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ABSTRACT

Proteotoxic stress triggers transcriptional responses that allow cells to compensate for the
accumulation of toxic misfolded proteins. Chromatin remodeling regulates gene expression in response
to the accumulation of misfolded polyQ proteins associated with Huntington’s disease (HD). Tra1 is an
essential component of both the SAGA/SLIK and NuA4 transcription co-activator complexes and is
linked to multiple cellular processes associated with misfolded protein stress, including the heat shock
response. Cells with compromised Tra1 activity display phenotypes distinct from deletions encoding
components of the SAGA and NuA4 complexes, indicating a potentially unique regulatory role of Tra1
in the cellular response to protein misfolding. Here, we employed a yeast model of HD to define how
the expression of toxic polyQ expansion proteins affects Tra1 expression and function. Expression of
expanded polyQ proteins, mimics deletion of SAGA/NuA4 components and results in growth defects
under stress conditions. Moreover, deleting genes encoding SAGA and, to a lesser extent, NuA4
components exacerbates polyQ toxicity. Also, cells carrying a mutant Tra1 allele displayed increased
sensitivity to polyQ toxicity. Interestingly, expression of polyQ proteins also upregulated the expression
of TRA1 and other genes encoding SAGA components, revealing a feedback mechanism aimed at
maintaining Traland SAGA functional integrity. Moreover, deleting the TORC1 (Target of Rapamycin)
effector SFP1 specifically abolished upregulation of TRAT upon expression of polyQ proteins. While
Sfp1 is known to adjust ribosome biogenesis and cell size in response to stress, we identified a new
role for Sfp1 in the control of Tra1, linking TORC1 and cell growth regulation to functions of the SAGA
acetyltransferase complex during misfolded protein stress.
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INTRODUCTION

Eukaryotic cells need to correctly fold proteins to ensure their accurate function and avoid the
aggregation of toxic misfolded intermediates, which form the basis of several human diseases'™. In
Huntington’s disease (HD) expansion of a polyglutamine region encoded by the first exon of the gene
encoding the Huntingtin protein (Htt*") leads to Htt misfolding and aggregation in detergent-insoluble,
amyloid-like inclusion bodies (IBs) in the cytoplasm and nuclei of neuronal cells®”. In response to the
accumulation of misfolded proteins, including polyQ huntingtin, cells modify their gene expression
profile to favor adaptive responses directed at restoring protein homeostasis®'°. Well-characterized
responses to proteotoxic stress, such as the unfolded protein response of the endoplasmic reticulum®™~
" and the heat shock response'®?' in the cytoplasm, increase the folding capacity of their respective
compartments upon accumulation of misfolded polyQ expansions. These responses prevent the protein
quality control machinery from being overwhelmed by sudden changes in the misfolded protein burden.

It is now clear that multiple signaling pathways act in parallel to regulate gene expression during
misfolded protein stress. Acetyltransferase complexes regulate chromatin remodeling, a process
affected in HD**?. The SAGA (Spt-Ada-Gcn5-Acetyltransferase) and NuA4 (Nucleosome
acetyltransferase of H4) complexes were first identified in yeast as containing the lysine
acetyltransferases Gen5 and Esa1, respectively?® . Both complexes have homologues in mammalian
cells, hSAGA and Tip60, respectively. The PIKK family member Tra1l/TRRAP is an essential
component of both SAGA and NuA4 complexes in yeast and mammalian cells*"*?. The group of PIKK
proteins also includes mTOR, ATM and ATR, which are characterized by a C-terminal PI3K domain®®.
Tra1’s role in SAGA and NuA4 is to interact with transcriptional activators thereby recruiting the
complexes to target promoters®*~’. Because of its presence in both SAGA and NuA4, reducing Tra1
function affects cells distinctly from deletions of components specific to either individual complex. For
example, impaired Tra1 function causes generation-dependent telomere shortening, a phenotype that
is not detected in cells carrying deletions of either SAGA or NuA4 components>®.

Misfolded polyQ expansions specifically alter the composition of the SAGA complex and SAGA-
regulated gene transcription in both yeast and mammalian models®****. These studies employed polyQ-
expanded ataxin-7/Sca7, which is responsible for the neurodegenerative disease spinocerebellar ataxia
7*°. Sca7/ataxin-7 is a component of SAGA and SLIK (SAGA-like) acetyltransferase complexes and
thus explaining the effect of polyQ expandedSca7 on SAGA function **°. Targeting Htt*" to the yeast
nucleus also alters transcription similarly to cells carrying deletions in genes encoding SAGA
components*®; however, the specific molecular mechanism by which Htt®" polyQ expansions affect
SAGA function remains unclear. Our previous genetic screen for synthetic interactions linked Tra1 to
the regulation of several stress responses, including protein misfolding stress*’. Tra1 is therefore a
strong candidate target for polyQ proteins to regulate the transcriptional response to protein misfolding
stress.

