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Abstract 

Major depressive disorder (MDD) is a complex illness that involves the interaction of different 
brain systems, pathways, and cell types. Past molecular studies of MDD relied on cellular 
homogenates of post-mortem brain tissue, making it impossible to determine gene expression 
changes within individual cells. Using single-cell transcriptomics, we examined almost 80,000 
nuclei from the dorsolateral prefrontal cortex of individuals with MDD and healthy controls. Our 
analyses identified 26 distinct cellular clusters, and over 60% of these showed transcriptional 
differences between groups. Specifically, 96 genes were differentially expressed, the majority of 
which were downregulated. Convergent evidence from our analyses, including gene expression, 
differential correlation, and gene ontology implicated dysregulation of synaptic plasticity in the 
etiopathogenesis of MDD. Our results show that this high-resolution approach can reveal 
previously undetectable changes in specific cell types in the context of complex phenotypes and 
heterogeneous tissues. 
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Introduction 

Major depressive disorder (MDD) is a complex and heterogeneous disorder that affects an 
estimated 300 million people worldwide1. MDD can have serious implications, including death 
by suicide. The genetic factors underlying the risk for MDD have been investigated using 
different approaches, including genome-wide association studies2. Although some genetic 
associations have been detected, it has been difficult to identify specific and strong genetic 
correlates of the disease3. 

The etiopathogenetic theory positing that MDD results from dysregulation of monoaminergic 
transmission, largely implicating the serotonergic and noradrenergic systems, has dominated 
the field for several decades. Recently, other factors have been associated with MDD, including 
glutamatergic and GABAergic transmission4-7, glial cell function, including astrocytic and 
oligodendrocytic contributions7-14, blood-brain barrier integrity9, and inflammation15. Thus, a 
wide variety of cell types found in the brain may contribute to the molecular changes underlying 
MDD. 

In experiments conducted with cerebral tissue homogenates, the interpretation of differential 
gene expression is often complicated by the fact that the cellular composition of the sample is 
not uniform. Gene expression patterns in the brain are cell type specific, not only differentiating 
major classes of cells such as neuronal and glial cells, but even differentiating subtypes of glial 
cells and neurons16,17. Therefore, it is difficult to verify whether subtle molecular differences 
observed from tissue homogenates are explained by the disease state or by differences in cell 
type composition between samples18,19 and, just as gene expression patterns are cell type 
specific, it is likely that gene expression changes associated with MDD are also cell type specific. 
Recently developed techniques for high-throughput single-cell and single-nucleus RNA-
sequencing provide a solution for addressing this inherent drawback to bulk tissue 
experiments20-22. 

High-throughput single-cell RNA-sequencing (scRNA-seq) allows profiling of transcriptomes of 
individual cells by capturing the cells in nanolitre droplets using a microfluidic device and tagging 
every RNA molecule in a cell with a cell-specific barcode and a unique molecular identifier 
(UMI), all within the droplet. This method can also be extended to individual nuclei and yields 
comparable information23,24, allowing for analysis of frozen tissues, which are not amenable to 
the isolation of intact cells. 

While there has been considerable interest in using single-cell datasets to gain insight into the 
processes underlying complex brain disorders25,, no direct comparison of single-cell human brain 
gene expression has yet been performed using high-throughput technologies.  

We collected transcriptomic information on thousands of cells from 34 individuals, of whom half 
died during an episode of MDD, while the other half were psychiatrically healthy controls. We 
investigated differentially expressed genes across cell types and showed an overall enrichment 
for genes involved in synaptic plasticity, long-term synaptic potentiation, and synaptic 
organization. We also investigated the patterns of correlation of expression between 
differentially expressed genes across separate clusters. 
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Our results indicate that snRNA-seq can be successfully applied to complex psychiatric 
phenotypes to elucidate the role of specific cell types in pathology. The approach to snRNA-seq 
described here is an effective tool for interrogating subtle phenotypes with improved resolution 
in archived brain tissue from human brain banks, which are highly valuable but as yet, untapped 
resources for single cell transcriptomic research. 

Results 

The human brain is comprised of many functionally unique cell types localized to specific brain 
regions and layers22,23,26,27, including some that have yet to be fully characterized. To assess the 
involvement of individual cell types in the pathophysiology of MDD, we examined nuclei from 
the dorsolateral prefrontal cortex (dlPFC), a region implicated in the pathology of major 
depressive disorder6,8,11. To assess a large number of nuclei, we used a droplet-based single 
nuclei method optimized for use with postmortem brain tissue. We assessed 78,886 nuclei from 
34 brain samples, half from patients who died during an episode of MDD, and the other half 
from matched psychiatrically healthy individuals (Table 1, Supplementary Tables 1-3). The 
experimental design is depicted in Fig. 1a. On average, we sequenced to a depth of almost 200 
million reads per sample (Supplementary Table 1). Glial cells have consistently been found to 
have fewer transcripts than neuronal cells22,28. We used custom filtering based on the 
distribution of UMIs detected (see Methods, Supplementary Fig. 1a-e, Supplementary Table 4) 
to recover a substantial number of glial cells. With an initial subset of 20 subjects, applying our 
custom filtering increased the total number of cells 1.8–fold but increased the number of non-
neuronal cells by almost 6-fold (data not shown). More than 90% of the filtered cells had less 
than 5% mitochondrial reads, thus ensuring high quality data (Supplementary Fig. 1f). The 
average gene count across nuclei ranged from 2144 in neurons to 1144 genes in glia 
(Supplementary Table 5). UMI counts were approximately twice the gene count for all cell types, 
as expected for this level of sequencing depth (Supplementary Table 5). Between sample 
groups, there were no significant differences in the median gene count (t test p=0.12), median 
UMIs (t test p=0.14) and number of cells (t test=0.07) (Supplementary Table 1). 

