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Abstract

In magnetic resonance imaging (MRI) studies of children brain development, structural brain
atlases usually serve as important references of pediatric population in which individual images
are spatially normalized into a common or standard stereotactic space. However, the existing
popular children brain atlases (e.g., National Institutes of Health pediatric atlases, NIH-PD
atlases) are made mostly based on MR images from Western populations, and are thus
insufficient to characterize the brains of Chinese children due to the neuroanatomical differences
that are relevant to genetic and environmental factors. By collecting high-quality T1- and T2-
weighted MR images from 328 typically developing Chinese children aged from 6 to 12 years
old, we created a set of age-appropriate Chinese pediatric (CHN-PD) atlases using an unbiased
template construction algorithm. The CHN-PD atlases included the head/brain templates, the
symmetric brain template, the gender-specific brain templates and the corresponding tissue
probability atlases. Moreover, the atlases contained multiple age-specific templates with a one-
year interval. A direct comparison of the CHN-PD and the NIH-PD atlases revealed remarkable
anatomical differences bilaterally in the lateral frontal and parietal regions and somatosensory
cortex. While applying the CHN-PD atlases to two independent Chinese pediatric datasets (N =
114 and N = 71, respectively), machine-learning regression approaches revealed higher
prediction accuracy on brain ages than the usage of NIH-PD atlases. These results suggest that
the CHN-PD brain atlases are necessary and important for future typical and atypical
developmental studies in Chinese pediatric population. Currently, the CHN-PD atlases have been

released on the NITRC website (https://www.nitrc.org/projects/chn-pd).
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Introduction

Modern advances in multi-modal magnetic resonance imaging (MRI) offer an unprecedented
opportunity to explore the structural and functional development of the pediatric brain in vivo. A
typical research framework is achieved by normalizing individual brain images into a common
or standard stereotactic space using a prior structural brain atlas as a reference (Ashburner and
Friston, 1999; Collins, et al., 1998; Smith, et al., 2004), such as the International Consortium for
Brain Mapping templates (ICBM152 templates) at the Montreal Neurological Institute (MNI)
space (Evans, et al., 2012; Lancaster, et al., 2007). Due to the rapid development of the brain,
structural brain atlases specific to young children have been generated for pediatric MRI
investigations (Fonov, et al., 2011; Luo, et al., 2014; Oishi, et al., 2018; Richards, et al., 2016;
Sanchez, et al., 2012; Wilke, et al., 2008; Wilke, et al., 2002; Xie, et al., 2015). It has been
argued that adopting such age-appropriate brain templates in pediatric participants can reduce the
requirement for spatial deformation during image normalization and maintain more pediatric
characteristics of individual brain such as a thicker cerebral cortex compared with adult
templates (Fonov, et al., 2011; Yoon, et al., 2009). However, the existing children brain
templates are constructed mostly based on Western pediatric populations (Fonov, et al., 2011;
Oishi, et al., 2018; Richards, et al., 2016; Sanchez, et al., 2012; Wilke, et al., 2008; Wilke, et al.,
2002), with a typical case being the widely used National Institutes of Health pediatric atlases
(NIH-PD) (Fonov, et al., 2011). These existing brain templates are not ideal for use in Chinese
pediatrics studies (Richards and Xie, 2015), since Chinese adults and children have unique
neuroanatomical features in the brain size and shape as compared to Western people (Bai, et al.,
2012; Liang, et al., 2015; Tang, et al., 2010; Tang, et al., 2018; Xie, et al., 2015). Different
growth trajectories of some brain structures between Chinese and North American children have
also been reported (Guo, et al., 2007; Xie, et al., 2014). To make an accurate brain representation
of Chinese pediatric population, it would be necessary and important to create age-specific
atlases based on the MR images of Chinese children.