To study the effect of Htt®™' polyQ expansion on yeast, we employed a well-characterized model that
involves expressing fluorescently-tagged Htt™' *¢-52. We define the interplay between Tra1 and polyQ-
induced stress. We also identify the TORC1 effector Sfp1 as a regulator of polyQ toxicity that regulates
Tra1l expression during proteotoxic stress, thus expanding our understanding of its role beyond the
regulation of cell growth and ribosome biogenesis®~°. Our findings further define the roles of TORC1,
Sfp1 and Tra1 in response to polyQ proteins.
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MATERIAL AND METHODS

Yeast genetic manipulation and growth assays

All strains are derivatives of either BY4741/4742 or W303a (see Supplemental Table 1). Gene
deletions were performed using standard yeast genetics procedures® and validated by sequencing.
Plasmids were transformed using the lithium acetate method®’. Cell growth was assessed by both spot
assay on agar plates and growth in liquid culture. Yeast cells were cultured overnight in selective
synthetic complete media with 2% glucose as a sole carbon source. For spot assays, cultures were
diluted to equal concentrations and then spotted in 4 fivefold dilutions using a pinning tool with the most
concentrated spot equalized at ODgy0.2. Cells were grown on selective plates at 30°C for 2 days and
imaged using a Geldoc system (Bio-RAD). For liquid culture, cells were diluted to ODgy 0.1 and
incubated at 30°C. ODgoo was measured every 15 min using a BioscreenC plate reader (Growth curves
USA) for 24 hours. Growth curves were generated and the area under the curve calculated for each
biological replicates and a two-tailed student t-test was used to determine statistical significance
between the different experimental conditions using Graphpad (Prism).

Drugs

Stock solutions of tunicamycin (5 pg/ml in DMSO; Amresco), Trichostatin A (10 mM in H,O; Biovision),
calcofluor white (30 mg/ml in H,O; Sigma-Aldrich), rapamycin (1 mg/ml in DMSO), H,0, (9.79 M)
cycloheximide (10 mg/ml in water) (Fisher Scientific), and MMS (99%; Acros Organics) were prepared
and used at the indicated concentrations.

DNA constructs

Plasmids encoding fluorescently tagged Htt®' and LacZ reporter constructs carrying TRA1, PHO5, and
PGK1% promoters in YCplac87%° were previously described (see Supplemental Table 2). SPT7
promoter sequences relative to the translational start, -633 to +68, NGG1 promoter sequences -430 to
+5 and EAF1 promoter sequences -890 to +31 were engineered by PCR as BamHI/Hindlll fragments
using oligonucleotides listed in Table 3 and cloned into YCplac87% to generate transcriptional
reporters. Vectors encoding fluorescently tagged Tra1l with either ysmfGFP*? and yemRFP®' were
generated by replacing the eGFP coding sequence by the new codon-optimized fluorescent proteins
using the BamHI/Notl sites in the previously described eGFP-Tra1 vector®® using primers listed in
Supplemental Table 3.

Fluorescent microscopy

Cells were diluted 10X and transferred to LabTek imaging chambers (Thermo Inc.) and imaged at room
temperature. Fluorescent microscopy was performed using a Zeiss 800 confocal microscope equipped
with a 63x PlanAprochromoat objective (1.4 NA). Images were analyzed using the ImageJ software®*.

gRT-PCR

RNA extraction was performed using MasterPure Yeast RNA Purification Kit (Lucigen). cDNA synthesis
was done by gScript Flex cDNA Synthesis Kit (Quanta Bioscience). The cDNA preparations were used
as the template for amplification using PerfeCTa SYBR-Green Supermix (Quanta Bioscience). The
primers used were listed in supplemental Table 3. The relative expression level was calculated using
the comparative Ct method and U3 was used as a reference gene.

Western blot

Yeast cells were lysed using 0.1 M NaOH for 5 mins at room temperature, resuspended in SDS sample
buffer and boiled for 5 mins®. Proteins were separated using gel electrophoresis and transferred to
PVDF membrane. The membrane was blocked with 5% milk. Then the membrane was incubated with
anti-Flag (M2, Sigma-Aldrich), anti-PGK1 (Invitrogen), anti-histone H3 and anti-histone H3K14 (Abcam)
overnight, followed by 1 h incubation with the appropriate fluorescent secondary antibody and imaged
with an Odyssey infrared imager (Licor) to detect the signal.
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B-galactosidase assay

Cells were harvested and resuspended in lacZ buffer. To measure B -galactosidase activity, 50 pl cell
lysate was mixed with 950 pl lacZ buffer containing 2.7 ul B-mercaptoethanol, 1 drop 0.1%SDS, 2 drop
CHCI; and incubated at 30°C for 15 min. The reaction was started by adding 100 yl ONPG (4 mg/ml)
and incubated at 30°C till the color changed to yellow. 300 yl 1 M Na,CO3; was added to stop the
reaction. The B-galactosidase activity was determined at 420nm absorbance using a plate reader,
normalizing data to cell density.

