Therefore, the pattern38

of atrophy over the course of the disease must be estimated through spatiotemporal39

regression models based on large populations of either cross-sectional data or through40

longitudinal data that covers a smaller segment (i.e. a few years) of the disease process41

within each individual.42

There have been numerous approaches to spatiotemporally model trajectories of age-43

ing and dementia. Some methods model this evolution using dense 4D deformation fields44

to measure change between timepoints. Lorenzi et al. [7] modelled the 4D deformation45

fields within a population to obtain subject-specific measurements of atrophy. An ex-46

tension of this work discriminated spatiotemporal patterns that could be attributed to47

natural ageing versus to those that were related to disease [8]. Other groups estab-48

lish point correspondences between subjects on a surface representation, and then apply49

mixed effects models at those points [9, 10, 11], providing fixed effects that represent the50

change across the overall population while allowing individual longitudinal trajectories51

as random effects. Using more complex representations of surfaces, Durrleman et al. [12]52

proposed a spatiotemporal regression approach to estimate continuous subject-specific53

trajectories of longitudinal data.54

In our previous work [13], we defined the shape of the structure of interest as its 3D55

outline that is rotation and translation invariant. Differences between shapes were quan-56

tified using the Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-57

work [14, 15, 16], producing a smooth and invertible continuum between all possible58

shapes within the population. The smooth representation of these deformations also59

acted as low-pass filter, reducing the effects of irregularities and errors in the surface60

boundaries. Overall, our approach consisted of three main steps. First, using all avail-61

able data, we compute an average shape spatiotemporal trajectory. Second, for every62

individual shape we evaluate its distance from the mean trajectory. Last, after spatially63

normalising all the subject-specific distances to the mean, we run a statistical analysis64

on the subject-specific residuals to assess when a shape starts diverging from normality.65

This previous work presented a global spatio-temporal analysis, on one side of the brain,66

without considering a potential asymmetry of the disease. In this paper, we build on67

the aforementioned framework, which we altered in two main ways. First, we take into68

consideration the potential asymmetry of FTD by considering the left and right struc-69
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tures using a common shape representation. Second, we modified our feature extraction70

method using a clustering approach to ensure we can attribute the recovered differences71

to substructure of the shape under study, and made a novel local analysis, based on72

cluster of deformations, taking better advantage of the LDDMM framework.73

We apply this approach to data from the Genetic FTD Initiative (GENFI), an in-74

ternational study of autosomal dominant forms of FTD aimed at collecting multimodal75

neuroimaging, alongside other biomarkers with the objective of obtaining an improved76

understanding of the changes that are occurring during the presymptomatic phase of77

the disease. In general, the expected age of onset of clinical symptoms is estimated by78

using the average age of onset in the family of the subject, allowing to align the different79

subjects onto a single time axis. We applied our method to a subcortical structure, the80

thalamus, which has been shown to present volumetric differences before onset in Rohrer81

et al. [2]. We used the expected age to onset to characterise the time progression. In the82

next section, we will present the different steps of the proposed framework before then83

further describing the experiment and associated results.84

2. Method85

We indicate with {(Si, ti)}i∈{0;...;N−1} a set of N shapes associated with a corre-
sponding time point ti. With analogy to classical random-effect-modelling approaches,
we assume that each shape is a random realisation of a common underlying spatiotem-
poral process φ(t):

Si = ρi(φ(B0, ti)) + εi,

where B0 is a common reference frame, and ρi is a subject-specific ”residual” defor-86

mation accounting for individual deviation from the mean shape. We characterise this87

residual through the diffeomorphism linking the shape Si to the corresponding sample of88

the common spatiotemporal trajectory at time point ti. We also assume that εi is Gaus-89

sian randomly distributed noise. In order to identify group-wise differences between the90

given populations, we rely on the analysis of the subjects-specific residuals deformations91