Unsupervised clustering identified 26 unique cell types in the dlPFC 

In order to identify different cell types present in the brain samples, we applied unsupervised 
graph-based clustering29 using the first 50 principal components derived from the 2135 most 
variable genes across individual cells (see Methods, Supplementary Fig. 2a-b). This initially 
resulted in 30 distinct cell types with the majority (47,461) of cells belonging to excitatory 
clusters, as expected30, based on an initial annotation (Supplementary Fig. 2c-d). We then 
reprocessed all excitatory clusters whose average gene expression profiles were mutually highly 
correlated (R>0.95), this included 7 clusters of ~40,000 cells. Two smaller excitatory clusters not 
sufficiently correlated with these 7 were not re-clustered. These ~40,000 cells were reprocessed 
using similar parameters for clustering as the whole dataset (with slight differences, see 
Methods) producing a refined sub-clustering of excitatory cell types (Supplementary Fig. 3a-c, 
Supplementary Table 6). Finally, the clusters were manually curated to eliminate potential 
biases; for example, clusters were removed if mainly one sample contributed to the cells 
contained within the cluster (Supplementary Tables 7-10, Supplementary Fig. 4a-c). After 
stringent quality control (see Methods), we identified 26 unique clusters (Fig. 1b). Each cluster 
was annotated using a combination of known cell markers including broad cell markers to 
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identify neurons in general (SNAP25, RBFO3, STMN2), excitatory cells (SATB2, SCL17A7, 
SLC17A6), inhibitory cells (GAD1, GAD2, SLC32A1) (Fig. 1c-j), and non-neuronal cells, including 
astrocytes (GLUL, SOX9, AQP4, GJA1, NDRG2), oligodendrocytes (PLP1, MAG, MOG, MOBP, 
MBP), oligodendrocyte precursor cells (OPCs) (PDGFRA, PCDH15, OLIG1, OLIG2), endothelial 
cells (CLDN5, VTN) , and macrophages/microglia (SPI, MRC1, TMEM119, CX3CR1) (Fig. 1k-r). 
Gene expression patterns specific to cell type clusters were visualised using DotPlots (Fig. 2a), 
average expression and median expression heatmaps (Supplementary Fig. 5a-b) and violin plots 
(Fig. 2b-e) to form a consensus for annotation. 

Refining cell types  

The clusters generated from our data are consistent with previously reported gene expression 
patterns that vary within cell types (Supplementary Fig. 6), though our considerably larger 
sample set allowed us to produce more unique clusters than previously observed22. 

Gene expression patterns previously linked to specific cortical layers (see Methods) coincide 
with our clustering of excitatory cells. In Fig. 2b, the genes are arranged from left to right in 
order of their expression across the cortical layers (from the layer VI to layer II). There is a 
gradient of expression of these genes across the excitatory clusters. For example, clusters Ex1, 
Ex4, and Ex7-9 had high expression of TLE4 (layer VI specific). Ex1, Ex8, and Ex9 showed 
concurrent expression of layer V/VI markers such as TOX. Ex6 and Ex7 additionally showed 
expression of the layer IV specific gene RORB. HTR2C, which is specific to a subset of layer V 
neurons, was prominent in Ex1 alone. PCP4, which is also layer V specific, was present in Ex1-3, 
Ex7, and Ex9. Superficial layer (I-III) markers such as CUX2 and RASGRF2 were mainly seen in the 
large cluster Ex10. Likewise, inhibitory cell types demonstrated subtype specific gene expression 
patterns. For example, In7 was classified as inhibitory parvalbumin because it expressed GAD1 
and PVALB, and lacked VIP and SST (Fig. 2c). Multiple astrocytic clusters were also identified, and 
while the typical sub-classification of astrocytes is based on their morphology within grey or 
white matter31, we used only grey matter for these samples. As such, based on the higher 
percentage of GFAP expression in Astros_3 (38%) compared to Astros_2 (21%), we expect 
Astros_3 to represent reactive astrocytes32 (Fig. 2d, Supplementary Table 11). 

Oligodendrocyte cell lineage 

We identified five unique cell clusters that fell into the oligodendrocyte lineage (OL), including 
two that we classified as OPCs (Fig 2e). OPCs express a characteristic set of markers such as 
PDGFRA33 and PCDH1534, which decline as these cells mature into oligodendrocytes, whereas 
other lineage markers like, OLIG2 or SOX10, are present in both mature and immature cells33. 
Given these developmental stage specific markers it is possible to plot a pseudotime trajectory35 
using gene expression for OPC1, OPC2, Oligos1, Oligos2 and Oligos3. The result indicates that 
OPC2 are the youngest cells within the dataset followed by OPC1, then Oligos2 and Oligos3, with 
Oligos1 being the most mature (Fig. 3a). The expression of thousands of genes varied according 
to pseudotime (q<0.01), but approximately half of the associations were observed in both cases 
and controls (Fig. 3a, right). Among the genes that are uniquely associated with pseudotime in 
cases, there was a 2.7–fold enrichment of apoptosis signalling (FDR p<9.01x10-3)36, while no 
functional enrichment was observed in controls. To assess the individual profiles of important 
developmental gene markers, we plotted their expression across pseudotime (Fig. 3b-h), 
revealing their expected pattern of expression. 
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Within cluster gene expression differences associated with depression 

We set out to assess gene expression differences between cases and controls within each 
cluster. However, one limitation of droplet based single-cell technology is the possibility of 
capturing doublet or multiplet nuclei in a given reaction. These represent a potential 
confounding factor when assessing differential gene expression between groups. We therefore 
attempted to eliminate them from the dataset by calculating the correlation of each cell to the 
median expression value of its assigned cluster (See Methods, Supplementary Fig. 7). Cells with 
low correlation were removed. We also excluded any genes expressed in less than 10% of the 
cells in that cluster. Using only these purified clusters and filtered genes, we performed a 
differential gene expression analysis (Supplementary Tables 12-36). Olig2 was excluded from 
differential expression analysis because it contained only 48 cells.  

A total of 96 genes (FDR <0.1) were differentially expressed in 16 of the 25 clusters analyzed 
(Fig. 4a) and 45 of those remained significant at FDR<0.05 (12 of 25 clusters). The majority, 80 
genes (83%), were downregulated, in line with findings from previous transcriptomic studies in 
MDD3,5,7. While the differential expression analysis treated each cell as a sample, per subject 
contributions to the differential analysis were visualized using heatmaps of average gene 
expression (Supplementary Fig. 8a-p) to assess biases in sample contributions. Thirty-nine of the 
96 differentially expressed genes were found in excitatory cell clusters and, of those, 34 were 
downregulated (Fig. 4b). Certain neuronal clusters contained both upregulated and 
downregulated genes, however it was more common for clusters to have only downregulated 
genes. Non-neuronal clusters tended to have both up- and downregulated genes (Fig. 4c). There 
were two instances of the same gene being differentially expressed in separate clusters: 
PRKAR1B showed decreased expression in excitatory clusters Ex7 (FDR=0.087, FC=0.87) and Ex2 
(FDR=0.047, FC=0.82) and TUBB4B in excitatory clusters Ex7 (FDR=0.079, FC=0.87) and Ex6 
(FDR=0.073, FC=0.86). 

