

1 **Single-cell RNA-seq reveals dynamic transcriptome profiling in human early
2 neural differentiation**

3 Zhouchun Shang^{1,2,3,4#}, Dongsheng Chen^{2,3#}, Quanlei Wang^{2,3,4,5#}, Shengpeng
4 Wang^{2,3}, Qiuting Deng^{2,3}, Liang Wu^{2,3,5,6}, Chuanyu Liu^{2,3,5}, Xiangning Ding^{2,3}, Shiyou
5 Wang^{2,3}, Jixing Zhong^{2,3}, Doudou Zhang⁷, Xiaodong Cai⁷, Shida Zhu^{2,3,4}, Huanming
6 Yang^{2,8}, Longqi Liu^{2,3}, J. Lynn Fink^{2,9}, Fang Chen^{2,3,10}, Xiaoqing Liu¹, Zhengliang
7 Gao^{1*} and Xun Xu^{2,3*}

8 1 Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai,
9 China

10 2 BGI-Shenzhen, Shenzhen, China

11 3 China National GeneBank, BGI-Shenzhen, Shenzhen, China

12 4 Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics,
13 BGI-Shenzhen, Shenzhen, China

14 5 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen,
15 China

16 6 Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen, China

17 7 Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen
18 University 1st Affiliated Hospital, Shenzhen, Guangdong, China

19 8 James D. Watson Institute of Genome Sciences, Hangzhou, China

20 9 The University of Queensland, Diamantina Institute (UQDI), Brisbane, QLD,
21 Australia

22 10 Laboratory of Genomics and Molecular Biomedicine, Department of Biology,
23 University of Copenhagen, DK-2100, Copenhagen, Denmark

24 #These authors contributed equally to this work.

25 *Correspondence should be addressed to Z.G. (zhengliang_gao@tongji.edu.cn) or
26 X.X. (xuxun@genomics.cn).

27

28

29

30 **Abstract:**

31 **Background:** Investigating cell fate decision and subpopulation specification in the
32 context of the neural lineage is fundamental to understanding neurogenesis and
33 neurodegenerative diseases. The differentiation process of neural-tube-like rosettes
34 *in vitro* is representative of neural tube structures, which are composed of radially
35 organized, columnar epithelial cells and give rise to functional neural cells. However,
36 the underlying regulatory network of cell fate commitment during early neural
37 differentiation remains elusive.

38 **Results:** In this study, we investigated the genome-wide transcriptome profile of
39 single cells from six consecutive reprogramming and neural differentiation time points
40 and identified cellular subpopulations present at each differentiation stage. Based on
41 the inferred reconstructed trajectory and the characteristics of subpopulations
42 contributing the most towards commitment to the central nervous system (CNS)
43 lineage at each stage during differentiation, we identified putative novel transcription
44 factors in regulating neural differentiation. In addition, we dissected the dynamics of
45 chromatin accessibility at the neural differentiation stages and revealed active
46 *cis*-regulatory elements for transcription factors known to have a key role in neural
47 differentiation as well as for those that we suggest are also involved. Further,
48 communication network analysis demonstrated that cellular interactions most
49 frequently occurred among embryoid body (EB) stage and each cell subpopulation
50 possessed a distinctive spectrum of ligands and receptors associated with neural
51 differentiation which could reflect the identity of each subpopulation.

52 **Conclusions:** Our study provides a comprehensive and integrative study of the
53 transcriptomics and epigenetics of human early neural differentiation, which paves the
54 way for a deeper understanding of the regulatory mechanisms driving the
55 differentiation of the neural lineage.

56 **Key words:** single cell RNA-seq, ATAC-seq, neural differentiation, neural rosettes,
57 neural tube, transcription factor, iPSCs

58

59 **Background**

60 The nervous system contains complex molecular circuitry in developmental processes.
61 In humans, there is a paucity of data describing early neural development and the
62 corresponding cellular heterogeneity at various stages. To our knowledge, neural tube
63 formation and closure is crucial for embryonic central nervous system (CNS)
64 development and the process of neurulation. Previous studies have reported that
65 neural tube closure is strongly controlled by both genetic and epigenetic factors and is
66 sensitive to environmental influences [1-3]. Perturbations in this delicately balanced
67 and orchestrated process can result in neural tube defects (NTDs) giving rise to birth
68 defects such as spina bifida, anencephaly and encephaloceles. However, the
69 formation and closure of the neural tube *in vivo* during week 3 and 4 of human
70 gestation is a transient event and is therefore difficult to capture. Moreover, the limited
71 accessibility of human abortive fetuses at such an early stage precludes a thorough
72 investigation of human early neural development.

73

74 Human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and
75 induced pluripotent stem cells (iPSCs), can be differentiated into all cell types,
76 including neural cells, offering a promising *in vitro* model for tracing early cell lineages
77 and studying the cell fate specification of human neural differentiation [4, 5]. Previous
78 studies have indicated that inhibition of bone morphogenetic protein (BMP) signalling
79 or activation of fibroblast growth factor (FGF) signalling is needed for induction of the
80 neuroectoderm from ESCs [6, 7]. A striking feature of differentiating stem cells *in vitro*
81 is that they form neural tube-like rosettes which are composed of radially organized
82 columnar epithelial cells that resemble the process of neurulation. The progenitor cells
83 in rosettes gradually give rise to functional cells (e.g., more restricted progenitors and
84 neuronal precursors, mimicking the process of neurulation and neural tube growth)
85 which represent neural tube structures [8]. These cellular processes suggest that
86 distinct cell fate decisions and lineage commitments occur during rosette formation.
87 However, the corresponding underlying mechanisms of the regulation of cell fate

88 commitment during early neural differentiation remain largely unknown.

89

90 The advance of single cell trans-omics technology has offered incisive tools for
91 revealing heterogeneous cellular contexts and developmental processes [9-11].
92 Single cell RNA-seq (scRNA-seq) has been applied to the study of cellular
93 heterogeneity as well as to the identification of novel subtypes or intermediate cell
94 groups in multiple contexts [12-15], and may help delineate unexpected features of
95 neural developmental biology and facilitate the study of cellular states and
96 neurogenesis processes. In the present study, we used scRNA-seq and ATAC-seq
97 (assay for transposase-accessible chromatin using sequencing) to investigate human
98 early neural differentiation. Our analysis reveals the landscape of the transcriptome
99 and *cis*-regulatory elements during this process and creates an unbiased
100 classification of cell subpopulations during differentiation, providing a comprehensive
101 description of transcriptomic and epigenetic patterns in cell fate decision. The
102 differentiation system of hiPSCs provides access to the very early stage of neural
103 development and may serve as a source of specialized cells for regenerative
104 medicine as well as supporting further investigations of neural tube defects.

105

106 **Data description**

107 Here, we applied a well-adopted neural induction protocol and generated neural
108 progenitor cells (NPCs) by forming neural rosettes *in vitro* [8, 16]. We analysed
109 several different differentiation stages of cells, including hiPSCs, embryoid body (EB),
110 early rosettes (hereafter termed Ros-E, post-3 days of rosettes formation), late
111 rosettes (hereafter termed Ros-L, post-5 days of rosettes formation), NPCs, and the
112 original somatic fibroblasts (Fib). scRNA-seq was performed at discrete time points
113 (e.g., Fib, iPSCs, EB, Ros-E, Ros-L and NPCs), and we captured 96, 80, 81, 82, 93,
114 and 95 single cells, respectively, for each stage with the purpose of studying
115 differentiation transition events. The quality of sequencing data was evaluated and
116 filtered by a quality control (QC) pipeline developed in-house (see Methods for details).

117 In addition, bulk ATAC-seq with two biological replicates was applied to the cell stages
118 iPSCs, EB, Ros-E, Ros-L and NPCs to measure the regulome dynamics during neural
119 differentiation (Fig. 1a).

120

121 **Analyses**

122 **Differential transcriptome and regulome dynamics throughout human early**
123 **neural differentiation**

124 Since the development of human ESCs and iPSCs, the ability to investigate human
125 neurogenesis and neurological diseases via an *in vitro* differentiation model has vastly
126 improved [4, 17]. Subsequently, artificial neural cells have been successfully
127 generated using a variety of protocols by several laboratories [18-23]. Here, we
128 followed a well-adopted neural induction protocol and generated NPCs by forming
129 neural rosettes via inhibition of TGF β , AMPK and BMP signalling pathways and
130 activation of the FGF signalling pathway [8, 16]. We analysed different differentiation
131 stages of the cells including iPSCs, EB, Ros-E, Ros-L, and NPCs as well as the
132 original somatic fibroblasts (Fib). The iPSC aggregates were induced to
133 neuroepithelial cells (NE) and followed by neural tube-like rosettes formation (Fig. 1b).
134 Firstly, pluripotency-associated transcription factors (TFs) (e.g., OCT4, NANOG) were
135 significantly expressed in hiPSCs, suggesting that these cells did exhibit a stem cell
136 phenotype. The subsequent formation of neural rosettes was confirmed by
137 morphology, apical localization of ZO-1, a tight junction protein, and co-localisation of
138 the neuroepithelial marker N-CADHERIN (N-CAD, also known as CDH2) at the
139 junctions. Additional neural markers such as PAX6, NESTIN, SOX2, and SOX1 were
140 also found to be highly enriched in the rosette stage (Fig. 1b).

141

142 Cell stages are usually determined by a complement of TFs or master regulators
143 which regulate hundreds of genes associated with various cellular functions. To study
144 the genomic features associated with open chromatin regions, we classified ATAC
145 peaks based on the location of the peak centre. More than 16,000 peaks were

146 identified for each cell stage (Additional file 1: Figure S1a) with the majority located in
147 introns and enhancers/promoters, genomic regions that are known to harbour a
148 variety of *cis*-regulatory elements and are subjected to regulation by TFs (Additional
149 file 1: Figure S1b). Furthermore, we observed that ATAC peaks were significantly
150 enriched at regions near transcription start sites (TSS) (Additional file 1: Figure S1c).
151 These observations were reproducible across two replicates with a very high Pearson
152 correlation coefficient (≥ 0.954) (Additional file 1: Figure S1d, e).

153

154 It is widely reported that chromatin structures undergo widespread reprogramming
155 during cell status transition, with some genomic regions becoming compacted or
156 opened, leading to the switching on or off of a repertoire of genes responsible for cell
157 fate decision [24-29]. We studied the dynamic chromatin landscape by tracing the
158 temporal origins of ATAC peaks at each stage with peaks non-overlapping with
159 existing ones that were annotated as novel peaks. We assumed that those peaks,
160 conserved among differentiation stages, are associated with housekeeping genes
161 while stage-dynamic peaks are likely to represent *cis*-regulatory elements important
162 for cell status transition. As expected, we observed the introduction of roughly 10-50%
163 of novel peaks in each stage, accompanied by the disappearance of several
164 pre-existing ATAC peaks. Notably, more novel peaks appeared at the NPCs stage
165 than at other stage (Fig. 1c). GO term analysis of genes residing in novel peaks
166 across the differentiation stages showed enrichment of “axon development”, “positive
167 regulation of nervous system development”, “epithelial tube morphogenesis”, “positive
168 regulation of neurogenesis”, “cell-cell signalling by Wnt”, “forebrain development”,
169 “hindbrain development”, “telencephalon development”, “neural precursor cell
170 proliferation”, and “cell fate commitment”. “Neurotrophin signalling pathway” was also
171 found to be enriched, but was specifically associated with NPCs. KEGG enrichment
172 analysis showed that “FoxO signalling pathway”, a pathway which is known to play an
173 important role in NPC proliferation, and “neuroactive ligand–receptor interaction” were
174 enriched in NPCs stage (Fig. 1d, e), suggesting that specific *cis*-regulatory elements

175 regulating neural differentiation are being staged (poised) for stem cell fate
176 specification and conversion.

177

178 To reveal the detail of chromatin accessibility dynamics during neural differentiation,
179 we also analysed the gained or lost peaks at each stage compared with the previously
180 neighbouring one. We observed that the number of gained peaks was with the largest
181 increase at the NPCs stage while the number of lost peaks was relatively high at
182 Ros-E stage (Additional file 2: Figure S2a). Next, we studied the genomic distribution
183 of these dynamic peaks and found that both the gained and lost peaks were located
184 mostly in distal intergenic regions and promoter regions (Additional file 2: Figure S2b).
185 This observation indicates that distal and promoter regions are more dynamic
186 compared to other genomic regions during neural differentiation process.

187

188 To gain insight into the potential function of closing (lost) peaks dynamics, we carried
189 out GO enrichment analysis on the genes associated with lost peaks at each stage.
190 The GO terms analysis showed that “mesoderm morphogenesis”, “endoderm
191 development”, “gastrulation” and “nodal signalling pathway” were solely enriched at
192 EB stage, indicating that upstream, as well as other lineage development, was
193 relatively repressed by closing related *cis*-regulatory regions. Other cell fate
194 conversion terms such as “neural crest cell differentiation”, “osteoclast differentiation”,
195 and “regulation of cartilage development” were enriched at Ros-E stage, together with
196 the annotation results of novel peaks, indicating that the chromatin accessibility
197 prepared for the neural lineage conversion by opening/closing up specific
198 *cis*-regulatory regions which facilitated the neural transition cascades (Fig. 1d, e and
199 Additional file 2: Figure S2d, e).

200

201 Furthermore, we identified stage-specific peaks at iPSCs, EB, Ros-E, Ros-L and
202 NPCs using motif enrichment analysis (see Methods). Further GO term and KEGG
203 enrichment analysis showed very similar results with annotation analysis of novel

204 peaks in corresponding cell stages (Additional file 3: Figure S3). These findings
205 strongly suggest that the novel, gained and lost, as well as stage-specific peaks,
206 represent cell status and cell fate transitions that progress neural differentiation and
207 that the landscape of *cis*-regulatory element accessibility throughout the differentiation
208 process is highly dynamic.

209

210 To more thoroughly investigate the molecular mechanisms governing neural
211 differentiation we profiled the transcriptomes of 527 single cells. Single cell RNA-seq
212 libraries were generated using Smart-Seq2 method [30], followed by sequencing
213 approximately 6 million reads per cell. For subsequent analysis, we focused on 445
214 cells that passed the quality control (QC, Methods, Additional file 4: Figure S4a, b) and
215 ERCC correlation filter (Methods, Additional file 4: Figure S4c). 7003 to 8560
216 expressed genes were detected per cell (Additional file 4: Figure S4d), including TFs
217 that were relatively highly expressed at the EB and NPCs stages, while, intriguingly,
218 pseudogenes were relatively highly expressed at the Ros-E and NPCs stages
219 (Additional file 4: Figure S4e). We also identified a variety of genes: 3524, 3855, 2023,
220 1804 and 6211 specifically expressed at the iPSCs, EB, Ros-E, Ros-L and NPCs
221 stages, respectively (Additional file 4: Figure S4f). Many of these stage-specific genes
222 include some well-known pluripotent genes (*NANOG*, *ID1*, *ID2*, *ZFP42*, *LIN28A*,
223 *DPPA4*); early neural markers (*SOX2*, *OTX2*, *OTX1*, *PAX6*); and genes that both
224 regulate neural development and are critical to proliferative NPCs (*SOX4*, *SIX3*,
225 *CDH2*, *ZIC2*) (Fig. 1f and Additional file 4: Figure S4h).

226

227 Because the neural rosette recapitulates neural tube development *in vitro*, we paid
228 particular attention to the Ros-E and Ros-L stages. Unsurprisingly, a large proportion
229 of up-regulated genes in the Ros-E stage were associated with nervous system
230 development including *TFAP2A*, *CNTN4*, *GLI3*, *DLX5* and *OTX1*) (Fig. 1f). Of
231 particular interest is the gene *GRHL3*. Expression of this gene is associated with
232 neural tube closure in mice [31, 32] and we observed this gene to be highly expressed

233 at Ros-E in human cells, suggesting that its role in neural tube closure may be
234 conserved across mammals or possibly chordates. *TFAP2A* (transcription factor AP-2
235 alpha) and *TFAP2B* (transcription factor AP-2 beta) have been proposed as master
236 regulators of the neural crest cell and loss of function of transcription factor AP-2 in
237 mice is strongly associated with a cranial neural tube defect phenotype [33]. In our
238 system, *TFAP2B* and *TFAP2A* were relatively highly expressed at both the Ros-E and
239 -L stages, suggesting transcription factor AP-2 may coordinate the specialized distal
240 *cis*-regulatory elements for downstream regulations in human. We also observed
241 expression of *ANLN* (Anillin actin binding protein) at the Ros-L stage, suggesting that
242 neuronal migration and neurite growth might occur by the linking of RhoG to the actin
243 cytoskeleton in neural rosettes [34]. Similarly, our data showed that *AURKA* (aurora
244 kinase A) and *AURKB* (aurora kinase B) were both expressed at the Ros-L stage,
245 echoing previous findings that the aPKC–Aurora A–NDEL1 pathway plays an
246 essential role in neurite elongation through modulating microtubule dynamics [35].
247 Finally, the neuron fate commitment protein, *TGFB2*, the nervous system
248 development regulator, *ZEB2*, and the neural precursor cell proliferation-associated
249 protein, *IFT20*, were enriched at NPCs stage (Fig. 1f).

250

251 An unexpected finding was that some of the most important neural TFs exhibited
252 heterogeneous expression within the same cell stage (e.g., *ZIC2*, *OTX2*, *HESX1*,
253 *DLX3*, *LHX5*) (Fig. 1f and Additional file 4: Figure S4h). This inspired us to dissect the
254 subpopulations of cells within each cell stage to better understand the significance of
255 this result.