Data availability
All strains and plasmids are available upon request. The authors affirm that all data necessary for
confirming the conclusions of the article are present within the article, figures and tables.

RESULTS

PolyQ expansions compromise the SAGA acetyltransferase complex

In our experiments, Htt™' is placed under the control of the GAL? promoter and induced by growth n
galactose as sole carbon source. Under these conditions, expressing HD-associated polyQ lengths
(46Q and 72Q) results in a polyQ length-dependent growth defect compared to the non-HD associated
25Q'*°%5! (Figure 1A). As opposed to what is observed for other disease-causing misfolded proteins,
such as a-synuclein, polyQ expression inhibits cell growth but does not cause significant cell death as
measured by either regrowth assays or labeling of dead cells with propidium iodide (Supplemental
Figure 1). The effect of a 103Q Htt™" polyQ expansion is also apparent when expressed at more
modest levels under the transcriptional control of the relatively weak MET25 promoter™ (Figure 1B).
This model allows testing low polyQ toxicity without altering the carbon source. High expression of
polyQ expanded Htt™' results in polyQ length-dependent formation of cytoplasmic aggregates that can
be observed using fluorescent microscopy (Figure 1C).

Misfolded polyQ proteins associated with the polyglutamine disease spinocerebellar ataxia disrupt
assembly of the SAGA complex and SAGA-dependent transcription*”. The ensuing phenotype
resembles those associated with deletions of SAGA complex components. Sca7, the protein
responsible, is a subunit of the hSAGA complex. Thus, its crucial role in SAGA function is expected. To
investigate the relationship between Htt®', a protein that is not part of the acetyltransferases
complexes, we examined genetic interactions of Htt™' with deletions of NuA4 (eaf1A, eaf6A, yaf9A)
and SAGA (ada24, spt8A, ubp8A) components (Figure 2A). Expanded polyQ expression displayed
increased growth defects with deletion of the SAGA components Ada2 and Ubp8, but not Spt8. 72Q
expression only modestly affected growth in one of the NuA4 related deletions, eaf6A. For Tra1, we
employed a previously characterized loss-of—function mutant of TRA1 (fra1-F3744A) that carries a
mutation in the C-terminal FATC domain®. tra1-F3744A displayed strong growth defects in presence of
expanded 72Q in both plate and liquid growth assays (Figure 2B). Supporting these data, polyQ
expression sensitized cells to stresses that result in slow growth of strains carrying TRA1 mutations, i.e.
calcofluor white, growth at 39°C, 5% ethanol, MMS and caffeine® (Figure 2C). Expression of expanded
polyQ proteins was also associated with decreased activity from SAGA regulated promoters (HIS4 and
PHQOS5) (Figure 2D) and histone H3 acetylation (Figure 2E), implicating that polyQ affects SAGA
function in yeast.

Accumulation of misfolded polyQ expansions increase TRA1 expression

We previously observed that Tra1 bearing mutations in its PI3K domain (fra1qs) decrease nuclear
localization of the protein®. We therefore assessed whether expressing polyQ expansion affects Tra1
localization using confocal microscopy. We found that expanded polyQ expression (72Q-ymsGFP) did
not change the nuclear localization of fluorescently tagged Tral (yemRFP-Tra1) (Figure 3).
Consequently, polyQ possibly alters SAGA function independently of Tral sequestration into
cytoplasmic polyQ inclusions. Cells also respond to the defective fralqgs; allele by increasing the
transcription of the TRA1 gene®. We assayed expression from the TRA1 promoter to evaluate whether
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expanded polyQ results in a Tra1 defect that also feedbacks to increase TRA 71 expression. As shown in
Figure 4A, we found a ~2.5 fold increase in TRA1 expression of a TRA7-promoter LacZ fusion upon
expression of 72Q compared to the non-toxic 25Q. Increased transcription was also observed from
promoters of other components of SAGA and NuA4, i.e. NGG1, SPT7 and EAF1, but not for the control
gene PGK1 as was the case for tralqs> (Figure 4A). We also observed that the polyQ-induced
increase in TRAT1 expression was abolished when cells expressing 72Q were treated with the HDAC
inhibitor trichostatin A (TSA) (Figure 4B), suggesting that changes in chromatin remodeling the regulate
TRA1 expression in the presence of polyQ expansion. As a consequence of increased mRNA levels,
Tra1 protein abundance increased upon expression of 72Q (Figure 4C). These results suggest that
expanded polyQ impairs Tra1l function inducing a feedback mechanism to cope with disrupted
SAGA/NuA4 function. As shown in Figure 4D, the increased TRA1 expression was specific to polyQ
and was not observed with other stressors that result in protein misfolding, such as induction of
endoplasmic reticulum stress by tunicamycin, heat shock, oxidative stress caused by H,O, or
perturbation of cell wall integrity by calcofluor white (Figure 4D). Moreover, expression of a-synuclein,
another disease causing misfolded protein, reduced TRAT promoter activity, indicating that various
misfolded proteins differentially impact TRA7 transcriptional regulation (Figure 4E). Interestingly,
disruption of the SAGA/NuA4 complex activity by deleting GCN5, SPT20 or EAF3 did not cause TRA1
upregulation (Figure 4F). These results suggest that the upregulation of TRA7 by misfolded polyQ is
not solely a consequence of disruption of the SAGA complex.