ρi.92

This is a challenging problem, since all ρi are defined at different time points along93

the common spatiotemporal trajectory, and therefore cannot be directly compared in a94

common anatomical framework. Moreover, the optimisation of the functional for the95

simultaneous estimation of the group-wise trajectory and random effects is not trivial,96

and would ultimately result in expensive and thus impractical numerical schemes. For97

these reasons, we propose a serial optimisation of the problem by introducing an efficient98

numerical framework composed of three steps illustrated in Figure 1.99

(i) First, we assume that the residuals deformations ρi are fixed, and we estimate the100

common trajectory φ(t). (ii) Second, given the modelled trajectory φ, we estimate the101

residuals deformations ρi through non-linear registration between the trajectory point102

φ(B0, ti) and Si. (iii) Third, we spatially normalise the residual deformations in the103

common initial reference space B0 using parallel transport.104

The proposed framework relies on the mathematical setting of the Large Diffeomor-105

phic Deformation Metric Mapping (LDDMM) framework and the varifold representation106

of shapes (section 2.1). This choice allows a mathematically consistent definition of all107

steps (section 2.2), namely: (i) the spatiotemporal regression, (ii) the ρi deformations108
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Figure 1: Overview of the proposed regression approach. The temporal axis indicates the time variable
attached to the data. The residual deformations (step 2) ρi parametrised by (φ(B0, ti);α

i(0)) computed
from the common trajectory (step 1) φ parametrised by (B0;β0), can not be analysed because they are
defined on different spaces i.e. φ(B0, ti). They have to be transported to a common space (i.e. B0)
along the geodesic φ, so they can be analysed (step 3).

estimation, and (iii) the normalisation of the initial momentum of ρi through parallel109

transport.110

2.1. Large diffeomorphic deformation metric mapping and varifold representation111

The LDDMM framework [14, 15] is a mathematical and algorithmic framework based112

on flows of diffeomorphisms, which allows comparing anatomical shapes as well as per-113

forming statistics. The framework used in this paper is a discrete parametrisation of114

the LDDMM framework, as proposed by Durrleman et al. [17], based on a finite set of115

NB0
control points overlaid on the 3D space enclosing the initial shape B0. The control116
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points number and position are independent from the shapes being deformed as they do117

not require to be aligned with the shapes’ vertices. They are used to define a potentially118

infinite-dimensional basis for the parametrization of the deformation. Momentum vec-119

tors are associated with the control points and are used as weights for the decomposition120

of a given deformations onto this basis.121

Deformation maps ϕv : R3 → R3 are built by integrating time-varying vector fields
(vt)0≤t≤1, such that each v(·, t) belongs to a Reproducing Kernel Hilbert Space (RKHS)
V with kernel KV . We use a Gaussian kernel for all control points x, y:

kV (x, y) = exp

(
−|x− y|2

λ2

)
Id,

with Id the identity matrix, and λ a scale factor which determines the size of the kernel
and therefore the degree of smoothness of the deformations. We define ϕv(x) = φv(x, 1)
as the diffeomorphism induced by v(x, t) where φv(x, 1) is the unique solution of the
differential equation:

dφv
dt

(x, t) = v(φv(x, t), t),∀t ∈ [0, 1] with φv(x, 0) = x,∀x ∈ R3.

Velocity fields v(·, t) are controlled via an energy functional
∫ 1

0
‖v(·, t)‖2V dt, where ‖ · ‖V

is a Hilbert norm defined on vector fields of R3, which is used as a regularity term in the
matching functional to penalises non-regularity. In the LDDMM framework, matching
two shapes S and T requires estimating an optimal deformation map φ : R3 → R3 such
that φ(S) is close to T . This is achieved by optimising

d([ϕv(S)], [T ])2 + γ

∫ 1

0

‖v(·, t)‖2V dt,

where γ balances the regularity of φv against the spatial proximity d, a similarity measure122

between the varifold representation of ϕv(S) and T noted respectively [ϕv(S)] and [T ].123