When constructing pediatric brain atlases, two common factors need be considered: brain
asymmetry and the gender effect. The development of child brain is asymmetric or lateralized in
both structure and function (Agcaoglu, et al., 2015; Song, et al., 2014; Zhong, et al., 2016; Zhou,
et al., 2013), which is related to the specialization of language and motor functions and may

underlie developmental brain disease phenotypes (Herbert, et al., 2002; Shaw, et al., 2009; Toga
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and Thompson, 2003). To estimate the development of brain asymmetry, symmetric brain
models are expected to treat both hemispheres equally. Symmetric brain templates have been
created for Western pediatric populations (Fonov, et al., 2011). However, Chinese children may
have different brain asymmetries from Western children due to the genetic and cultural factors.
Studies have revealed that the visual process of Chinese characters engages more bilateral
temporo-occipital regions of the brain than alphabetic languages (Cao, et al., 2009; Mei, et al.,
2015; Xue, et al., 2005). Developmental brain disorders with asymmetric abnormalities such as
dyslexia (Beaton, 1997; Leonard and Eckert, 2008) also present unique brain disruptions in
Chinese children (Siok, et al., 2008; Siok, et al., 2004). The construction of symmetric brain
templates for Chinese children is important for further investigations of the Chinese pediatrics.
Equally important, previous MRI studies have revealed gender-specific differences in the brain
anatomy of typical and atypical developmental populations (De Bellis, et al., 2001; Evans, et al.,
2014; Gennatas, et al., 2017; Good, et al., 2001; Peper, et al., 2011). Several developmental
disorders, such as autism spectrum disorder or attention deficit hyperactivity disorder (ADHD),
show a gender-specific prevalence and symptomatology (Vé&tes and Bullmore, 2015). In an
extreme case, sex chromosome related developmental disorders occur only in a single-sex
population (Cutter, et al., 2006; Murphy, et al., 1993). Under these situations, a gender-specific
brain template can attain a more accurate characterization of the pediatric brain than that of a
general population.

To date, there are only two previous MRI studies towards the construction of Chinese
pediatric brain templates (Luo, et al., 2014; Xie, et al., 2015). Specifically, Luo, et al. (2014)
built a single brain template within a narrow age range of 5 to 8 years old based on structural MR
images of 53 Chinese children. Xie, et al. (2015) generated a series of pediatric brain templates
based on structural MR images of 138 Chinese children within an age range of 8 to 16 years old
with a 2-year interval. However, the application of the two brain templates is still limited for
Chinese pediatric studies due to several methodological issues as follows. First, the quality of
these two brain templates is inadequate due to the low signal to noise ratio of the 1.5T MRI
scanner (Luo, et al., 2014) and the relatively small sample size (Luo, et al., 2014; Xie, et al.,
2015). Moreover, neither study provided symmetric and gender-specific templates. Second, both
studies employed customized coordinates that are different from the popular ICBM152 and NIH-

PD templates at the MNI space (Fonov, et al., 2011). Third, it needs to note that these two
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previous studies revealed only overall differences in the brain circumference and the deformation
cost during registration between Chinese and Western brain templates (Liang, et al., 2015; Tang,
et al., 2010; Xie, et al., 2015). Considering spatially distributed variations of the brain regions
that could be derived from genetic and environmental effects during development, it is important
to examine the detailed regional anatomical differences between Chinese and Western pediatric
brain templates.

In the present study, we aimed to create a set of high quality Chinese pediatric (CHN-PD)
atlases for school-aged children (6-12 years old). To do this, we first collected high-quality MRI
images of a large sample (328 participants) at the state-of-the-art 3T Siemens Prisma scanner.
Then, we employed an unbiased template construction algorithm to generate the average
head/brain, symmetric and gender-specific MRI templates with finer one-year age intervals.
Finally, to further investigate the necessity and applicability of the proposed CHN-PD atlases,
we assessed the regional difference between the CHN-PD and the NIH-PD templates and
evaluated their prediction power on brain age in two independent Chinese pediatric datasets (N =
114 and N = 71, separately) when using different brain templates during the spatial

normalization.

Materials and Methods

Participants. This study included three datasets of healthy Chinese children (Table 1): i) a
principal dataset (Dataset 1) of 328 participants aged from 6-12 years old (9.03 +1.36) scanned
at the Peking University (PKU), ii) an independent dataset (Dataset 2) of 114 participants aged
from 6-12 years old (9.06 £1.38) scanned at the Beijing HuiLongGuan (HLG) hospital in China,
and iii) another independent public dataset (Dataset 3) including 71 participants aged from 8 to
12 years old (10.26 £1.78) that were obtained from the Beijing site of the ADHD200 dataset via
the International Data-sharing Initiative (Consortium, 2012; Fair, et al., 2012). Participants of
Datasets 1 and 2 were recruited from local primary schools in Beijing and written informed
consent was obtained from the parents/guardians of the children. Detailed information about the
participants in Dataset 3 can be seen at the public data sharing website
(http://fcon_1000.projects.nitrc.org/indi/adhd200/). All these MRI scans have passed through a
strict quality control criterion, before which the initial data collection included 359 participants
in Dataset 1, 131 participants in Dataset 2 and 71 participants in Dataset 3. The detailed quality
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control procedure is as follows: i) all images were first reviewed by an experienced neurologist
to exclude neurological abnormalities; ii) careful visual inspections with a scan rating procedure
were conducted by two experienced raters separately, similar to the protocol used in the human
connectome project (HCP) (Marcus, et al., 2013); iii) images that were assigned a quality of
better than fair by both raters were retained. This study was approved by the ethics committee of
Beijing Normal University. Notably, Dataset 1 was used for the construction of the Chinese age-
appropriate MRI templates, and Dataset 2 and 3 were used for the evaluation of the template

