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Abstract

Background Bacteria typically have more structured populations than higher eukaryotes, but this
difference is surprising given high recombination rates, enormous population sizes and effective
geographical dispersal in many bacterial species.

Results We estimated the recombination scaled effective population size N,r in 21 bacterial species
and find that it does not correlate with synonymous nucleotide diversity as would be expected under
neutral models of evolution. Only two species have estimates substantially over 100, consistent with
approximate panmixia, namely Helicobacter pylori and Vibrio parahaemolyticus. Both species are far
from demographic equilibrium, with diversity predicted to increase more than 30 fold in V.
parahaemolyticus if the current value of N,r were maintained, to values much higher than found in
any species. We propose that panmixia is unstable in bacteria, and that persistent environmental
species are likely to evolve barriers to genetic exchange, which act to prevent a continuous increase in
diversity by enhancing genetic drift.

Conclusions Our results highlight the dynamic nature of bacterial population structures and imply

that overall diversity levels found within a species are poor indicators of its size.

Keywords

Panmixia, bacterial population structure, effective population size, recombination, genetic diversity

Background

Bacteria are paragons of adaptability and make up more biomass than all organisms other than plants
combined [1]. Many bacterial species have enormous population sizes, disperse effectively around the
globe [2-5] and exhibit high rates of within-species homologous recombination [6]. Recombination
progressively breaks down non-random associations between markers (linkage disequilibrium), so
that in large populations, where pairs of individuals distantly related, linkage equilibrium is expected
between all pairs of genomic sites. However, in most species for which data is available, there is

substantial genome-wide linkage disequilibrium, indicating structuring of variation [7]. Here we
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propose a resolution of this paradox, namely that large bacterial populations accumulate diversity

progressively until that diversity acts as an effective barrier to genetic exchange between lineages.

We examine the population structure of 21 bacterial species and find that only the Asian population of
Vibrio parahaemolyticus is close to genome-wide linkage equilibrium. We find that this population
has undergone a recent expansion. If the current population size was maintained over evolutionary
timescales, it would lead to a greater than 30 fold increase in diversity, to levels higher than found in
any well characterized bacterial species. We propose that other environmental species with large
census population sizes, for example Vibrio cholerae or Klebsiella pneumoniae, may have been
through a similar stage before accumulating diversity and that this diversity acted to generate barriers
to recombination, either directly or via selective pressure to reduce recombination rates between

genetically divergent lineages.

Specifically, we use pairwise genetic distances between strains calculated from core genome
sequences to estimate the recombination scaled effective population size parameter N,7, where N, is
the effective population size and r is the recombination rate per site per generation, an approach
briefly introduced by Cui et al [8]. Here, we test the method using simulated genomic datasets and
find that it provides accurate estimates in constant size populations for values of the scaled
recombination rate R (see below) of 5 or more, and responds to changes in population size or structure
far more quickly than estimates of N, based on nucleotide diversity. We apply the method to real
genomic datasets from 21 species and find that some common species, such as Escherichia coli, have
strikingly low estimates of N,r, implying that recombination is inefficient in distributing diversity
across the species, while for others the fit of model to data is poor, highlighting deviations from the
assumption of a freely recombining population. Only datasets from V. parahaemolyticus and
Helicobacter pylori give N,r estimates greater than 100. The former has had a recent increase in
population size, whereas the latter experienced repeated bottlenecks associated with geographical

spread of its human host, implying that neither population is close to demographic equilibrium.
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Inference approach

Population genetics is a century-old discipline that provides a powerful set of theoretical and
statistical inference tools with which to interpret patterns of genetic variation between closely related
organisms. Central to the theory is the concept of a population, which in outbreeding eukaryotes is a
set of organisms that share a common gene pool. The simplest models assume panmixia which means
random mating of all individuals within a single closed population [9]. In most animals and plants
mating is structured by geography, however even low levels of migration between locations, of the
order of one individual per generation, can prevent differences from accumulating between local
populations, making random mating a reasonable first approximation for many outbreeding species.
Under neutral theory [10], the expected level of genetic diversity 7 depends on the per generation
mutation rate y and the effective population size N,, which is the number of individuals contributing

to the gene pool in each generation [11].

