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Abstract

Major depressive disorder (MDD) is a complex illness that involves the interaction of different
brain systems, pathways, and cell types. Past molecular studies of MDD relied on cellular
homogenates of post-mortem brain tissue, making it impossible to determine gene expression
changes within individual cells. Using single-cell transcriptomics, we examined almost 80,000
nuclei from the dorsolateral prefrontal cortex of individuals with MDD and healthy controls. Our
analyses identified 26 distinct cellular clusters, and over 60% of these showed transcriptional
differences between groups. Specifically, 96 genes were differentially expressed, the majority of
which were downregulated. Convergent evidence from our analyses, including gene expression,
differential correlation, and gene ontology implicated dysregulation of synaptic plasticity in the
etiopathogenesis of MDD. Our results show that this high-resolution approach can reveal
previously undetectable changes in specific cell types in the context of complex phenotypes and
heterogeneous tissues.


mailto:gustavo.turecki@mcgill.ca
https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/384479; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Major depressive disorder (MDD) is a complex and heterogeneous disorder that affects an
estimated 300 million people worldwide'. MDD can have serious implications, including death
by suicide. The genetic factors underlying the risk for MDD have been investigated using
different approaches, including genome-wide association studies’. Although some genetic
associations have been detected, it has been difficult to identify specific and strong genetic
correlates of the disease’.

The etiopathogenetic theory positing that MDD results from dysregulation of monoaminergic
transmission, largely implicating the serotonergic and noradrenergic systems, has dominated
the field for several decades. Recently, other factors have been associated with MDD, including
glutamatergic and GABAergic transmission®”, glial cell function, including astrocytic and
oligodendrocytic contributions’™, blood-brain barrier integrity’, and inflammation®. Thus, a
wide variety of cell types found in the brain may contribute to the molecular changes underlying
MDD.

In experiments conducted with cerebral tissue homogenates, the interpretation of differential
gene expression is often complicated by the fact that the cellular composition of the sample is
not uniform. Gene expression patterns in the brain are cell type specific, not only differentiating
major classes of cells such as neuronal and glial cells, but even differentiating subtypes of glial
cells and neurons™®'’. Therefore, it is difficult to verify whether subtle molecular differences
observed from tissue homogenates are explained by the disease state or by differences in cell
type composition between samples’®'® and, just as gene expression patterns are cell type
specific, it is likely that gene expression changes associated with MDD are also cell type specific.
Recently developed techniques for high-throughput single-cell and single-nucleus RNA-
sequencing provide a solution for addressing this inherent drawback to bulk tissue
experimentszo"zz.

High-throughput single-cell RNA-sequencing (scRNA-seq) allows profiling of transcriptomes of
individual cells by capturing the cells in nanolitre droplets using a microfluidic device and tagging
every RNA molecule in a cell with a cell-specific barcode and a unique molecular identifier
(UMI), all within the droplet. This method can also be extended to individual nuclei and yields
comparable information®*?*, allowing for analysis of frozen tissues, which are not amenable to
the isolation of intact cells.

While there has been considerable interest in using single-cell datasets to gain insight into the
processes underlying complex brain disorders®, no direct comparison of single-cell human brain
gene expression has yet been performed using high-throughput technologies.

We collected transcriptomic information on thousands of cells from 34 individuals, of whom half
died during an episode of MDD, while the other half were psychiatrically healthy controls. We
investigated differentially expressed genes across cell types and showed an overall enrichment
for genes involved in synaptic plasticity, long-term synaptic potentiation, and synaptic
organization. We also investigated the patterns of correlation of expression between
differentially expressed genes across separate clusters.
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Our results indicate that snRNA-seq can be successfully applied to complex psychiatric
phenotypes to elucidate the role of specific cell types in pathology. The approach to snRNA-seq
described here is an effective tool for interrogating subtle phenotypes with improved resolution
in archived brain tissue from human brain banks, which are highly valuable but as yet, untapped
resources for single cell transcriptomic research.

Results

The human brain is comprised of many functionally unique cell types localized to specific brain
regions and layers*****®?’ including some that have yet to be fully characterized. To assess the
involvement of individual cell types in the pathophysiology of MDD, we examined nuclei from
the dorsolateral prefrontal cortex (dIPFC), a region implicated in the pathology of major
depressive disorder®®. To assess a large number of nuclei, we used a droplet-based single
nuclei method optimized for use with postmortem brain tissue. We assessed 78,886 nuclei from
34 brain samples, half from patients who died during an episode of MDD, and the other half
from matched psychiatrically healthy individuals (Table 1, Supplementary Tables 1-3). The
experimental design is depicted in Fig. 1a. On average, we sequenced to a depth of almost 200
million reads per sample (Supplementary Table 1). Glial cells have consistently been found to
have fewer transcripts than neuronal cells®?®. We used custom filtering based on the
distribution of UMIs detected (see Methods, Supplementary Fig. 1a-e, Supplementary Table 4)
to recover a substantial number of glial cells. With an initial subset of 20 subjects, applying our
custom filtering increased the total number of cells 1.8—fold but increased the number of non-
neuronal cells by almost 6-fold (data not shown). More than 90% of the filtered cells had less
than 5% mitochondrial reads, thus ensuring high quality data (Supplementary Fig. 1f). The
average gene count across nuclei ranged from 2144 in neurons to 1144 genes in glia
(Supplementary Table 5). UMI counts were approximately twice the gene count for all cell types,
as expected for this level of sequencing depth (Supplementary Table 5). Between sample
groups, there were no significant differences in the median gene count (t test p=0.12), median
UMis (t test p=0.14) and number of cells (t test=0.07) (Supplementary Table 1).