effect on age prediction. The age and gender distributions of these samples are listed in Table 1.

Image acquisition. In Datasets 1 and 2, high quality T1- and T2-weighted images were acquired
for each participant on 3T Siemens Prisma scanners. The detailed scanning parameters are as
follows: T1 weighted images: repetition time (TR) = 2530ms, echo time (TE) = 2.98ms,
inversion time (TI) = 1100ms, flip angle (FA)= 7< acquisition matrix = 256 %256, field of view
(FOV) = 256 %224 mm?, slices = 192, slice thickness = 1mm, BW = 240Hz/Px; T2 weighted
images: TR = 3200ms, TE = 564ms, acquisition matrix = 320 x 320, FOV = 224 x224 mm?,

slices = 256, slice thickness = 0.7mm, BW = 744Hz/Px. In dataset 3, images were acquired using
a 3T Siemens Trio scanner, and the scanning parameters are as follows: T1-weighted
magnetization-prepared rapid acquisition gradient echo sequences, 128 slices, slice thickness =
1.33 mm, TR =2530 ms, TE =3.39 ms, TI = 1100 ms, FA = 7< acquisition matrix = 256 %256,
FOV = 256 %256 mm?, average =1.

Data preprocessing. All MRI scans were preprocessed as follows (Fig. 1, left panel): i) the
intensity inhomogeneity of each scan was corrected using N4 correction (Tustison, et al., 2010);
ii) brain masks were created using the robust BET estimation from the FSL (FMRIB Software
Library), and skull outlines were generated using the BET2 command (Smith, 2002); iii) a
hierarchical linear registration (nine-parameter affine transformation) of each scan into the
ICBM152 linear brain template was conducted using the Revised BestLinReg algorithm (Dadar,
et al., 2018); iv) the image intensity was scaled to the same range of the template resulting in
intensities between 0 and 100 (Nyd and Udupa, 1999); and v) tissue segmentations were

implemented using the well-validated CIVET 2.1 pipeline to obtain the probability maps of gray
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matter (GM), white matter (WM) and cerebral spinal fluid (CSF) of each individual
(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-Table-of-Contents).

Template construction. The unbiased template construction algorithm adopted in our study was
proposed by Fonov and colleagues (Fonov, et al., 2011) based on previous works (Guimond, et
al., 1998; Guimond, et al., 2001). This procedure has been widely applied to generate MRI
templates including the ICBM152 brain template, the NIH-PD brain template and the standard
spinal cord template (De Leener, et al., 2018; Fonov, et al., 2011; Fonov, et al., 2009; Fonov, et
al., 2014). This iterative construction algorithm can capture both the average intensity and the
average shape of the brain at a population level. We listed its brief process as follows (Fig. 1,
right panel). First, the ICBM152 linear brain template was used as the initial reference target
template onto which each preprocessed T1-weighted image was mapped nonlinearly. The
generated individual transformations were further corrected to remove the bias via the averaging
transformation. The new approximation was then generated by applying each corrected
transformation to the corresponding individual T1-weighted image and then averaging all images
together. The above iteration continued until convergence was reached. During each iteration
step, a nonlinear registration of Automatic Nonlinear Image Matching and Anatomical Labeling
(ANIMAL) (Collins, et al., 1995) was performed with an increasingly finer grid step size and
blurring kernel. We adopted the following hierarchical schedule as the NIH pediatric brain
template (Fonov, et al., 2011): 4 iterations at 32 mm resolution, 4 iterations at 16 mm, 4
iterations at 8 mm resolution, 4 iterations at 4 mm, and 4 iterations at 2 mm, which yielded a
progressively accurate average template. The T2-weighted brain templates and tissue probability
atlases were created by warping their corresponding preprocessed images of each individual
based on the final deformation field for the creation of the T1-weighted brain template and then
generating an average image, separately.