TORH1 signaling regulates polyQ toxicity

Our previous genetic screen highlighted a potential role for Tra1 in stress responses®’, including the
control of cellular homeostasis by the TORC1 (Target of Rapamycin Complex 1) regulated signaling
cascades that link nutrient availability to cell growth and division. In this screen, a fra7 mutant displayed
a synthetic slow growth phenotype with a deletion of tor1*’. Since data in mammalian cells support both
a protective and adverse role for TORC1 in HD®*"!, we tested the effect of modulating TORC1 activity
on polyQ toxicity in yeast. First, we determined the effects of TORC1 inhibition using rapamycin (Figure
5A and B). We found that rapamycin treatment significantly reduced growth of cells expressing
expanded 103Q protein in both solid and liquid media assays. Interestingly, rapamycin treatment did
not increase polyQ aggregation (Figure 5C). This result argues against a protective role for TOCR1
inhibition by rapamycin through stimulating polyQ aggregate removal through autophagy®®. Similar to
rapamycin, a hyperactive allele of TOR1 (TOR1-2"**)"2 glso exacerbated polyQ toxicity (Figure 5D and
E). The TOR1 mutant had no effect on the toxicity of TDP-43 (Figure S2), a protein linked to
amyotrophic lateral sclerosis (ALS)”, indicating that the role of TORC1 may diverge in different
diseases. TORC1 hyperactivation did not prevent the formation of polyQ aggregates (Figure 5F).
These data indicate that precise regulation of TORC1 signaling is crucial for cells to cope with polyQ
expansion. TORC1 regulates translation and ribosome biogenesis in both yeast and mammals.
Incidentally, cells expressing 72Q displayed increased sensitivity to the translational inhibitor
cycloheximide (Figure 5G) and decreased expression of ribosomal protein genes (Figure 5H) when
compared to 25Q, further supporting a role for TORC1 signaling in polyQ toxicity. Therefore, we next
investigated the role of downstream TORC1 effectors in polyQ toxicity.

Sfp1/TORC1 regulates TRA1 expression

In yeast, TORC1 controls gene expression via two main downstream effectors, the mammalian S6
kinase homologue Sch9 and the transcription factor Sfp1”*. Sch9 localizes to the vacuolar membrane
and mediates TORC1 signaling that regulates ribosomal protein gene expression and cell cycle
progression’. Tor1 also interacts with the transcription factor Sfp1, which regulates expression of
ribosomal proteins®®>%" During exponential growth, Sfp1 localizes to the nucleus, where it drives
transcription of ribosomal protein genes. During various types of stress, including protein misfolding,
oxidative stress, and nutrient deprivation, Sfp1 translocates to the cytoplasm®**>"®"" where it is
degraded by the proteasome’®. Here, we found that deleting SFP1, but not SCH9 exacerbated polyQ
toxicity (Figure 6A). This agrees with Sfp1 and Sch9 having non-overlapping functions®. Indeed the two
deletion strains display specific phenotypes. Relevant to our study, sfp7A increases rapamycin
sensitivity as compared to sch9A”". Increased polyQ toxicity in sfo7A cells was not associated with
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significant changes in the ability of cells to form inclusion bodies (Figure 6B). Expression of ribosomal
protein genes decreased in the presence of misfolded polyQ (Figure 5H) consistent with a loss of Sfp1-
mediated TORC1 signaling. In accordance with this, Sfp1-GFP relocalized to the cytoplasm upon 72Q
expression, in contrast to its nuclear localization in cells expressing non-toxic 25Q (Figure 6 C and D). It
therefore appears that Sfp1 regulates the expression of factors required to cope with expanded polyQ
proteins. This may include the global effects on translation due to targeting the ribosomal protein
genes, since loss of protein translation due to cycloheximide treatment exacerbates polyQ toxicity. In
the same way, reduced translation is linked to polyQ toxicity in mammalian cells'®.