Unsupervised clustering identified 26 unique cell types in the dIPFC

In order to identify different cell types present in the brain samples, we applied unsupervised
graph-based clustering® using the first 50 principal components derived from the 2135 most
variable genes across individual cells (see Methods, Supplementary Fig. 2a-b). This initially
resulted in 30 distinct cell types with the majority (47,461) of cells belonging to excitatory
clusters, as expected®, based on an initial annotation (Supplementary Fig. 2c-d). We then
reprocessed all excitatory clusters whose average gene expression profiles were mutually highly
correlated (R>0.95), this included 7 clusters of ~40,000 cells. Two smaller excitatory clusters not
sufficiently correlated with these 7 were not re-clustered. These ~40,000 cells were reprocessed
using similar parameters for clustering as the whole dataset (with slight differences, see
Methods) producing a refined sub-clustering of excitatory cell types (Supplementary Fig. 3a-c,
Supplementary Table 6). Finally, the clusters were manually curated to eliminate potential
biases; for example, clusters were removed if mainly one sample contributed to the cells
contained within the cluster (Supplementary Tables 7-10, Supplementary Fig. 4a-c). After
stringent quality control (see Methods), we identified 26 unique clusters (Fig. 1b). Each cluster
was annotated using a combination of known cell markers including broad cell markers to
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identify neurons in general (SNAP25, RBFO3, STMNZ2), excitatory cells (SATB2, SCL17A7,
SLC17A6), inhibitory cells (GAD1, GAD2, SLC32A1) (Fig. 1c-j), and non-neuronal cells, including
astrocytes (GLUL, SOX9, AQP4, GJA1, NDRG2), oligodendrocytes (PLP1, MAG, MOG, MOBP,
MBP), oligodendrocyte precursor cells (OPCs) (PDGFRA, PCDH15, OLIG1, OLIG2), endothelial
cells (CLDN5, VTN) , and macrophages/microglia (SPI, MRC1, TMEM119, CX3CR1) (Fig. 1k-r).
Gene expression patterns specific to cell type clusters were visualised using DotPlots (Fig. 2a),
average expression and median expression heatmaps (Supplementary Fig. 5a-b) and violin plots
(Fig. 2b-e) to form a consensus for annotation.

Refining cell types

The clusters generated from our data are consistent with previously reported gene expression
patterns that vary within cell types (Supplementary Fig. 6), though our considerably larger
sample set allowed us to produce more unique clusters than previously observed®.

Gene expression patterns previously linked to specific cortical layers (see Methods) coincide
with our clustering of excitatory cells. In Fig. 2b, the genes are arranged from left to right in
order of their expression across the cortical layers (from the layer VI to layer Il). There is a
gradient of expression of these genes across the excitatory clusters. For example, clusters Ex1,
Ex4, and Ex7-9 had high expression of TLE4 (layer VI specific). Ex1, Ex8, and Ex9 showed
concurrent expression of layer V/VI markers such as TOX. Ex6 and Ex7 additionally showed
expression of the layer IV specific gene RORB. HTR2C, which is specific to a subset of layer V
neurons, was prominent in Ex1 alone. PCP4, which is also layer V specific, was present in Ex1-3,
Ex7, and Ex9. Superficial layer (I-lll) markers such as CUX2 and RASGRF2 were mainly seen in the
large cluster Ex10. Likewise, inhibitory cell types demonstrated subtype specific gene expression
patterns. For example, In7 was classified as inhibitory parvalbumin because it expressed GAD1
and PVALB, and lacked VIP and SST (Fig. 2c). Multiple astrocytic clusters were also identified, and
while the typical sub-classification of astrocytes is based on their morphology within grey or
white matter®, we used only grey matter for these samples. As such, based on the higher
percentage of GFAP expression in Astros_3 (38%) compared to Astros_2 (21%), we expect
Astros_3 to represent reactive astrocytes’” (Fig. 2d, Supplementary Table 11).