Using the above template construction framework, we generated a set of Chinese pediatric
templates based on the PKU dataset (Dataset 1): i) the whole-head and brain-extracted MRI
volumes were performed separately during the model iteration to generate both head/brain
templates; ii) the symmetric brain templates were generated by including left-right flipped scans
of each participant and enforcing symmetric deformation fields (Fonov, et al., 2011); iii) the

gender-specific brain templates were generated by using the MRI volumes of male or female
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participants separately; iv) to generate the MRI templates specific to each age sub-range, we
divided all children participants into six age subgroups with one-year intervals (see Table 2 for
detailed information about the participants in each age subgroup) and same construction
procedures were conducted for each group.

Evaluation of the anatomical difference in brain regions between the CHN-PD and NIH-PD
templates.
When estimating the regional difference between the proposed CHN-PD template and the
commonly used NIH-PD template, we extracted a subgroup of PKU children (Dataset 1) with the
same age and gender distribution and the same number of subjects as those used for generating
the NIH-PD template at 7-11 years old to reduce the effect of sample distribution. Using this
subgroup data, a new Chinese pediatric brain template was created and the NIH-PD brain
template was co-registered into this template with a linear nine-parameter affine transformation.

Instead of the usual visual inspections, we estimated the anatomical differences between
these two brain templates by calculating two quantitative image indexes for each brain region.
Specifically, the Brodmann atlas was first adopted to parcellate each brain template into 82
regions. For each region, we calculated the mean square difference (MSD) (Holden, et al., 2000)
of the gray matter probability maps to assess the absolute differences in the gray matter
morphology and the normalized cross correlation (NCC) (Zhao, et al., 2006) across voxels of the
T1-weighted brain templates to reflect the spatial similarity of the anatomical structures. The
detailed definition is as follows:

For a given region p in template A and template B, the mean square difference was defined

as:

N
1
MSD() = = " (4; = B;)’

ieu
where i is the ith voxel of region , and A; or B; is the value of the voxel i of template A or B,
respectively, which refers to the probability of GM in the current definition. The normalized

cross correlation was defined as follows:

NCC(w) =

Yie (A X B)
N

\/ZieHAiz X Z{VEH Biz
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where i is the ith voxel of region p, and A; or B; is the value of the voxel i of template A or B,
respectively, which refers to the intensity of the T1-weighted brain template in the current
definition. The MSD shows the mean magnitude of the voxel-wise absolute difference between
two template regions, while the NCC is commonly used as the cost function during image
matching and indicates the spatial similarity of two brain regions. Here, we used the index of 1-
NCC to present the anatomical difference of each region between brain templates. The
calculation of the NCC was conducted with the Statistical Parametric Mapping (SPM) software
(Friston, et al., 1994) (https://www.fil.ion.ucl.ac.uk/spm/).

Evaluation of the template effect on the accuracy of age prediction.

To determine whether the proposed CHN-PD atlases have advantages over Western pediatric
brain atlases in Chinese children studies, we performed a comparative analysis between the
CHN-PD and NIN-PD brain templates (711 years old, sample distribution matched) on the
prediction power of brain age. Specifically, to reduce the over-fitting effect, we adopted two
independent datasets to train and test the prediction model of brain age, separately. First, the
HLG child subjects (Dataset 2) were used as the training sample and another independent set of
healthy samples in the ADHD200 dataset (Dataset 3) was used as the testing sample. For each
subject, the T1-weighted brain image was separately normalized to the new Chinese children
brain template and to the NIH-PD brain template at 7-11 years old using the hierarchical
ANIMAL nonlinear registration. The Brodmann mask was warped separately into two brain
templates by a non-linear transformation to locate feature voxels for the prediction model. We
implemented two most widely used machine-learning regression strategies (Cui and Gong, 2018;
Drucker, et al., 1997; Tipping, 2001) to predict the individual age based on the normalized T1-
weighted brain images. The first strategy is a support-vector regression (SVR) model with a
linear kernel function (Drucker, et al., 1997). Common settings with C = 1 and epsilon = 0.001
were adopted. The second strategy is the relevance vector regression (RVR), which is a
Bayesian-formulated regression framework (Tipping, 2001). After model training and testing,
the Pearson correlation coefficient between the actual and predicted ages was calculated to assess
the prediction accuracy. To reduce the effect of the feature preprocessing methods, we applied
three feature preprocessing approaches, including the raw features (untreated), scaling and

normalization, and then repeated the whole prediction procedure. Finally, we exchanged the
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training and test samples to make a cross validation of the prediction. For the code
implementation, the LIBSVM function was used in the SVR model
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang and Lin, 2011), and the PRoNTo toolbox
(http://lwww.mlnl.cs.ucl.ac.uk/pronto/) was used in the RVR model (Schrouff, et al., 2013).