Outbreeding eukaryotes receive genetic material from the gene pool when they are born and
contribute to it when they reproduce. Individuals are more similar to immediate relatives than they are
to other members of the population, but the proportion of the genome shared by descent from
particular ancestors decays rapidly with each successive generation, declining from 1/2 for full
siblings to 1/8 for first cousins and 1/32 for second cousins. In small random samples from
populations with more than a few hundred individuals, shared recent ancestry is rare and can be

neglected for many types of analysis.

Bacteria reproduce by binary fission and only receive material from the gene pool or contribute to it
via homologous or non-homologous recombination [12]. Many cell divisions can take place between
consecutive recombination events, and typically recombination only affects a small fragment of the
genome. These properties mean that the concept of a gene pool or a population is less straightforward
to define than for outbreeding organisms. It is still possible to estimate the effective population size

N, from the average nucleotide diversity 7, based on the standard assumptions of population genetic

4
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97  theory, but the assumptions are both less reasonable and harder to test for bacteria than for

98  outbreeding eukaryotes, in which population boundaries can be delineated empirically using well

99  established methods [13]. For example, nucleotide diversity in a species like E. coli can be estimated
100  for clonal lineages, phylogroups, species or for the Escherichia genus as a whole. These choices lead
101 to very different values for = and hence for N, and it is not obvious a priori which is most meaningful.
102 All methods lead to estimates of effective population size that are many orders of magnitude smaller
103 than the census number of bacteria [14].
104
105  Here, we take a different approach which is to estimate a scaled version of the effective population
106  size, N,r, where 7 is the per generation rate at which a given site recombines. Note in particular that
107  this parameter r is the product of the per initiation site recombination rate p and mean tract length §
108  used in many bacterial recombination models [15, 16]. High values of N,r indicate that the population
109  structure is similar to that of outbreeding eukaryotes. Informally, in eukaryotic population each
110  individual is the product of a separate meiosis and therefore genetically distinct. N, is the number of
111 genetically distinct individuals that contribute in each generation, which is typically in the thousands
112 or millions. N, is designed to measure an analogous quantity in bacteria, namely the number of
113 genetically distinct organisms that contribute to the future bacterial gene pool. To this end, time is
114  rescaled; N, measures the rate of genetic drift per bacterial generation, while N,r measures the
115  genetic drift in proportion to the time it takes for strains to become distinct from their ancestors by
116  importing DNA by homologous recombination.
117
118  The recombination rate of V. parahaemolyticus is r =1.7 x 10 per site per year [17]. After T years of

T

119  evolution, the expected proportion of recombined genome is €7, so that it takes around 4,000 years
120 on average for half of the genome to recombine. Half of this time is approximately equivalent to a

121 eukaryotic generation in the sense that two strains that shared a common ancestor 2,000 years ago will

122 be about as related as siblings. This represents a very different time scale from that assumed based on
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123 bacterial generations. For example, V. parahaemolyticus is capable of replicating in less than ten
124 minutes in appropriate conditions [18].

125

126 ~ We estimate N,r using the pairwise genetic distances between strains, based on a number of

127  simplifying assumptions which are likely to hold true in freely recombining bacterial populations but
128  may break down in species where recombination rates are low or genetic exchange is structured by
129  geography or lineage. Specifically, the calculations assume that recombination introduces many more
130  substitutions than mutation, happens at the same rate throughout the genome and that each

131  recombination event introduces unrelated DNA from the population into the imported stretch. If
132 unrelated strains differ on average at d, elateq NUCleotides throughout the alignment, then the

133 expected number of SNPs distinguishing strains with a common ancestor at time T in the past is
134 d = dunrelatea (1 —€727).

135

136  To use these times to estimate the effective population size, we assume that the genealogy of clonal
137  relationships is generated by a coalescent model with a constant population size N, [19, 20]. This
138  model generates expectations for the times in the past at which common ancestors of strains in a
139  sample existed. Specifically, for a sample of n strains, there are n — 1 coalescent nodes. The age of
140  the most recent node corresponds to the common ancestor of the two most closely related strains in
141 the sample, while the (n — 1)™ node corresponds to the common ancestor of all the strains in the
142 sample.