Oligodendrocyte cell lineage

We identified five unique cell clusters that fell into the oligodendrocyte lineage (OL), including
two that we classified as OPCs (Fig 2e). OPCs express a characteristic set of markers such as
PDGFRA® and PCDH15%*, which decline as these cells mature into oligodendrocytes, whereas
other lineage markers like, OLIG2 or SOX10, are present in both mature and immature cells®.
Given these developmental stage specific markers it is possible to plot a pseudotime trajectory®
using gene expression for OPC1, OPC2, Oligosl, Oligos2 and Oligos3. The result indicates that
OPC2 are the youngest cells within the dataset followed by OPC1, then Oligos2 and Oligos3, with
Oligos1 being the most mature (Fig. 3a). The expression of thousands of genes varied according
to pseudotime (g<0.01), but approximately half of the associations were observed in both cases
and controls (Fig. 3a, right). Among the genes that are uniquely associated with pseudotime in
cases, there was a 2.7—fold enrichment of apoptosis signalling (FDR p<9.01x10°)*®, while no
functional enrichment was observed in controls. To assess the individual profiles of important
developmental gene markers, we plotted their expression across pseudotime (Fig. 3b-h),
revealing their expected pattern of expression.
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Within cluster gene expression differences associated with depression

We set out to assess gene expression differences between cases and controls within each
cluster. However, one limitation of droplet based single-cell technology is the possibility of
capturing doublet or multiplet nuclei in a given reaction. These represent a potential
confounding factor when assessing differential gene expression between groups. We therefore
attempted to eliminate them from the dataset by calculating the correlation of each cell to the
median expression value of its assigned cluster (See Methods, Supplementary Fig. 7). Cells with
low correlation were removed. We also excluded any genes expressed in less than 10% of the
cells in that cluster. Using only these purified clusters and filtered genes, we performed a
differential gene expression analysis (Supplementary Tables 12-36). Olig2 was excluded from
differential expression analysis because it contained only 48 cells.

A total of 96 genes (FDR <0.1) were differentially expressed in 16 of the 25 clusters analyzed
(Fig. 4a) and 45 of those remained significant at FDR<0.05 (12 of 25 clusters). The majority, 80
genes (83%), were downregulated, in line with findings from previous transcriptomic studies in
MDD*>’. While the differential expression analysis treated each cell as a sample, per subject
contributions to the differential analysis were visualized using heatmaps of average gene
expression (Supplementary Fig. 8a-p) to assess biases in sample contributions. Thirty-nine of the
96 differentially expressed genes were found in excitatory cell clusters and, of those, 34 were
downregulated (Fig. 4b). Certain neuronal clusters contained both upregulated and
downregulated genes, however it was more common for clusters to have only downregulated
genes. Non-neuronal clusters tended to have both up- and downregulated genes (Fig. 4c). There
were two instances of the same gene being differentially expressed in separate clusters:
PRKAR1B showed decreased expression in excitatory clusters Ex7 (FDR=0.087, FC=0.87) and Ex2
(FDR=0.047, FC=0.82) and TUBB4B in excitatory clusters Ex7 (FDR=0.079, FC=0.87) and Ex6
(FDR=0.073, FC=0.86).

There were strong enrichments of Gene Ontology terms for neuron projection maintenance (84-
fold enrichment; FDR=0.011) and negative regulation of long-term synaptic potentiation (75-fold
enrichment; FDR=0.012). Both of these terms are hierarchically related with the more general
term regulation of synaptic plasticity, also enriched in the set of 96 genes (9-fold enrichment,
FDR=0.012) (Fig. 4d).

Between and within cluster correlations as indications of how cells interact in MDD

To assess how interactions between cells might contribute to psychopathology, we assessed the
correlation of differentially expressed genes between clusters. Average expression per subject
for each of the differentially expressed genes was calculated in each of the 16 clusters. A
correlation coefficient for each pair of genes was independently calculated for cases and
controls and transformed into a Fisher z-score for comparison between groups (see Methods).
Any z-score with p<0.01 was retained. The significant correlation differences between clusters
are represented in Fig. 5a. Any differential correlations resulting from a magnitude difference in
correlation coefficients are represented in grey as they are believed to demonstrate consistency
in the biological function between groups. A positive z-value (blue) arises from gene pair
correlations that are positive in cases and negative in controls, whereas a negative z- value
(orange) arises from the opposite combination. Of equal interest, we examined clusters that
showed high levels of within-cluster correlation differences. As expected, OPC2 and Ex7 showed
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the highest number of changes in gene relationships within clusters given they have the highest
number of differentially regulated genes. Interestingly, the Ex3 cluster has no between cluster
relationship but shows a within cluster change (Fig. 5b). We used Fisher’s method to assess the
overall correlation differences between clusters (Fig. 5¢). This shows the strongest difference in
the correlations between In2 and In8.

Discussion

The complex arrangement of numerous cell types in cortical cytoarchitectonics makes it difficult
to tease out the respective implication of these cells in MDD and other brain illnesses. It is only
with the advent of single-cell technology that we are beginning to understand the total number
of cellular subpopulations that exist in the brain'’. Given the complexity of psychiatric disorders
such as MDD, and the absence of consistent, salient genetic contributions, disentangling the role
of each cell type in the brain is of great importance and will require the level of resolution we
have achieved here.