256

257 **Heterogeneous cellular subpopulations were identified at each developmental
258 stage**

259 To evaluate the overall distribution of cells at each of the six stages during
260 reprogramming and neural differentiation, we first performed an unsupervised
261 analysis using all expressed genes (QC, see Methods) as input to t-distributed

262 stochastic neighbour embedding (t-SNE) for visualization. This analysis showed
263 distinct clusters for each differentiation stage, supporting our observation of
264 heterogeneous gene expression during these stages (Fig. 2a). Because previous
265 studies have showed that TFs and *cis*-regulatory elements are highly informative in
266 reflecting cell identity [36], we used a machine classifier to determine the subsets of
267 TFs that best clustered cells into putative cell populations. We were then able to
268 identify distinct subpopulations at each cell stage (Fib1, Fib2, EB1, EB2, EB3, Ros-E1,
269 Ros-E2, Ros-L1, Ros-L2, Ros-L3, NPC1, NPC2 and NPC3) (Methods, Fig. 2,
270 Additional file 5-8: Figure S5-8). As we found no remarkable differential expression of
271 pluripotency-associated genes (e.g., *NANOG*, *ID1*, *ID2*, *LIN28A*, *SOX2*, *DPPA4*,
272 *ZFP42*, *TRIM28*) at the iPSCs stage (Additional file 4: Figure S4g), we did not include
273 iPSCs in the following analyses.

274

275 **Fibroblasts (Fib) stage**

276 Fibroblasts (Fib) are a very well-adopted original somatic cell resource for iPSCs
277 reprogramming; many direct conversions from fibroblast to functional neurons have
278 been reported [37, 38]. Here, we dissected two subpopulations of human dermal
279 fibroblasts (Fib1 and Fib2) with distinct molecular features, showing significantly
280 higher expression of several important pluripotency- and neural-associated
281 transcription factors such as *SOX2*, *LIN28*, *SOX11*, *ZIC2*, *FEZF1* and *SIX3* in Fib2
282 (Additional file 5: Figure S5a, b). GO terms identified by up-regulated genes between
283 the two subsets showed “chromosome segregation”, “positive regulation of nervous
284 system development”, “stem cell population maintenance”, “positive regulation of cell
285 cycle”, “neural precursor cell proliferation” and “chromatin remodeling” as solely
286 enriched in the Fib2 subpopulation (Additional file 5: Figure S5c). KEGG enrichment
287 analysis showed “cell cycle” term was specifically associated with the Fib2 subset
288 (Additional file 5: Figure S5d). Furthermore, we observed that fibroblasts were
289 distributed into two distinct groups called Fib-Group1 and Fib-Group2 based on their
290 location in the Fig. 2a. Of note, the majority of cells in Fib-Group1 and Fib-Groups2

291 were composed of Fib1 and Fib2, respectively. Moreover, cells from Fib2 subset
292 clustered together with EB cells (Additional file 5: Figure S5e). Together with the
293 molecular features of Fib2 subset (Additional file 5: Figure S5b), we proposed Fib2
294 subset might possess high potential for iPSCs reprogramming and neural conversion.
295 Thus, based on the differentially expressed genes and CD markers dataset (HUGO
296 Gene Nomenclature Committee, HGNC), we further inferred several cell surface
297 markers of Fib2 (e.g., *FGFR2*, *F11R*, *PROM1*, *BST2*, *ITGA6* and *EPCAM*) although
298 these surface markers showed heterogeneously expressed levels within the Fib2
299 subset (Additional file 5: Figure S5f).

300

301 **Embryoid body (EB) stage**

302 For the three EB subpopulations (EB1, EB2 and EB3), we identified genes that were
303 up-regulated compared to the iPSCs stage, respectively. These genes were enriched
304 in “fetal brain cortex”, “epithelium” and “brain” terms by DAVID using tissue enrichment
305 analysis (Additional file 6: Figure S6a) which suggests that the biological processes of
306 brain development and neural differentiation initiation are occurring during the
307 iPSCs-to-EB stage transition and these processes are shared by each EB
308 subpopulation. Moreover, most neural TFs and cell-specific markers were expressed
309 commonly among EB subpopulations (e.g., *SOX2*, *ZIC2*, *SOX11*, *SOX4*, *SIX3*)
310 (Additional file 6: Figure S6b) and some of these TFs play a crucial role in neural tube
311 formation. However, some important neural TFs, such as *FOXO1* and *FOXO3*, which
312 play an important role in NPC proliferation and self-renewal [39]; *TULP3*, which
313 regulates the SHH signalling pathway and modulates neural tube development [40];
314 and *POU2F1*, which regulates *NESTIN* gene expression during P19 cell neural
315 differentiation and CNS development [41], showed significantly high expression in the
316 EB3 subpopulation, but low expression in the EB1 and EB2 subpopulations
317 (Additional file 6: Figure S6c, d). This suggests that different subpopulations contain
318 specific molecular signatures and different differentiation states or potentials.

319

320 **Early rosette (Ros-E) stage**

321 During the Ros-E stage, which is composed of NE and the cells in the early stage of
322 rosette formation, we observed expression of several master regulator genes
323 associated with neural tube formation and closure including *SOX11*, *ZIC2*, *PAX3*, and
324 *SNAI2* in both Ros-E subgroups (Ros-E1 and Ros-E2). However, genes involved in
325 neural crest specifiers, such as *TWIST1* [42] and *SOX9*, which contribute to the
326 induction and maintenance of neural stem cells and are enriched in neural crest cells
327 [43-45]; and *ETS1*, which regulates neural crest development through mediating BMP
328 signalling [46], were preferentially expressed in the Ros-E1 subpopulation (Fig. 2b, c).
329 The ectoderm marker, *OTX1*, and genes involved in the ventral hindbrain marker (e.g.,
330 *IRX3*) were highly expressed in the Ros-E2 subgroup (Fig. 2b, c). GO term annotation
331 analysis showed Ros-E1 and Ros-E2 shared GO terms of “cell cycle G1/S phase
332 transition”, “G1/S transition of mitotic cell cycle”, “epithelial cell proliferation” and
333 “positive regulating of binding” (Fig. 2d) while “negative regulation of neuron
334 differentiation” and “tube morphogenesis” were solely enriched in the Ros-E2
335 subpopulation (Fig. 2d). KEGG enrichment analysis showed that “base excision
336 repair”, “DNA replication”, “axon guidance”, “cell cycle” and “mismatch repair” were
337 specifically associated with the Ros-E2 subset (Fig. 2e). We further performed
338 single-cell differential expression (SCDE) on both Ros-E subpopulations and identified
339 additional differentially expressed genes between the two groups. *SIX3*, *SIX6*,
340 *TFAP2B* and *PBX1* were more highly expressed in Ros-E2, whereas *EDN1*, *S100A10*
341 and other genes related to neural crest migration, were highly expressed in Ros-E1
342 (Fig. 2f).

343

344 **Late rosette (Ros-L) stage**

345 At the Ros-L stage the genes *SNAI2*, *OTX2*, *FEZF1*, *ZIC3*, and *HESX1* showed
346 significantly different expression patterns among the three distinguishable
347 subpopulations (Ros-L1, Ros-L2 and Ros-L3) at the Ros-L stage (Additional file 7:
348 Figure S7a, b). Moreover, *SMAD1* and *MYC*, two components in the Wnt signaling

349 pathway which is critical for neural development [47, 48], were specifically enriched in
350 the Ros-L3 subpopulation. Additionally, *JUNB* from the TGF β signaling pathway was
351 preferentially expressed in Ros-L3 compared to the other two subpopulations.
352 Interestingly, *HAND1* and *ISL1*, which are mesoderm markers, and *TBX3*, which
353 elicits endodermal determination, were highly expressed in the Ros-L1 subpopulation
354 (Additional file 7: Figure S7a, b).

355

356 Of 648 GO terms identified by differentially expressed genes among these three
357 subsets, 52 terms were shared by Ros-L1 and Ros-L3, such as “positive regulation of
358 cell motility”, “angiogenesis”, “positive regulation of cellular component movement”
359 and “epithelium migration” (Additional file 7: Figure S7c). A high proportion of cardiac
360 development terms was enriched in Ros-L1, whereas DNA replication- and chromatin
361 remodeling-related terms and pathways were significantly associated with Ros-L2. In
362 addition, cell-substrate adhesion-related terms and cell cycle-related pathways were
363 enriched in Ros-L3 (Additional file 7: Figure S7c, d).

364

365 Several subpopulation-specific genes were identified, including *NR2F1*, *ARID3A*,
366 *SIX3*, *OTX2* and *FOXG1* at the NPCs stage (Additional file 8: Figure S8a, b). These
367 observations suggest that significant TF expression patterns describe discrepant cell
368 differentiation states or differentiation commitments inside the neural conversion
369 process. Taken together, our results suggest that the subpopulation analyses
370 accurately describe specific gene expression dynamics at each cell stage, which are
371 likely masked in bulk sequencing analyses. Additionally, extrapolating from these
372 observations, we can reason that reconstructing a differentiation trajectory based on
373 the gene expression dynamics of individual subpopulations would allow us to dissect
374 neural differentiation processes that we would otherwise be unable to observe.

375

376 **Tracking a reconstructed trajectory identifies key subpopulations during neural**
377 **differentiation**

378 Based on the subpopulations identified before, we wanted to track the gene
379 expression dynamics of individual subpopulations to parse the neural differentiation
380 processes and dissect the subpopulation with the highest contribution towards
381 commitment to the CNS lineage. First, we reconstructed the differentiation trajectory
382 using 8220 genes with variable expression. This showed that cells in stages from
383 iPSCs to NPCs followed a sequential differentiation process where each stage
384 exhibited a relatively discriminative region with some of the subpopulations
385 overlapping (Fig. 3a). Subsequently, based on the pairwise comparisons of TF
386 expression levels, we inferred the connection of the subpopulations from the iPSCs
387 stage to NPCs stage across the five-stage differentiation process (Fig. 3b). TF
388 expression levels were considered as strong indicators of cell stage and identity [36].
389 Here, we used the Pearson correlation coefficient to identify more biologically and
390 molecularly similar cell subpopulations and considered them as cells within the same
391 developmental lineage [49]. As a result, iPSCs, EB3, Ros-E2, Ros-L3 and NPC1 were
392 identified as the subpopulations contributing the most to commitment to the CNS
393 lineage (Fig. 3b). These findings were consistent with the specific gene expression
394 pattern in individual subpopulations. For instance, *SOX13*, expressed in the
395 developing nervous system and neural tube [50,51], *FOXO1* [39] and *TULP3* [40]
396 were significantly highly expressed in EB3 (Additional file 6: Figure S6c, d). *MAFB*, an
397 important TF in hindbrain identity [52], was enriched in Ros-E2 (Fig. 2b, c); and other
398 crucial neural development TFs, especially those involved in CNS development, such
399 as *OTX1*, *DLX3*, *DLX6*, *ZIC3*, *ZIC4*, and *IRX3*, also showed high expression in the
400 Ros-E2 subpopulation (Fig. 2b, c). Previously, we assumed that *GRHL3* might be
401 involved in neural tube closure; here, the results showed that *GRHL3* was indeed
402 significantly highly expressed in Ros-L3 (Additional file 7, Figure S7b). Additionally,
403 neural crest regulators (e.g., *ETS1*, *ELK3*, *SOX9*) were enriched in Ros-L3 (Additional
404 file 7, Figure S7b), suggesting that cell fate specification and differential cell status
405 might exist even within subset. Strikingly, Ros-E2 and Ros-L3 that were identified in
406 the dominant path to CNS lineage by correlation analysis were shown as a process of

407 sequential conversion in our reconstructed trajectory (Fig. 3a, c). The molecular
408 signature described by these subpopulations was consistent with the analysis that
409 identified the key contributing subpopulations and encouraged us to perform
410 additional cell fate decision analyses.

411

412 Of note, there was a clear divarication within the rosette stages (Ros-E and Ros-L)
413 across the differentiation trajectory, indicating cell fate decision might be made at this
414 bifurcation point (Fig. 3c). Here, we focused on the single cells in the rosette stages
415 and called them Branch 1, Branch 2 and Branch 3 based on their location in the
416 developmental trajectory (Fig. 3c). Branch 3 was composed of Ros-E1 (n=27), Ros-L1
417 (n=15) and small proportion of Ros-E2 (n=5) and Ros-L3 (n=9, Fig. 3c). Previously,
418 our observations showed that Ros-E1 was associated with neural crest cells (high
419 expression of *TWIST1*, *SOX9*, *ETS1*, *EDN1* and *S100A10*) and Ros-L1 was likely
420 related to mesoderm and endoderm determination (high expression of *HAND1*, *ISL1*
421 and *TBX3*), and these two subpopulations comprise the majority of cells in Branch 3.
422 Further, we performed a pairwise comparison of gene expression across the three
423 branches. The results showed that many neural TFs, such as markers of neural tube
424 formation (*SOX4* and *SOX11*); the NSCs self-renewal and proliferation regulator
425 *FOXO3*; and the NSC markers *NES*, *CDH2* and *FABP7*, were commonly expressed
426 across all three branches, indicating the capacity for neural tube development and
427 NSCs proliferation are a fundamental feature of neural rosettes (Additional file 9:
428 Figure S9a, b). Strikingly, *ZIC2*, a member of the ZIC family of C2H2-type zinc finger
429 proteins, associated with neural tube development [32], showed significantly low
430 expression in Branch 3 (Fig. 3d, e). Some other neural development markers (e.g.,
431 *ZIC3*, *HMGB2*, *ID1*, *SIX3*, *SIX6*, *NR6A1*) were significantly lowly expressed in Branch
432 3 but highly expressed in Branch 1 (Fig. 3d, e, Additional file 9: Figure S9a, c).
433 However, *TFAP2B*, encoding a member of the AP-2 family of TFs, and *ELK3*,
434 essential for the progenitor progression to neural crest cell [53], was significantly
435 highly expressed in Branch 3 but lowly expressed in Branch 2. Moreover, *SOX9*,

436 *SNAI2*, *S100A11* and *TFAP2A*, previously shown to be highly expressed in neural
437 crest cells [43,44,45,54], were markedly highly expressed in Branch 3, but not Branch
438 1 (Fig. 3d, e, Additional file 9: Figure S9a, c). *KLF5* and *IRF6* were significantly highly
439 expressed in Branch 3 as well (Fig. 3d, e). These two TFs have been reported to be
440 involved in phenotypic switching of vascular smooth muscle cells [55] and
441 development of the palate in vertebrates involving cranial neural crest migration [56],
442 respectively. These results indicate that cell fate specification might occur at the
443 bifurcation point and, based on the observations, we speculate that Branch
444 1-to-Branch 2 has progressed more towards CNS and Branch 3 is probably
445 composed of neural crest cells and other cells comprising this microenvironment.

446

447 **Construction of the TF regulatory network during cell status transition**

448 To infer TFs which drive the progression of cell status from one stage to the
449 neighbouring one, we performed SCDE analysis for those cell subpopulations
450 committing to CNS lineage, resulting in 58, 123, 98 and 131 TFs differentially
451 expressed among iPSCs vs EB3, EB3 vs Ros-E2, Ros-E2 vs Ros-L3, and Ros-L3 vs
452 NPC1 comparisons (Additional file 10, 11: Figure S10, 11). Interestingly, *PRDM1*,
453 which has been proposed to promote the cell fate specification RB sensory neurons in
454 zebrafish [57], was significantly up-regulated from Ros-E2 to Ros-L3 (Additional file 10:
455 Figure S10). In contrast, several well-characterized TFs were found to be significantly
456 highly expressed in Ros-E2 (mainly resident in Branch 1) and down-regulated during
457 the transition from early to late rosette development: *FOXG1*, cooperating with *Bmi-1*
458 to maintain neural stem cell self-renewal in the forebrain; *MAFB*, the posterior CNS
459 fate identifier and essential for hindbrain choroid plexus development [52, 58]; *DLX3*
460 and *DLX5*, neural plate border specifier genes [58]; and *ID1*, a controller of stem cell
461 proliferation during regenerative neurogenesis in the adult zebrafish telencephalon
462 [59]. These results suggest that the expression patterns of neural-associated TFs
463 undergo dramatic changes during neural differentiation with some TFs activated
464 (*PRDM1*, etc.) and others repressed (*MAFB*, *FOXG1*, *ID1*, etc.) (Additional file 10:

465 Figure S10). Furthermore, it was previously unknown that several of these TFs were
466 involved in neural differentiation so our results have expanded the known biological
467 functions of these molecules.

468

469 Among the 131 TFs exhibiting differential expression from Ros-L3 to NPC1, 80 TFs
470 were up-regulated while 51 TFs were down-regulated (Additional file 11: Figure S11;
471 Additional file 19: Table S1). Up-regulated TFs included *SNAI2*, a neural crest
472 specifier [58]; *HIF1A*, required for neural stem cell maintenance and vascular stability
473 in the adult mouse [60]; *SIX1*, which drives the neuronal developmental program in
474 the mammalian inner ear [61]; *ETV1*, which orchestrates gene regulation during the
475 terminal maturation program of cerebellar granule cells [62]; and *POU3F3*, which
476 influences neurogenesis of upper-layer cells in the cerebral cortex [63] (Additional file
477 11: Figure S11). This is consistent with our previous observation that the main
478 trajectory has progressed more towards to CNS. Of particular interest is *PRDM1*,
479 whose expression increased from Ros-E2 to Ros-L3 and decreased during the
480 progression from Ros-L3 to NPC1 (Additional file 10, 11: Figure S10, 11), suggesting
481 that it might play multiple specific roles in neural differentiation.

482

483 Next, we inferred a regulatory network among those differentially expressed TFs
484 based on known interactions collected in the STRING database [64]. Our results
485 suggested that *SOX2* and *GATA3* were key regulators from iPSCs to EB3 (Additional
486 file 12: Figure S12a); *TP53*, *SOX2*, *RELA*, *SIX3*, *ARNTL*, *ISL1*, *RARA*, *TP63*, *GATA3*,
487 *SNAI2*, and *PAX3* were the key regulators from EB3 to Ros-E2 (Additional file 12:
488 Figure S12b); *MYC*, *SOX2*, *PAX6*, *EGR1*, *PBX1*, *GLI3*, *PAX3*, *SIX3*, *FOXG1*, *OTX2*,
489 *PAX7*, *PPARG*, *SOX9*, *MAFB*, *SIX6* and *ZIC1* were identified as key regulators from
490 Ros-E2 to Ros-L3 (Fig. 4a); and *SOX2*, *AR*, *MYCN*, *LEF1*, *PAX3*, *SNAI2*, *MSX1*,
491 *SOX9*, *NR3C1*, *PARP1*, *RUNX1*, *EBF1*, *HIF1A*, *IRF6*, *IRF1*, *KLF5*, and *LIN28A* were
492 predicted to be key regulators from Ros-L3 to NPC1 (Fig. 4b).