Interestingly, Lempiginen et al’’ demonstrated that Sfp1 physically interacts with Tra1, suggesting that
Tra1l may be targeted by Sfp1in the presence of PolyQ proteins. As shown in Figure 7A, Tra1 protein
levels but not mRNA (Figure 7A and B) were modestly decreased in sfp1A cells, potentially reflecting
reduced global translation due to decreased ribosome production®*°>"". Thus, it appears that Tra1
function rather than levels are affected by Sfp1. Indeed, sfp7A cells are sensitive to high temperature,
ethanol, MMS and calcofluor white treatment, hallmarks of impaired Tra1 functions (Figure 7C).
Reduced Tra1 activity in sfp1A cells was further supported by the reduced expression of PHO5, a
Tra1/SAGA regulated gene®*®'. This phenotype was reversed by the HDAC inhibitor TSA (Figure 8A),
indicating that deleting SFP1 may affect SAGA and possibly NuA4-mediated chromatin modifications
that regulate PHOS5 transcription®®'. We next tested the effect of deleting SFP1 on the polyQ-induced
upregulation of SAGA and NUA4 components observed in Figure 2D. Whereas the protein levels of
SPT7, NGG1 and EAF1 were still increased upon expression of misfolded 72Q, SFP1 deletion
abolished TRA1 upregulation (Figure 8B). These results suggest that Sfp1 specifically regulates TRA1
expression upon polyQ expression. Sfp1 is a known TORC1 effector and TORC1 inhibition with
rapamycin downregulates TRA1 expression® (Figure 8C) highlighting a role for TORC1 in the control of
TRA1 ftranscriptional regulation. Since deleting SFP1 causes hyperactivation of TORC1 as a
compensatory mechanism’”®, we hypothesized that hyperactivation of TORC1 may prevent
upregulation of TRA7 upon accumulation of misfolded polyQ expansion. Indeed, TRAT1 was not
significantly upregulated after expression of expanded 103Q in the hyperactive TOR7-?"**™ strain
(Figure 8D). Coupled to the observed decrease in TRA7 expression upon TORC1 inhibition by
rapamycin (Figure 8C), our results establish that TORC1 signaling regulates TRA1 expression.

DISCUSSION

Tra1/SAGA and polyQ toxicity

The ability of cytoplasmic polyQ expanded Htt™"' to disrupt Tra1 functions echoes previous reports
showing that expression of nuclear-targeted Htt™' results in transcriptional changes similar to deleting
components of the SAGA complex*®. Other reports show a similar phenotype using a different disease-
associated polyQ protein, the SAGA-associated spinocerebellar ataxia 7 (SCA7) *°*®. We do not detect
significant nuclear localization of Htt®™' in our model (Figure 1). Since Tra1 remains localized to the
nucleus upon expression of expanded polyQ, it is unlikely that the two directly interact, thus favoring
indirect regulation of Tra1 function by polyQ. Our previous genetic screen using a tra1 mutant allele
revealed that Tra1 is linked to cellular responses of proteotoxic stress, such as the heat shock
response, mitochondria homeostasis and TORC1 signaling®’. Interestingly, all these processes are
linked to polyQ toxicity®”9""#9° |t is reasonable to think that impaired Tra1-regulated transcription
has an important role in the toxic phenotype observed in HD models. Indeed, reduced histone
acetylation is closely associated with HD and histone deacetylase inhibitors improve the HD phenotype
in animal models®*?*%# 9192 Thys, better characterization of the role of the major regulators of
chromatin remodeling and gene expression and their targets provides insight into how modulating
acetylation in HD can be beneficial.

Sfp1 regulates TRA1 expression in presence of toxic polyQ proteins

Sfp1 is well characterized for its role in adjusting cell size and ribosome production during stress®~
57677 yet its functions outside the control of ribosome biogenesis are understudied. Recently, Matthew
et al. found that sequestration of the splicing factor Hsh155 during genotoxic stress was regulated via
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TORC1 signaling through Sfp1%®.  Together with our data showing that Sfp1 regulates TRAT
expression, this study supports an expanded role for Sfp1 in stress response, beyond regulating
ribosome biogenesis. The mechanism by which Sfp1 contributes to TRA7 expression during proteotoxic
stress is unclear, but the results mimic our previous findings showing that compromising Tra1 function
by mutating its PI3-kinase domain increases transcription of TRA1%°. It appears that the cells use a
transcriptional feedback mechanism to increase the expression of Tra1 and other components of the
SAGA and NuA4 complexes to compensate for the loss of Tra1l function. Whether a common
transcription factor is involved remains unknown.