There were strong enrichments of Gene Ontology terms for neuron projection maintenance (84-
fold enrichment; FDR=0.011) and negative regulation of long-term synaptic potentiation (75-fold 
enrichment; FDR=0.012). Both of these terms are hierarchically related with the more general 
term regulation of synaptic plasticity, also enriched in the set of 96 genes (9-fold enrichment, 
FDR=0.012) (Fig. 4d). 

Between and within cluster correlations as indications of how cells interact in MDD 

To assess how interactions between cells might contribute to psychopathology, we assessed the 
correlation of differentially expressed genes between clusters. Average expression per subject 
for each of the differentially expressed genes was calculated in each of the 16 clusters. A 
correlation coefficient for each pair of genes was independently calculated for cases and 
controls and transformed into a Fisher z-score for comparison between groups (see Methods). 
Any z-score with p<0.01 was retained. The significant correlation differences between clusters 
are represented in Fig. 5a. Any differential correlations resulting from a magnitude difference in 
correlation coefficients are represented in grey as they are believed to demonstrate consistency 
in the biological function between groups. A positive z-value (blue) arises from gene pair 
correlations that are positive in cases and negative in controls, whereas a negative z- value 
(orange) arises from the opposite combination. Of equal interest, we examined clusters that 
showed high levels of within-cluster correlation differences. As expected, OPC2 and Ex7 showed 
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the highest number of changes in gene relationships within clusters given they have the highest 
number of differentially regulated genes. Interestingly, the Ex3 cluster has no between cluster 
relationship but shows a within cluster change (Fig. 5b). We used Fisher’s method to assess the 
overall correlation differences between clusters (Fig. 5c). This shows the strongest difference in 
the correlations between In2 and In8.  

Discussion 

The complex arrangement of numerous cell types in cortical cytoarchitectonics makes it difficult 
to tease out the respective implication of these cells in MDD and other brain illnesses. It is only 
with the advent of single-cell technology that we are beginning to understand the total number 
of cellular subpopulations that exist in the brain17. Given the complexity of psychiatric disorders 
such as MDD, and the absence of consistent, salient genetic contributions, disentangling the role 
of each cell type in the brain is of great importance and will require the level of resolution we 
have achieved here. 

Compared to previous single-nucleus PFC transcriptomic studies, our larger data set allowed us 
to resolve a greater diversity of excitatory clusters than both droplet-based22 (10 vs 2) and full 
length snRNA-seq protocols26 (10 vs 8). Custom filtering increased non-neuronal cell content, 
allowing greater resolution of glial subtypes, including multiple astrocytic, oligodendrocytic, and 
OPC clusters. For example, this resolution enabled us to pinpoint changes specific to OPCs but 
not oligodendrocytes, and changes selective to one subset of astrocytic cells. The same principle 
extends to neuronal cell types. 

Differential gene expression analysis suggests synaptic function alterations in depression, 
including synaptic plasticity, regulation of long-term synaptic potentiation, synaptic organization 
and more broadly, learning, memory and cognition. Genes such as APP (Ex3), PRKAR1B (Ex2/7), 
and PRNP (OPC2), were consistently associated with a number of the most enriched terms 
related to synaptic function and cognition.  

Interestingly, APP was found to be differentially correlated with PRAF2, both of which were 
found to be dysregulated within Ex3 (IV/V). There was a strong negative correlation (R=-0.93) in 
MDD cases but a moderate association in controls (R=0.25). The products of these genes 
interact directly37 and both are important for synaptic function38,39. This is suggestive of synaptic 
dysregulation in layer V pyramidal cells in the PFC of MDD cases. Given that layer V is primarily 
composed of projection neurons40, this may implicate other brain regions involved in mood and 
emotions, including the limbic system. 

We found that PRKAR1B (encoding protein kinase cAMP-dependent type I regulatory subunit 
beta) was decreased in MDD cases in 2 separate clusters Ex7 (IV-VI) by 12% and in Ex2 (V) by 
15%. PRKAR1B is involved in the cAMP second messenger-signalling pathway and in dopamine 
receptor signaling41,42. Dopamine (DA) is an important modulator of synaptic plasticity in the 
PFC43,44. Dopaminergic afferents from the ventral tegmental area (VTA), project primarily to 
layer V in the PFC17, and although DA is often overlooked in MDD, recent evidence points to 
altered dopaminergic signal transduction in depression 45. 

Additionally, PRKAR1B, from Ex2, was differentially correlated with RAB11B from In3 (SST). 
RAB11B (encoding for a Ras-related protein) is critical in vesicle transport and recycling46, in 
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particular, trafficking and recycling of monoamine transporters47. It is demonstrably involved in 
dopamine transporter (DAT) recycling48. Both PRKAR1B and RAB11B were decreased in MDD 
cases and there was a strong negative correlation between these two genes (R=-0.83) in MDD 
cases, but a strong positive correlation in controls (R=0.59). It is possible that in healthy 
individuals these proteins work synergistically to regulate dopaminergic signal transduction. In 
this study, we found a reduction of RAB11B and PRKAR1B which may disrupt DAT trafficking and 
inhibit DA mediated second messenger signalling, respectively. Together, these changes may 
indicate impaired DA signal transduction and DA-related synaptic plasticity, although further 
empirical evidence is required to support this hypothesis.  

In addition to being associated with mediating synaptic plasticity49,50, the prion protein gene 
(PRNP) was strongly decreased (28%; FDR=0.038) in the OPC2 cluster, the least developed cells 
identified in this study. The absence of PRNP has been associated with an increased number of 
undifferentiated oligodendrocytes, and OPCs that do not mature into oligodendrocytes are 
thought to be eliminated by apoptosis51. 

Indeed, we uncovered evidence suggesting that MDD may fundamentally modify the 
developmental trajectory of oligodendrocytes. The gene sets associated with developmental 
trajectory differed significantly between MDD cases and controls. We also observed an 
enrichment of apoptosis-related genes in cases but not in controls. This is in line with both the 
described effects of decreased PRNP in OPCs51, and evidence of a loss of mature adult 
oligodendrocytes in animal models of depression and anxiety52. Interestingly, there is evidence 
suggesting that half of the OPCs (NG2+) in the brain do not give rise to any other cell type53,54, 
implying a possible independent functional role for these cells. As such, OPCs are now suggested 
to be a distinct glial cell type55 implicated in brain plasticity through roles such as integration of 
synaptic activity56 and mediation of long term potentiation57. Additionally, there is evidence 
directly implicating the loss of this cell type with emergence of depressive-like behaviour58. The 
data from this study indicate that in MDD OPCs are not only precursor cells for 
oligodendrocytes, but act as an independently functioning cell type. 