143

144 Coalescent theory implies that the expected time in the past at which the m™ most ancient coalescent

1 1

145  eventoccurs is T, = 2N, (; - Z) . These times can be converted into expected genetic distances d,,

146  using the formula in the previous paragraph. We use the UPGMA algorithm to obtainn — 1
147  coalescent distances from the n(n — 1) /2 pairwise genetic distances between strains and find the
148  values of N,r and 7i (effective sample size, see below) that gives the best fit between observed and

149  expected distances for the n — 1 coalescent nodes.
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150

151  Note that for bacteria with high recombination rate, the genome is likely to have been scrambled up
152 sufficiently that strains will have inherited little or no DNA by direct descent from the common

153  ancestor of the entire sample. This means that the genetic distances expected for the oldest coalescent
154  events plateau at d, elated- In graphical representations, it is convenient to show the coalescent events
155  in chronological order with the oldest first, to aid comparisons between datasets with different sample
156  sizes.

157

158  The model assumes that the strains are randomly sampled from a homogeneous population at a single
159  time point, but pathogenic clones, epidemic outbreaks or strains from specific locations are often

160  overrepresented in real data, leading to oversampling of very closely related isolates, relative to their
161  frequency in the global population [7, 21]. Therefore, in addition to N,r we estimate a second

162  parameter 71 called the effective sample size, which is an estimate of the number of strains remaining
163 when over-sampled clonally related strains are removed. For simulated data where sampling is

164  random, 7i is correctly estimated to be very close to number of strains in the sample, so this additional
165  parameter makes little difference to the inference. For real data, estimating this additional parameter
166  often improves the qualitative model fit considerably.

167

168  Results

169  N,r can be estimated accurately for simulated data

170 Fig. 1 illustrates the effect of varying the recombination rate in genomes simulated using FastSimBac
171 [22]. The simulations include 200 genomes of length 2 Mb under a coalescent model with constant
172 effective population size N,. We fix the recombination tract length § = 1,000 and vary the rate of

173 initiation of recombination events p per 2N, generations (0.001 to 0.1), so that the scaled

174  recombination rate R = 2615 varies by two orders of magnitude, from 0.5 to 50. We also fix the rate of

e

175  initiation of recombination event p (0.01) and vary the recombination tract length § (100 to 10,000).

176 Both methods give similar results, for low scaled recombination rates, the phylogenetic tree is highly
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177  structured but becomes progressively bushier as R increases, and gives the impression of being a

178  nearly perfect star for R = 50. For high R, the estimated N, is close to R and the observed genetic
179  distances are well-fit by the model. For lower R, the fit is less good and the estimate of R provided by
180  N,r is also less accurate, although it remains of the right order. For these parameter values, the size
181 and shape of the phylogenetic tree are highly variable between runs, and the poorer fit reflects this
182  stochasticity as well as greater inaccuracy in the approximations made in converting between genetic
183  distances and coalescent times.

184

185  Further simulations of more complex scenarios (Supplementary Fig. 1) show that N,r estimates

186  reflect the current demography of the population more closely than estimates based on 7, which is
187  more influenced by past demography and migration to and from different demes. Supplementary Fig.
188  la shows the effect of a population expansion on estimates of N,7. At time t, a single population with
189  scaled recombination rate R = 5 splits into two. The blue population maintains the ancestral

190  population size while the red population becomes 10 times larger. At time t + 0.05 the red population
191 is only marginally more diverse than the blue one but its estimated value of N,r is 6 fold higher. The
192 fit of observed and expected genetic distances is poor for the red population, reflecting the inaccuracy
193  of the modelling assumption that there is a single unchanging population size. At time t + 0.2 the

194  estimate of N, is close to its true post-split value for both populations and the model fit is

195  substantially improved. Merging data from the two populations gives intermediate estimates of N,r.
196