Results

Convergence of the template construction algorithm in Chinese pediatric atlases.

In this study, all types of MRI templates were constructed through the hierarchical model
iteration processes, and qualitative progression was observed along with the iterations. Figure 2A
and B illustrate a detailed view of the intermediate models during the construction of the brain
template over the full age range (612 years old). We showed the voxel-wise standard deviation
map across the individual scans and the averaged models at different iterations and resolution
steps. The standard deviation at the voxel level was reduced in every four iterations, and the
anatomical details became distinct gradually around the neighboring voxels, showing a
successful convergence (Fig. 2A and B). The standard T1-weighted brain template was
generated at the 20" iteration. The root mean square (RMS) of the intensity standard deviation
and biases of the average deformation in each iteration step were plotted for all types of MRI
templates (Fig. 2C). As the procedure advanced, the RMS decreased progressively across
iterations for the averaging models, indicating that the optimization procedure was reaching a
minimum. Similar convergence processes were found for the averaged head/brain, symmetric,
and gender-specific templates (Fig. 2C, left panel) and also for each age subgroup templates
(Fig. 2C, right panel).

Averaged structural MRI atlases for Chinese pediatrics (CHN-PD atlases).

Figure 3 shows the Chinese pediatric MRI templates over the full age range (612 years old),
where they are shown in axial, sagittal and coronal views, separately. The first five columns
show the detailed slices of the head/brain, symmetric and gender-specific T1-weighted template,
and the subsequent columns show the slices of the T2-weighted brain template and the tissue
probability atlases of the GM, WM, and CSF. In each slice, these templates exhibit distinct
anatomical structures in the cerebral and subcortical regions, cerebellum, and brainstem. Figure 4

shows the detailed age-specific templates at one-year intervals, including the T1-weighted brain
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templates and the standard tissue probability atlases. By visual inspection, particularly similar
spatial locations of the brain gyri and sulci were found in each template and slight anatomical
changes were found in the peripheral gray and white matter junctions. All of these templates are
publicly available in NIFTI format in the Chinese pediatric atlases (CHN-PD atlas) project on the
NITRC website (https://www.nitrc.org/projects/chn-pd/).

Regional differences between the CHN-PD and the NIH-PD atlases.

From the perspective of the absolute differences in the gray matter probability maps between two
brain templates, regions showing relatively high anatomical differences were mainly located in
bilateral angular gyrus and supramarginal gyrus (parts of Wernicke’s area), bilateral dorsolateral
prefrontal cortex and inferior frontal regions (including Broca’s area), and bilateral
somatosensory cortex (Fig. 5, upper panel, and Table 3). From the perspective of the voxel-wise
spatial similarity, a consistent distribution of regional differences was found, which showed high
structural differences in the bilateral angular gyrus and dorsolateral and inferior frontal gyrus
between the Chinese pediatric atlases (CHN-PD) and NIH pediatric brain template (NIH-PD)
(Fig. 5, lower panel, and Table 3).

Different prediction power of brain age in Chinese pediatrics using the CHN-PD and the NIH-
PD atlases.

Using the HLG dataset (Dataset 2) as the training set and the healthy ADHD200 samples from
Beijing site (Dataset 3) as the test set, a higher accuracy of age prediction was obtained by
employing the CHN-PD brain template (with the highest correlation r = 0.40) during image
normalization than by employing the NIH-PD brain template (with the highest correlation r =
0.38) (Fig. 6A). In addition, we further exchanged the training and test samples to perform a
cross-validation of the prediction. A higher accuracy was also obtained via the implementation of
the CHN-PD brain template (with the highest correlation r = 0.48) than with the NIH-PD brain
template (with the highest correlation r = 0.43) (Fig. 6B). The better performance of the Chinese
pediatric brain template was reproducible in different feature-preprocessing operations and

different regression models (Table 4).