We show that polyQ expansions affect Tra1 function and increase expression of TRA1 (Figure 4).
PolyQ expansions and expression of the tra7q; mutant allele® are the only experimental conditions
identified to date that increase TRAT expression. Interestingly, polyQ-induced TRAT expression
requires Sfp1 (Figure 8). Previous microarray analysis revealed that overexpressing SFP1 does not
upregulate TRA1, indicating that Sfp1 might regulate Tra1 indirectly®. Similarly to what we observed
with TRA1, deleting SFP1 abolishes upregulation of the proteasome regulator ADC17 during
tunicamycin-induced endoplasmic reticulum stress®. Since in both cases, stress leads to Sfp1
relocalization to the cytoplasm, it appears that Sfp1 regulates these targets indirectly, potentially via its
regulation of TORC1. The simplest explanation for TRAT transcriptional regulation by Sfp1/TORC1 is
that TRA1 is regulated at multiple levels, one that involves TORC1 but also other pathways modulated
by toxic polyQ expansions. Finally, whereas there is no homologue of SFP1 in mammals, Sfp1 shares
key functions with the mammalian proto-oncogene MYC. These functions include regulating ribosomal
protein gene expression and cell growth®. Importantly, mammalian TRRAP regulates Myc functions®~
®_ These results delineate a link between Myc and TRRAP that is reminiscent of the Sfp1/Tra1
connection observed in yeast.

TORC1, SAGA and polyQ toxicity

Our data show that TORC1 has to be finely tuned for yeast cells to compensate for polyQ toxicity. This
is not surprising considering the multitude of cellular processes regulated by TORC1%"%" Interestingly,
both activation and inhibition of TORC1 have been reported to be protective in rodent models of
HD®"%*"" Our results suggest that downstream targets of TORC1 function in mammalian cells, similar
to Sfp1 in yeast, to regulate polyQ toxicity. The inter-relationship of these targets is important for
understanding the therapeutic potential of TORC1 for HD. A TRA1 mutant allele is hypersensitive to
rapamycin and results in a synthetic slow growth phenotype with tor? deletion®’. In fission yeast, SAGA
control of cell proliferation and differentiation in response to starvation requires the differential
TORC1/TORC2-dependent phosphorylation of the SAGA component Taf12'% TORC1 also regulates
yeast histone acetylation by regulating the sirtuin deacetylases Hst3 and Hst4'® and integrates signals
through the INO80 chromatin remodeling complex'®. Because of the breath of cellular functions
affected by TORC1 and transcriptional regulators like SAGA, a comprehensive understanding on how
these pathways converge to regulate homeostasis both in normal and disease states is crucial.
Inhibiting histone deacetylase is protective in various disease models, including HD®"%%'%1%  Defining
how disease-associated proteins affect the global acetylome and identify specific targets for acetylation,
including non-histone targets, could lay the basis for the development of new small
molecule/compounds for combinational therapy.
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FIGURE LEGEND:

Figure 1: PolyQ toxicity and aggregation in yeast. (A) The yeast model of HD. Cell expressing high
levels of CFP-tagged Htt®™' display polyQ length-dependent toxicity. 25Q serves as a control for non-
pathological Htt®™'. Cell growth was assessed by serial dilutions on SC plates containing either glucose
(control) or galactose (polyQ induced). (B) Cells expressing low levels of CFP-tagged Htt™' display only
modest growth defect even in presence of 103Q. Cell growth was assessed by serial dilutions on SC
plates containing presence (control) or absence (polyQ induced) of methionine. (C) Fluorescent images
show accumulation of inclusion bodies in 46Q and 72Q-expressing cells as opposed to diffused
cytosolic distribution of 25Q after induction in galactose.