197  Supplementary Fig. 1b shows the effect of a population size reduction. A single population with R =
198 50 splits into two, with the blue population remaining unchanged while the red population undergoes
199  a 10 fold reduction in size. As in Supplementary Fig. 1a, the model fit for the red population is poor
200  immediately after the split but quickly improves, with the estimate of N,r approaching the correct
201  value of 5, while the nucleotide diversity of the population reduces much more slowly. Supplementary
202  Fig. 1c shows the effect of symmetric migration between two populations with a 10 fold difference in

203  effective population size. Migration has a large effect on nucleotide diversity, especially for the
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204  smaller population, but has little effect on estimates of N,r. Overall, these results show that our

205  inference approach provides accurate estimates of the recombination-scaled effective population size
206  for simulated data and that deviations between observed and expected genetic distances can be

207  informative about deviations from model assumptions.

208

209  Application to V. parahaemolyticus genomes

210  We first applied the method to the 1,103 V. parahaemolyticus genomes described in Yang et al [17].
211  For this dataset, we obtained estimates of N, = 484 and i =471 (Fig. 2a). 71 is less than half of the
212 sample size principally because a large fraction of the isolates in the sample belong to pandemic

213 clonal lineages responsible for large numbers of human infections. Both lineages have most recent
214  common ancestors within the last few decades and are likely to represent a very small fraction of the
215  global population of V. parahaemolyticus. The genetic distances fit the model well except that the 33
216  oldest coalescent events, on the left hand side of the plot are larger than d ,;ejateq- The discrepancy is
217  largely due to population structure within the species, since the fit is better, although still not perfect
218  when analysis is restricted to the 944 isolates from the VppAsia population (Fig. 2a).

219

220  Asdescribed by Yang et al., the sample of V. parahaemolyticus is subdivided into 4 modestly

221  differentiated populations, likely due to historical barriers to migration between oceans [17]. For the
222 VppAsia population N,r was estimated to be 453 which is similar to that for the dataset as a whole,
223 while other populations have substantially smaller values. These differences are not simply due to a
224 larger sample size since estimates based on subsets of the VppAsia data are consistently greater than
225 200 (Fig. 2b). Sampling strategy does make some difference, since estimates are lower for a dataset
226 consisting only of clinical strains than of shellfish, fish or all non-clinical isolates (Fig. 2¢). This

227  difference presumably reflects variation in disease causing potential, which results in samples of
228  clinical isolates not representing the full diversity of clonal lineages within the species.

229

230  Application to multiple bacterial species
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231  We also applied the method to a survey of other bacteria for which large numbers of genomes are
232 publically available (Supplementary Fig. 2). V. cholerae has an estimate of N,r of 29, while Vibrio
233 wvulnificus has a value of 43. Although the sample sizes available are relatively limited, in contrast to
234  the Asian population of V. parahaemolyticus, the genetic distances do not show a clear plateau

235  corresponding to a single value for d ;reateq @nd While there are a continuous range of coalescent
236  distances, the overall fit between model and data is poor. Thus, although the other Vibrio species in
237  our dataset recombine frequently they are far from being panmictic.

238

239  H. pylori has the largest estimated value of N,r of all datasets we analysed. H. pylori is characterized
240 by extremely high rates of recombination during mixed infection of the human stomach, with 10% or
241  more of the genome recombined during a single infection [23] and linkage disequilibrium decreases
242 much more rapidly as a function of genetic distance than for all other species, including V.

243 parahaemolyticus (Fig. 3a). Although the tree is approximately star-like, the fit of the model is not
244 perfect, with no clear plateau for a single value of d ;,elated> due to the complex geographical

245  population structure of the species [24].

246

247  Amongst the other species, N, r varies from 1 for Chlamydia trachomatis to 88 for Salmonella

248  enterica. The overall fit of the model varies considerably between species (Supplementary Fig. 2) and
249  is typically worst for the oldest coalescent events, as examined in more detail above for V.

250  parahaemolyticus. Our estimated N, values are correlated with the linkage disequilibrium statistic r?
251  measured between distant makers at pairwise distance of 3 kb (Fig. 3b). However, N,r shows no

252 correlation with nucleotide diversity of synonymous sites 75y, (Fig. 3¢) and r? at pairwise distance of
253 3 kb also shows no correlation with 7y, (Fig. 3d).