Compared to previous single-nucleus PFC transcriptomic studies, our larger data set allowed us
to resolve a greater diversity of excitatory clusters than both droplet-based® (10 vs 2) and full
length snRNA-seq protocols®® (10 vs 8). Custom filtering increased non-neuronal cell content,
allowing greater resolution of glial subtypes, including multiple astrocytic, oligodendrocytic, and
OPC clusters. For example, this resolution enabled us to pinpoint changes specific to OPCs but
not oligodendrocytes, and changes selective to one subset of astrocytic cells. The same principle
extends to neuronal cell types.

Differential gene expression analysis suggests synaptic function alterations in depression,
including synaptic plasticity, requlation of long-term synaptic potentiation, synaptic organization
and more broadly, learning, memory and cognition. Genes such as APP (Ex3), PRKAR1B (Ex2/7),
and PRNP (OPC2), were consistently associated with a number of the most enriched terms
related to synaptic function and cognition.

Interestingly, APP was found to be differentially correlated with PRAF2, both of which were
found to be dysregulated within Ex3 (IV/V). There was a strong negative correlation (R=-0.93) in
MDD cases but a moderate association in controls (R=0.25). The products of these genes
interact directly®” and both are important for synaptic function®®*. This is suggestive of synaptic
dysregulation in layer V pyramidal cells in the PFC of MDD cases. Given that layer V is primarily
composed of projection neurons®, this may implicate other brain regions involved in mood and
emotions, including the limbic system.

We found that PRKAR1B (encoding protein kinase cAMP-dependent type | regulatory subunit
beta) was decreased in MDD cases in 2 separate clusters Ex7 (IV-VI) by 12% and in Ex2 (V) by
15%. PRKAR1B is involved in the cAMP second messenger-signalling pathway and in dopamine
receptor signaling***2. Dopamine (DA) is an important modulator of synaptic plasticity in the
PFC***. Dopaminergic afferents from the ventral tegmental area (VTA), project primarily to
layer V in the PFCY, and although DA is often overlooked in MDD, recent evidence points to
altered dopaminergic signal transduction in depression *.

Additionally, PRKAR1B, from Ex2, was differentially correlated with RAB11B from In3 (SST).
RAB11B (encoding for a Ras-related protein) is critical in vesicle transport and recycling®, in
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particular, trafficking and recycling of monoamine transporters”’. It is demonstrably involved in
dopamine transporter (DAT) recycling®®. Both PRKAR1B and RAB11B were decreased in MDD
cases and there was a strong negative correlation between these two genes (R=-0.83) in MDD
cases, but a strong positive correlation in controls (R=0.59). It is possible that in healthy
individuals these proteins work synergistically to regulate dopaminergic signal transduction. In
this study, we found a reduction of RAB11B and PRKAR1B which may disrupt DAT trafficking and
inhibit DA mediated second messenger signalling, respectively. Together, these changes may
indicate impaired DA signal transduction and DA-related synaptic plasticity, although further
empirical evidence is required to support this hypothesis.

In addition to being associated with mediating synaptic plasticity***°, the prion protein gene
(PRNP) was strongly decreased (28%; FDR=0.038) in the OPC2 cluster, the least developed cells
identified in this study. The absence of PRNP has been associated with an increased number of
undifferentiated oligodendrocytes, and OPCs that do not mature into oligodendrocytes are
thought to be eliminated by apoptosis™'.

Indeed, we uncovered evidence suggesting that MDD may fundamentally modify the
developmental trajectory of oligodendrocytes. The gene sets associated with developmental
trajectory differed significantly between MDD cases and controls. We also observed an
enrichment of apoptosis-related genes in cases but not in controls. This is in line with both the
described effects of decreased PRNP in OPCs>!, and evidence of a loss of mature adult
oligodendrocytes in animal models of depression and anxiety®”. Interestingly, there is evidence
suggesting that half of the OPCs (NG2") in the brain do not give rise to any other cell type>>**,
implying a possible independent functional role for these cells. As such, OPCs are now suggested
to be a distinct glial cell type® implicated in brain plasticity through roles such as integration of
synaptic activity® and mediation of long term potentiation®’. Additionally, there is evidence
directly implicating the loss of this cell type with emergence of depressive-like behaviour®®. The
data from this study indicate that in MDD OPCs are not only precursor cells for
oligodendrocytes, but act as an independently functioning cell type.