Discussion
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In the current study, we constructed a set of Chinese age-appropriate brain atlases using a large
sample of high quality MRI images of Chinese children. These Chinese pediatric (CHN-PD)
atlases included head/brain, symmetric and gender-specific MRI templates aged from 6-12 years
old and with one-year intervals (Figs. 3 and 4). The proposed Chinese pediatric templates
showed obvious anatomical differences in the lateral frontal and parietal cortex regions,
somatosensory cortex and language-related areas compared with the NIH-PD templates. In the
Chinese pediatric datasets, we found higher age prediction accuracy by using the Chinese
pediatric brain template as the normalization target than by using the NIH pediatric brain
template.

Two previous studies have made efforts to build Chinese pediatric brain atlases (Luo, et al.,
2014; Xie, et al., 2015). However, there are several major differences between our work and
these two earlier studies. First, our MRI atlases (Fig. 3 and 4) employed high-quality images with
high signal noise ratio obtained by the advanced, state-of-the-art 3.0T Prisma scanners; in
contrast, the two earlier studies used brain images obtained in 1.5T MRI scanner (Luo, et al.,
2014) and 3.0T Trio scanner (Xie, et al., 2015). Second, our atlases included the relatively larger
sample size (N = 328) than the two earlier studies (N = 53 and 138), which enabled refined one-
year intervals among the pediatric MRI templates. This refinement is important for obtaining an
accurate description for the elaborate growth trajectories of children brain during a period with
rapid and dynamic structural and functional changes (Cao, et al., 2016; Giedd, et al., 1999; Lebel
and Beaulieu, 2011; Levman, et al., 2017; Sowell, et al., 2003; Walhovd, et al., 2017). Third,
unlike the rigid transformation used in the two previous studies (Luo, et al., 2014; Xie, et al.,
2015), we applied a nine-parameters affine transformation on the individual images to the initial
ICBM152 brain target, which reduced the differences in the circumference between Chinese and
Western brain while introduced more detailed and compatible regional features of the Chinese
pediatric templates. Fourth, the consistent coordinate system according to the MNI space of our
atlases makes the application of our templates convenient and generalizable. Finally, our brain
atlases included symmetric and gender-specific types, which were not included in the two earlier
studies (Luo, et al., 2014; Xie, et al., 2015).

Notably, we used an unbiased model construction algorithm for the construction of brain
atlases. It has several methodological advantages and has been widely used in the creation of
MRI templates (De Leener, et al., 2018; Fonov, et al., 2011; Fonov, et al., 2009; Fonov, et al.,
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2014). The hierarchical local nonlinear registrations were iteratively corrected by the common
features of the population in the construction process, which can obtain abundant age-related
features while maintaining clear and sharp averaged tissue contrast at the same time. Rather than
the usual linear interpolation in the image resampling, the cubic spline interpolation employed in
the current pipeline can yield slightly better results (Thévenaz, et al., 2000). Another widely used
template construction strategy is the diffeomorphic framework (Avants, et al., 2009), which can
guarantee a smooth and differentiable nonlinear transformation during model iterations. We did
not choose this framework for two reasons. First, a recent study has shown that the employment
of a fully diffeomorphic algorithm may not automatically guarantee an increase in accuracy
during template construction (Fonov and Collins, 2018). Second, the cortical folding pattern of
the brain template could be altered when using different atlas construction methods. To make an
accurate comparison between the CHN-PD templates and the widely used NIH-PD templates, a
consistent template construction framework is used.

Several studies have demonstrated significant differences in overall brain morphology (e.g.,
size, shape and volume) between the Chinese and Western brain templates (Tang, et al., 2010;
Xie, et al., 2015). Chinese children brain templates are generally shorter, wider, and taller than
the age-appropriate American templates (Xie, et al., 2015). Our study further extended these
structural differences to a detailed regional level (Fig. 5). The regions showed obvious
anatomical differences that were mainly located in the sensorimotor regions and several high-
order function regions such as the dorsal attention and language-related regions (e.g., Broca’s
and Wernicke’s areas). These regional differences were quite similar to the previous multi-
cultural brain studies in which Chinese adults showed significantly thinner cortical thickness in
the premotor cortex, inferior frontal gyrus and supramarginal gyrus (Chee, et al., 2011); smaller
cortical volume; and larger surface areas in the bilateral superior and medial prefrontal and the
bilateral orbitofrontal gyrus (Tang, et al., 2018) compared with Western. These consistent
regional differences are reasonable because the high-order functions related to cultural and
educational factors such as the language abilities have developed prominently in children at
school age. Our results (Fig. 5) provided a detailed brain map of the potential regional influences
when adopting a dis-matched children brain template in Chinese pediatric MRI studies.