Our paper builds on numerous pieces of convergent evidence pointing to the role of synaptic 
plasticity in the etiopathogenesis of major depressive disorder. In addition, these data expose 
several other possible paths toward deconvoluting the molecular and cellular changes 
underlying depression. With time and new insights into similar single nucleus transcriptomic 
alterations observed in other key brain regions associated with depression, we will be in a better 
position to forage new avenues for therapeutic interventions.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 
GT holds a Canada Research Chair (Tier 1) and a NARSAD Distinguished Investigator Award. 
He is supported by grants from the Canadian Institute of Health Research (CIHR) (FDN148374 
and EGM141899), and by the Fonds de recherche du Québec -Santé (FRQS) through the 
Quebec Network on Suicide, Mood Disorders and Related Disorders. 
We acknowledge the expert help of the Douglas-Bell Canada Brain Bank staff (Josée 
Prud’homme, Maâmar Bouchouka and Annie Baccichet), and the technology development 
team the McGill University and Genome Quebec Innovation Centre (Yu Chang Wang). We 
would like to thank Liam O’Leary for his artistic inputs in figure creation.  

Author Contributions  
CN conceptualized, performed and wrote the manuscript, MM performed experiments, 
bioinformatics and wrote manuscript, MS and JFT performed bioinformatics and reviewed 
the manuscript, NM contributed to tissue processing, data interpretation and manuscript 
preparation, JR provided technical single-cell expertise and experimental support, aided in 
manuscript preparation, GT provided general oversight, including in experimental design, 
data interpretation and manuscript preparation. 

Competing Interests statement  
We have no competing interest to declare. 

 

References 

1. Organization, W.H. Depression and Other Common Mental Disorders: Global Health 
Estimates.  24 (Geneva, Switzerland, 2017). 

2. Wray, N.R., et al. Genome-wide association analyses identify 44 risk variants and refine 
the genetic architecture of major depression. Nature Genetics 50, 668-681 (2018). 

3. Jansen, R., et al. Gene expression in major depressive disorder. Mol Psychiatry 21, 339-
347 (2016). 

4. Klempan, T., Ernst, C., Deleva, V., Labonte, B. & Turecki, G. Characterization of QKI gene 
expression, genetics, and epigenetics in suicide victims with major depressive disorder. 
Biological psychiatry 66, 824-855 (2009). 

5. Sequeira, A., et al. Global brain gene expression analysis links glutamatergic and 
GABAergic alterations to suicide and major depression. PLoS One 4, e6585 (2009). 

6. Abdallah, C.G., Sanacora, G., Duman, R.S. & Krystal, J.H. The neurobiology of depression, 
ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? 
Pharmacol Ther (2018). 

7. Choudary, P., et al. Altered cortical glutamatergic and GABAergic signal transmission 
with glial involvement in depression. Proceedings of the National Academy of Sciences of 
the United States of America 102, 15653-15658 (2005). 

8. Cotter, D., et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral 
prefrontal cortex in subjects with major depressive disorder. Cerebral cortex (New York, 
N.Y. : 1991) 12, 386-394 (2002). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


9. Pantazatos, S.P., et al. Whole-transcriptome brain expression and exon-usage profiling 
in major depression and suicide: evidence for altered glial, endothelial and ATPase 
activity. Molecular Psychiatry 22, 760 (2016). 

10. Edgar, N. & Sibille, E. A putative functional role for oligodendrocytes in mood regulation. 
Translational Psychiatry 2, e109 (2012). 

11. Ernst, C., et al. Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal 
cortex of suicide completers. Biological psychiatry 70, 312-319 (2011). 

12. Nagy, C., et al. Astrocytic abnormalities and global DNA methylation patterns in 
depression and suicide. Mol Psychiatry 20, 320-328 (2015). 

13. Rajkowska, G., et al. Oligodendrocyte morphometry and expression of myelin – Related 
mRNA in ventral prefrontal white matter in major depressive disorder. Journal of 
Psychiatric Research 65, 53-62 (2015). 

14. Tham, M.W., Woon, P.S., Sum, M.Y., Lee, T.-S. & Sim, K. White matter abnormalities in 
major depression: Evidence from post-mortem, neuroimaging and genetic studies. 
Journal of Affective Disorders 132, 26-36 (2011). 

15. Duman, R.S., Aghajanian, G.K., Sanacora, G. & Krystal, J.H. Synaptic plasticity and 
depression: new insights from stress and rapid-acting antidepressants. Nat Med 22, 238-
249 (2016). 

16. Hawrylycz, M.J., et al. An anatomically comprehensive atlas of the adult human brain 
transcriptome. Nature 489, 391-399 (2012). 

17. Radnikow, G. & Feldmeyer, D. Layer- and Cell Type-Specific Modulation of Excitatory 
Neuronal Activity in the Neocortex. Front Neuroanat 12, 1 (2018). 

18. Mancarci, B.O., et al. Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with 
Applications to Interpretation of Bulk Tissue Data. eneuro 4(2017). 

19. Kelley, K.W., Inoue, H., Molofsky, A.V. & Oldham, M.C. Variation among intact tissue 
samples reveals the core transcriptional features of human CNS cell classes. bioRxiv 
(2018). 

20. Macosko, Evan Z., et al. Highly Parallel Genome-wide Expression Profiling of Individual 
Cells Using Nanoliter Droplets. Cell 161, 1202-1214 (2015). 

21. Zheng, G.X.Y., et al. Massively parallel digital transcriptional profiling of single cells. 
Nature Communications 8, 14049 (2017). 

22. Habib, N., et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 
14, 955-958 (2017). 

23. Lake, B.B., et al. A comparative strategy for single-nucleus and single-cell transcriptomes 
confirms accuracy in predicted cell-type expression from nuclear RNA. Sci Rep 7, 6031 
(2017). 

24. Grindberg, R.V., et al. RNA-sequencing from single nuclei. Proceedings of the National 
Academy of Sciences 110, 19802 (2013). 

25. Skene, N.G., et al. Genetic identification of brain cell types underlying schizophrenia. 
Nature Genetics 50, 825-833 (2018). 

26. Lake, B.B., et al. Neuronal subtypes and diversity revealed by single-nucleus RNA 
sequencing of the human brain. Science 352, 1586-1590 (2016). 

27. Zeisel, A., et al. Brain structure. Cell types in the mouse cortex and hippocampus 
revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015). 