493

494 To dissect the *cis*-regulatory elements directing the expression of those regulators, we
495 selected the differentially expressed TFs that showed differential ATAC peaks
496 between neighbouring stages and performed motif scanning on the differential peaks.
497 Focusing on the transition from Ros-E2 to Ros-L3, we found transcription factor
498 binding sites (TFBSs) for TEAD2 and YY1 in a differential ATAC peak downstream of
499 the *PRDM1* gene (Fig. 4c). Multiple motifs for the transcription factor *TFAP2C* were
500 found in a differential peak located in the intron of the *ARID3A* gene, which is a
501 regulator responsible for the transition for Ros-L3 to NPCs (Fig. 4d). Based on the
502 temporal specificity of ATAC peaks and the existence of TF motifs in these regions, we
503 propose that those elements are stage-specific *cis*-regulatory elements regulating the
504 expression of neural regulators in response to their upstream regulatory TFs.

505

506 To infer the putative targets of key regulators, we combined the information from ATAC
507 peaks and motifs for TFs. All peaks containing motifs for a certain TF were annotated
508 as TF-related peaks and genes proximal to the peak were considered as potential
509 targets of that TF. Using these criteria, we predicted thousands of targets for each TF
510 (Additional file 20: Table S2). To dissect the regulatory network of each TF, we
511 conducted GO term and KEGG enrichment analysis for the putative target list of each
512 key regulator. Our results suggested that, from Ros-E2 to Ros-L3, the targets for
513 *PRDM1* were significantly enriched in pathways and GO terms associated with “axon
514 guidance”, “hippo signalling pathway” and “neurotrophin signalling pathway” (Fig. 4e
515 and Additional file 13: Figure S13). From Ros-L3 to NPC1, targets for *HIF1A*, *NR2F1*,
516 *SOX9* and *TFAP2C* were enriched in KEGG pathways associated with “axon
517 guidance” and “hippo signalling pathway” (Additional file 13: Figure S13). We further
518 validated *PRDM1* expression among different genetic background cell lines
519 (H1_ESCs, H7_ESCs, H9_ESCs, iPSC25 and iPSC129). The immunostaining showed
520 that *PRDM1* was expressed at Ros-L stage with heterogeneous expression level,
521 though, the scRNA-seq data was not at a high level. Moreover, the results were
522 uniformed across these cell lines (Fig. 4g, h).

523

524 **Inferring a cellular communication network among cell subpopulations within**
525 **specific differentiation stages**

526 Cell subpopulations with different functions are proposed to exhibit distinct expression
527 profiles of ligands and receptors which primes cells for cell-type-specific interactions
528 [65]. In this study, the cellular interactions were inferred using public ligand-receptor
529 databases (see Methods). Briefly, 360, 182, 261 and 307 ligands/receptors were
530 expressed within EB, Ros-E, Ros-L and NPCs subpopulations respectively, among
531 which 304, 55, 124 and 162 interactions were identified within subpopulations at each
532 differentiation time point (Fig. 5, Additional file 14-16: Figure S14-16 and Additional file
533 21: Table S3). The most frequent interactions were observed in the EB stage, implying
534 that cells communicate extensively to coordinate differentiation programs during
535 embryogenesis (Additional file 14: Figure S14). In contrast, much fewer interactions
536 were predicted after the EB stage, suggesting communications decreased
537 dramatically during the progression of lineage commitment. Notably, although
538 comparable number of ligands and receptors were detected at EB (181 receptors and
539 179 ligands) and NPCs (128 receptors and 179 ligands) stage, only half the
540 interactions (162) were inferred at NPCs stage compared to 304 ligand-receptor
541 interactions at EB stage. (Additional file 14, 16: Figure S14, 16). The interactomes
542 among Ros-L cells, with 31, 32 and 34 receptors from Ros-L1, Ros-L2 and Ros-L3
543 interacting with ligands from other cell subpopulations were inferred (Fig. 5a). As
544 expected, several interactions involving receptors and ligands previously known to
545 play essential roles during neural development were identified in our study. For
546 example, *WNT5A* and *EPHB6* were enriched in Ros-L1. *FZD5* and *LPAR4* were
547 specifically expressed in Ros-L2. *PGF* and *ANGPT2* were up-regulated in Ros-L3
548 compared to other cell subpopulations (Fig. 5c, d, e). Overall, our study suggests that
549 the specific expression spectrum of ligands and receptors and corresponding
550 interactions can generally reflect the identity of cellular subpopulations.

551

552 **Discussion**

553 The regulation and molecular programs during embryonic neural development has
554 long been investigated. However, much of this work has been limited to model
555 organisms such as the mouse, zebrafish and *Drosophila* [36,40,56], due to the
556 scarcity of human fetal tissue for research purposes. Our understanding of human
557 early neural development, and particularly neural tube formation and the cell fate
558 commitments of neural precursors in early stages, is still incomplete. To circumvent
559 the challenges inherent in these investigations, namely the ability to study these
560 processes *in vivo* in humans, we used hiPSCs and induced differentiation *in vitro*
561 towards a neural cell fate using a well-established model. We characterised both the
562 transcriptional profiles in single cells as well as chromatin accessibility at several
563 critical stages during differentiation to inform this process at unprecedented resolution.
564 This study has unveiled the dynamic transcriptome and regulome underlying the
565 human early neural differentiation and identified functionally-distinct subpopulations
566 within the various stages to have a more precise description of the factors defining the
567 differentiation trajectory. Our analyses hint at the existence of a widespread regulatory
568 network between TFs and their target genes, especially those associated with cellular
569 reprogramming and differentiation. We were also able to construct minimal gene
570 expression profiles based on ligands and receptors in each cell subpopulation which
571 can be used to confidently infer cell identity.

572

573 During development *in vivo* the neuroectoderm folds to form the neural tube which is
574 then patterned into regionally specialized subunits composed of progenitor cells.
575 These cells subsequently give rise to regional progenies of neural cells [66]. There is
576 some controversy in this field that formation of the EB would introduce *in vitro* culture
577 variability in regional cells across different batches resulting in a relatively poor model
578 of neural differentiation. The "dual-SMAD inhibition" method (inhibiting the
579 SMAD-dependent TGF β and BMP signaling pathways) yielding neural epithelia in
580 "monolayer culture" conditions [18] could alleviate the above concern. However,

581 generation of neural rosette morphology *in vitro* is considered equivalent to neural
582 tube formation, recapitulating neural tube structure, which we believe is a promising
583 research model for early neural differentiation. Neural differentiation of hiPSCs into
584 NPCs starts with initial neural induction by appropriate dosages and gradients of
585 many TFs and morphogenetic factors that are highly expressed in the developing
586 brain. In this study, the induction cocktail used in the neural differentiation included
587 SB431542, dorsomorphin, N2, B27, VEGF and bFGF supplemented at specific time
588 points. The self-renewal program in human iPSCs is switched off and differentiation
589 toward NE and NPCs is triggered [8, 16]. Previous results have shown that SB431542
590 enhances neural induction in EB derived from hESCs [65] by inhibiting the
591 Lefty/Activin/TGF β pathways and suppresses the mesodermal lineage (Brachyury)
592 induction [18, 42]. Consistent with these previous studies, in our *in vitro* system,
593 treatment with SB431542, in combination with dorsomorphin, results in a dramatic
594 decrease in *NANOG* expression and a concomitant increase in *PAX6* expression (Fig.
595 1f). In addition, *OTX2*, *ZIC2*, *SOX9*, *HESX1*, *MSX2*, *DLX5*, *SOX4*, *SOX11*, and *SNAI2*
596 were significantly activated during differentiation which demonstrates that the
597 transcriptional program triggering progression towards NPCs was activated (Fig. 1f,
598 Additional file 4: Figure S4h and Additional file 9: Figure S9a-c). Taken together, these
599 results indicate that the induction cocktail effectively achieves efficient neural
600 differentiation.

601
602 To measure the dynamic changes of *cis*-regulatory elements at each differentiation
603 stage, we performed ATAC-seq and chromatin accessibility analysis on bulk cells.
604 These results showed widespread and comprehensive chromatin structure
605 reprogramming during neural differentiation. In particular, TFBSS for several neural
606 master regulators were enriched in temporally dynamic ATAC peaks, indicating that
607 changes in chromatin accessibility are indeed associated with, and are probably
608 responsive to, the regulation of neural-related TFs. In addition, we also investigated
609 closing (lost) peaks dynamics as well as the functional annotation study, which was in

610 line with the corresponding annotation of novel peaks (Additional file 2, 3: Figure S2,
611 3). We further identified several enriched TF motifs (e.g., *Pax2* in Ros-L and *FOXO1* in
612 NPCs) (Additional file 17: Figure S17d, e) which are known to play an important role in
613 neural differentiation, consistent with results from previous studies [39, 68].

614

615 By integrating single cell-based transcriptome profiling of 391 cells from five
616 differentiation stages, we identified a variety of TFs that were differentially expressed
617 throughout the differentiation process and showed distinct expression profiles among
618 specific cell stages. The TFs *SOX2*, *PAX6*, *OTX2*, *SOX4*, *ZIC2*, *LHX5*, *HESX1*, and
619 *SIX3* were significantly highly expressed at the EB stage (Fig. 1f). It has been reported
620 that members of the grainyhead-like (Grhl) family of TFs, which are well-conserved
621 from *Drosophila* to human, are highly expressed during neurulation in mice and that a
622 *Grhl3*-hypomorphic mutant resulted in NTDs [32, 67]. Remarkably, our results showed
623 that two human Grhl family TFs, *GRHL2* and *GRHL3*, were significantly highly
624 expressed at EB and Ros-E stage, respectively (Fig. 1f and Additional file 4: Figure
625 S4h), and the downstream targets of *GRHL2* (including *E-CADHERIN*, also known as
626 *CDH2*) were highly expressed at the neural rosette stage (Fig. 1b) supporting a role
627 for Grhl TFs in neural tube closure in humans. In addition, previous studies have
628 shown that in the *Drosophila* olfactory system the homeobox gene *distal-less* is
629 required for neuronal differentiation and neurite outgrowth [34]. Our data showed that
630 four homologs of *distal-less* (*DLX3*, *DLX4*, *DLX5*, *DLX6*) were significantly up
631 regulated at the Ros-E stage and were highly expressed in the Ros-E2 subpopulation
632 (Fig. 1f and Fig. 2b) implying that the *distal-less* gene family plays a role in neural
633 differentiation in humans.

634

635 We also applied scRNA-seq to our *in vitro* neural model to dissect the subpopulations
636 present at each differentiation stage (Fig. 2 and Additional file 5-8: Figure S5-8). We
637 were then able to reconstruct a differentiation trajectory based on the subpopulations
638 that we identified by variable TF expression within each stage (Fig. 3a). Strikingly, a

639 divarication within the rosette stage across the differentiation trajectory was observed.
640 Comparing Branch 1 to Branch 3, Branch 3 possessed the relatively lowly-expressed
641 TFs *LHX5*, *HESX1* and *SIX3* (reported as anterior forebrain markers), as well as other
642 crucial neural TFs (*SOX2*, *HMGB2*, *ZIC2*, *OTX1*, *FEZF1*); and the relatively
643 highly-expressed TFs *TFAP2B*, *SOX9*, *ELK3*, and *SNAI2* (Fig. 3d, e and Additional file
644 9: Figure S9a, c) which are considered to be neural crest markers [53]. Though *SNAI2*
645 was also expressed at the NPCs stage, combined with other neural crest markers, we
646 proposed that Branch 3 was progressing more towards to neural crest cells (Fig. 3a-c
647 and Additional file 9: Figure S9a-c). Taken together, these observations imply that the
648 main differentiation trajectory (Branch 1 and Branch 2) is heading towards CNS,
649 whereas Branch 3 is progressing towards neural crest cells.

650

651 It is important to note that the current scRNA-seq method by its nature only provides a
652 snapshot of the gene expression profile for individual cells. A possible resolution for
653 the above problem is to capture the sample with much more precise time points,
654 which may, to some extent, overcome this limitation. Thus, in spite of the very
655 interesting heterogeneity and cell fate commitment study inferred above, we cannot
656 exclude the following factors that may affect cell subset identification in the above
657 description; 1) temporal transcriptional states during transient differentiation process;
658 2) differentiation efficiency; and lagging and leading cells remaining in the
659 differentiation process. However, we propose that the subsets dissection analysis
660 facilitates a more precise description of the factors defining the differentiation
661 trajectory. When we constructed the differentiation trajectory using the cells that
662 collected at different time points, the results showed that all subpopulations in stages
663 from iPSCs to NPCs followed a sequential differentiation process where each stage
664 exhibited a relatively discriminative region with some of the subpopulations
665 overlapping (Fig. 3a), indicating that in spite of the above concerns, the trajectory was
666 established by the natural features of the respective subsets and which is also
667 supported by the observations that Ros-L2 possessing many early neural

668 differentiation TFs, such as *SOX2*, *OTX2*, *PAX6*, *OTX1*, and *LHX5*, as well as
669 forebrain markers (e.g., *HESX1*) and pluripotency-related TFs (*NANOG*, *SALL4*,
670 *PRDM14*) (Additional file 7: Figure S7) were located in the reconstructed trajectory
671 prior to the generation of Ros-E populations. In addition, we carried out the cell fate
672 commitment analysis using Branch1, Branch2 and Branch3 which were grouped
673 based on the cell locations on the trajectory rather than cell subsets identified by
674 Seurat in order to minimize the above concerns.

675

676 Notably, our study reveals the regulatory network of TFs that are differentially
677 expressed among neighbouring cell subpopulations to be likely candidates for
678 promotion of cell fate transition. Based on the topology of this network, we focused on
679 novel regulators (*PRDM1* and *ARID3A*), especially *PRDM1*, which are located on the
680 hub of the network, interacting with both known and novel neural regulators. Although
681 the roles of several TFs have been reported during neural differentiation and brain
682 patterning formation in humans, some TFs have been proposed to play a role in neural
683 fate commitment in non-human species (mouse and zebrafish). However, the
684 interaction partners, *cis*-regulatory elements, and genetic regulatory networks of those
685 TFs are yet to be resolved. Here, we identified the *cis*-regulatory elements for *PRDM1*
686 and *ARID3A* genes and predicted their upstream regulators. Of particular interest,
687 *TFAP2C*'s role in regulating neural development has been widely reported, increasing
688 the confidence of our predictions. In humans, *PRDM1* is reported to promote germ cell
689 fate by suppressing neural effector *SOX2*, but the function of *PRDM1* in neural
690 development is unknown. In zebrafish, *Prdm1a*, the homolog of the *PRDM1* gene,
691 directly activates *foxd3* and *tfap2a* during neural crest specification [57]. Mutation of
692 *prdm1* in zebrafish resulted in severe phenotypes with a decrease in the quantity of
693 neural crest cells and the reduction in the size of structures derived from the neural
694 crest [57]. Similarly, strong expression of *prdm1* was observed in the neural plate
695 border of a basal vertebrate lineage, lamprey, implying that the role of *prdm1* in the
696 neural crest formation is likely a conserved, ancestral role [70]. Conversely, *prdm1* is

697 dispensable for neural crest formation in mice, and instead is required for primordial
698 germ cell specification suggesting that the neural crest specification function of *prdm1*
699 in mice has been lost [71]. Overall, previous studies suggest that functions of *prdm1*
700 are quite diverse and need to be investigated in species-, developmental-, and
701 environmental-specific manners. Based on the known interaction between *PRDM1*
702 and *SOX2* in humans, as well as the observation that *PRDM1* expression increased
703 significantly from Ros-E2 to Ros-L3 and was preferentially expressed in Ros-L3
704 compared to other two subpopulations in the rosette stage (Fig. 4g, h; Additional file 7:
705 Figure S7a, b and Additional file 10: Figure S10), we propose *PRDM1* as a novel
706 neural regulator in early human neural differentiation. Our hypothesis is supported by
707 the GO term and KEGG enrichment analysis of putative targets of *PRDM1*, which are
708 significantly enriched in “axon guidance” and hippo pathway-associated terms (Fig. 4e
709 and Additional file 13: Figure S13a). However, the functions of putative TFs need to be
710 further investigated using experimental methods.

711
712 To infer cellular interactions, communication network analysis was applied to the
713 expression profiles of ligands and receptors in stage-specific subpopulations. Two
714 trends were observed in our cellular interaction network analysis: 1) the frequency of
715 cellular interactions peaked at EB stage; and 2) different cell subpopulations showed
716 a certain degree of specificity in their ligand-receptor spectrum. The observation that
717 most interactions were inferred at the EB stage likely reflects the extensive cellular
718 communication during embryogenesis and early neural differentiation (Additional file
719 14: Figure S14). Regarding the ligand-receptor expression spectra, matched ligand
720 and receptor expression probably underlies the common functions shared by different
721 cell subpopulations within the same stage. In contrast, those specific ligands or
722 receptors probably reveal the unique regulatory code of distinct cell subpopulations.
723 For example, *WNT5A*, a crucial regulator of neurogenesis during the development of
724 cerebellum, and *BMP4*, one of the key regulators of dorsal cell identity in the neural
725 tube [72], were highly expressed in Ros-L1 compared to other cell subpopulations (Fig.