Our paper builds on numerous pieces of convergent evidence pointing to the role of synaptic
plasticity in the etiopathogenesis of major depressive disorder. In addition, these data expose
several other possible paths toward deconvoluting the molecular and cellular changes
underlying depression. With time and new insights into similar single nucleus transcriptomic
alterations observed in other key brain regions associated with depression, we will be in a better
position to forage new avenues for therapeutic interventions.
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Figure Legends

Figure 1: a) Schematic representation of experimental procedures. Nuclei were extracted from
Brodmann area 9 (BA9) of the dIPFC of 17 cases and 17 controls, single nuclei were captured in
droplets for RNA-seq. Unsupervised clustering and cell type annotation were followed by
differential expression analysis between cases and controls within each cluster. b) TSNE plot
depicting the ~73,000 cells in 26 clusters identified after strict quality control of initial clusters.
Includes 2 astrocytic, 3 oligodendrocytic, 2 oligodendrocyte precursor, 1 microglial, 1
endothelial, 10 excitatory neuronal and 7 inhibitory neuronal clusters. The majority of cells are
present in excitatory clusters. Individual TSNE plots representing the expression of various
neuronal (c-j) and non-neuronal (k-r) cell type marker in a given cluster.

Figure 2: a) Cell type annotation was performed based on expression of well-established marker
genes. (Left) Dendrogram representing relationship between identified cell clusters based on
gene expression. (Middle) DotPlot depicting expression of known marker genes in the 26
clusters of interest. Marker genes are colour coded according to the cell type in which they
should be detected (e.g.: red for SPI, which is expected to be microglial). The size of the dots
represents the proportion of cells expressing the gene whereas the colour intensity represents
the average expression level. (Right) The list of numbers gives the size of each cluster and the
bar plot depicts the mean number of UMlIs per cell in each cluster. Overall, non-neuronal cell
types show lower mean number of UMls. b) Cortical layer specific markers varied in expression
within the excitatory neuronal clusters produced after sub-clustering of initial clusters. The
schematic of cortical layers can be used to orient the marker genes to the appropriate layer. The
violin plots depict the expression per cluster of layer specific marker genes going from the more
superficial layers on the right (starting from CUX2) to the deeper layers on the left (ending at
NTNG2). Excitatory clusters were annotated with their approximate layer-specific identities
based on the expression pattern observed. c) Refined inhibitory cluster identification. Known
classes of inhibitory neurons are identifiable based on the expression pattern of peptide genes
(VIP, SST, CCK) and calcium binding protein genes (PVALB). d) Astrocyte and non-neuronal cells.
Higher GFAP expression in Astros_3 than Astros_2 may reflect their reactive state. We were
unable to detect vimentin (VIM) positive astrocytes, although VIM expression was detected in
endothelial cells as expected. e) Cells belonging to the oligodendrocyte lineage.

Figure 3. Pseudotime trajectory. a) (Left) Oligodendrocyte lineage cells from 5 clusters were
analysed to produce a pseudotime trajectory to gauge their developmental stages. Going from
left to right along the trajectory we see a progression of immature and mature oligodendrocyte
precursor cells followed by immature and mature oligodendrocytes in the order shown. Inset
provides the positions of the clusters in the original TSNE plot. (Right) The diagram shows the
number of genes that changed in expression with pseudotime separately in cases and controls.
While 3535 gens were common to both groups, 2010 were only associated with pseudotime in
cases, and 1660 were only associated with pseudotime in controls. Expression across
pseudotime of (b-d) genes known to be highly expressed in OPCs or immature oligodendrocytes
(e) transitionary, or (f-h) highly expressed in mature oligodendrocytes.

Figure 4: a) For each cluster the percentage change in expression between cases and controls of
all detected genes are plotted with decreased expression to the left of the midline and increased
expression of the right. Ninety-six significantly changed genes (of which 16 were upregulated
and 80 were downegulated) are marked in colour, based on their corrected FDRs as shown in
the legend (light to dark blue corresponds to higher to lower FDRs). Sixteen out of the 26
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clusters contained significantly differentially expressed genes b) Contribution of different cell
type clusters to differentially expressed genes is depicted in pie charts. While the proportion of
total differentially expressed and downregulated genes contributed by the different cell type
clusters were relatively similar, non-neuronal clusters contributed a higher proportion of genes
upregulated in MDD cases. ¢) Number of clusters in each broad category showing up and
downregulated genes in MDD cases. While some excitatory and inhibitory clusters showed only
downregulation, all dysregulated non-neuronal clusters contained both up and downregulate
genes. A larger proportion (7/8) inhibitory clusters showed dysregulation compared to
excitatory (6/10) or non-neuronal (4/8) clusters. There was just one cluster (inhibitory), which
showed only upregulation. d) Top 25 gene ontology terms associated with the 96 differentially
regulated genes.

Figure 5: Significant z-scores for pairs of 95 (one dropped) differentially expressed genes in the
16 dysregulated clusters are represented in a Circos plot. a) Only the z-score for pairs of genes
coming from two different clusters are shown here (between cluster z-scores). The gene names
and the clusters that contain them are labelled outside the circle. Lines connecting genes
represent that the correlation of gene expression for that pair of genes was significantly
different between MDD cases and controls. Blue lines indicate positive correlation in cases and
negative in controls, red lines indicate positive for control and negative for cases, and grey lines
indicate the same direction of correlation but different strengths. b) As in (a) but for pairs of
differentially expressed genes in the same cluster. c) Circos plot depicting weighted (see
Methods) lines showing the overall level of correlational differences between different clusters.
In brief, the thicker lines connect clusters whose correlations change more strongly between
MDD cases and controls.