28. Lake, B.B., et al. Integrative single-cell analysis of transcriptional and epigenetic states in 
the human adult brain. Nat Biotechnol 36, 70-80 (2018). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


29. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nat 
Biotechnol 36, 411-420 (2018). 

30. Sahara, S., Yanagawa, Y., O'Leary, D.D. & Stevens, C.F. The fraction of cortical GABAergic 
neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci 
32, 4755-4761 (2012). 

31. Sofroniew, M. & Vinters, H. Astrocytes: biology and pathology. Acta neuropathologica 
119, 7-35 (2010). 

32. Anderson, M.A., Ao, Y. & Sofroniew, M.V. Heterogeneity of reactive astrocytes. Neurosci 
Lett 565, 23-29 (2014). 

33. Traiffort, E., Zakaria, M., Laouarem, Y. & Ferent, J. Hedgehog: A Key Signaling in the 
Development of the Oligodendrocyte Lineage. J Dev Biol 4(2016). 

34. Marques, S., et al. Single-cell transcriptomic profiling of progenitors of the 
oligodendrocyte lineage reveals transcriptional convergence during development. 
bioRxiv (2017). 

35. Trapnell, C., et al. The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-386 (2014). 

36. Mi, H., et al. PANTHER version 11: expanded annotation data from Gene Ontology and 
Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45, D183-
D189 (2017). 

37. Del Prete, D., et al. Localization and Processing of the Amyloid-beta Protein Precursor in 
Mitochondria-Associated Membranes. J Alzheimers Dis 55, 1549-1570 (2017). 

38. Koomoa, D.L., Go, R.C., Wester, K. & Bachmann, A.S. Expression profile of PRAF2 in the 
human brain and enrichment in synaptic vesicles. Neurosci Lett 436, 171-176 (2008). 

39. Guenette, S., Strecker, P. & Kins, S. APP Protein Family Signaling at the Synapse: Insights 
from Intracellular APP-Binding Proteins. Front Mol Neurosci 10, 87 (2017). 

40. Naka, A. & Adesnik, H. Inhibitory Circuits in Cortical Layer 5. Frontiers in Neural Circuits 
10(2016). 

41. Korecka, J.A., et al. Phenotypic characterization of retinoic acid differentiated SH-SY5Y 
cells by transcriptional profiling. PLoS One 8, e63862 (2013). 

42. Adachi, M. & Lewis, E.J. The paired-like homeodomain protein, Arix, mediates protein 
kinase A-stimulated dopamine beta-hydroxylase gene transcription through its 
phosphorylation status. J Biol Chem 277, 22915-22924 (2002). 

43. Sheynikhovich, D., Otani, S. & Arleo, A. Dopaminergic Control of Long-Term 
Depression/Long-Term Potentiation Threshold in Prefrontal Cortex. The Journal of 
Neuroscience 33, 13914 (2013). 

44. Pignatelli, M., et al. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning. 
Neuron 93, 425-440 (2017). 

45. Belujon, P. & Grace, A.A. Dopamine System Dysregulation in Major Depressive 
Disorders. Int J Neuropsychopharmacol 20, 1036-1046 (2017). 

46. Campa, C.C. & Hirsch, E. Rab11 and phosphoinositides: A synergy of signal transducers in 
the control of vesicular trafficking. Advances in Biological Regulation 63, 132-139 (2017). 

47. Matthies, H.J.G., et al. Rab11 Supports Amphetamine-Stimulated Norepinephrine 
Transporter Trafficking. The Journal of Neuroscience 30, 7863-7877 (2010). 

48. Hong, W.C. & Amara, S.G. Differential targeting of the dopamine transporter to recycling 
or degradative pathways during amphetamine- or PKC-regulated endocytosis in 
dopamine neurons. FASEB J 27, 2995-3007 (2013). 

49. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


50. Caiati, M.D., et al. PrPC Controls via Protein Kinase A the Direction of Synaptic Plasticity 
in the Immature Hippocampus. The Journal of Neuroscience 33, 2973 (2013). 

51. Bribian, A., et al. Role of the cellular prion protein in oligodendrocyte precursor cell 
proliferation and differentiation in the developing and adult mouse CNS. PLoS One 7, 
e33872 (2012). 

52. Liu, J., et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. 
Nat Neurosci 15, 1621-1623 (2012). 

53. Psachoulia, K., Jamen, F., Young, K.M. & Richardson, W.D. Cell cycle dynamics of NG2 
cells in the postnatal and ageing brain. Neuron Glia Biol 5, 57-67 (2009). 

54. Rivers, L.E., et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform 
projection neurons in adult mice. Nat Neurosci 11, 1392-1401 (2008). 

55. Birey, F., Kokkosis, A.G. & Aguirre, A. Oligodendroglia-lineage cells in brain plasticity, 
homeostasis and psychiatric disorders. Current Opinion in Neurobiology 47, 93-103 
(2017). 

56. Sun, W., Matthews, E.A., Nicolas, V., Schoch, S. & Dietrich, D. NG2 glial cells integrate 
synaptic input in global and dendritic calcium signals. Elife 5(2016). 

57. Ge, W.P., et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-
permeable AMPA receptors. Science 312, 1533-1537 (2006). 

58. Birey, F., et al. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of 
Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron 88, 941-956 
(2015). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends 

Figure 1: a) Schematic representation of experimental procedures. Nuclei were extracted from 
Brodmann area 9 (BA9) of the dlPFC of 17 cases and 17 controls, single nuclei were captured in 
droplets for RNA-seq. Unsupervised clustering and cell type annotation were followed by 
differential expression analysis between cases and controls within each cluster. b) TSNE plot 
depicting the ~73,000 cells in 26 clusters identified after strict quality control of initial clusters. 
Includes 2 astrocytic, 3 oligodendrocytic, 2 oligodendrocyte precursor, 1 microglial, 1 
endothelial, 10 excitatory neuronal and 7 inhibitory neuronal clusters. The majority of cells are 
present in excitatory clusters. Individual TSNE plots representing the expression of various 
neuronal (c-j) and non-neuronal (k-r) cell type marker in a given cluster. 