726 5c). FZD5 (required for eye and retina development in mouse [73]), and *FGF19*
727 (required for forebrain development in zebrafish [74]) were preferentially expressed in
728 Ros-L2 (Fig. 5d and Additional file 22: Table S4). *WNT7A*, involved in several aspects
729 of neurogenesis, including synapse formation and axon guidance [75] and *FGF1*,
730 which maintains the self-renewal and proliferation of NPCs [76], were specifically
731 expressed in Ros-L3 (Additional file 22: Table S4). Pavličev et al. inferred the cell
732 communication network of the maternal-fetal interface and found that ligand-receptor
733 profiles could be a reliable tool for cell type identification [65]. Consistent with their
734 findings, our study suggests that the repertoire of ligands-receptors in neural cell
735 types could probably, to some extent, represent the identity of cell subpopulations.

736

737 There might be a concern that we only used one genetic background cell line for this
738 study, possibly making the cogency of our findings limited. To address this, we
739 performed ESCs neural differentiation and captured bulk transcriptome profiles of the
740 corresponding differentiation stages (ESCs, EB, Ros-E, Ros-L and NPCs). The
741 observations in ESCs were reproducible in iPSCs with regards to 1) PCA analysis
742 (Additional file 18: Figure S18a); 2) with a high Pearson correlation coefficient
743 between the corresponding cell stage derived from iPSCs and ESCs (Additional file
744 18: Figure S18b); and 3) validation analysis of subset- specific markers (MAFB, SOX9,
745 PRDM1 and NR2F1). In addition, novel neural TF (PRDM1) expression in different
746 genetic cell lines (H1_ESCs, H7_ESCs, H9_ESCs, iPS25 and iPS129) was consistent
747 with the above heterogeneity study (Additional file 18: Figure S18c, d, e). Together,
748 our findings are supported by different genetic cell lines mitigating the concern that our
749 results are limited to the cells forming the basis of this study.

750

751 Through differential expression analysis, we identified genes specifically expressed at
752 each stage which include both cell status master regulators such as TFs and
753 signalling components, as well as realizers [24] which could directly determine cell
754 growth, cell proliferation, cell morphology and cell-cell interaction. Within each stage,

755 we identified subpopulations with distinct expression signatures, which might
756 represent functional cell clusters or transient cell state given that neural cells have
757 been shown to demonstrate significant heterogeneity as they express different
758 surface proteins, exhibit diversified morphologies and secrete a variety of cytokines.
759 Therefore, it is necessary to explore the heterogeneity of cell subpopulations and
760 study each subpopulation in a case-by-case manner. In summary, our data show
761 conclusively that both transcriptome and regulome dramatically change during neural
762 differentiation, which affects a variety of biological pathways crucial for neural
763 differentiation. We also propose several putative TFs as well as the ligands-receptors
764 interaction spectrum that are important in each differentiation stage which paves the
765 way for a deeper understanding of the cell fate decision and regulatory mechanisms
766 driving the differentiation of the neural lineage.

767

768 **Materials and methods**

769 **Ethics statement**

770 The study was approved by the Institutional Review Boards on Ethics Committee of
771 BGI (Permit No.BGI-IRB 14057). The participant (dermal fibroblast, Fib129) signed
772 informed consent and voluntarily donated the samples for our study.

773

774 **Cell culture and reprogramming**

775 The human fibroblast cell line was derived from the dermal skin of a healthy female
776 donor with written informed consent. Briefly, the skin tissue was washed with DPBS
777 several times, sliced into approximately 1mm or smaller fragment size, enzymatically
778 dissociated in High Dulbecco's modified Eagle medium (H-DMEM, Gibco, 11965118)
779 with 100U/ml collagenase type IV incubating in 37°C overnight, then 0.05% trypsin
780 incubating for 5 min. The dissociation was terminated by adding 2 ml fibroblast cell
781 culture medium (H-DMEM +10% FBS + 5ng/ml bFGF+ 2mM Gln) followed by
782 centrifugation at 300g for 5 min. The cells were resuspended with fibroblast cell

783 culture medium, and cultured at 37°C in a 5% CO₂ incubator. The fibroblast cell
784 culture medium was changed every 2 days until reaching 80%–90% confluence and
785 cells were passaged every 3-4 days.

786

787 For reprogramming, non-integrative human iPSCs were generated following a
788 modified Shinya Yamanaka method [77]. Briefly, 5x10⁵ human fibroblast cells at
789 passage 4 were nucleofected with the program for human dermal fibroblast NHDF
790 (Lonza, CC-2511) with 2.4ug episomal plasmids, including pCXLE- hOCT3/4-
791 shp53-F (Addgene, 27077), pCXLE- hSK (Addgene, 27078), pCXLE- hUL (Addgene,
792 27080). Transfected cells were cultured in a six-well plate with culture medium
793 containing H-DMEM supplemented with 10% FBS. The cells were trypsinized and
794 1x10⁵ cells were seeded onto a 10cm² dish covered with feeder and cultured in a
795 medium containing H-DMEM with 10% FBS while reaching 80% confluence. After that,
796 the medium was changed to hiPSCs medium containing DMEM/F12 (Gibco,
797 11320-033), 20% KSR (Gibco,10828-028), 2mM L-glutamine (Sigma, G8540), 0.1μM
798 NEAA (Gibco,11140-050), 0.1μM β-Mercaptoethanol (Gibco, 21985-023) and 10ng/ml
799 human bFGF (Invitrogen, PHG0021). The iPSCs colonies were picked at around day
800 25 and maintained in hiPSCs medium.

801

802 **Neural differentiation**

803 We applied a well-adopted neural differentiation protocol [8,16]. Briefly, human iPSCs
804 were maintained as described above. To induce neural rosettes, hiPSCs were
805 mechanically picked and washed with DMEM/F12 twice, and then cultured for 4 days
806 in suspension with 5μM dorsomorphin (Sigma, P5499) and 5μM SB431542 (Sigma,
807 S4317) in hiPSCs medium without bFGF for embryoid bodies (EBs) formation, then
808 the EBs were attached on matrigel (BD, 354277) coated dishes (BD, 354277) and
809 cultured in DMEM/F12 (Gibco, 11320-033) supplemented with 20 ng/ml bFGF, 1×N2
810 (Gibco, 17502-048) and 2ug/ml heparin (Sigma, 1304005) for an additional 3 or 5
811 days to harvest rosette-early (Ros-E) and rosette-late (Ros-L) cells, respectively. To

812 collect neural progenitor cells (NPCs), rosettes structure that appeared in the center of
813 attached colonies at Ros-L stage were carefully harvested using pulled glass pipettes
814 and seeded on matrigel-coated dishes and cultured in DMEM/F12 supplemented with
815 1× N2, 1× B27 (Gibco,12587-010), 20 ng/ml bFGF, 20 ng/ml EGF (Invitrogen,
816 PHG0311) and 2ug/ml heparin (Sigma,1304005) for additional 7 days, and the
817 medium was changed every 2 days. At day 16, the NPCs reaching approximately 80%
818 confluence were collected, and all the mass or adherent cell samples were treated
819 with TrypLE™ Express Enzyme (Gibco, 12604-021) for single cell dissociation and
820 cryopreservation in gas-phase liquid nitrogen for further sequencing.

821

822 **Immunofluorescence staining**

823 HiPSCs and Ros-L cells were fixed in 4% paraformaldehyde in DPBS for 20 min and
824 permeabilized with 1% Triton X-100 for 20 min at room temperature. After 60 min
825 blocking with 2% normal goat serum, hiPSCs were incubated with primary antibodies
826 OCT4 (1: 200, Abcam), NANOG (1: 200, Abcam), and Ros-L cells were incubated with
827 primary antibodies PAX6 (1: 200, Abcam), SOX2 (1:200, Abcam), NESTIN (1: 200,
828 Abcam), SOX1 (1: 200, Abcam), Zo-1 (1:100, Abcam) and N-CAD (1: 100, Abcam)
829 overnight at 4 °C, then stained with secondary antibodies (goat anti rabbit IgG-Cy3
830 diluted1: 300 and goat anti mouse IgG-Cy3 diluted 1: 300) for 60 min at room
831 temperature. DAPI (1: 500) was used as counter-staining for nuclei. The images were
832 captured and analyzed with the Olympus IX73 and Image J.

833

834 **Single cell RNA sequencing**

835 Cells at indicated time points were collected for single cell RNA-seq and global
836 transcriptome analysis. TrypLE™ Express Enzyme (Gibco, 12604-021) was applied
837 for single cell dissociation. Single-cell RNA-seq library construction was conducted
838 according to an automated pipeline called microwell full-length mRNA amplification
839 and library construction system (MIRALCS) as described previously [78]. 50bp
840 single-end sequencing was performed using the BGISEQ-500 platform.

841

842 **Assay for transposase-accessible chromatin sequencing (ATAC-seq)**

843 We profiled open chromatin accessibility sequencing (ATAC-seq) of neural
844 differentiation process for five stages including iPSCs, EB, Ros-E, Ros-L and NPCs
845 samples. ATAC-seq libraries were prepared using a modified protocol based on
846 previous study [79]. Briefly, 50,000 cells were collected for each sample, washed with
847 pre-cooling PBS and resuspended in 50 μ l of ice-cold lysis buffer (10 mM Tris-HCl, pH
848 7.5, 10 mM NaCl, 3 mM MgCl₂, 0.1% IGEPAL CA-630). Permeabilized cells were
849 resuspended in 50 μ l transposase reaction buffer (1 \times TAG buffer, 2.0 μ l Tn5
850 transposes enzyme) and incubated for 30 min at 37 °C. PCR amplification and size
851 selection (150–500 bp) were performed using Agincourt AMPure XP (Beckman
852 Coulter) and Bioanalyzer 2100 (Agilent). Libraries were pooled at equimolar ratios
853 with barcodes and sequenced on BGISEQ-500 platform.

854

855 **Pre-processing and quality control of single cell RNA-seq**

856 The original FASTQ data of the 527 samples were aligned to the rRNA database
857 (downloaded from NCBI) to remove rRNAs and the remaining reads were processed
858 with SOAPnuke (version 1.5.3) [80] to trim adaptors and filter out the low-quality reads.
859 The filtered data were aligned to the reference genome (hg19) using hisat2 (HISAT2
860 version 2.0.1-beta) [81]. Reads were counted using the R package
861 GenomicAlignments [82] (mode='Union', inter.feature=FALSE), and normalized to
862 RPKM with edgeR [83]. Cells were filtered using following parameters: genome
863 mapping rate more than 70%, fraction of reads mapped to mitochondrial genes less
864 than 20%, mRNA mapping rate more than 80%, ERCC ratio less than 10%, and gene
865 number more than 5000. Further, correlation of ERCC among cells was used to
866 evaluate the quality of each cell (threshold=0.9). At last, 445 single cells remained for
867 further analysis in this project.

868

869 **Identification of differentially expressed genes**

870 Differential expression of genes in iPSCs (n = 71 cells), EB (n = 57 cells), Ros-E (n =
871 81 cells), Ros-L (n = 92 cells), and NPCs (n = 90 cells) was determined using SCDE
872 (single cell differential expression analysis) [84] with default parameters except
873 requiring a minimum of 100 genes (parameter min.lib.size = 100 to call scde.error.
874 models function). The Z scores and corrected Z scores (cZ) to adjust for the multiple
875 testing were converted into two-tailed p-values and adjusted to control for FDR using
876 pnorm function in R. The significantly differentially expressed genes were selected
877 based on following criteria: adjusted p-value < 0.01 and fold-change > 2.

878

879 **Constructing trajectory using differentially expressed genes**

880 Monocle [85] ordering was conducted for all iPSCs, EB, Ros-E, Ros-L and NPCs cells
881 using the set of variable genes with default parameters except we specified
882 reduction_method ="DDRTree" in the reduceDimension function. The variable genes
883 were selected using the Seurat R package [86].

884

885 **Analysis of heterogeneity in each cell stage**

886 The heterogeneity of each cell stage was determined using Seurat R package [86] by
887 the normalized expression level of reported transcription factors (retrieved from
888 AnimalTFDB 2.0) [89]. Briefly, PCs with a p-value less than 0.01 were used for cell
889 clustering with reduction.type="pca" and resolution="1.0". The FindallMarkers function
890 of Seurat package was used to identify marker genes for each cluster using default
891 parameters.

892

893 **ATAC peak calling**

894 We aligned ATAC-seq data to hg19 using Bowtie2 [88] and called peaks using MACS2
895 [89]. We established a standard peak set by merging all overlapping peaks. The IDR
896 pipeline [90] was used to identify reproducible peaks between two biological replicates.
897 Only peaks with IDR<=0.05 were considered reproducible and retained for
898 downstream analysis. Pearson correlation coefficients of two biological replicates at

899 each stage were calculated. Stage-specific peaks were defined as peaks having no
900 overlap with any peaks in other stages. Novel peaks were defined as peaks
901 non-overlapping with previous stages. In the case of iPSCs, all peaks were annotated
902 as novel peaks.

903

904 **Targets assignment of ATAC peaks**

905 For reproducible peaks, we applied HOMER [91] to assign putative targets for peaks.
906 For stage-specific peaks, ChIPseeker [92] was used for putative target assignment. In
907 both strategies, the putative target of a certain peak is defined as the gene with TSS
908 closest to the peak summit location.

909

910 **GO term and KEGG enrichment analysis**

911 Lists of genes were analysed using DAVID [93,94] and the BH method was used for
912 multiple test correction. GO terms with a FDR less than 0.01 or 0.05 were considered
913 as significantly enriched. Target genes of stage-specific ATAC peaks were analysed
914 using the R package, clusterProfiler [95], in which an adjusted p-value of 0.05 was
915 used to identify significantly enriched GO and KEGG terms associated with each set
916 of peaks.

917

918 **Regulatory network construction**

919 The scRNA-seq profiles among each cell types were compared using SCDE package
920 [84]. TFs significantly differentially expressed, with adjusted p-value threshold of 0.05,
921 among neighboring cell types were submitted to STRING database [64] to infer
922 regulatory networks based on known interaction relationships (supported by data from
923 curated databases, experiments and text-mining). TFs without any interactions with
924 other proteins were removed from the network. To select key regulators, we used a
925 threshold of 5 and all TFs with number of interactions above the threshold were
926 considered as key regulators.

927

928 **Putative targets prediction, GO term and KEGG enrichment analysis**

929 The target prediction and enrichment analyses were performed using the FIMO [96]
930 and GREAT [97] packages, respectively. Briefly, the peak files in a certain stage were
931 scanned for the presence or absence of TF motifs, which were downloaded from the
932 Jasper database [98]. Genes with a TSS closest to TF motif-containing peaks were
933 considered as putative targets of certain TFs.

934

935 **Construction of cellular communication network**

936 The ligand-receptor interaction relationships were downloaded from the database,
937 IUPHAR/BPS Guide to PHARMACOLOGY [98], and the Database of
938 Ligand-Receptor Partners (DLRP) [65, 100]. The average expression level of TPM of
939 1 was used as a threshold. Ligands and receptors above the threshold were
940 considered as expressed in the corresponding cluster. Adjusted *P* value of 0.05 was
941 used as a threshold to identify ligands/receptors specifically expressed in a
942 subpopulation. The R package Circlize [101] was used to visualize the interactions.

943

944 **Motif enrichment analysis**

945 Motifs enriched in each set of ATAC peaks were identified using findMotifsGenome.pl
946 from HOMER [91] using following parameters: -size -100,100 -len
947 4,5,6,7,8,9,10,11,12.

948

949 **Additional files**

950 **Additional file 1: Figure S1.** Quality control of ATAC-seq.

951 **Additional file 2: Figure S2.** Dynamics of gained and lost peaks during neural
952 differentiation.

953 **Additional file 3: Figure S3.** Stage-specific features of *cis*-regulatory elements
954 during neural differentiation.

955 **Additional file 4: Figure S4.** Quality control of scRNA-seq.

956 **Additional file 5: Figure S5.** Subgroups identification and key transcriptomic features

957 within Fib stage.

958 **Additional file 6: Figure S6.** Subgroups identification and key transcriptomic features
959 within EB stage.

960 **Additional file 7: Figure S7.** Subgroups identification and key transcriptomic features
961 within Ros-L stage.

962 **Additional file 8: Figure S8.** Subgroups identification and key transcriptomic features
963 within NPCs stage.

964 **Additional file 9: Figure S9.** Expression pattern of selected transcription factors (TFs)
965 within rosettes (Ros-E and Ros-L) stage.

966 **Additional file 10: Figure S10.** Differentially expressed transcription factors (TFs)
967 between Ros-E2 and Ros-L3.

968 **Additional file 11: Figure S11.** Differentially expressed transcription factors (TFs)
969 between Ros-L3 and NPC1.

970 **Additional file 12: Figure S12.** Key regulators during neural differentiation.

971 **Additional file 13: Figure S13.** GO term and KEGG enrichment analysis of selected
972 transcription factors (TFs) targets.

973 **Additional file 14: Figure S14.** Putative signaling between expressed receptors and
974 their ligands in EB subsets.

975 **Additional file 15: Figure S15.** Putative signaling between expressed receptors and
976 their ligands in Ros-E subsets.

977 **Additional file 16: Figure S16.** Putative signaling between expressed receptors and
978 their ligands in NPC subsets.

979 **Additional file 17: Figure S17.** Transcription factor motifs enriched in stage specific
980 peaks.

981 **Additional file 18: Figure S18.** Validation of neural differentiation in different genetic
982 background cell lines

983 **Additional file 19 : Table S1.** TFs differentially expressed among neighbouring cell
984 subsets.

985 **Additional file 20: Table S2.** Putative targets of selected regulators.