Figure 2: polyQ expression and SAGA and NuA4. (A) Wild-type, ada24, spt8A, ubp8A (SAGA) and
eaf1A, eadf6/, yaf9A (NuA4) cells expressing either 25Q or 46Q Htt™' assessed by growth assays on
SC media plates in presence of glucose (control) or galactose (polyQ induced). (B) Wild-type and tra7-
F3744A cells expressing either 25Q or 46Q Htt™' were assessed by growth assay on SC media plates
and in liquid growth assay in presence of glucose (control) or galactose (polyQ induced). The area
under the curve was quantified for each replicates (n=3) **p<0.005. (C) Cells expressing either 25Q or
103Q Htt®™' were spotted on plates containing various stressors (0.1% caffeine, 6ug/ml calcofluor white
(CFW), 5% ethanol (ETOH), 0.1% caffeine, 0.03% methyl methanesulfonate (MMS) or incubated at
39°C) in presence or absence of methionine. (D) Expression of 72Q induced a significant decreased
in the expression from the SAGA-regulated genes HIS4 and PHO5. Gene expression was analyzed
using LacZ transcriptional reporters was assessed after overnight induction of polyQ in galactose under
conditions that induced each promoter (absence of histidine or low phosphate respectively). **p<0.005,
n=3+SEM. (E) Reduced histone acetylation in cells expression expanded polyQ. Immunoblot of total
(H3) and acetylated histone H3 (H3-K14) with or without expression of 25 and 72Q.

Figure 3: Tral is not sequestered into polyQ inclusion bodies. Tra1 remains localized to the
nucleus in the presence of polyQ aggregates. Fluorescent images showing localization of polyQ-
ymsfGFP and yemRFP-Tra1 after overnight culture in glucose (control) or galactose (polyQ induced).

Figure 4: TRA1 expression is increased in presence of toxic polyQ expansions. (A) Increased
expression of TRA71 and other SAGA (NGG1, SPT7) and NuA4 (EAF1) components after overnight
induction of 72Q-CFP compared to 25Q-CFP. Expression was analyzed using promoter-LacZ
reporters. PGK1 serves as a control gene. **p<0.005, ***p<0.001 n=3+SEM (B) Treatment with the
HDAC inhibitor trichostatin A (TSA) abolished TRAT upregulation caused by polyQ expansions. 25 and
72Q-CFP were induced overnight in galactose media in presence or absence of 80 yM TSA. (C)
Expanded polyQ increases Tra1 protein abundance. Cells expressing either 25 or 72Q-CFP and a
chromosomally integrated Tra1®™9 were cultured in glucose or induced overnight in galactose and
processed for immunoblot. (D) Effects of other stressors on TRA7 expression. Cells expressing the
TRA1-LacZ reporter were treated with tunicamycin (Tm; 5 pg/ml), heat shocked at 42°C, treated with
calcofluor white (CFW; 300 ug/ml) or H,O, (300 uM) for 2 hr. n=3 +SEM. (E) Expression of a-synuclein
decreased TRAT expression. Cells expressing a galactose inducible version of a-synuclein-GFP were
cultured in either glucose or galactose overnight and TRA1 expression was measured using a LacZ
reporter. n=3. (F) Deletion of genes encoding SAGA components does not lead to TRAT upregulation.
Wild-type and gcn5A, spt20A and eaf3A cells expressing the TRA71-LacZ reporter were analyzed. -
galactosidase activity is shown as the average of six replicates with the SD indicated by the error bars.

Figure 5: TORC1 regulates polyQ toxicity in yeast. (A) TORC1 inhibition by rapamycin exacerbates
polyQ toxicity. Wild-type cells expressing either 25Q or 103Q Htt*™' assessed by growth assay on SC
containing media plates untreated or supplemented with 2 ng/ml rapamycin in presence (control) or
absence (polyQ induced) of methionine. (B) Wild-type cells expressing either 25Q or 103Q Htt™' were
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assessed by liquid growth assay in presence (control) or absence (polyQ induced) of methionine + 2
ng/ml rapamycin. The area under the curve was quantified for each replicates (n=3) ***p<0.001. (C)
Representative fluorescent images of wild-type cells expressing 25Q or 72Q Htt™'-ymsfGFP after
overnight induction in galactose containing media untreated or supplemented with 100 ng/ml
rapamycin. (D) Wild-type and TOR71-?"** cells expressing either 25Q or 103Q Htt™' assessed by
growth assay on SC containing media plates in presence (control) or absence (polyQ induced) of
methionine. (E) Wild-type and TOR1-?"** cells expressing either 25Q or 103Q Htt™" were assessed by
liquid growth assay in presence (control) or absence (polyQ induced) of methionine + 100 ng/ml
rapamycin. The area under the curve was quantified for each replicates (n=3) ***p<0.001. (F)
Representative fluorescent images of wild-type and TOR71-4"3*M cells expressing 25Q or 72Q Htt™'-
ymsfGFP after overnight induction in galactose containing media. (G) PolyQ increased cell sensitivity to
cycloheximide. Wild-type cells expressing either 25Q or 103Q Htt™' assessed by growth assay on SC
containing media plates untreated or supplemented with 0.1 ug/ml cycloheximide in presence (control)
or absence (polyQ induced) of methionine. (H) PolyQ expression decreased expression of ribosomal
protein genes. RNA was isolated from wild-type cells expressing 25Q or 72Q Htt™'-CFP after overnight
induction in galactose containing media and processed for RT-gPCR to assess transcript levels of
RPL6, RPL30 and RPL38.