In a discrete setting, the vector fields v(x, t) corresponding to optimal maps are
expressed as combinations of spline parametrised fields that involve the reproducing
kernel KV of the space V :

v(x, t) =

NB0∑
p=1

KV (x, xp(t))αp(t),

where xp(t) = φv(xp, t) are the trajectories of control points xp. The control points are124

regularly spaced on a 3D grid overlaid on the space that contains the mesh of the subject125

S. The control point spacing is defined by the size of the kernel KV . The time-dependent126

vectors αp(t) ∈ R3 are referred to as momentum vectors attached to xp. The full de-127

formation can be encoded by the set of initial momentum vectors α(0) = {αp(0)}1≤p≤n128

located at the points {xp}1≤p≤n. This allows to analyse the set of deformation maps129

from a given template to the observed shapes by performing statistics on the initial130

momentum vectors defined on control points located around the template shape. The131

process of generating back any deformation maps from initial conditions (xp(0), αp(0)),132

i.e. integrating the geodesic equations, is called geodesic shooting or exponential map133

and is noted expxp(0)(αp(0)).134
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As previously stated, varifolds are used to represent shapes [18]. They are non-135

oriented versions of the representation with currents [19], which are used to efficiently136

model a large range of shapes. To represent a shape S as a varifold, the shape space is137

embedded into the dual space of a Reproducing Kernel Hilbert Space (RKHS) W, noted138

W ∗, and encoded using a set of non-oriented unit normals attached on each vertices of139

the shape. This kernel-based embedding allows to define a distance between different140

embedded shapes. Varifolds are robust to varying topologies, do not require point to141

point correspondences, and embed the shapes in a vector space, which facilitate the142

interpretation of results. The varifold representation of a discretised mesh composed by143

M triangles S is noted [S] and writes: [S](ω) =
∑M
k=1 ω(ck)τ(ck)2/‖τ(ck)‖ with ω a144

vector field in W, ck the centre of the triangle k, and τ(ck) the tangent of the surface S145

at point ck.146

2.2. Residual extraction framework147

Due to the asymmetry of the disease, the proposed framework has been designed so148

that it is unbiased to the affected side. For each subject, rather than considering the149

left or right structure, we build a mean shape by averaging both sides. First, we flip all150

input T1w brain images, in order to have all structures, left and right, on the same side,151

right. Second, we affinely align the T1w brain images (the original and the flipped once)152

to a subject-specific mid-space [20] before rigidly refining the alignment of the structure153

of interest, that has been segmented using the method proposed by Cardoso et al. [21].154

Third, we extract the meshes of the left (flipped, Li) and right structures (Ri), and155

compute the mean shape, by estimating the diffeomorphisms χ
(i)
v for each subject i, such156

as χ
(i)
v = argmin1

2 (‖[χvi(Li)]− [Si]‖2W∗ + ‖[χvi(Ri)]− [Si]‖2W∗) + γ
∫ 1

0
‖vi(·, t)‖2V dt with157

Si the mean shape of subject i and W ∗ the space of varifolds. The obtained subject-158

specific average shape of the structure of interest is noted Si and is associated with a159

temporal information ti, the number of years to the expected onset (EYO) of the subject160

i.161

The computation of the spatiotemporal regression [12] requires an initial shape B0 =162

{xp}p=1,...,NB0
as reference. To avoid any bias towards a subject selected as the initial163

shape, we estimate the initial shape from the 10 subjects who are the furthest away from164

expected symptom onset, so located in time around -40 years before EYO. We estimate165

the centroid of those 10 subjects using the diffeomorphic Iterative Centroid method [22],166

which estimate a centre of a given population in a reasonable computation time [23].167

The spatiotemporal regression of the set of shapes {(Si, ti)}i∈{0;...;N−1} is imple-
mented in the Deformetrica software [24, 25]2. The EYO values are discretised into
T time points. Starting from B0 at time t = 0, a geodesic moving through the positions
φ(B0, t), ∀t ∈ {0; ...;T} is computed by minimising the discrepancy between the model
at time t (i.e. φ(B0, t)) and the observed shapes Si:

E(φv) =
∑
ti

d([φv(B0, ti)], [Si])
2 + γ‖v‖2V φ ,

with v the time-varying velocity vector field that belongs to the RKHS V determined168

by the Gaussian Kernel K. The initial momentum vectors β0(0) = {β0
p(0)}1≤p≤NB0

is169

2http://www.deformetrica.org/

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 6, 2018. ; https://doi.org/10.1101/385427doi: bioRxiv preprint 

https://doi.org/10.1101/385427
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined on the control point grid overlay on the baseline shape B0 and fully encodes the170

geodesic regression parametrised by {B0;β0(0)}.171

We then compute the residuals diffeomorphic deformations ρi between every obser-172

vation and the spatio-temporal average shape by estimating a geodesic between φ(B0, ti)173

and {Si, ti}. This yields a set of trajectories parametrised by {φ(B0, ti);α
i(0)}i∈{0;...;N−1}174

that encodes the deformations ρi from the spatio-temporal regression to all subjects, with175

αi(0) the initial momentum vectors, where the varying parameter is the step of the defor-176

mation. This should not be confused with the time we used until now which corresponds177

to EYO and time varying deformation of the main spatio-temporal trajectory.178

In order to be able to compare this set of momenta, we gather them in the same
Euclidean space. This is achieved by transporting all momenta into the initial space
of B0 = φ(B0, 0), using a parallel transport method based on Jacobi fields as intro-
duced in [26]. Parallel transporting a vector along a curve (the computed trajectory
parametrised by (B0;β0(0))) consists in translating it across the tangent spaces along
the curve by preserving its parallelism, according to a given connection. The Levi-Civita
connection is used in the LDDMM framework. The vector is parallel transported along
the curve if the connection is null for all steps along the curve [27]. We use Jacobi
field instead of the Schild’s Ladder method [28], to avoid the cumulative errors and the
excessive computation time due to the computation of Riemannian Logarithms in the
LDDMM framework, required for the Schild’s Ladder. The cumulative errors would have
differed from subject to subject and thus introduce a bias. Indeed, their distances from
the baseline shape vary, as they all are at different points along the temporal axis. The
Jacobi field, used to transport a vector αi(0) from a time t to the time t0 = 0 along the
geodesic γ, is defined as:

Jγ(t)(0,−β0(t),αi(0)) =
∂

∂ε
expγ(t)(1/T (−β0(t) + εαi(0))).

The transported initial momentum vector αi(0) is noted θi(0). After parallel transport-179

ing all residuals, all initial momentum vectors are defined in B0.180

2.3. Feature extraction for statistical analysis181

Each transported initial momentum vectors θi(0) is of size 3×NB0
, where NB0

is the182

number of control point used to parametrise the geodesics.183

Jacobian determinants are commonly used to study shrinkage or growth of the surface,184

and are a geometric measure derived from the full deformation tensor. In this work we185

propose an analysis framework where we decouple the amplitude and the orientation186

of the deformation. Such approach still analyse growth and shrinkage, but also other187

geometric aspects, such as rotation and torsion, not captured by the surface Jacobian.188

To analyse direct measures from deformation and to avoid losing statistical power189

from doing a large number of comparisons, we propose an original clustering by grouping190

the parametrisation (B0;β0(0)) of the spatio-temporal regression φ into clusters.191

To do so, we defined a similarity measure derived from the positions of the con-192

trol points xp, the pairwise angles and the magnitudes of the initial momentum vectors193

{β0
p(0)}1≤p≤NB0

attached to the control point xp. The difference between two control194

points xp and xq ∀p, q ∈ {1; ...;NB0
} is defined by the euclidean distance, the angle be-195

tween two vectors is defined by the cosine. The similarity between p and q is defined196
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by s(p, q) = −5‖xp − xq‖2 + 2(cos(β0
p , β