Figure 2: a) Cell type annotation was performed based on expression of well-established marker 
genes. (Left) Dendrogram representing relationship between identified cell clusters based on 
gene expression. (Middle) DotPlot depicting expression of known marker genes in the 26 
clusters of interest. Marker genes are colour coded according to the cell type in which they 
should be detected (e.g.: red for SPI, which is expected to be microglial). The size of the dots 
represents the proportion of cells expressing the gene whereas the colour intensity represents 
the average expression level. (Right) The list of numbers gives the size of each cluster and the 
bar plot depicts the mean number of UMIs per cell in each cluster. Overall, non-neuronal cell 
types show lower mean number of UMIs. b) Cortical layer specific markers varied in expression 
within the excitatory neuronal clusters produced after sub-clustering of initial clusters. The 
schematic of cortical layers can be used to orient the marker genes to the appropriate layer. The 
violin plots depict the expression per cluster of layer specific marker genes going from the more 
superficial layers on the right (starting from CUX2) to the deeper layers on the left (ending at 
NTNG2). Excitatory clusters were annotated with their approximate layer-specific identities 
based on the expression pattern observed. c) Refined inhibitory cluster identification. Known 
classes of inhibitory neurons are identifiable based on the expression pattern of peptide genes 
(VIP, SST, CCK) and calcium binding protein genes (PVALB). d) Astrocyte and non-neuronal cells. 
Higher GFAP expression in Astros_3 than Astros_2 may reflect their reactive state. We were 
unable to detect vimentin (VIM) positive astrocytes, although VIM expression was detected in 
endothelial cells as expected. e) Cells belonging to the oligodendrocyte lineage. 

Figure 3. Pseudotime trajectory. a) (Left) Oligodendrocyte lineage cells from 5 clusters were 
analysed to produce a pseudotime trajectory to gauge their developmental stages. Going from 
left to right along the trajectory we see a progression of immature and mature oligodendrocyte 
precursor cells followed by immature and mature oligodendrocytes in the order shown. Inset 
provides the positions of the clusters in the original TSNE plot. (Right) The diagram shows the 
number of genes that changed in expression with pseudotime separately in cases and controls. 
While 3535 gens were common to both groups, 2010 were only associated with pseudotime in 
cases, and 1660 were only associated with pseudotime in controls. Expression across 
pseudotime of (b-d) genes known to be highly expressed in OPCs or immature oligodendrocytes 
(e) transitionary, or (f-h) highly expressed in mature oligodendrocytes.  

Figure 4: a) For each cluster the percentage change in expression between cases and controls of 
all detected genes are plotted with decreased expression to the left of the midline and increased 
expression of the right. Ninety-six significantly changed genes (of which 16 were upregulated 
and 80 were downegulated) are marked in colour, based on their corrected FDRs as shown in 
the legend (light to dark blue corresponds to higher to lower FDRs). Sixteen out of the 26 
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clusters contained significantly differentially expressed genes b) Contribution of different cell 
type clusters to differentially expressed genes is depicted in pie charts. While the proportion of 
total differentially expressed and downregulated genes contributed by the different cell type 
clusters were relatively similar, non-neuronal clusters contributed a higher proportion of genes 
upregulated in MDD cases. c) Number of clusters in each broad category showing up and 
downregulated genes in MDD cases. While some excitatory and inhibitory clusters showed only 
downregulation, all dysregulated non-neuronal clusters contained both up and downregulate 
genes. A larger proportion (7/8) inhibitory clusters showed dysregulation compared to 
excitatory (6/10) or non-neuronal (4/8) clusters.  There was just one cluster (inhibitory), which 
showed only upregulation. d) Top 25 gene ontology terms associated with the 96 differentially 
regulated genes. 

Figure 5: Significant z-scores for pairs of 95 (one dropped) differentially expressed genes in the 
16 dysregulated clusters are represented in a Circos plot. a) Only the z-score for pairs of genes 
coming from two different clusters are shown here (between cluster z-scores). The gene names 
and the clusters that contain them are labelled outside the circle. Lines connecting genes 
represent that the correlation of gene expression for that pair of genes was significantly 
different between MDD cases and controls. Blue lines indicate positive correlation in cases and 
negative in controls, red lines indicate positive for control and negative for cases, and grey lines 
indicate the same direction of correlation but different strengths. b) As in (a) but for pairs of 
differentially expressed genes in the same cluster. c) Circos plot depicting weighted (see 
Methods) lines showing the overall level of correlational differences between different clusters. 
In brief, the thicker lines connect clusters whose correlations change more strongly between 
MDD cases and controls.  

 

Tables 

Table 1: Sample information 

 
Controls (n=17)  Cases (n=17) p value 

Age (years) 38.71 ± 4.32 41.06 ± 4.66 p=0.714 
Gender 17M 17M - 
PMI (hrs) 34.01 ± 4.94 41.69 ± 4.76 *p=0.190 
pH 6.49 ± 0.06 6.60 ± 0.07 p=0.212 
Storage 
Time 14.71± 1.44 12.47± 1.46 *p=0.543 
Mean ± SEM 
*Mann Whitney test 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 
 

Materials and Methods 

Subjects: Postmortem brain samples 

This study was approved by the Douglas Hospital Research Ethics Board, and written informed 
consent from next-of-kin was obtained for each subject. Postmortem brain samples were 
provided by the Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca). Frozen grey 
matter samples were dissected from the left cerebral hemisphere of Brodmann Area 9 (dlPFC). 
Brains were dissected by trained neuroanatomists and stored at -80 °C. For each individual, the 
cause of death was determined by the Quebec Coroner’s office, and psychological autopsies 
were performed by proxy-based interviews, as described previously1.Cases met criteria for MDD 
whereas controls were individuals who died suddenly and did not have evidence of any axis I 
disorders (Table 1). Post mortem interval (PMI) represents the delay between a subject’s death 
and collection and processing of the brain. 

Nuclei isolation and capture 

50 mg of frozen tissue was dounced in 3 mL of lysis buffer, 10 times with a loose pestle and an 
additional 5 times with the tight pestle. The sample was left to lyse in a total of 5 mL of buffer 
for 5 min, after which 5 mL of wash buffer was added and swirled. The sample was passed 
through a 30 μm cell strainer and spun for 5 min at 500 g. This step was repeated for a total of 
two filtering steps. After pelleting, the nuclei are resuspended in 5-10 mL of wash buffer by 
pipetting up and down 8-10 times. After 3 washes, the nuclei were resuspended in 1 mL of wash 
buffer and mixed with 25 % Optiprep™, and layered on a 29 % optiprep cushion and spun for 30 
min at 10,000 g. Nuclei were resuspended in wash buffer to achieve a concentration of ~1x106 
nuclei/mL.  