986 **Additional file 21: Table S3.** Subpopulations interaction networks.
987 **Additional file 22: Table S4.** Differentially expressed receptors and ligands among
988 Ros-L subpopulations.
989

990 **Availability of data and materials**

991 The detailed protocol of neural differentiation and bioinformatics pipeline was
992 available in protocol. io (DOI: dx.doi.org/10.17504/protocols.io.ntrdem6 and DOI:
993 dx.doi.org/10.17504/protocols.io.ntpdemn). The sequencing raw data were deposited
994 on NCBI SRA with the accession number SRP155759.
995

996 **Competing interests**

997 The authors declare that they have no competing interests.
998

999 **Authors' contributions**

1000 X.X. and Z.G. conceived and designed the project. Z.S., D.C., Q.W., S.W. and Q.D.
1001 conducted the majority of experiments and data analysis. L.W., X.D., S.W. and J.Z.
1002 performed computational analyses and prepared figures. C.L. participated in
1003 validation experiments and assisted with figure preparation for revision. D.Z., X.C. and
1004 F.C. contributed to sample collection. X.X., Z.G. and H.Y. supervised the project. X.L.
1005 contributed to the design of the revision and jointly supervised the validation work.
1006 Z.S., D.C., Q.W., Z.G. and X.X. prepared the manuscript. S.Z., L.L. and J.L.F.
1007 contributed to the discussion and revision of the manuscript. All authors read and
1008 approved the final manuscript.
1009

1010 **Acknowledgements**

1011 We thank Tao Tan for support with antibody, Shiping Liu for bioinformatics help, Guibo
1012 Li for technical help with preparation of single cell RNA-seq libraries and other
1013 members of Cell and Developmental Biology Lab for discussions and support. This
1014 work was supported by Shenzhen Engineering Laboratory for Innovative Molecular

1015 Diagnostics [grant number DRC-SZ [2016] 884] funded by Development and Reform
1016 Commission of Shenzhen Municipality; and Shenzhen Key Laboratory of
1017 Neurogenomics (CXB201108250094A) funded by Science, Technology and
1018 Innovation Commission of Shenzhen Municipality. Dongsheng Chen is supported by
1019 China Postdoctoral Science Foundation (grant number 2017M622795).

1020

1021 **References**

- 1022 1. Harmacek L, Watkins-Chow DE, Chen J, Jones KL, Pavan WJ, Salbaum JM, et al.
1023 A unique missense allele of BAF155, a core BAF chromatin remodeling complex
1024 protein, causes neural tube closure defects in mice. *Dev Neurobiol.* 2014;74:483-97.
- 1026 2. Foster WH, Langenbacher A, Gao C, Chen J, Wang Y. Nuclear phosphatase
1027 PPM1G in cellular survival and neural development. *Dev Dyn.* 2013;242:1101-9.
- 1028 3. Wilde JJ, Petersen JR, Niswander L. Genetic, Epigenetic, and Environmental
1029 Contributions to Neural Tube Closure. *Annu Rev Genet.* 2014;48:583-611.
- 1030 4. Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation
1031 in a human iPS cell model of mental disorders. *Nature.* 2014;515:414-8.
- 1032 5. Tao Y, Zhang SC. Neural Subtype Specification from Human Pluripotent Stem
1033 Cells. *Cell Stem Cell.* 2016. p. 573-86.
- 1034 6. Streit A, Berliner AJ, Papanayotou C, Slrulnik A, Stern CD. Initiation of neural
1035 induction by FGF signalling before gastrulation. *Nature.* 2000;406:74-8.
- 1036 7. Muñoz-Sanjuán I, Brivanlou AH. Neural induction, the default model and
1037 embryonic stem cells. *Nat Rev Neurosci.* 2002;3:271-80.
- 1038 8. Zhang S-C, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation
1039 of transplantable neural precursors from human embryonic stem cells. *Nat
1040 Biotechnol.* 2001;19:1129-33.
- 1041 9. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing
1042 reveals single-nucleotide mutation characteristics of a kidney tumor. *Cell.*
1043 2012;148:886-95.

1044 10. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome
1045 sequencing and monoclonal evolution of a JAK2-negative myeloproliferative
1046 neoplasm. *Cell*. 2012;148:873-85.

1047 11. Johnson MB, Wang PP, Atabay KD, Murphy EA, Doan RN, Hecht JL, et al.
1048 Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in
1049 human cortex. *Nat Neurosci*. 2015;18:637-46.

1050 12. Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al.
1051 Single-cell RNA-seq reveals new types of human blood dendritic cells,
1052 monocytes, and progenitors. *Science* (80-). 2017;356:eaah4573.

1053 13. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al.
1054 Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.
1055 *Cell*. 2016;167:566-580.e19.

1056 14. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al.
1057 Computational analysis of cell-to-cell heterogeneity in single-cell
1058 RNA-sequencing data reveals hidden subpopulations of cells. *Nat Biotechnol*.
1059 2015;33:155-60.

1060 15. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, et al. Reference
1061 component analysis of single-cell transcriptomes elucidates cellular
1062 heterogeneity in human colorectal tumors. *Nat Genet*. 2017;49:708-18.

1063 16. Kim DS, Lee DR, Kim HS, Yoo JE, Jung SJ, Lim BY, et al. Highly pure and
1064 expandable PSA-NCAM-positive neural precursors from human ESC and
1065 iPSC-derived neural rosettes. *PLoS One*. 2012;7.

1066 17. Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human
1067 induced pluripotent stem cells for modelling neurodevelopmental disorders. *Nat.*
1068 *Rev. Neurol*. 2017. p. 265-78.

1069 18. Chambers SMSM, Fasano CACA, Papapetrou EP, Tomishima M, Sadelain M,
1070 Studer L. Highly efficient neural conversion of human ES and iPS cells by dual
1071 inhibition of SMAD signaling. *Nat Biotechnol*. 2009;27:275-80.

1072 19. Dolmetsch R, Geschwind DH. The human brain in a dish: The promise of

1073 iPSC-derived neurons. *Cell*. 2011. p. 831-4.

1074 20. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine
1075 neurons derived from human ES cells efficiently engraft in animal models of
1076 Parkinson's disease. *Nature*. 2011;480:547-51.

1077 21. Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, et al. Human
1078 iPSC-based modeling of late-onset disease via progerin-induced aging. *Cell Stem Cell*.
1079 2013;13:691-705.

1080 22. Maroof AM, Keros S, Tyson JA, Ying S-W, Ganat YM, Merkle FT, et al. Directed
1081 Differentiation and Functional Maturation of Cortical Interneurons from Human
1082 Embryonic Stem Cells. *Cell Stem Cell*. 2013;12:559-72.

1083 23. Shi Y, Kirwan P, Smith J, Robinson HPC, Livesey FJ. Human cerebral cortex
1084 development from pluripotent stem cells to functional excitatory synapses. *Nat
1085 Neurosci*. 2012;15:477-86.

1086 24. Hueber SD, Bezdan D, Henz SR, Blank M, Wu H, Lohmann I. Comparative
1087 analysis of Hox downstream genes in *Drosophila*. *Development*
1088 2007;134:381-92.

1089 25. Chen D, Jiang S, Ma X, Li F. TFBsBank: a platform to dissect the big data of
1090 protein-DNA interaction in human and model species. *Nucleic Acids Res*. Oxford
1091 University Press; 2017;45:D151-7.

1092 26. Thomas S, Li X-Y, Sabo PJ, Sandstrom R, Thurman RE, Canfield TK, et al.
1093 Dynamic reprogramming of chromatin accessibility during *Drosophila* embryo
1094 development. *Genome Biol. BioMed Central*; 2011;12:R43.

1095 27. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al.
1096 Single-cell chromatin accessibility reveals principles of regulatory variation.
1097 *Nature*. Nature Publishing Group; 2015;523:486-90.

1098 28. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map of the
1099 three-dimensional chromatin interactome in human cells. *Nature*. Nature
1100 Publishing Group; 2013;503:290-4.

1101 29. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al.

1102 Lineage-specific and single-cell chromatin accessibility charts human
1103 hematopoiesis and leukemia evolution. *Nat Genet.* Nature Publishing Group;
1104 2016;48:1193-203.

1105 30. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R.
1106 Smart-seq2 for sensitive full-length transcriptome profiling in single cells. *Nat
1107 Methods.* 2013;10:1096-100.

1108 31. Kimura-Yoshida C, Mochida K, Ellwanger K, Niehrs C, Matsuo I. Fate
1109 Specification of Neural Plate Border by Canonical Wnt Signaling and Grl3 is
1110 Crucial for Neural Tube Closure. *EBioMedicine.* 2015;2:513-27.

1111 32. Nikolopoulou E, Galea GL, Rolo A, Greene NDE, Copp AJ. Neural tube closure:
1112 cellular, molecular and biomechanical mechanisms. *Development.*
1113 2017;144:552-66.

1114 33. Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D,
1115 McMahon AP, et al. Neural tube, skeletal and body wall defects in mice lacking
1116 transcription factor AP-2. *Nature.* 1996;381:238-41.

1117 34. Hayon Y, Dashevsky O, Shai E, Varon D, Leker RR. Platelet microparticles
1118 promote neural stem cell proliferation, survival and differentiation. *J Mol Neurosci.*
1119 2012;47:659-65.

1120 35. Lee HO, Levorse JM, Shin MK. The endothelin receptor-B is required for the
1121 migration of neural crest-derived melanocyte and enteric neuron precursors. *Dev
1122 Biol.* 2003;259:162-75.

1123 36. Li H, Horns F, Wu B, Xie Q, Li J, Li T, et al. Classifying *Drosophila* Olfactory
1124 Projection Neuron Subtypes by Single-Cell RNA Sequencing. *Cell.*
1125 2017;171:1206-1220.e22.

1126 37. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct
1127 conversion of fibroblasts to functional neurons by defined factors. *Nature.* 2010;
1128 45:1035-1041.

1129 38. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, et al.
1130 MicroRNA-mediated conversion of human fibroblasts to neurons. *Nature.* 2011;

1131 476:228-31.

1132 39. Kim D-Y, Hwang I, Muller FL, Paik J-H. Functional regulation of FoxO1 in neural
1133 stem cell differentiation. *Cell Death Differ.* 2015;22:2034-45.

1134 40. Cameron DA, Pennimpede T, Petkovich M. Tulp3 is a critical repressor of Mouse
1135 hedgehog signaling. *Dev Dyn.* 2009;238:1140-9.

1136 41. Jin Z, Liu L, Bian W, Chen Y, Xu G, Cheng L, et al. Different transcription factors
1137 regulate nestin gene expression during P19 cell neural differentiation and central
1138 nervous system development. *J Biol Chem.* 2009;284:8160-73.

1139 42. Elkabetz Y, Panagiotakos G, Al Shamy G, Soccia ND, Tabar V, Studer L. Human
1140 ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell
1141 stage. *Genes Dev.* 2008;22:152-65.

1142 43. Cheung M, Briscoe J. Neural crest development is regulated by the transcription
1143 factor Sox9. *Development.* 2003;130:5681-93.

1144 44. Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M, Gaviro MVG, et al. SOX9
1145 induces and maintains neural stem cells. *Nat Neurosci.* 2010;13:1181-9.

1146 45. Betters E, Liu Y, Kjaeldgaard A, Sundstrom E, Garcia-Castro MI. Analysis of early
1147 human neural crest development. *Dev Biol.* 2010;344:578-92.

1148 46. Wang C, Kam RKT, Shi W, Xia Y, Chen X, Cao Y, et al. The Proto-oncogene
1149 transcription factor Ets1 regulates neural crest development through histone
1150 deacetylase 1 to mediate output of bone morphogenetic protein signaling. *J Biol
1151 Chem.* 2015;290:21925-38.

1152 47. Mulligan KA, Cheyette BNR. Wnt signaling in vertebrate neural development and
1153 function. *J. Neuroimmune Pharmacol.* 2012. p. 774–87.

1154 48. Ille F, Sommer L. Wnt signaling: multiple functions in neural development. *Cell.*
1155 *Mol. Life Sci.* 2005;62:1100-8.

1156 49. Wang J, Jenjaroenpun P, Bhinge A, Angarica VE, Del Sol A, Nookaew I, et al.
1157 Single-cell gene expression analysis reveals regulators of distinct cell
1158 subpopulations among developing human neurons. *Genome Res.*
1159 2017;27:1783-94.

1160 50. Wang Y, Ristevski S, Harley VR. SOX13 exhibits a distinct spatial and temporal
1161 expression pattern during chondrogenesis, neurogenesis, and limb development.
1162 *J Histochem Cytochem.* 2006;54:1327-33.

1163 51. Ji EH, Kim J. SoxD Transcription Factors: Multifaceted Players of Neural
1164 Development. *Int J stem cells.* Korean Society for Stem Cell Research;
1165 2016;9:3-8.

1166 52. Koshida R, Oishi H, Hamada M, Takei Y, Takahashi S. MafB is required for
1167 development of the hindbrain choroid plexus. *Biochem Biophys Res Commun.*
1168 2017;483:288-93.

1169 53. Rogers CD, Phillips JL, Bronner ME. Elk3 is essential for the progression from
1170 progenitor to definitive neural crest cell. *Dev Biol.* 2013;374:255-63.

1171 54. Noisa P, Lund C, Kanduri K, Lund R, La H. Notch signaling regulates the
1172 differentiation of neural crest from human pluripotent stem cells. *J Cell Sci.*
1173 2014;127:2083-94.

1174 55. Zhang J, Zheng B, Zhou P-P, Zhang R-N, He M, Yang Z, et al. Vascular
1175 calcification is coupled with phenotypic conversion of vascular smooth muscle
1176 cells through Klf5-mediated transactivation of the Runx2 promoter. *Biosci Rep.*
1177 2014;34:e00148.

1178 56. Dougherty M, Kamel G, Grimaldi M, Gfrerer L, Shubinets V, Ethier R, et al.
1179 Distinct requirements for wnt9a and irf6 in extension and integration mechanisms
1180 during zebrafish palate morphogenesis. *Development.* 2013;140:76-81.

1181 57. Hernandez-Lagunas L, Choi IF, Kaji T, Simpson P, Hershey C, Zhou Y, et al.
1182 Zebrafish narrowminded disrupts the transcription factor prdm1 and is required
1183 for neural crest and sensory neuron specification. *Dev Biol.* 2005;278:347-57.

1184 58. Simões-Costa M, Bronner ME. Insights into neural crest development and
1185 evolution from genomic analysis. *Genome Res.* 2013. p. 1069-80.

1186 59. Viales RR, Diotel N, Ferg M, Armant O, Eich J, Alunni A, et al. The
1187 Helix-Loop-Helix Protein Id1 Controls Stem Cell Proliferation During
1188 Regenerative Neurogenesis in the Adult Zebrafish Telencephalon. *Stem Cells.*

1189 2015;33:892-903.

1190 60. Li L, Candelario KM, Thomas K, Wang R, Wright K, Messier A, et al. Hypoxia
1191 Inducible Factor-1 (HIF-1) Is Required for Neural Stem Cell Maintenance and
1192 Vascular Stability in the Adult Mouse SVZ. *J Neurosci*. 2014;34:16713-9.

1193 61. Ahmed M, Xu J, Xu P-X. EYA1 and SIX1 drive the neuronal developmental
1194 program in cooperation with the SWI/SNF chromatin-remodeling complex and
1195 SOX2 in the mammalian inner ear. *Development*. Company of Biologists;
1196 2012;139:1965-77.

1197 62. Abe H, Okazawa M, Nakanishi S. The Etv1/Er81 transcription factor orchestrates
1198 activity-dependent gene regulation in the terminal maturation program of
1199 cerebellar granule cells. *Proc Natl Acad Sci U S A*. National Academy of Sciences;
1200 2011;108:12497-502.

1201 63. Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2,
1202 and Oct6) influence neurogenesis, molecular identity, and migratory destination
1203 of upper-layer cells of the cerebral cortex. *Cereb Cortex*. 2013;23:2632-43.

1204 64. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The
1205 STRING database in 2017: quality-controlled protein-protein association
1206 networks, made broadly accessible. *Nucleic Acids Res*. Oxford University Press;
1207 2017;45:D362-8.

1208 65. Pavličev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, et al.
1209 Single-cell transcriptomics of the human placenta: Inferring the cell
1210 communication network of the maternal-fetal interface. *Genome Res*.
1211 2017;27:349-61.

1212 66. Stern CD. Initial patterning of the central nervous system: How many organizers?
1213 *Nat Rev Neurosci*. 2001;2:92-8.

1214 67. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA. Inhibition of
1215 Activin/Nodal signaling promotes specification of human embryonic stem cells
1216 into neuroectoderm. *Dev Biol*. 2008;313:107-17.

1217 68. Schwarz M, Alvarez-Bolado G, Dressler G, Urbánek P, Busslinger M, Gruss P.

1218 Pax2/5 and Pax6 subdivide the early neural tube into three domains. *Mech Dev.*
1219 1999;82:29-39.

1220 69. Brouns MR, de Castro SCP, Terwindt-Rouwenhorst EA, Massa V, Hekking JW,
1221 Hirst CS, et al. Over-expression of Grhl2 causes spina bifida in the Axial defects
1222 mutant mouse. *Hum Mol Genet.* 2011;20:1536-46.

1223 70. Nikitina N, Tong L, Bronner ME. Ancestral network module regulating prdm1
1224 expression in the lamprey neural plate border. *Dev Dyn.* 2011;240:2265-71.

1225 71. Vincent SD, Dunn NR, Sciammas R, Shapiro-Shalef M, Davis MM, Calame K, et
1226 al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early
1227 axis formation but is required for specification of primordial germ cells in the
1228 mouse. *Development.* 2005;132:1315-25.

1229 72. Timmer JR, Wang C, Niswander L. BMP signaling patterns the dorsal and
1230 intermediate neural tube via regulation of homeobox and helix-loop-helix
1231 transcription factors. *Development.* 2002;129:2459-72.

1232 73. Burns CJ, Zhang J, Brown EC, Van Bibber AM, Van Es J, Clevers H, et al.
1233 Investigation of Frizzled-5 during embryonic neural development in mouse. *Dev*
1234 *Dyn.* 2008;237:1614-26.

1235 74. Miyake A, Nakayama Y, Konishi M, Itoh N. Fgf19 regulated by Hh signaling is
1236 required for zebrafish forebrain development. *Dev Biol.* 2005;288:259-75.

1237 75. Qu Q, Sun G, Murai K, Ye P, Li W, Asuelime G, et al. Wnt7a Regulates Multiple
1238 Steps of Neurogenesis. *Mol Cell Biol.* 2013;33:2551-9.

1239 76. Hsu Y-C, Lee D-C, Chen S-L, Liao W-C, Lin J-W, Chiu W-T, et al. Brain-specific
1240 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells
1241 with self-renewal and multipotent capacities. *Dev Dyn.* 2009;238:302-14.