0
q ) + 1)− |‖β0

p‖2 − ‖β0
q‖|. Parameters are chosen197

to balance between vector similarity and control point positions and depend on the dis-198

tance in mm between two points. The distance is determined by the kernel KV so that199

clusters encompass control points and their momentum vectors within the same area and200

look alike. To estimate those clusters, we used a spectral clustering method [29] using201

the discretisation approach presented in [30] for initialisation, as it has been shown to202

be more stable than other approaches such as k-means for initialisation. 3000 different203

initialisations are generated and we select the best one in term of inertia for spectral204

clustering. We chose 10 clusters as thought this would be a good balance between re-205

ducing the number of multiple comparisons while maintaining some spatial specificity in206

the analyses and equitable clusters. A mean vector is then computed from the parallel207

transported residuals defined on the control points of the cluster. This is done for each208

cluster and for each subject. We then obtain N vectors {νi,k} per cluster k, and 10209

vectors per subject i.210

For the statistical analysis, we will use two uncorrelated descriptors for the vectors211

{νi,k}: the amplitude and the orientation. The orientation of the vectors {νi,k} is origi-212

nally represented by 3 angles, one per axis. The angles are then projected via a Principal213

Component Analysis on the first eigenvector, therefore the orientation of {νi,k} consid-214

ered here is represented by one continuous scalar, leading to the set of responsive variable215

{Oi,k}.216

3. Data and application217

As previously mentioned, we applied the proposed framework to the GENFI study218

and used the thalamus as structure of interest.219

Dataset description220

All participants included in this study come from the data freeze 1 of the GENFI221

cohort described in detail in [2]. Initial results from this cohort [2] show volumetric222

differences in the thalamus at least 5 years before expected age of onset with an effect in223

all genetic subtypes, and so we chose this well-defined subcortical structure for further224

analysis. In this paper we used 211 participants, 113 mutation carriers (MAPT=26,225

GRN=53, C9ORF=34) and 98 non-carriers. All participants have a T1-weighted (T1w)226

MRI available and an associated expected years to symptom onset (EYO). The EYO is227

calculated as the difference between the age of the participant at the time of the T1w228

acquisition and the mean age at onset of affected family members, EYO range from -40229

years to +20 years. Table 1 shows the demographics of the study participants used in230

this analysis.231

Application to the thalamus232

T1w brain images of all subjects were affinely group-wise registered [20], before apply-233

ing a rigid registration focused solely around the structure of interest. We then extracted234

the meshes corresponding to the thalamus, including around 2, 300 vertices. This resulted235

in 211 thalamus meshes, representing the mean left and the right shape. Each were asso-236

ciated with the EYO of the corresponding subject as well as mutation status: non-carrier237

and mutation carrier (MC). For the spatiotemporal regression, we used 30 time points,238
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Table 1: Data demographics, in absolute values.

Non-carriers Mutation carriers
n=98 n=113

Males 59 56
Asymptomatic 98 76
Age in years (med (IQR)) 50.2 (36.6 - 62.1) 52.7 (41.1 - 62.7)
Years from expected onset:
≤ −20 years 30 21
−20 ≤ years ≤ −10 16 21
−10 ≤ years < 0 23 22
0 ≤ years 29 49

which corresponds approximatively to one time point every two years. The space of de-239

formations V was defined using a 11mm width kernel, approximately half of the length240

of the thalamus, which leads to a set of 288 control points. For the space of varifolds we241

used a 5mm width kernel.242

Similarly to the volumetric analysis performed by Rohrer et al. [2], we used a mixed243

effect model to study the shape difference between the non-carriers and mutation carriers.244

Amplitude {|νi,k|} and orientation {Oi,k} were used as responsive variables and the fixed245

effects predictors of interest were mutation carrier status, EYO, interaction between246

mutation carrier status and EYO, sex and the site in which the subject has been scanned.247