We used the 10x Genomics® Chromium™ controller for single cell gene expression to isolate 
single nuclei for downstream bulk RNA library preparation. We strictly followed the protocol as 
outlined by the user guide (CG000052), with the exception of loading concentration, which we 
increase by 30% as we assessed the capture of nuclei to be slightly less efficient than cell 
encapsulation. We aimed to capture ~3000 nuclei per sample.  This system only allows for a 
maximum of 8 samples per capture run. As such, we required multiple batches to collect the 
individual nuclei for all 34 samples (6 batches). Samples 250 and 251 performed poorly, we 
therefore, carried out the capture on two separate chips and sequenced twice combining the 
data from both runs for the final analysis.  

Sequence Alignment and UMI Counting 

A pre-mRNA transcriptome was built using the cellranger mkref (Cellranger version 2.0.1) 
command and default parameters starting with the refdata-cellranger-GRCh38-1.2.0 
transcriptome and as per the instructions provided on the 10X Genomics website. Reads were 
demultiplexed by sample index using the cellranger mkfastq command (Cellranger v2.1.0). Fastq 
files were aligned to the custom transcriptome, cell barcodes were demultiplexed, and UMIs 
corresponding to genes were counted using the cellranger count command and default 
parameters. 

Data Transformation for Secondary Analysis 

The unfiltered gene barcode matrices for each sample were loaded into R using the Read10X 
function in the Seurat R package (version 2.2.0, 2.3.0)2. Cell names were modified such that the 
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subject name, batch, and biological condition were added to them. Seurat objects were created 
corresponding to each sample using the CreateSeuratObject function with the imported 
unfiltered gene-barcode matrices provided as the raw data. Individual Seurat objects for each 
sample were combined into one object using the MergeSeurat function sequentially. No filtering 
or normalization was performed up to this step. Since this is a single nucleus dataset, all 
mitochondrial genes that are transcribed from the mitochondrial genome were removed, along 
with genes not detected in any cell. 

Barcode and Gene Filtering 

Based on the distribution of nGene (total number of genes detected in each cell) for the total 
dataset (assessed by summary and hist R3 functions), barcodes that were associated with less 
than 110 detected genes were removed. Based on the distribution of nUMI (total numbers of 
UMIs detected in each cell), the top 0.5 % of barcodes were also excluded as most likely being 
multiplets rather than single nuclei as there was a very sharp increase of nUMI from 16,393 at 
the 99.5th percentile to 102,583 at the maximum.  

Next, the distribution of nUMI for the remaining barcodes was fit with three normal 
distributions using the normalmixEM function from the mixtools4 package (Supplementary Fig. 
1c). The rationale was that, the filtered barcodes contain a population of low quality “noise” 
barcodes that have a very low nUMI on average, a population of non-neuronal cells that have an 
intermediate nUMI and a population of neuronal cells that have a high nUMI. Based on the 
fitting of the normal distributions, only the barcodes with a high probability (> 0.95) of belonging 
to either the putative “non-neuronal” or putative “neuronal” distributions, and a low probability 
(<0.05) of belonging to the “noise” distribution were retained for further analysis 
(Supplementary Fig. 1c-d). 78,886 cells and 30,062 genes were retained.   

Data Processing and Dimensionality Reduction  

The UMI counts were normalized to 10,000 counts per cell and converted to log scale (Seurat 
function NormalizeData). The batch, condition, and subject information was added as meta data 
to the final Seurat object; nUMI and batch were regressed out using the ScaleData function. The 
Seurat FindVariableGenes function was used with default selections and cut-offs as follows: 
x.low.cutoff = 0.003, x.high.cutoff = 2, y.cutoff = 1. This resulted in a list of 2135 highly variable 
genes, which excludes lowly expressed genes (below 25th percentile), very highly expressed 
genes, and selects only the top 10 % of genes in terms of the scaled dispersion. These highly 
variable genes were used to calculate 100 principal components. Based on the PC elbow plot of 
the standard deviation of the PCs (Supplementary Fig. 2a), the first 50 PCs were retained for use 
in downstream analysis. 

Clustering by Gene Expression 

The FindClusters function was applied with a resolution of 2.5 and identified in 44 initial clusters. 
The goal of clustering is to sort nuclei by cell type so that all remaining gene expression variation 
within clusters is not related to cell differentiation processes. Prior to the advent of single nuclei 
expression profiling, cell types were identified by observing differences in cell morphology, 
behaviour, and anatomic location. It is fairly straight-forward to sort single nuclei expression 
profiles into known cell types according to the expression levels of marker genes that 
differentiate between these cell types. However, it is very unlikely that all cell types have been 
identified so we must rely on nuclei clustering to uncover as-yet unknown cell types.  
Unfortunately, the number of clusters obtained from the clustering algorithm is somewhat 
arbitrary because clustering depends on the settings of several parameters, and there is no 
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consensus on how they should be set. Although clusters obtained using reasonable default 
settings usually correspond to known biological cell types, some clusters may appear to 
potentially identify entirely new cell types or splinter existing cell types into multiple subtypes. 
Deciding if the clusters really do identify new cell types can be difficult or may even be 
impossible from available data. 

To address this issue, we used tools in the Seurat package to sequentially combine any clusters 
that were not sufficiently distinct from each other. In particular, after performing initial 
hierarchical clustering of the graph-based clusters (BuildClusterTree), we assessed the nodes of 
the dendrogram using a random forest classifier (AssessNodes) and then merged together any 
nodes which were in the bottom 25 % of the dendrogram (using the branching.times function 
from the ape R package5) and had an out-of-bag-error of more than 5 %. We then repeated this 
clustering and merging process for the nuclei within each terminal node until none of the 
remaining nodes fulfilled our cut-off criteria (Supplementary Fig. 2b). The resulting set of 30 
clusters were then characterized in terms of known markers genes of all major, well-defined 
brain cell types (Supplementary Fig. 2c-d). For refining identification of excitatory neuron types, 
we combined and re-clustered a set of excitatory clusters with highly correlated gene expression 
profiles (R > 0.95) (Supplementary Fig. 3a-c) to get 33 final clusters.  

Cluster Annotation 

Genes used as markers for major cell-types and layer-specificity are listed below. Inhibitory 
neuron subtypes were annotated based on expression of canonical inhibitory interneuron 
markers SST, PVALB, and VIP where possible. Excitatory neuron subtypes were annotated with 
some level of layer specificity based on expression of layer specific markers. We also 
characterised clusters in terms of all genes differentially expressed between clusters 
(FindAllMarkers function, bimodal test, logfc.threshold of log(2), other parameters set to 
default) (Supplementary Table 11). 