1242 77. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more
1243 efficient method to generate integration-free human iPS cells. *Nat. Methods.*
1244 2011;8:409-12.

1245 78. Wu L, Zhang X, Zhao Z, Wang L, Li B, Li G, et al. Full-length single-cell RNA-seq
1246 applied to a viral human cancer: Applications to HPV expression and splicing

1247 analysis in HeLa S3 cells. *Gigascience*. 2015;4: 51.

1248 79. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of
1249 native chromatin for fast and sensitive epigenomic profiling of open chromatin,
1250 DNA-binding proteins and nucleosome position. *Nat. Methods*. 2013;10:1213-8.

1251 80. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: a MapReduce
1252 acceleration-supported software for integrated quality control and preprocessing
1253 of high-throughput sequencing data. *Gigascience* 2018;7:1-6.

1254 81. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory
1255 requirements. *Nat. Methods*; 2015;12:357-60.

1256 82. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al.
1257 Software for Computing and Annotating Genomic Ranges. Prlic A, editor. PLoS
1258 Comput. Biol. 2013;9:e1003118.

1259 83. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
1260 differential expression analysis of digital gene expression data. *Bioinformatics*
1261 2010;26:139-40.

1262 84. Kharchenko P V, Silberstein L, Scadden DT. Bayesian approach to single-cell
1263 differential expression analysis. *Nat. Methods* 2014;11:740-2.

1264 85. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
1265 dynamics and regulators of cell fate decisions are revealed by pseudotemporal
1266 ordering of single cells. *Nat. Biotechnol.* 2014;32:381-6.

1267 86. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of
1268 single-cell gene expression data. *Nat. Biotechnol.* 2015;33:495-502.

1269 87. Zhang H-M, Liu T, Liu C-J, Song S, Zhang X, Liu W, et al. AnimalTFDB 2.0: a
1270 resource for expression, prediction and functional study of animal transcription
1271 factors. *Nucleic Acids Res.* 2015;43:D76-81.

1272 88. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat.*
1273 *Methods*. 2012;9:357-9.

1274 89. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
1275 Model-based Analysis of ChIP-Seq (MACS). *Genome Biol. BioMed Central*;

1276 2008;9:R137.

1277 90. Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of
1278 high-throughput experiments. *Ann. Appl. Stat.* Institute of Mathematical
1279 Statistics; 2011;5:1752-79.

1280 91. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple
1281 Combinations of Lineage-Determining Transcription Factors Prime
1282 cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Mol.*
1283 *Cell* 2010;38:576-89.

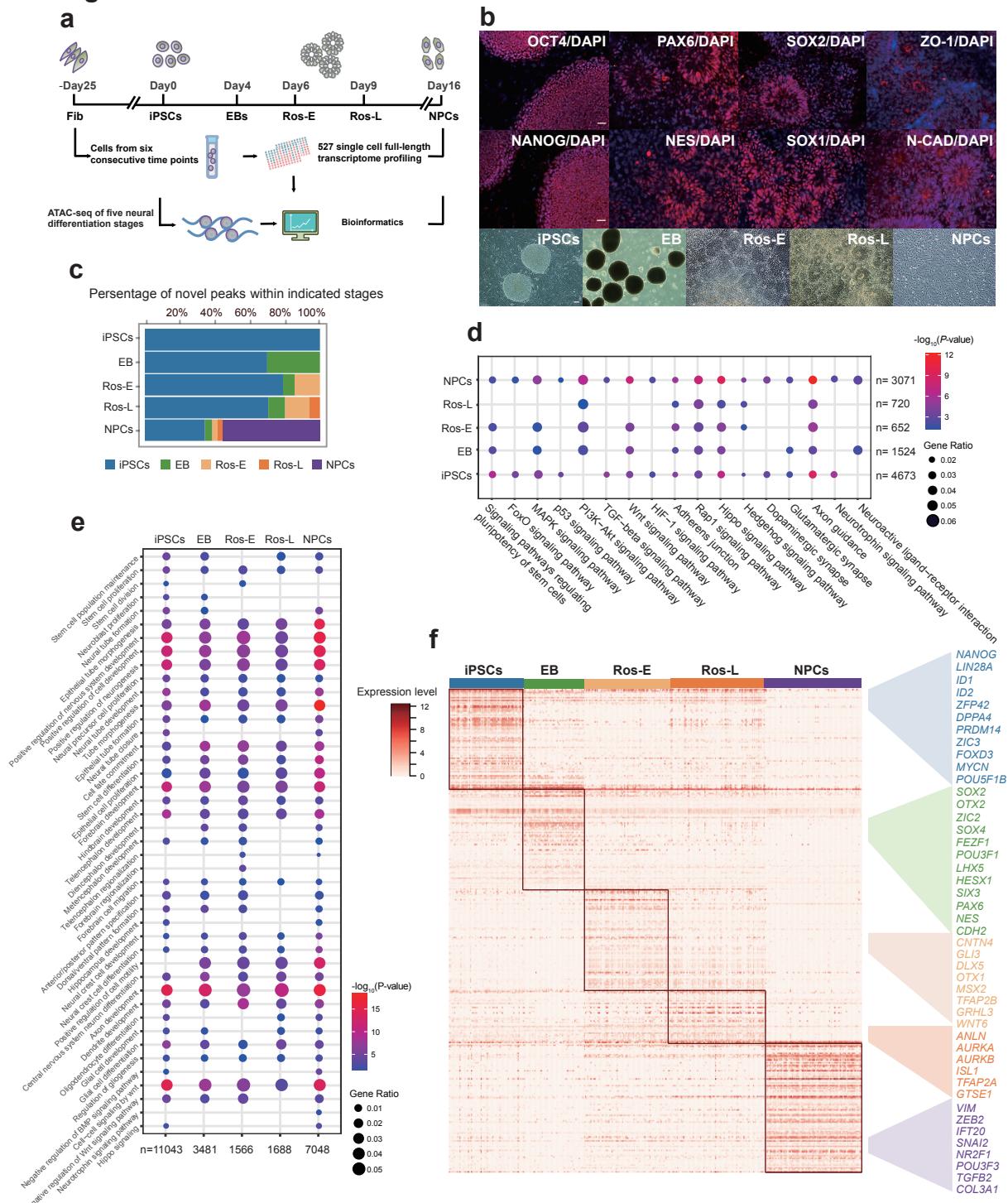
1284 92. Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP
1285 peak annotation, comparison and visualization. *Bioinformatics* 2015;31:2382-3.

1286 93. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
1287 large gene lists using DAVID bioinformatics resources. *Nat. Protoc.*
1288 2009;4:44-57.

1289 94. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths
1290 toward the comprehensive functional analysis of large gene lists. *Nucleic Acids*
1291 *Res.* 2009;37:1-13.

1292 95. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing
1293 Biological Themes Among Gene Clusters. *Omi. A J. Integr. Biol.* 2012;16:284-7.

1294 96. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given
1295 motif. *Bioinformatics* Oxford University Press; 2011;27:1017-8.


1296 97. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT
1297 improves functional interpretation of cis-regulatory regions. *Nat. Biotechnol.*
1298 2010;28:495-501.

1299 98. Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. JASPAR: an
1300 open-access database for eukaryotic transcription factor binding profiles.
1301 *Nucleic Acids Res.* Oxford University Press; 2004;32:D91-4.

1302 99. Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, et al.
1303 The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and
1304 expansion to encompass the new guide to IMMUNOPHARMACOLOGY.

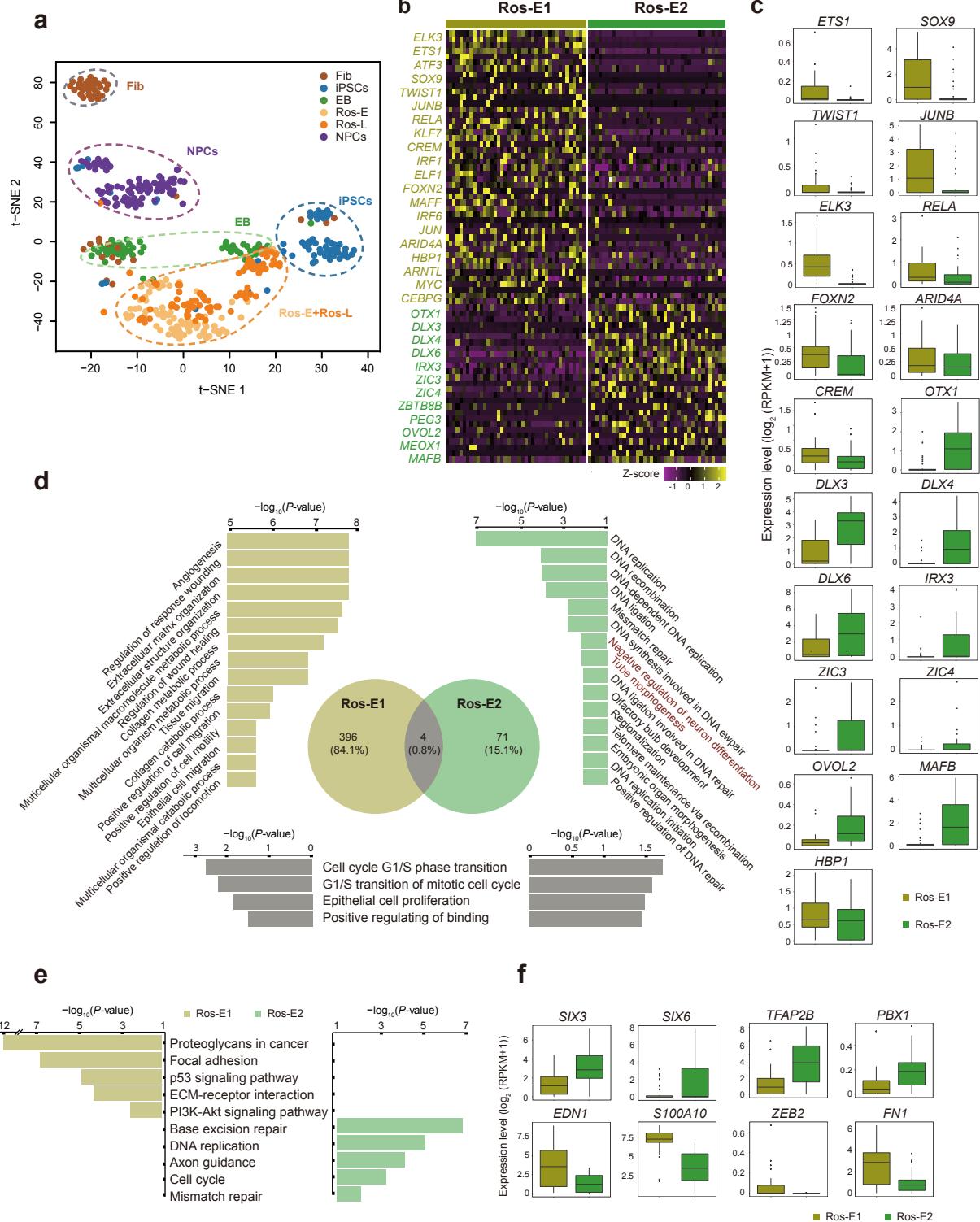

1305 Nucleic Acids Res. 2018;46:D1091-106.
1306 100. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The
1307 Database of Interacting Proteins: 2004 update. Nucleic Acids Res.
1308 2004;32:449D-451.
1309 101. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances
1310 circular visualization in R. Bioinformatics 2014;30:2811-2.
1311
1312

Fig. 1

Fig. 1 Transcriptome and regulome dynamics during human early neural differentiation. **a** Schematic illustration of experimental strategy. **b** Bright field and immunostaining of well-defined markers for iPSCs including OCT4 and NANOG, and for neural rosettes including PAX6, NES (NESTIN), SOX2, SOX1, ZO-1 and N-CAD (N-CADHERIN, also known as CDH2). Scale bar represents 50 μ m. **c** Dynamic distribution of novel peaks (active *cis*-regulatory elements) within indicated cell stages. **d** KEGG enrichment analysis of novel peaks within each cell stage as indicated respectively. **e** GO term annotation of novel peaks within each cell stage as indicated respectively. **f** Stage specific genes highlight with color specific to the respective neural differentiation cell stage (adjusted P -value ≤ 0.01).

Fig. 2

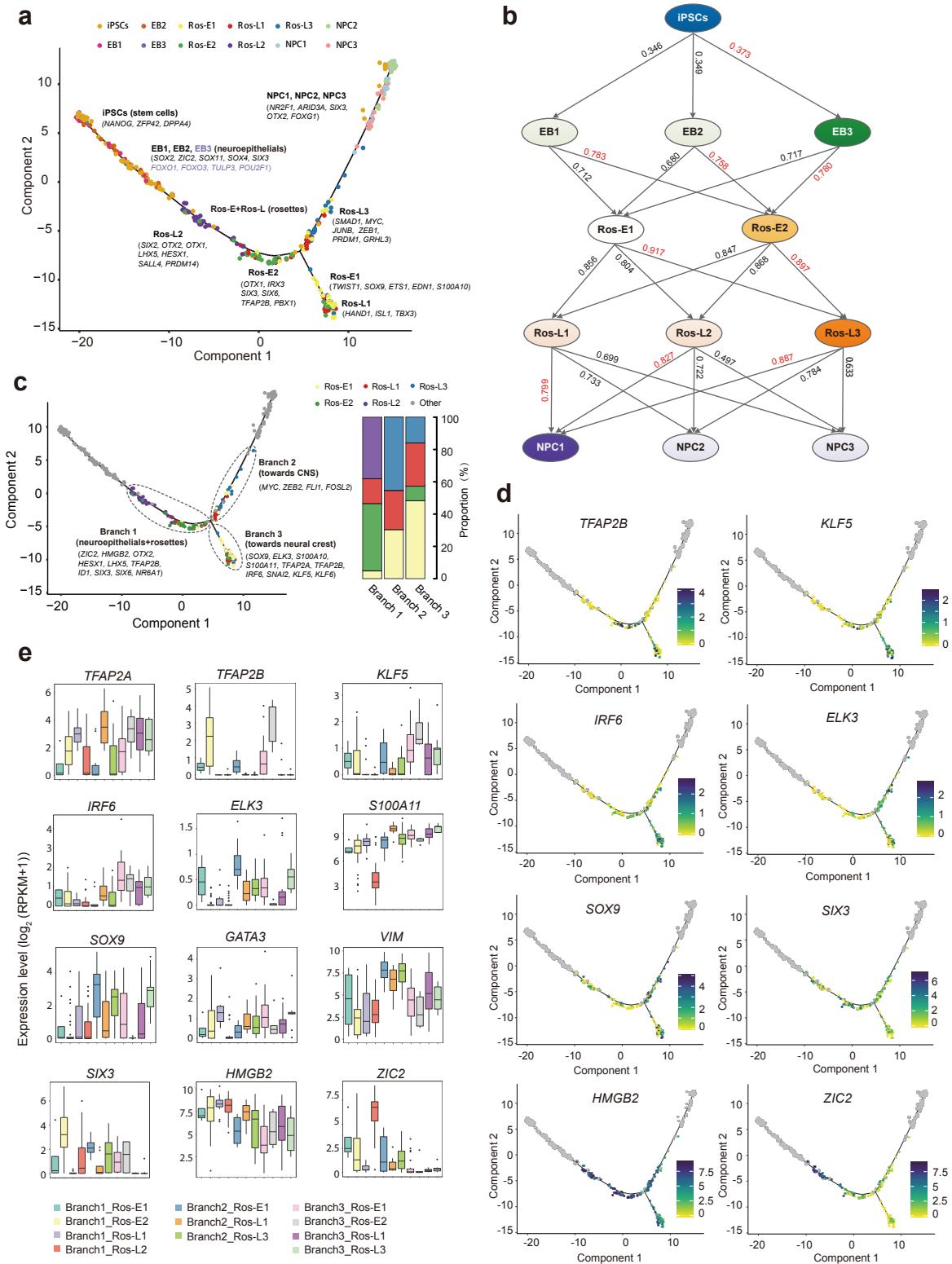
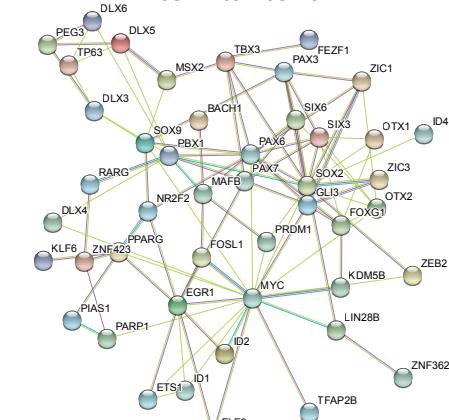
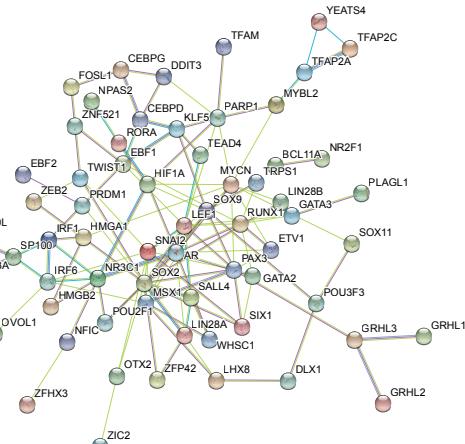
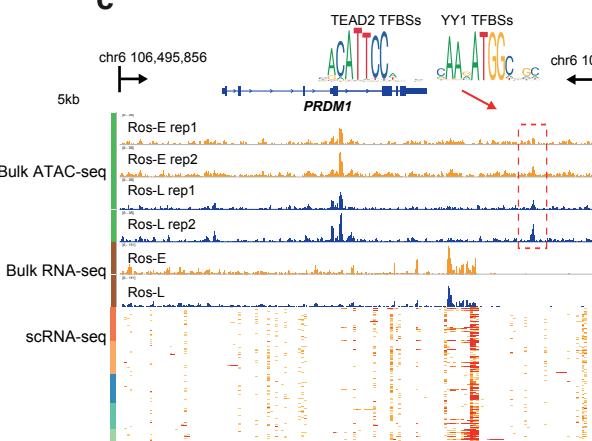
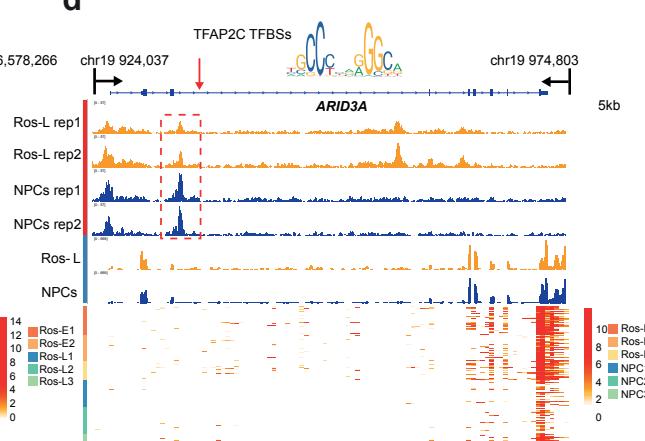
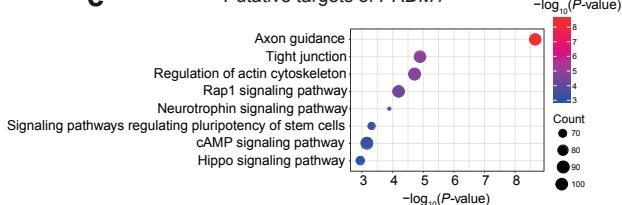
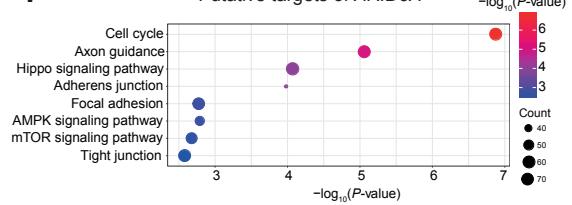
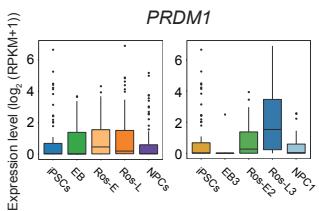
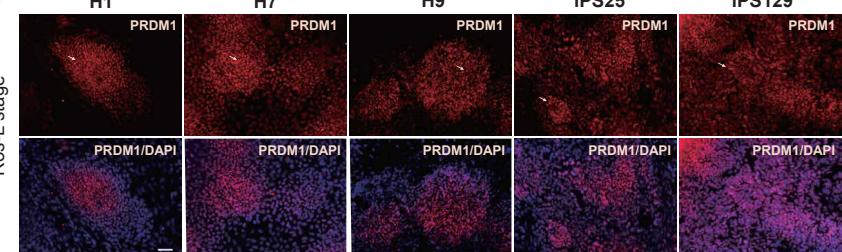