Tables

Table 1: Sample information

Controls (n=17) Cases (n=17) p value
Age (years) 38.71+4.32 41.06 £ 4.66 p=0.714
Gender 17M 17M -
PMI (hrs) 34.01+4.94 41.69+4.76 *p=0.190
pH 6.49 £ 0.06 6.60 + 0.07 p=0.212
Storage
Time 14.71+1.44 12.47+ 1.46 *p=0.543
Mean + SEM

*Mann Whitney test
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Materials and Methods

Subjects: Postmortem brain samples

This study was approved by the Douglas Hospital Research Ethics Board, and written informed
consent from next-of-kin was obtained for each subject. Postmortem brain samples were
provided by the Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca). Frozen grey
matter samples were dissected from the left cerebral hemisphere of Brodmann Area 9 (dIPFC).
Brains were dissected by trained neuroanatomists and stored at -80 °C. For each individual, the
cause of death was determined by the Quebec Coroner’s office, and psychological autopsies
were performed by proxy-based interviews, as described previously®.Cases met criteria for MDD
whereas controls were individuals who died suddenly and did not have evidence of any axis |
disorders (Table 1). Post mortem interval (PMI) represents the delay between a subject’s death
and collection and processing of the brain.

Nuclei isolation and capture

50 mg of frozen tissue was dounced in 3 mL of lysis buffer, 10 times with a loose pestle and an
additional 5 times with the tight pestle. The sample was left to lyse in a total of 5 mL of buffer
for 5 min, after which 5 mL of wash buffer was added and swirled. The sample was passed
through a 30 um cell strainer and spun for 5 min at 500 g. This step was repeated for a total of
two filtering steps. After pelleting, the nuclei are resuspended in 5-10 mL of wash buffer by
pipetting up and down 8-10 times. After 3 washes, the nuclei were resuspended in 1 mL of wash
buffer and mixed with 25 % Optiprep™, and layered on a 29 % optiprep cushion and spun for 30
min at 10,000 g. Nuclei were resuspended in wash buffer to achieve a concentration of ~1x10°
nuclei/mL.

We used the 10x Genomics® Chromium™ controller for single cell gene expression to isolate
single nuclei for downstream bulk RNA library preparation. We strictly followed the protocol as
outlined by the user guide (CG000052), with the exception of loading concentration, which we
increase by 30% as we assessed the capture of nuclei to be slightly less efficient than cell
encapsulation. We aimed to capture ~3000 nuclei per sample. This system only allows for a
maximum of 8 samples per capture run. As such, we required multiple batches to collect the
individual nuclei for all 34 samples (6 batches). Samples 250 and 251 performed poorly, we
therefore, carried out the capture on two separate chips and sequenced twice combining the
data from both runs for the final analysis.

Sequence Alignment and UMI Counting

A pre-mRNA transcriptome was built using the cellranger mkref (Cellranger version 2.0.1)
command and default parameters starting with the refdata-cellranger-GRCh38-1.2.0
transcriptome and as per the instructions provided on the 10X Genomics website. Reads were
demultiplexed by sample index using the cellranger mkfastqg command (Cellranger v2.1.0). Fastq
files were aligned to the custom transcriptome, cell barcodes were demultiplexed, and UMIs
corresponding to genes were counted using the cellranger count command and default
parameters.

Data Transformation for Secondary Analysis

The unfiltered gene barcode matrices for each sample were loaded into R using the Read10X
function in the Seurat R package (version 2.2.0, 2.3.0)%. Cell names were modified such that the
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subject name, batch, and biological condition were added to them. Seurat objects were created
corresponding to each sample using the CreateSeuratObject function with the imported
unfiltered gene-barcode matrices provided as the raw data. Individual Seurat objects for each
sample were combined into one object using the MergeSeurat function sequentially. No filtering
or normalization was performed up to this step. Since this is a single nucleus dataset, all
mitochondrial genes that are transcribed from the mitochondrial genome were removed, along
with genes not detected in any cell.

Barcode and Gene Filtering

Based on the distribution of nGene (total number of genes detected in each cell) for the total
dataset (assessed by summary and hist R® functions), barcodes that were associated with less
than 110 detected genes were removed. Based on the distribution of nUMI (total numbers of
UMIs detected in each cell), the top 0.5 % of barcodes were also excluded as most likely being
multiplets rather than single nuclei as there was a very sharp increase of nUMI from 16,393 at
the 99.5" percentile to 102,583 at the maximum.