254

255  Discussion

256  Structure of genetic diversity in 21 bacterial species

10
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257  In bacteria, adaptation to diverse environmental challenges should be most effective in species where
258  realized recombination rates are high enough to thoroughly mix up genetic variation (panmixia), since
259  this creates the largest possible pool of genotypes on which natural selection can act. High

260  recombination can also make it easier for researchers to detect the imprint of natural selection, a

261  feature exploited by Cui et al. 2015, 2018 [8, 25] in investigating coadaptation in Vibrio

262  parahaemolyticus. However, despite the utility of well-mixed gene pools, both to the species that have
263 it and to the researchers studying it, it appears to be rare in bacteria for which large numbers of

264  genomes are currently available.

265

266  The genetic structure of bacteria species depends on the interplay of many different processes,

267  including changes in population size over time, geographical and ecological subdivision and the

268  complex biology of genetic exchange which takes place via conjugation, transformation and

269  transduction. As a result no single parameter summarizes the effect of recombination in breaking
270  down linkage disequilibrium. Furthermore, available genomes rarely come close to being a random
271  sample of the bacterial population from which they are taken.

272

273  Here we have used two summary statistics of the effectiveness of recombination; a non-parametric
274  measure of long-range linkage disequilibrium, r* between markers 3 kb apart on the genome, and a
275  parametric approach estimating the composite population genetic parameter N,r. Informally, high
276  values of N,r implies that recombination has generated new clonal complexes quickly compared to
277  the rate at which genetic drift (proportional to 1/N,) removes them, with the result there are many
278  distinct clonal-complexes segregating in the population. In data simulated according to a coalescent
279  model with recombination of short tracts, estimated values of N,r are close to the true values for

280  N,r > 2.

281

282  In our survey of 21 species from which large numbers of genomes are available, our two summary

283  statistics are strongly but incompletely correlated (R? = 0.69, P < 0.01, Fig. 3b). According to both

11
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284  statistics, two species are clear outliers, with estimates of N, = 453 for the Asian population of V.
285  parahaemolyticus and 1,976 for the hpEurope population of H. pylori, and the estimated value of N.r
286  was lower than 100 in the other 19 species, which are therefore far from being panmictic.

287

288  Estimated N, or r? are uncorrelated with the nucleotide diversity of synonymous sites Tsyn (Fig. 3c,
289  Fig. 3d). For example, V. parahaemolyticus has similar diversity to V. cholerae and much lower

290  diversity than V. vulnificus, both of which have estimated N,r lower than 50. Furthermore, estimates
291  of N,r vary over a factor of 1,000, while 7 varies only by a factor of 10.

292

293  Mechanisms by which high diversity can create barriers to recombination

294  Since panmixia is possible within bacterial populations and should facilitate genetic adaptation to the
295  widest possible range of niches available to the species, it raises the question why it is not widespread.
296  There are several bacterial species in our sample which survive well in the environment, have

297  effective global dispersal, enormous census population sizes and high recombination rates, such as E.
298  coli, Campylobacter jejuni and K. pneumoniae. Species with these characteristics are the most

299  obvious candidates to be panmictic, whereas V. parahaemolyticus thrives only in warm brackish

300  waters and has oceanic gene pools, implying historical limits on its dispersal [17], and H. pylori only
301  survives in human stomachs and shows geographic differentiation associated with historical

302  migrations of its host [26].

303

304  Neutral population genetic models imply that, all else being equal, bacteria with higher census

305  population sizes should have higher N,r as well as higher nucleotide diversity, which is proportional
306  to 2N,u at equilibrium. However, across our 21 species, there is no correlation between the two

307  statistics. We propose that the absence of a correlation occurs because high diversity tends to

308  supresses recombination. There are a number of mechanisms by which this suppression can occur that
309  have been described in the literature and we do not attempt to reach a conclusion about which are in

310  fact most important in nature.