Fig. 2 Cell heterogeneity and identification of subsets within Ros-E stage. a









T-SNE analysis of different cell stages as indicated with different color (n = 445).

Number of successfully profiled single cells per cell stage: Fib (n = 54); iPSCs (n = 71); EB (n = 57); Ros-E (n = 81); Ros-L (n = 92); NPCs (n = 90). Each dot represents an individual cell. **b** Heatmap shows scaled expression [\log_2 (RPKM+1)] of discriminative TF sets for each cluster at Ros-E stage, P -value ≤ 0.01 . Color scheme is based on z-score distribution from -1 (purple) to 2 (yellow). **c** Box plot of discriminative TFs for specific subpopulation at Ros-E stage. **d** GO term enrichment of differentially up-regulated genes respective to indicated subpopulation (highlighted with color: Ros-E1 is yellow; Ros-E2 is green; overlapped GO terms of Ros-E1 and Ros-E2 are grey). **e** Top 5 differential pathway in Ros-E1 and Ros-E2 respectively by KEGG enrichment analysis. **f** Representative box plots of subpopulation specific genes identified by SCDE (single-cell differential expression), adjusted P -value ≤ 0.01 .

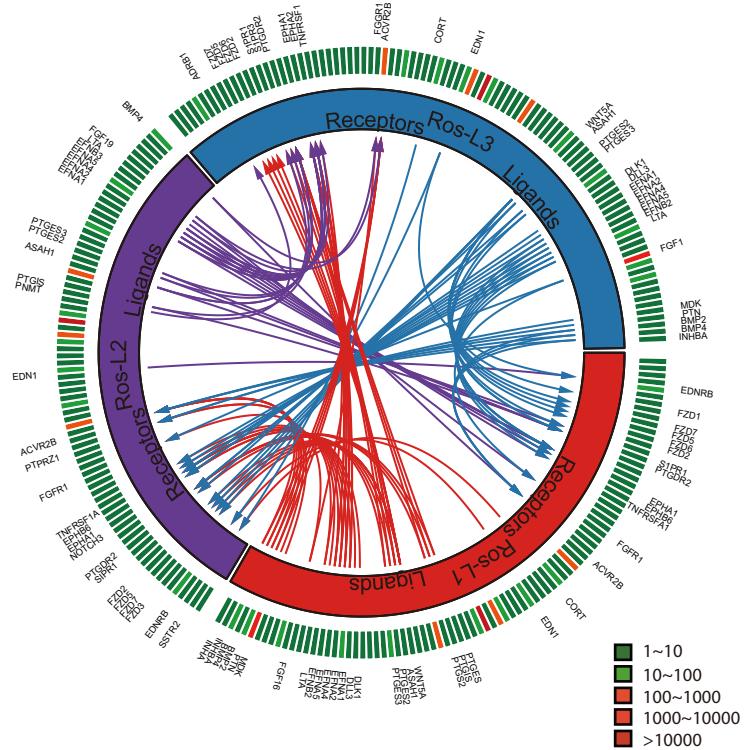
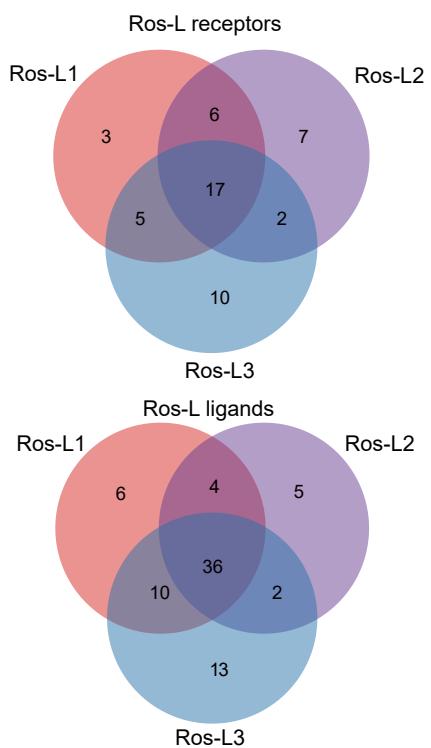
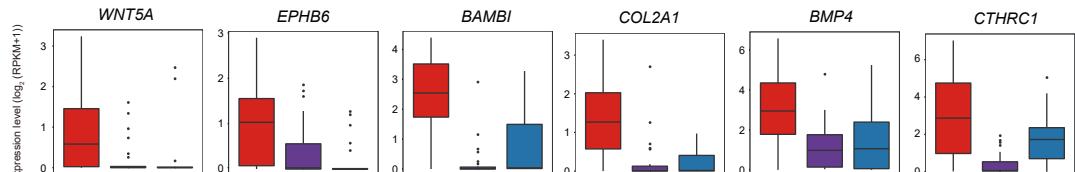
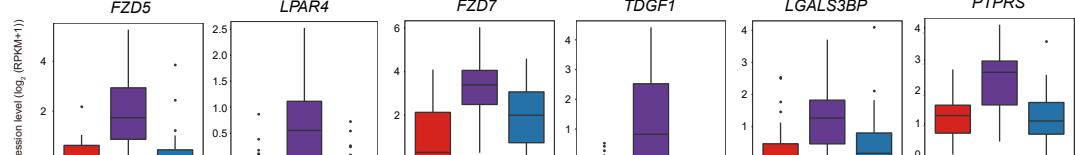
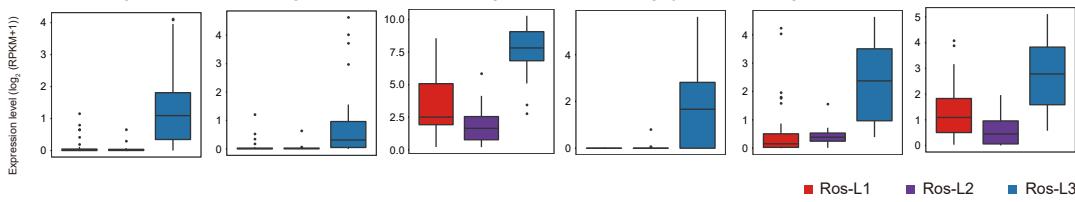





Fig. 3

Fig. 3 Cell fate specification revealed by reconstructed trajectory. **a** Differentiation trajectory constructed by 8220 variable genes across different cell stages. Selected marker genes specific to the respective cell stage/ subpopulation are indicated with black/purple color. **b** The connection of subpopulations from iPSCs to NPCs stage across the five-differentiation process identified by Pearson correlation coefficient. The Pearson correlation coefficient of the two comparisons is indicated on the arrow line, respectively. **c** The divarication point within rosette stage (Ros-E and Ros-L) across the differentiation trajectory, Branch 1, Branch 2 and Branch 3 based on their location on the differentiation trajectory are marked by dashed ellipse. Selected discriminative TFs specific to the respective branch are indicated. The columns represent the components of Branch 1, Branch 2 and Branch 3, respectively. **d** Expression pattern of selected differentially expressed TFs among the three branches on the reconstructed trajectory (adjusted P -value ≤ 0.01). Color scheme is based on expression [\log_2 (RPKM+1)]. **e** Expression pattern of representative differentially expressed TFs across different components of the three branches.

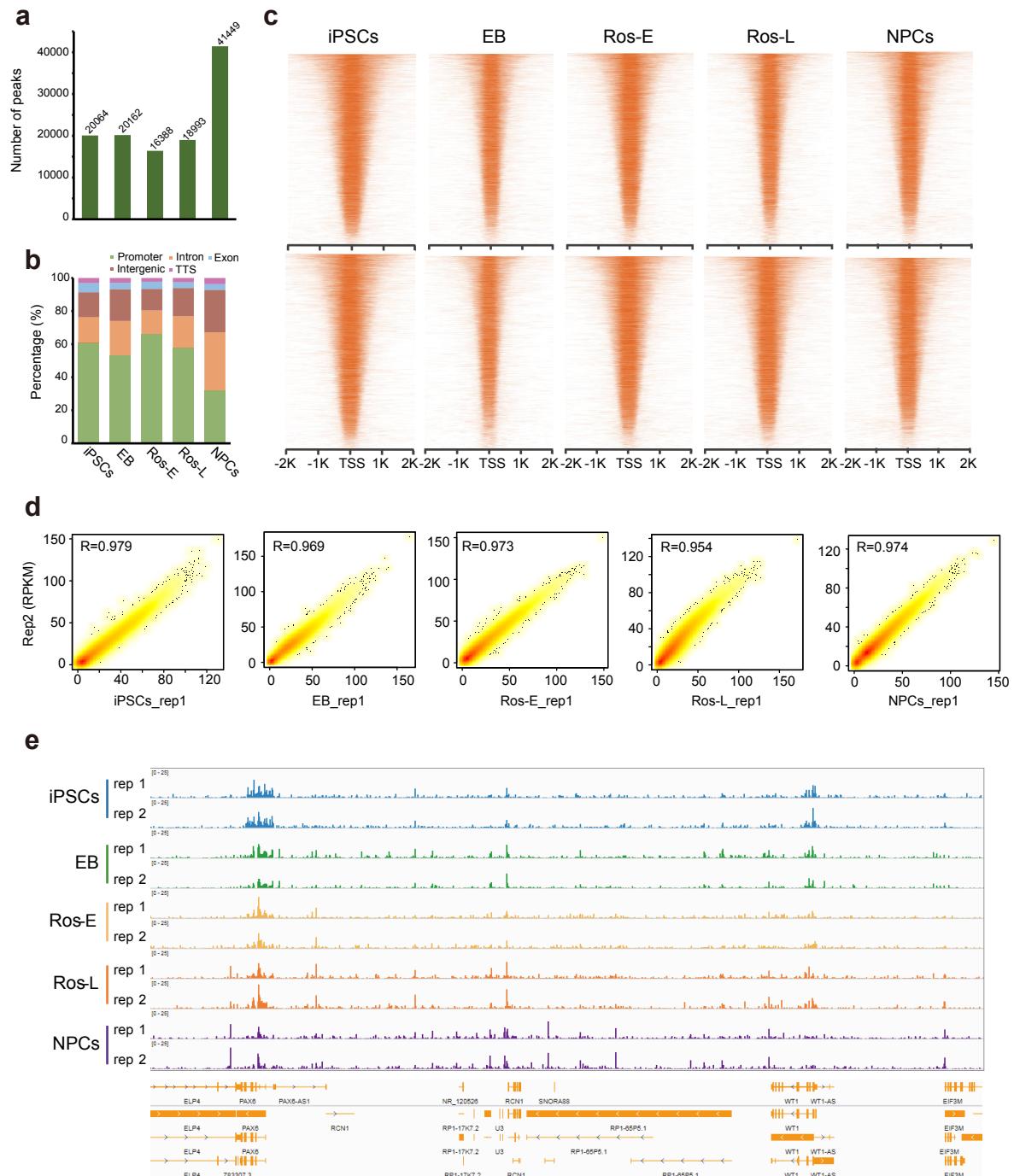
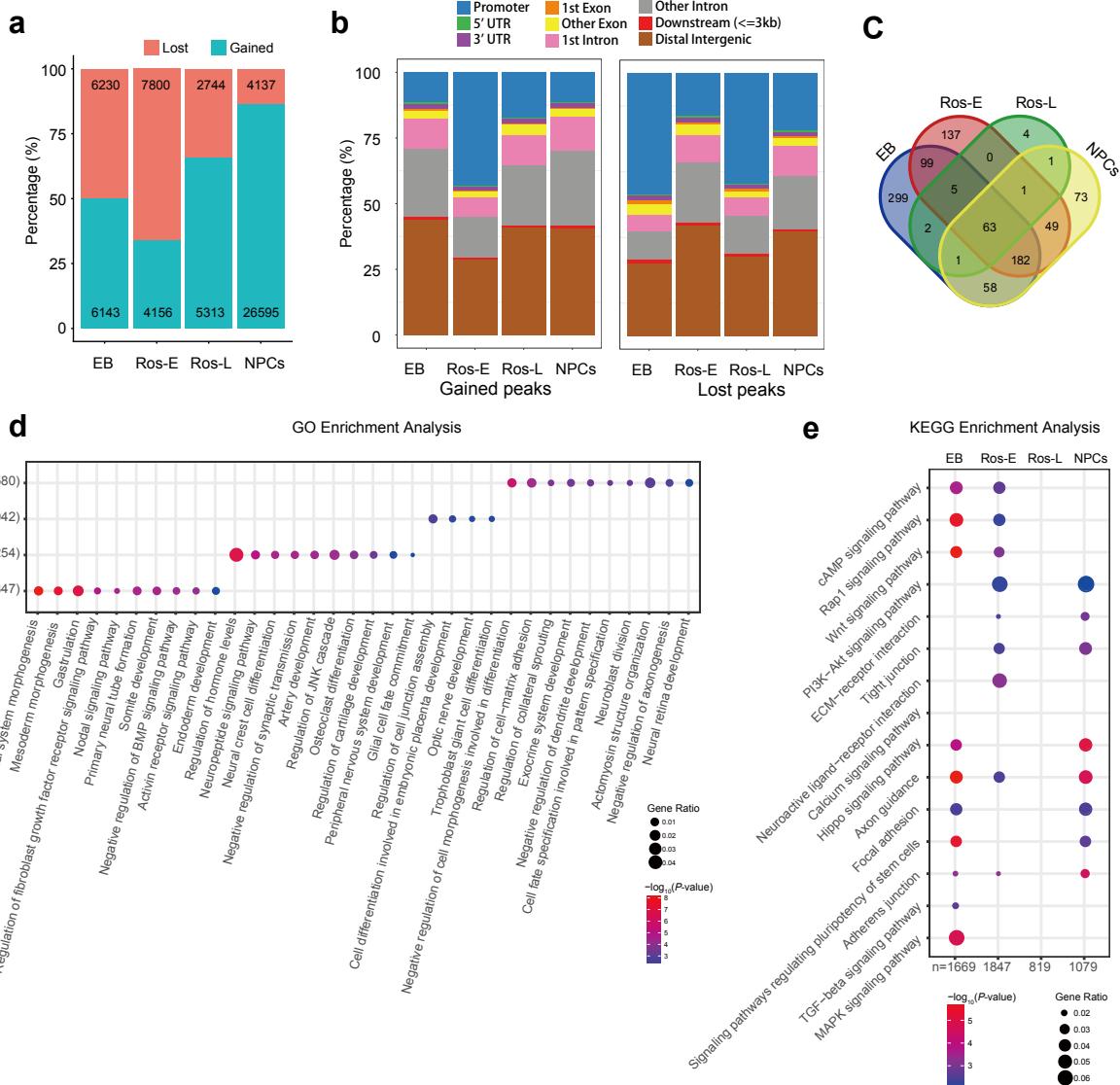
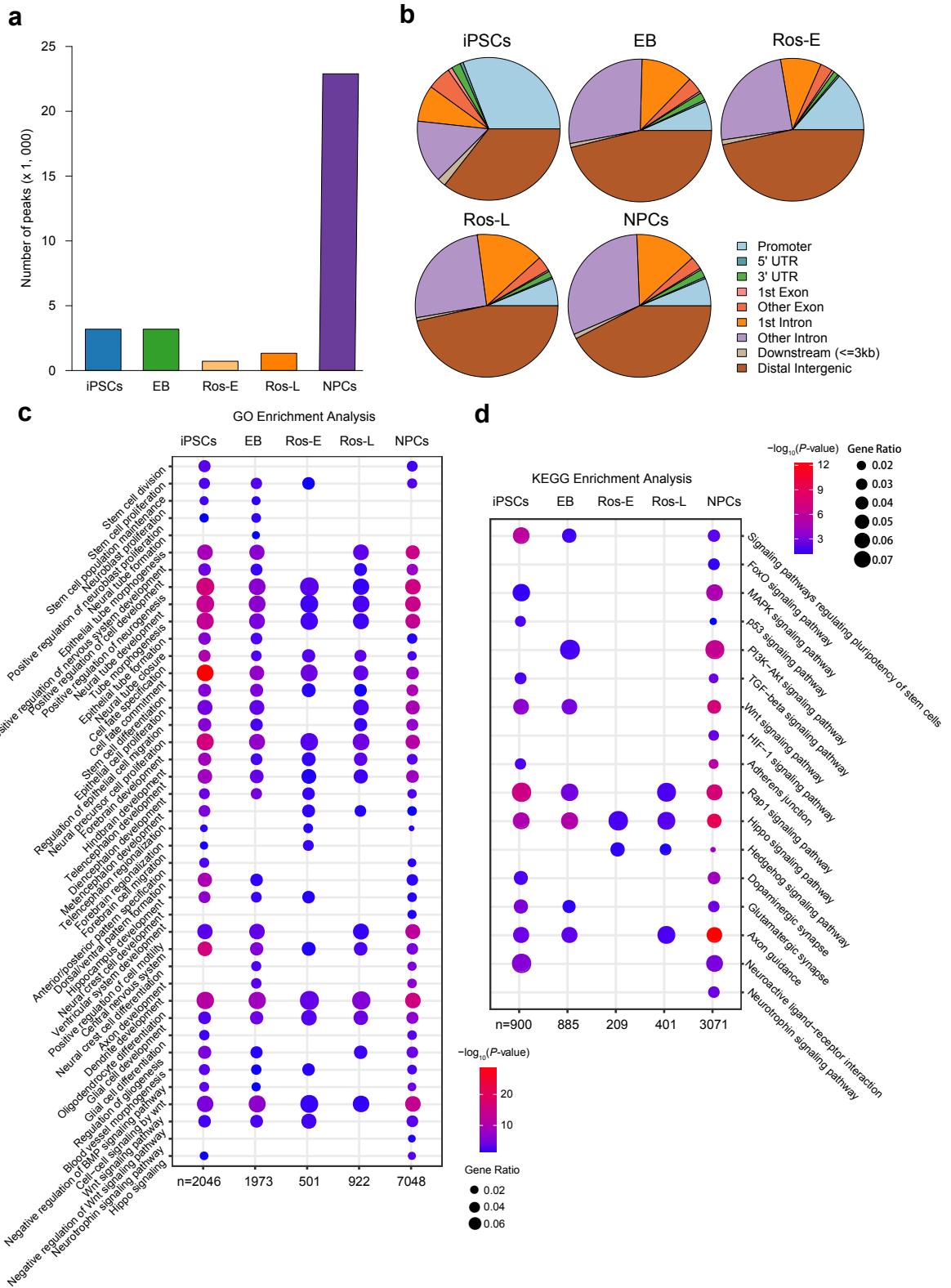