Next, the distribution of nUMI for the remaining barcodes was fit with three normal
distributions using the normalmixEM function from the mixtools* package (Supplementary Fig.
1c). The rationale was that, the filtered barcodes contain a population of low quality “noise”
barcodes that have a very low nUMI on average, a population of non-neuronal cells that have an
intermediate nUMI and a population of neuronal cells that have a high nUMI. Based on the
fitting of the normal distributions, only the barcodes with a high probability (> 0.95) of belonging
to either the putative “non-neuronal” or putative “neuronal” distributions, and a low probability
(<0.05) of belonging to the “noise” distribution were retained for further analysis
(Supplementary Fig. 1c-d). 78,886 cells and 30,062 genes were retained.

III

Data Processing and Dimensionality Reduction

The UMI counts were normalized to 10,000 counts per cell and converted to log scale (Seurat
function NormalizeData). The batch, condition, and subject information was added as meta data
to the final Seurat object; nUMI and batch were regressed out using the ScaleData function. The
Seurat FindVariableGenes function was used with default selections and cut-offs as follows:
x.low.cutoff = 0.003, x.high.cutoff = 2, y.cutoff = 1. This resulted in a list of 2135 highly variable
genes, which excludes lowly expressed genes (below 25" percentile), very highly expressed
genes, and selects only the top 10 % of genes in terms of the scaled dispersion. These highly
variable genes were used to calculate 100 principal components. Based on the PC elbow plot of
the standard deviation of the PCs (Supplementary Fig. 2a), the first 50 PCs were retained for use
in downstream analysis.

Clustering by Gene Expression

The FindClusters function was applied with a resolution of 2.5 and identified in 44 initial clusters.
The goal of clustering is to sort nuclei by cell type so that all remaining gene expression variation
within clusters is not related to cell differentiation processes. Prior to the advent of single nuclei
expression profiling, cell types were identified by observing differences in cell morphology,
behaviour, and anatomic location. It is fairly straight-forward to sort single nuclei expression
profiles into known cell types according to the expression levels of marker genes that
differentiate between these cell types. However, it is very unlikely that all cell types have been
identified so we must rely on nuclei clustering to uncover as-yet unknown cell types.
Unfortunately, the number of clusters obtained from the clustering algorithm is somewhat
arbitrary because clustering depends on the settings of several parameters, and there is no
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consensus on how they should be set. Although clusters obtained using reasonable default
settings usually correspond to known biological cell types, some clusters may appear to
potentially identify entirely new cell types or splinter existing cell types into multiple subtypes.
Deciding if the clusters really do identify new cell types can be difficult or may even be
impossible from available data.

To address this issue, we used tools in the Seurat package to sequentially combine any clusters
that were not sufficiently distinct from each other. In particular, after performing initial
hierarchical clustering of the graph-based clusters (BuildClusterTree), we assessed the nodes of
the dendrogram using a random forest classifier (AssessNodes) and then merged together any
nodes which were in the bottom 25 % of the dendrogram (using the branching.times function
from the ape R package’) and had an out-of-bag-error of more than 5 %. We then repeated this
clustering and merging process for the nuclei within each terminal node until none of the
remaining nodes fulfilled our cut-off criteria (Supplementary Fig. 2b). The resulting set of 30
clusters were then characterized in terms of known markers genes of all major, well-defined
brain cell types (Supplementary Fig. 2c-d). For refining identification of excitatory neuron types,
we combined and re-clustered a set of excitatory clusters with highly correlated gene expression
profiles (R > 0.95) (Supplementary Fig. 3a-c) to get 33 final clusters.

Cluster Annotation

Genes used as markers for major cell-types and layer-specificity are listed below. Inhibitory
neuron subtypes were annotated based on expression of canonical inhibitory interneuron
markers SST, PVALB, and VIP where possible. Excitatory neuron subtypes were annotated with
some level of layer specificity based on expression of layer specific markers. We also
characterised clusters in terms of all genes differentially expressed between clusters
(FindAllMarkers function, bimodal test, logfc.threshold of log(2), other parameters set to
default) (Supplementary Table 11).

Major cell-type markers

Macrophage/ Microglia: MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN; Astrocytes:
GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1, VIM; OPCs: PTGDS, PDGFRA,
PCDH15, OLIG2, OLIG1; Oligodendrocytes: PLP1, MAG,MOG, MOBP, MBP; Excitatory neurons:
SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1,GAD2, SLC32A1; Neurons:
SNAP25,STMN2, RBFOX3.