12
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311

312 For example, in Cui et al [25], we observe nascent boundaries to genetic exchange between lineages
313 of V. parahaemolyticus associated with differentiation into ecological types. This kind of genetic

314  differentiation is more likely to be common, and more likely to lead to barriers to exchange in more
315  diverse bacterial populations, which tend to have more diverse accessory genomes [27], and might
316  also have a larger number of distinct ecological niches. Such barriers can result in speciation [21, 28]
317  but can also lead to genetic structuring within a single species, such as host-specific gene pools found
318  in C. jejuni [29].

319

320  Another mechanism is changes in the pattern or rate of recombination. Recombination requires

321  homology between donor and recipient DNA to be recognized by the cellular machinery and, in

322 addition, most species have a mismatch repair system, which aborts the process if there are too many
323 differences. Therefore, as homology decreases, so will recombination [23, 28, 30, 31]. Mismatch

324  dependent recombination is likely to be the main reason why E. coli has an estimated value of N,r of
325  only 12, implying that recombination is ineffective in reassorting variation across the whole species
326 [32].

327

328  Finally, a genetic dependence of recombination rates on diversity might arise from effects of epistasis
329  in constraining realized recombination. Simulations of facultatively sexual organisms have shown
330  that selection on multiple interacting loci can lead to populations being dominated by small numbers
331 of clones, even in the presence of frequent recombination [33]. These simulations also show that a
332  phase transition from panmixia can take place due to a decrease in recombination rate or even an

333 increase in population size.

334

335  Vibrio parahaemolyticus and Helicobacter pylori are far from demographic equilibrium

336  If, as we propose, suppression of recombination due to high diversity is a general phenomenon in
337  Dbacteria, then the existence of populations with high N,r might seem paradoxical, because high N,

338  leads to high diversity which should suppress . However this argument only holds in populations

13


https://doi.org/10.1101/385336
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/385336; this version posted January 19, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

339  where N, has been high for long enough for diversity to accumulate and do not apply if high N, is a
340  recent phenomenon on an evolutionary timescale.

341

342  In fact, neither the Asian population of V. parahaemolyticus nor H. pylori are close to demographic
343 equilibrium. As proposed in Yang et al [17], the Asian population of V. parahaemolyticus, VppAsia,
344  has spread within the last few decades due to human activity but has an ancestral range restricted to
345  coastal waters from India to Japan. The other V. parahaemolyticus populations that we have sampled,
346  with different ancestral ranges, have smaller estimated N,r, perhaps because they have smaller or less
347  fecund ranges or experience greater competition or more frequent demographic bottlenecks.

348

349  Crucially, it seems that the ancestral population size of V. parahaemolyticus as a whole was smaller
350  than currently found in VppAsia and more similar to that in the other populations. First, the site

351  frequency spectrum of VppAsia, but not the other populations, is out of equilibrium and is

352  approximately consistent with a demographic scenario in which the effective population size

353  increased by a factor of ten 15,000 years ago (Supplementary Fig. 3). One possible scenario is that the
354  end of the last ice age around 11,000 years ago created a habitat that existed till the present and that
355  the population expansion implied by the site frequency spectrum is due to a demographic expansion at
356  the end of the ice age.

357

358  Secondly the level of synonymous nucleotide diversity in the population is 30-fold lower than

359  expected at demographic equilibrium. r/u, the number of recombinant sites for each mutant site, has
360  been estimated for the species to be around 313 [17]. Note that this parameter r/u is not the same as
361  the parameter r/m often used in the literature [6] because the former considers all recombined sites
362  whereas the latter considers only recombinant sites that are substituted. If nucleotide diversity reached

363  an equilibrium, consistent with the current value of N,r of VppAsia, this would predict a value of
364  2N,u = 2N,r (%) = 2X453 X (i) = 2.9. At equilibrium in a neutrally evolving population,

365  with sites evolving according to the Jukes-Cantor model, r is predicted to be equal to z X
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8Nep
366 (1 - e_T) = 0.73, and therefore most synonymous sites should differ between individuals. This is

367  far from the current value of 0.024 or indeed diversity levels in any well-characterised bacterial

368  species. Our simulation results show that estimates of N,r respond much more quickly to changes in
369  demography than i, implying that diversity levels would be likely to continue a slow but steady rise if
370  the effective population size remains constant (ignoring the changes in population structure caused by
371  human activity in recent decades).