Major cell-type markers 

Macrophage/ Microglia: MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN; Astrocytes: 
GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1, VIM; OPCs: PTGDS, PDGFRA, 
PCDH15, OLIG2, OLIG1; Oligodendrocytes: PLP1, MAG,MOG, MOBP, MBP; Excitatory neurons: 
SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1,GAD2, SLC32A1; Neurons: 
SNAP25,STMN2, RBFOX3. 

Layer-specific markers: 

L2: GLRA3; L2-3: LAMP5, CARTPT; L2-4: CUX2, THSD7A; L2-6: RASGRF2, PVRL3; L3-4: PRSS12; L4-
5: RORB; L4-6: GRIK4; L5: KCNK2, SULF2, PCP4, HTR2C, FEZF2: L5-6: TOX, ETV1, RPRM, RXFP1, 
FOXP2; L6: SYT6, OPRK1, NR4A2, SYNPR, TLE, NTNG2, ADRA2A 

Purification of Clusters for Differential Expression 

While the level of cluster purity we achieved from the above steps was comparable to that of 
previously published studies, a preliminary assessment of differential expression between our 
biological conditions within each cell type clusters indicated that we needed further “cluster 
purification” steps to remove even very small contaminating populations of doublets or 
misclassified cells. Without such purification uneven presence of contaminating cells can result 
in false positives in the differentially expressed genes identified. Our purification approach 
comprised of calculating a median gene expression profile for all our clusters, calculating the 
correlation of the gene expression of each cell, with the median profile of its cluster (considering 
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only the top 865 genes whose median expression was highly variable, that is had a variance of > 
0.25 across the different cluster) and selecting cells with high correlation. This was done by 
fitting bimodal normal distributions to the total distribution of correlations in the cluster to 
identify low and high correlation peaks. Cells were retained only if they had a low probability of 
falling in the low correlation peak (p < 0.25) and a high probability (p > 0.75) of falling in the high 
correlation peaks (Supplementary Fig. 7).  

Differential Expression Analysis 

Differential expression analysis between the cases and controls was performed using linear 
mixed models implemented in the lme46 and lmerTest7 R packages. Mixed models were 
necessary in order to account for dependencies between nuclei obtained from the same subject. 
Biological condition and number of UMIs were included in models as fixed effects and the 
subject and batch as random effects. A false discovery rate (FDR) of 0.1 was used to detect 
differentially expressed genes within each cell type.  

Pseudotime trajectory using Monocle 

For oligodendrocyte developmental trajectory assessment, the data for cells belonging to the 
five clusters in the oligodendrocyte lineage (Oligos_1, Oligos_2, Oligos_3, OPCs_1, OPCs_2) were 
used to create a separate Seurat object using the SubsetData function. The most variable genes 
for these clusters alone were identified using the FindVariableGenes function and the following 
parameters: x.low.cutoff = 0.003, x.high.cutoff = 3, y.cutoff = 1 (giving a total of 895). The Seurat 
object was imported into a CDS (CellDataSet) object using the Monocle8 function importCDS.  

Estimation of size factors and dispersions was performed (using the estimateSizeFactors and 
estimateDispersions Monocle functions) on the CDS object using default parameters. 
Dimensionality reduction was then performed using reduceDimension, with reduction_method 
set to DDRTree. The 895 variable genes identified as above were used for ordering the cells into 
a trajectory with the orderCells function. The pseudotime trajectory was then plotted with 
plot_cell_trajectory (Fig. 3a), and the change in expression of genes known to be involved in 
oligodendrocyte development were plotted using plot_genes_in_pseudotime (Fig. 3b-h).  

differentialGeneTest was applied separately to oligodendrocyte lineage cells from control 
subjects and MDD cases with fullModelFormulaStr = "~sm.ns(Pseudotime)". This allows us to 
model the expression of each gene as a function of pseudotime.  All genes detected in at least 
one cell in the respective group were compared and their changes across pseudotime were 
assessed. A q-value cut-off of < 0.01 was used to identify genes associated with pseudotime. The 
overlapping and non-overlapping genes were identified by comparing the lists obtained for the 
two groups (Fig. 3a).  

Correlations between differentially expressed genes 

The average expression profile per subject within each cluster for each of the 96 differentially 
expressed genes was calculated using the AverageExpression function in Seurat. Only subjects 
that contributed cells to all of 16 clusters with differentially expressed genes were retained (13 
controls and 6 MDD cases). The correlation coefficient between the expression of every pair of 
genes was calculated independently for the controls and the MDD cases. One gene (ZFP36) with 
zero average expression in all 6 retained cases was dropped because correlation could not be 
calculated, leaving 95 genes for further analysis. To compare correlation coefficients between 
cases and controls, correlation coefficients were transformed to Fisher z-scores using the fisherz 
function of the R psych9 package and a comparison z-score derived using the following formula: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/384479doi: bioRxiv preprint 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

𝑧𝑧1 − 𝑧𝑧2

� 1
𝑛𝑛1 − 3 + 1

𝑛𝑛2 − 3

 

where z1 denotes the z-score for the cases, n1 the number of cases, z2 the z-score for the 
controls, n2 the number of controls. The resulting z-score for the comparison was converted to a 
two-tailed p-value (Supplementary Fig. 9). P-values were not corrected for multiple testing. 

For assessing the overall strength of correlation differences between clusters we used Fisher’s 
method for combining p-values for each pair of clusters. These combined p-values were used to 
scale the links in the Circos10 plot depicting overall correlation differences (Fig. 4c). 

Cell deconvolution 

Expression data from (dbGaP:phs000424.v8.p1)11 was used as reference signatures for 
annotated cell types. UMI counts for each cell were converted to transcripts per million (TPMs) 
in order to account for the varying sequencing depth of each cell and sample. Average 
expression levels were calculated for each cell type-specific cluster defined in the paper. 

Cluster-specific gene expression profiles were obtained by summing the UMI values of all 24301 
genes common to our dataset and the reference for each nucleus in each cluster and converting 
the sums to TPMs. R package, DeconRNASeq v1.18.012 was used to deconvolute these cluster-
specific profiles. Using the data from11as reference, we were able to estimate the cell type 
composition of our clusters. 

Data Availability 

Raw sequencing data, annotated gene-barcode matrix, and lists of cells used for differential 
gene expression analysis are accessible on the MGSS server: 
http://mgss.cs.mcgill.ca/snRNAseq_paper/ 
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Figure 1c‐j Neuronal markers
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Figure 1k‐r Non‐Neuronal
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