However, how these differences affect the assessments on brain development in Chinese
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pediatric cohorts or act on the estimations of multi-cultural effects on child brain still needs
further investigation.

An accurate prediction of the individual brain age is valuable for both typical and atypical
children development investigations. Individual deviations towards the norm age trajectory of
brain development may serve as potential markers for brain health and disorders (Cole and
Franke, 2017; Dosenbach, et al., 2010). Studies have shown that brain structural images can be
used to predict the individual age with high accuracies for both development (5-18 years old) and
aging (19-86 years old) populations (Franke, et al., 2012; Franke, et al., 2010). A recent MRI
study has investigated several methodological factors during image feature generation in order to
improve the accuracy of age prediction (MontéRubio, et al., 2018). Our results further revealed
that the application of Chinese specific brain templates can help to facilitate the accurate
prediction of brain age in Chinese pediatrics (Fig. 6). Our prediction accuracy did not reach a
high value compared with other studies. However, its performance was acceptable since the age
range of the participants in the current study is relatively narrow (Dataset 2: 6-12 years old;
Dataset 3: 8-12 years old) and the sample used for training the model is relatively small (Dataset
2: 114 subjects; Dataset 3: 71 subjects), which may increase the difficulty of prediction (Cui and
Gong, 2018). Although the aim of the current study was not to seek the highest prediction
accuracy for age, our results indeed indicated that under the same analysis framework, the
Chinese pediatric brain template could increase the accurate estimation of age effects in the
Chinese children population.

Several issues need be further addressed in our study. First, although the sample size used
for the template construction has been improved, more subjects would be beneficial for sure.
Second, future studies could make efforts towards developing novel, cohort-specific brain
templates using different sub-populations (such as younger children or disease-related atlases) to
obtain a comprehensive representation of Chinese pediatrics. Third, multi-atlas libraries
containing multi-modality templates such as white matter atlases based on diffusion weighted
images should be established to provide abundant brain contrasts. Finally, we anticipated that the
proposed Chinese children brain atlases can be used for future studies on typical and atypical
development in Chinese pediatric populations, which may bring a better understanding of the

development of pediatric population in China.
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Tables:

Table 1. Demographic information for the three datasets

Age range (years) Number  Gender (girl/boy)

Dataset 1 (PKU site) 6-12 (9.03 £1.36) 328 153/175
Dataset 2 (HLG site) 6-12 (9.06 £1.38) 114 47167
Dataset 3 (Beijing site from ADHD200) 8-12 (10.26 £1.78) 71 46/25

PKU, Peking University; HLG, HuiLongGuan hospital
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Table 2. Demographic information for each age subgroup of Dataset 1

Age range (years) Number Gender (girl/boy)

Group 1 6-7 23 14/9

Group 2 7-8 53 25/28
Group 3 8-9 99 42/57
Group 4 9-10 87 42/45
Group 5 10-11 51 23/28
Group 6 11-12 34 16/18
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Regions MSD Regions 1-NCC
Left angular gyrus, Wernicke’s area 0.224 Right somatosensory cortex 0.022
Right dorsolateral prefrontal cortex 0.222 Right primary somatosensory cortex 0.02
Left dorsolateral prefrontal cortex 0.222  Left angular gyrus, Wernicke’s area 0.017
Right angular gyrus, Wernicke’s area 0.221 Left somatosensory cortex 0.017
Left somatosensory cortex 0.218 Right angular gyrus, Wernicke’s area 0.016
Right primary, somatosensory cortex 0.214 Right primary gustatory cortex 0.016
Right somatosensory cortex 0.212 Left visuo-motor coordination 0.015
Left supramarginal, Wernicke’s area 0.204 Left orbitofrontal, rostral superior frontal gyrus 0.015
Left dorsolateral prefrontal cortex 0.204 Right dorsolateral prefrontal cortex 0.014
Right parstriangularis, Broca’s area 0.203 Left dorsolateral, prefrontal cortex 0.014
Right dorsolateral, prefrontal cortex 0.201 Left supramarginal, Wernicke’s area 0.014
Right supramarginal, Wernicke’s area 0.2 Right parstriangularis, Broca’s area 0.014
Left piriform cortex 0.199 Right orbitofrontal, rostral superior frontal gyrus 0.014