372

373  The equivalent argument is more complex in H. pylori due to its geographic population structure but
374  levels of variation are clearly far from demographic equilibrium, as illustrated by the substantial

375  variation between populations that reflects bottlenecks associated with historical human migration
376  rather than current population sizes [26]. These results therefore suggest that if effective population
377  sizes remain continuously high in either species, then diversity would increase. We propose that in
378 this case, barriers to recombination would evolve, perhaps by one of the mechanisms described above.
379

380  Despite decades of study by population geneticists, the factors determining the amount of diversity
381  within species are still poorly understood, for example with much lower variation in nucleotide

382  variation 7 between species than is expected based on variation in census population size in many
383  domains of life [34, 35]. Our results suggest that patterns of genome variation in bacteria are likely to
384  be dynamic, with ecological and genomic differentiation, barriers to gene flow and demographic

385  factors interacting with each other in complex ways to alter both the level of genetic diversity within
386  the species and the way it is partitioned, to produce the wide variety of bacterial population structures
387  that are observed.

388

389  Material and methods

390  Genomic datasets used in analysis

391  Because our inference approach of N, hypothesizes that recombination drives the genetic variation

392  other than mutation, we firstly selected 27 bacterial species, in which r/m values (ratio of nucleotide
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393  changes resulted from recombination relative to point mutation) of them were greater than one based
394  on previous multi-locus sequence typing data estimation [6]. We then counted the number of

395  assembled genomes of them in NCBI database, and found that the genome numbers of 21 bacterial
396  species were greater than 100, which were used in further analysis, including Bacillus thuringiensis,
397  Burkholderia pseudomallei, Campylobacter jejuni, Chlamydia trachomatis, Enterococcus faecalis,
398  Escherichia coli, Flavobacterium psychrophilum, Haemophilus influenzae, Helicobacter pylori,

399  Klebsiella pneumoniae, Legionella pneumophila, Leptospira interrogans, Neisseria meningitidis,

400  Porphyromonas gingivalis, Pseudomonas syringae, Salmonella enterica, Streptococcus pneumoniae,
401  Streptococcus pyogenes, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus.

402

403  For species with more than 500 genomes in NCBI database, such as E. coli (>14,000 assembled

404  genomes), 500 genomes were randomly selected to reduce the amount of calculation. Each genome
405  was aligned against the reference genome of the corresponding species (Supplementary Table 1) using
406  MUMmer [36] to generate the whole genome alignments and identify SNPs in core genomes (regions
407  presented in all isolates) as previously described [8, 17]. Only genomes with genome-wide coverage >
408  70% (compared to reference genome) were used in further analysis. SNPs located in repetitive regions
409  were removed, and the filtered bi-allelic SNPs sets were used to construct the Neighbour-joining (NJ)
410  tree of each species. Strains located on the extremely long branches of the NJ tree and strains

411  belonged to clonal groups were manually removed, finally resulting in a dataset of 6,355 genomes
412 (56-1,103 genomes for each species). The accession numbers of genomes used (excluding H. pylori
413  and V. parahaemolyticus) were listed in Supplementary Table 1, and the whole-genome alignments

414  were available in the figshare data repository (https:/figshare.com/s/3t9d04a8229f30dd785b).

415

416  SNP calling, phylogeny reconstruction and LD decay calculation

417  The SNP dataset of 278 H. pylori (hpEurope population) and 1,103 V. parahaemolyticus genomes
418  were reused from previous studies [17, 37]. The SNPs of the left 4,974 genomes were recalled using
419  same pipelines as described above. Totally 17,875-462,214 bi-allelic SNPs were identified separately
420  for 21 bacterial species, which were used in further analysis, including Neighbour-joining tree
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421 construction, pairwise SNP distance calculation, LD r? value calculation, and N,r estimation as
422  previously described [8]. The Neighbour-joining trees were constructed using the software Treebest

423 (http://treesoft.sourceforge.net/treebest.shtml) based on concatenated SNPs. Haploview [38] was used

424 to calculate the LD r? and the maximum comparison distance was set to 30 kb.