A random intercept for family allows values of the marker to be correlated between family248

members.249

We performed a Wald test for every model, assessing the difference between the250

mutation carrier group and the non-carrier group, and the evolution of differences across251

time. For each analysis with statistically significant differences between both groups,252

further Wald tests were conducted every 5 years as in the volumetric analysis [2] to253

assess how long before the expected onset we could detect changes between mutation254

carriers and controls.255

4. Results256

Results for the amplitude and the orientation of the residual momentum vectors257

are presented Table 2. We found significant differences, after correction for multiple258

comparisons, in cluster 1 and cluster 4, for both tests; T1:differences between MC and259

controls and T2: differences over time between MC and controls. Those differences260

are significant after Bonferroni correction for multiple comparisons (20 tests). Cluster261

1 shows differences in the orientation, and no differences in the amplitude, whereas262

cluster 4 shows significant differences for those 2 tests in amplitude, and no differences263

in orientation. Those 2 clusters are thus selected for the next wald test step. Wald264

tests were conducted every 5 years between 20 years before the expected onset and265

10 years after the expected onset to limit the number of tests, since we don’t expect266

changes before -20 EYO, and results are shown in Figure 2, the p-values and confidence267

intervals are corrected for multiple comparison across time using Bonferroni correction.268
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Table 2: p-values with the corresponding χ2 value, resulting from the Wald tests testing the mutation
carrier (MC) differences (test T1), and the evolution of those differences along time (test T2), for the
amplitude of the initial momentum vector and its orientation, for the clusters showing at least one
significant test. Bold p-values: ≤ 0.05, and starred (*) p-values indicate the corrected threshold for
multiple comparisons: ≤ 2.5e-3.

C1 C2 C4 C6 C7

A
m

p
l. T1

p = 0.48 p = 0.51 p =1.5e-3 (*) p = 0.08 p = 0.76
χ2
df=2 = 1.43 χ2

df=2 = 1.35 χ2
df=2 = 12.94 χ2

df=2 = 5.10 χ2
df=2 = 0.55

T2
p = 0.24 p = 0.26 p =1.5e-3 (*) p =0.04 p = 0.68
χ2
df=1 = 1.37 χ2

df=1 = 1.28 χ2
df=1 = 10.08 χ2

df=1 = 4.20 χ2
df=1 = 0.17

O
ri

en
t. T1

p =2e-4 (*) p = 0.12 p = 0.85 p = 0.63 p = 0.08
χ2
df=2 = 16.60 χ2

df=2 = 4.17 χ2
df=2 = 0.33 χ2

df=2 = 0.92 χ2
df=2 = 5.06

T2
p =9e-4 (*) p =0.05 p = 0.62 p = 0.34 p =0.04
χ2
df=1 = 11.01 χ2

df=1 = 3.85 χ2
df=1 = 0.25 χ2

df=1 = 0.91 χ2
df=1 = 4.29

The orientation of the cluster 1 deformation shows significant differences between the269

mutation carriers and controls, 5 years before EYO (p = 0.03), the uncorrected for this270

cluster is p = 2e -3, to keep a head to head comparison with the previous studies on271

this dataset [2, 13] in which the p-values at -5 EYO was significant but higher than272

here. The uncorrected p-values show significant differences at 10 years before EYO,273

with p=0.048 for the orientation of cluster 1. The amplitude between the two groups274

doesn’t differ significantly for the cluster 4 before EYO for corrected p-values, and differs275

5 years before onset without correction (p=0.05). Figure 3 shows the initial momentum276

vectors of clusters 1 and 4, and the amount of displacement due to the deformations277

corresponding to those clusters 1 and 4, where each cluster has its own colour scale, since278

the maximum displacement for cluster 4 is about 3 mm, against 9 mm for cluster 1.279