Right visuo-motor coordination 0.013

Right supramarginal, Wernicke’s area 0.013

Regions with indexes greater than “mean-+std” are shown and listed in descending order in the table.
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Table 4. The accuracy of age prediction in different regression frameworks by employing two brain

templates as the normalizing target

Training/Test sample Dataset 2/Dataset 3 Dataset 3/Dataset 2
Template CHN-PD NIH-PD CHN-PD NIH-PD
SVR model

Raw feature r=0.39 r=0.36 r=0.42 r=0.35
Scaling r=0.40 r=0.38 r=0.44 r=0.38
Normalization r=0.38 r=0.37 r=0.48 r=043
RVR model

Raw feature r=0.37 r=0.35 r=0.46 r=0.35
Scaling r=0.39 r=0.38 r=0.47 r=0.37
Normalization r=0.38 r=0.37 r=0.48 r=043

The larger r values were marked in bold in each comparison between the using of CHN-PD and NIN-PD
brain templates.
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Figure 1. The flowchart shows the data preprocessing and template iteration process. The
individual MRI scan (A) was first corrected for intensity inhomogeneity by using N4 correction
(B). The brain mask and skull outlines (C) were created using the robust BET estimation from
the FSL; A hierarchical linear (nine-parameter affine transformation) registration of the
individual image to the ICBM152 linear template (D) was conducted using the Revised
BestLinReg algorithm, and the image intensity was scaled to the same range as the target (D).
The resulting individual images (E) were averaged to generate the initial template (Model 0) and
used to generate individual transformations (To) via ANIMAL nonlinear registration. This
deformation (To) was further corrected by the average transformation and applied to individual
images (corrected To™) to create the new averaging approximation. This iterative process

continued until convergence was reached.
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Figure 2. The average MRI templates generated in the hierarchical matching process. (A) Color
scale images show the intensity standard deviation (SD) of each averaged brain model at the
certain level of step size during the iteration. (B) Gray scale images show the average T1-
weighted brain models at the corresponding steps. (C) The root mean square of the intensity SD
(upper panel) and the biases in the average deformation (below panel) at each iteration are given
for the full age range (left panel) and age sub-ranges (right panel) MRI templates. The gray line

shows the different blurring kernels during the iterations.
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Brain Symmetric Female Male

Figure 3. The detailed slices of the average T1-weighted head/brain templates, the symmetric
template and the gender-specific templates (female/male) and the slice view of the average T2-
weighted brain templates and the tissue probability templates in Chinese pediatric atlases (6-12

years old).
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Figure 4. The detailed slices of the average T1-weighted brain templates (upper panel) and the
combined tissue class atlas (below panel) of the age sub-groups with one-year intervals. Colors

in red represents gray matter, green represents white matter, and blue represents CSF.
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CHN-PD (7-11)

NIH-PD (7-11)

Figure 5. Regional anatomical differences between the CHN-PD templates and the NIH-PD
templates. The detailed slices of the age and gender-matched Chinese pediatric brain template
and the NIH pediatric brain template are given on the left (upper panel: gray matter probability
map; lower panel: T1-weighted brain template). Distributions of regional anatomical differences
from the perspective of the mean square difference (MSD) and the normalized cross correlation
(NCC) are shown in a 3D surface view, with colors from green to yellow coding the index value
from low to high. Regions with relatively high anatomical differences are mainly located in the
bilateral angular gyrus and supramarginal gyrus, bilateral dorsolateral prefrontal and inferior
frontal cortexes, and bilateral somatosensory cortex in both indexes. The visualization of the 3D
surface view was accomplished using the BrainNet Viewer software (http://www.nitrc.

org/projects/bnv/) (Xia, et al., 2013).
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Figure 6. The template effect on the accuracy of age prediction. Pearson correlation coefficients

between the actual and predicted ages were calculated to represent the prediction accuracy. By
using the healthy Chinese children in Dataset 2 and Dataset 3 as the training/test samples
(marked on the bottom of each figure) alternatively (A and B separately), the prediction
framework employing the Chinese pediatric template (CHN-PD) as the normalization target
consistently showed a higher prediction accuracy for brain age than the use of the NIH pediatric

(NIH-PD) template.
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