Layer-specific markers:

L2: GLRA3; L2-3: LAMP5S, CARTPT; L2-4: CUX2, THSD7A; L2-6: RASGRF2, PVRL3; L3-4: PRSS12; L4-
5: RORB; L4-6: GRIK4; L5: KCNK2, SULF2, PCP4, HTR2C, FEZF2: L5-6: TOX, ETV1, RPRM, RXFP1,
FOXP2; L6: SYT6, OPRK1, NR4A2, SYNPR, TLE, NTNG2, ADRA2A

Purification of Clusters for Differential Expression

While the level of cluster purity we achieved from the above steps was comparable to that of
previously published studies, a preliminary assessment of differential expression between our
biological conditions within each cell type clusters indicated that we needed further “cluster
purification” steps to remove even very small contaminating populations of doublets or
misclassified cells. Without such purification uneven presence of contaminating cells can result
in false positives in the differentially expressed genes identified. Our purification approach
comprised of calculating a median gene expression profile for all our clusters, calculating the
correlation of the gene expression of each cell, with the median profile of its cluster (considering
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only the top 865 genes whose median expression was highly variable, that is had a variance of >
0.25 across the different cluster) and selecting cells with high correlation. This was done by
fitting bimodal normal distributions to the total distribution of correlations in the cluster to
identify low and high correlation peaks. Cells were retained only if they had a low probability of
falling in the low correlation peak (p < 0.25) and a high probability (p > 0.75) of falling in the high
correlation peaks (Supplementary Fig. 7).

Differential Expression Analysis

Differential expression analysis between the cases and controls was performed using linear
mixed models implemented in the Ime4® and ImerTest’ R packages. Mixed models were
necessary in order to account for dependencies between nuclei obtained from the same subject.
Biological condition and number of UMIs were included in models as fixed effects and the
subject and batch as random effects. A false discovery rate (FDR) of 0.1 was used to detect
differentially expressed genes within each cell type.

Pseudotime trajectory using Monocle

For oligodendrocyte developmental trajectory assessment, the data for cells belonging to the
five clusters in the oligodendrocyte lineage (Oligos_1, Oligos_2, Oligos_3, OPCs_1, OPCs_2) were
used to create a separate Seurat object using the SubsetData function. The most variable genes
for these clusters alone were identified using the FindVariableGenes function and the following
parameters: x.low.cutoff = 0.003, x.high.cutoff = 3, y.cutoff = 1 (giving a total of 895). The Seurat
object was imported into a CDS (CellDataSet) object using the Monocle® function importCDS.

Estimation of size factors and dispersions was performed (using the estimateSizeFactors and
estimateDispersions Monocle functions) on the CDS object using default parameters.
Dimensionality reduction was then performed using reduceDimension, with reduction_method
set to DDRTree. The 895 variable genes identified as above were used for ordering the cells into
a trajectory with the orderCells function. The pseudotime trajectory was then plotted with
plot_cell_trajectory (Fig. 3a), and the change in expression of genes known to be involved in
oligodendrocyte development were plotted using plot_genes_in_pseudotime (Fig. 3b-h).

differentialGeneTest was applied separately to oligodendrocyte lineage cells from control
subjects and MDD cases with fullModelFormulaStr = "~sm.ns(Pseudotime)". This allows us to
model the expression of each gene as a function of pseudotime. All genes detected in at least
one cell in the respective group were compared and their changes across pseudotime were
assessed. A g-value cut-off of < 0.01 was used to identify genes associated with pseudotime. The
overlapping and non-overlapping genes were identified by comparing the lists obtained for the
two groups (Fig. 3a).

Correlations between differentially expressed genes

The average expression profile per subject within each cluster for each of the 96 differentially
expressed genes was calculated using the AverageExpression function in Seurat. Only subjects
that contributed cells to all of 16 clusters with differentially expressed genes were retained (13
controls and 6 MDD cases). The correlation coefficient between the expression of every pair of
genes was calculated independently for the controls and the MDD cases. One gene (ZFP36) with
zero average expression in all 6 retained cases was dropped because correlation could not be
calculated, leaving 95 genes for further analysis. To compare correlation coefficients between
cases and controls, correlation coefficients were transformed to Fisher z-scores using the fisherz
function of the R psych® package and a comparison z-score derived using the following formula:
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where z; denotes the z-score for the cases, n; the number of cases, z, the z-score for the
controls, n, the number of controls. The resulting z-score for the comparison was converted to a
two-tailed p-value (Supplementary Fig. 9). P-values were not corrected for multiple testing.

For assessing the overall strength of correlation differences between clusters we used Fisher’s
method for combining p-values for each pair of clusters. These combined p-values were used to
scale the links in the Circos'® plot depicting overall correlation differences (Fig. 4c).

Cell deconvolution

Expression data from (dbGaP:phs000424.v8.p1)"" was used as reference signatures for
annotated cell types. UMI counts for each cell were converted to transcripts per million (TPMs)
in order to account for the varying sequencing depth of each cell and sample. Average
expression levels were calculated for each cell type-specific cluster defined in the paper.

Cluster-specific gene expression profiles were obtained by summing the UMI values of all 24301
genes common to our dataset and the reference for each nucleus in each cluster and converting
the sums to TPMs. R package, DeconRNASeq v1.18.0"* was used to deconvolute these cluster-
specific profiles. Using the data from''as reference, we were able to estimate the cell type
composition of our clusters.

Data Availability

Raw sequencing data, annotated gene-barcode matrix, and lists of cells used for differential
gene expression analysis are accessible on the MGSS server:
http://mgss.cs.mcgill.ca/snRNAseq_paper/
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