425

426  Simulation

427  The software FastSimBac [22] was used to generate the simulated bacterial populations under

428  different hypothetical evolution scenarios, including a constant population with different scaled

429  recombination rate R (Fig. 1), and the changing populations with population expansion

430  (Supplementary Fig. 1a), reduction (Supplementary Fig. 1b) and migration (Supplementary Fig. 1c).
431  All the simulated genome length was set to 2 Mb, mutation rate was fixed at 0.01 (per site per 2N,
432  generations). The detailed parameters used in simulation were listed in Supplementary Table 2.

433

434  Recombination scaled effective population size estimation

435  For a freely mixing population in which recombination drives diversification, neutral theory predicts

436  that N,r is in proportion to genealogical coalescent rate, and the expected coalescent curves can be
437  estimated based on the formula d = dprejateq (1 — exp(—4N,r (% - %)) as mentioned in previous

438  work [8]. In the formula, d is the expected pairwise genetic divergence, dynrejateq 1S the median

439  pairwise SNP distance of a population, n is the number of individual strains and m is the index of the
440  ancestral node along the coalescent tree of n strains. Coalescent curves can be estimated using the

441  UPGMA algorithm based on the pairwise SNP distance. By fitting the expected and observed

442 coalescent curves with least square method to search for the optimal parameters, we found the optimal
443  values of 71 (effective sample size) and N,r that were used in further analysis. 7 was an estimate of
444 the number of strains remaining when over-sampled clonally related strains are removed.

445

446  Site frequency spectrum estimation

17
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447  The minor allele frequency (MAF) of each SNP locus in a SNP matrix was calculated and then the
448  frequency of SNP positions at each MAF level were counted to generate the site frequency spectrum
449  (SFS) for each dataset. To get a comparable result, the SFS showed in each Figure or panel was

450  calculated based on same sample size. In Supplementary Fig. 3a, the merged population was

451  generated by randomly selecting 100 genomes from each of Pop1 and Pop2. In Supplementary Fig.
452  3b, the same number of genomes as in the real genome dataset were simulated to show populations
453  with different evolution scenarios.

454
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560

561  Figure legends

562  Figure 1. Recombination scaled effective population size (N.r) estimation of simulated constant
563  populations under different scaled recombination rate. The panels indicated populations with

564  scaled recombination rate R of 0.5 (a), 1 (b), 5 (¢), 25 (d), 50 (e). From top to bottom, indicating the
565 NI trees, distribution of pairwise SNP distance between individuals and observed and expected

566  coalescence curves. The dashed line of middle and bottom panels indicated the median SNP distance
567  between individuals. The red points in the bottom panel indicated the expected distances between n —
568 1 coalescent nodes, the blue triangles indicated the observed distances estimated from pairwise SNP
569  distances using the UPGMA algorithm.

570

571  Figure 2. Recombination scaled effective population size (N,r) estimation of V.

572 parahaemolyticus. (a) N,r estimation of all the samples and four populations (VppAsia, VppX,

573  VppUSI and VppUS2) of V. parahaemolyticus. Layout and colors are the same as in Figure 1. (b)
574  N,r estimation of VppAsia population based on different sample sizes. 100-500 genomes were

575  randomly selected from total 944 VppAsia genomes, 10 repeats were performed for each sample size
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576  to create the boxplot. (c) N,r estimation of VppAsia population based on different types of samples.
577  Points and lines show observed and expected coalescence curves, respectively.

578

579  Figure 3. Correlation between N1, linkage disequilibrium (LD) statistic r> and nucleotide

580  diversity of synonymous sites. (a) LD decay of 21 bacterial species. The maximum comparison

581  distance was set to 30 kb. The vertical dashed line indicated the LD r* values at pairwise distance of 3
582 kb, which were used in panel b and d. Line colours indicated the estimated N,r values. (b).

583  Correlation between N,7 and LD r? values. (c) Correlation between N,r and nucleotide diversity of

584 synonymous sites Tgyy. (d) Correlation between LD r* values and nucleotide diversity of synonymous

585 sites gy, Point colours in panel b-d indicated the estimated N,r values.
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