Figure 6: Sfp1 regulates polyQ toxicity. (A) Deletion of SFP1 but not SCH9 exacerbates polyQ
toxicity. Wild-type, sfo1A and sch9A cells expressing either 25Q or 103Q Htt*™' assessed by growth
assay on SC media plates in presence (control) or absence (polyQ induced) of methionine. (B) Deletion
of SFP1 does not affect formation of polyQ IBs. Representative fluorescent images of wild-type and
sfp1A cells expressing 25Q or 72Q Htt™'-ymsfGFP after overnight induction in galactose containing
media. (C) Diagram that illustrates the relocalization of Sfp1-GFP from the nucleus to the cytoplasm
upon stress. The phenotype is linked to decreased sfp1-dependent transcription of RP and RiBi genes.
(D) Decreased Sfp1 nuclear localization upon expression of expanded polyQ. Representative
fluorescent images of wild-type and sfp7A cells expressing 25Q or 103Q Htt*'-RFP and Sfp1-GFP
after overnight induction in galactose containing media.

Figure 7: Loss of SFP1 does not significantly affect Tral expression but sensitizes cells to
stress. (A) Deletion of SFP1 has minimal effect on Tra1 protein abundance. Immunoblot performed
with cell lysates of from wild-type and sfp71A cells expressing a chromosomally integrated Tra1%"9,
Blot was probed with anti-Flag. Anti-Pgk1 was used as loading control. Densitometric analysis from 3
independent samples is shown. (B) Deletion of SFP1 has minimal effect on TRA7 mRNA levels. RNA
was isolated from wild-type and sfp1A cells and processed for RT-gPCR to assess transcript levels of
TRA1. (C) Wild-type and sfp1A cells were spotted on YPD agar plates untreated, supplemented with
6ug/ml calcofluor white (CFW), 5% ethanol (ETOH), 0.03% methyl methanesulfonate (MMS) or
incubated at 39°C.

Figure 8: Sfp1 and TORC1 regulate TRA1 expression in response to misfolded polyQ. (A) Sfp1
regulates PHO5 expression. Cells expressing the PHOb5-LacZ reporter were incubated in absence of
phosphate overnight and treated with trichostatin A (TSA) at the indicated concentration. -
galactosidase activity is shown as the average of 3 replicates with the SEM indicated by the error bars.
(B) Deletion of SFP1 specifically abolishes TRA1 upregulation by polyQ. Gene expression from TRA1
and other SAGA (NGG1, SPT7) and NuA4 (EAF1) promoters after overnight induction of 72Q-CFP
compared to 25Q-CFP in wild-type and sfp1A cells. Gene expression was analyzed using LacZ
transcriptional reporters. **p<0.005, ***p<0.001 n=31SEM. (C) Rapamycin treatment decreases
transcription from the TRAT promoter in both wild-type and sfp7A cells. Gene expression was analyzed
using the TRAf7-LacZ transcriptional reporter. **p<0.005, ***p<0.001 n=3+SEM. (D) Hyperactive
TORC1 signaling prevents upregulation of TRAT by polyQ. RNA was isolated from wild-type and
TOR1"%"3*M cells after overnight induction of 25 and 103Q Htt®'-ymsfGFP in galactose media and
processed for RT-gPCR to assess transcript levels of TRAT.

10


https://doi.org/10.1101/384602
http://creativecommons.org/licenses/by-nc-nd/4.0/

481
482
483
484
485
486
487
488
489
490
491

bioRxiv preprint doi: https://doi.org/10.1101/384602; this version posted August 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplemental Figure 1: PolyQ expansions do not cause cell death. (A) Representative fluorescent
images of wild-type cells expressing 25Q or 72Q Htt®™'-CFP after overnight induction in galactose
containing media and stained with propidium iodide (PI). Boiled cells are shown as a positive control.
(B) a-synuclein expression results in yeast cell death. Growth of cells expressing an empty vector or a-
synuclein-GFP was assessed by serial dilutions on SC plates containing either glucose (control) or
galactose (induced). Staining with Pl assessed cell viability.

Supplemental Figure 2: Hyperactive TORC1 signaling has minimal effect on TDP-43 toxicity. (A)
Growth of wild-type and TOR1-?"**™ cells on agar plate containing 10 ng/ml rapamycin (B) Growth of
wild-type and TOR1-2**™ cells expressing an empty vector or TDP-43 was assessed by serial dilutions
on SC plates containing either glucose (control) or galactose (induced).
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