Deformations affect more the anterior part of the thalamus.280

Since the number of clusters used (10), is an arbitrary choice, we tried to reproduce the281

results with different number of clusters. We performed the analysis for 2, 4, 6, 8, 10, 12,282

14 and 16 clusters. For 6 clusters and 16 clusters, there were differences in orientation for283

one of the clusters which deformation corresponds to the one of cluster 1 (see Figure 3).284

From 8 clusters to 14 clusters, we found a cluster with strong differences 5 years before285

the expected onset (p < 0.01) in orientation whose deformation corresponds again to286

the one of the cluster 1 (p = 0.003). The change in orientation for the deformation287

recovered within cluster 1 (see Figure 3) appears to be stable for different clusterings288

of the deformation parametrisation of the global spatiotemporal trajectory. All results289

regarding the different number of clusters can be found in supplementary material (doi.290

org/10.5281/zenodo.1324234).291

5. Discussion and conclusion292

We applied a novel method of statistical shape analysis to a cohort of individuals with293

genetic FTD in order to localise any presymptomatic differences present in the shape of294

the thalamus. From the analysis, we conclude that differences are observed five years295
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Figure 2: cluster 1 (orientation component) and cluster 4 (amplitude component) estimates in mutation
carriers and controls, by estimated time from expected symptoms onset (EYO). p-values and confident
interval are Bonferroni corrected. * : p < 0.05, ** : p < 0.01, *** : p < 0.001

before expected symptom onset. While volumetric analysis [2] and our initial shape296

analysis [13] also found these changes, this method showed significance that survived297

correction for multiple comparisons. The change in shape is primarily attributable to298

differences in orientation of the deformation rather than changes in amplitude of the299

deformation, which would imply a simple scaling effect of the region. This result con-300

firms our previous shape analysis in this cohort [13] that was performed at a global301

level through a kernel principal component analysis. The first mode of variation which302

detected significant shape differences around the same point with respect to EYO did303

not capture volume differences but only changes in the orientation of the deformation.304

The results of those studies seem to indicate that shape changes occur before volume305

changes. As many regions of the thalamus contain a mixture of grey and white matter,306

these shape changes may reflect subtle shifts in the ratio between these two tissue types307

in the areas affected.308

The regions of the thalamus most affected in the analysis are anterior, overlapping309

with the anterior nuclei group. The main connections of these nuclei are to the pre-310

frontal cortices, an area universally affected in all genetic forms of FTD. To illustrate311

this purpose, we used the Oxford thalamic connectivity atlas, a thalamic atlas based on312

its anatomical connectivity to the cerebral cortex [31], and displayed at Figure 4 the atlas313

next to the clusters 1 and 4. Whilst differences are seen in cortical involvement within314

the different genetic forms of FTD [32], it may well be that this joint analysis of GRN,315

C9orf72 and MAPT mutations is only identifying thalamic regions jointly affected.316

Another interesting cortical region involved in FTD, could also be analysed with this317

method: the insula, which is located in the lateral sulci and is connected to the limbic318

system, and to the thalamus. It would be interesting to analyse the insula and thalamus319

together, and the insula only, so we could investigate if shape changes in both structures320

are linked.321
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Figure 3: Deformation obtained by the momentum vectors (displayed here and coloured by amplitude)
of Cluster 1 and Cluster 4. The colour map is in millimetres and indicates the displacement due to the
corresponding deformation (blue meshes). The scale for Cluster 1 range from 0 mm to 9 mm, and from
0 mm to 2.8 mm for Cluster 4.

The small numbers in each group precluded any analysis of the individual genetic322

types, but it will be important to investigate future data freezes from the GENFI study323

with larger numbers, particularly the C9orf72 group who have been shown to have early324

thalamic involvement [32].325

Future studies should also evaluate the initial momentum vectors of individual geodesic326

evolution of shapes from each subject, through longitudinal data. Those individual evo-327

lutions will provide information on the differences of evolutions of shape between the328

mutation carriers and the controls.329
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