Fig. 4**a****Ros-E2 to Ros-L3****b****Ros-L3 to NPC1****c****d****e****Putative targets of *PRDM1*****f****Putative targets of *ARID3A*****g*****PRDM1*****h**

Fig. 4 Key regulators and corresponding *cis*-regulatory elements during neural differentiation. **a** Regulatory network of TFs differentially expressed between Ros-E2 and Ros-L3. **b** Regulatory network of differentially expressed TFs between Ros-L3 and NPC1. **c, d** IGV screenshots of ATAC-seq and bulk RNA-seq as well as the corresponding scRNA-seq heatmaps for putative neural regulator *PRDM1* (**c**) and *ARID3A* (**d**). Differential peaks in the dashed boxes possess putative TF motifs outlined in the form of sequence logo. **e, f** KEGG enrichment analysis of putative target genes under the regulation of *PRDM1* (**e**) and *ARID3A* (**f**). **g** Expression pattern of *PRDM1* at indicated cell stages (left) and subsets (right) during neural differentiation. **h** Immunostaining of PRDM1 at Ros-L stage across different genetic background cell lines (H1_ESCs, H7_ESCs, H9_ESCs, iPS25 and iPS129). Scale bar represents 50 μ m.

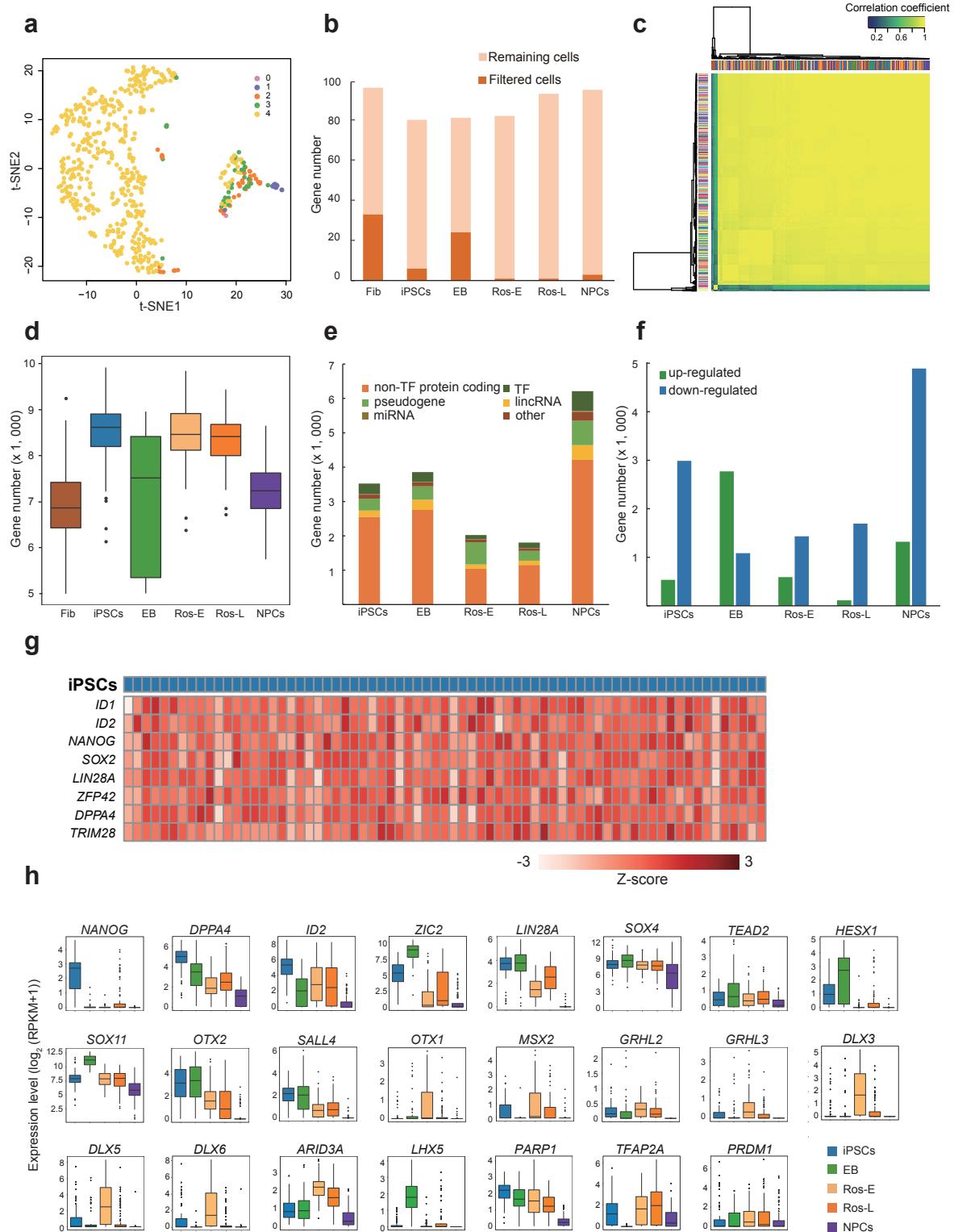
Fig. 5**a****b****c****d****e**


Fig. 5 Putative receptor-ligand interactions in Ros-L subsets. **a** Putative signaling between expressed receptors and their ligands in Ros-L subsets. The inner layer compartments represent different cell subpopulations (Ros-L1, Ros-L2 and Ros-L3 were shown in red, purple and blue color respectively). The outer layer indicates the expression profiles of ligands and receptors expressed in each cell subset, with low expressed molecules in green color while high expressed ones in red color. Arrows indicate putative interactions between ligands and receptors among cell subsets. **b** Venn plot showing the overlapping of ligands and receptors among cellular subpopulations. **c, d, e** Expression level of receptors/ligands enriched in Ros-L1 (**c**), Ros-L2 (**d**) and Ros-L3 (**e**), respectively.

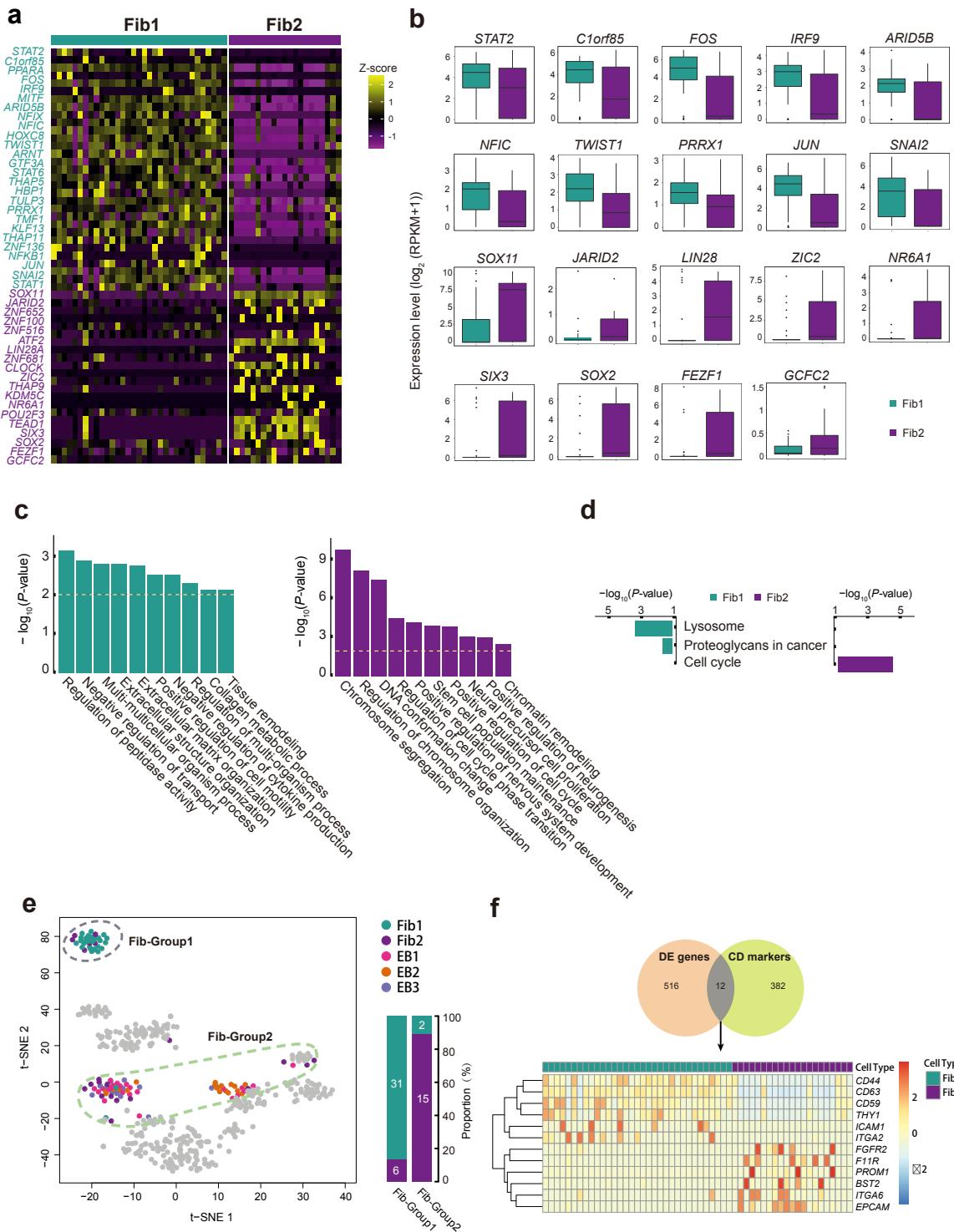
Additional file 1: Figure S1


Additional file 1: Figure S1. Quality control of ATAC-seq. **a** Bar graphs indicate the number of chromatin open regions detected at each cell stage of neural differentiation. **b** Genomic components (distribution) of the peaks in each cell stage during neural differentiation. **c** Heatmaps reporting the chromatin accessibility density within ± 2 kb of TSSs. **d** Biological replicates of bulk ATAC-seq show high reproducibility. **e** IGV screenshot showing highly correlated ATAC signals in selected region between replicates.

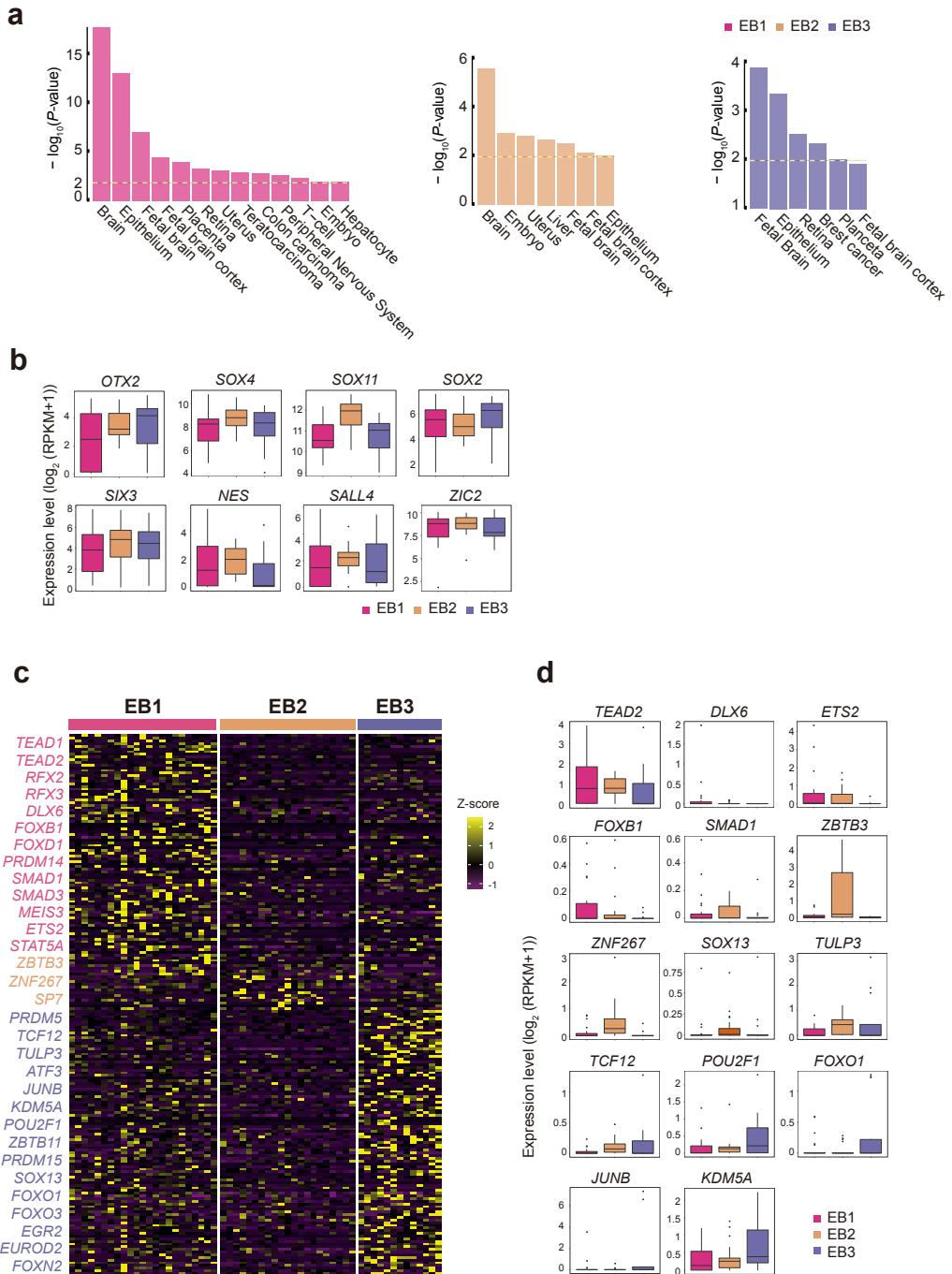
Additional file 2: Figure S2


Additional file 2: Figure S2. Dynamics of gained and lost peaks during neural differentiation. **a** Bar graph shows the number of gained and lost peaks at each cell stage. **b** Bar graph shows genomic composition of gained and lost peaks at each cell stage respectively. **c** Venn plot of GO enrichment analysis on the genes associated with lost peaks at each stage (adjusted *P*-value ≤ 0.01). **d** Selected GO terms identified by genes associated with lost peaks specific to the respective indicated cell stage (adjusted *P*-value ≤ 0.01). **e** Selected differential pathways identified by genes associated with lost peaks at indicated cell stages (adjusted *P*-value ≤ 0.01).

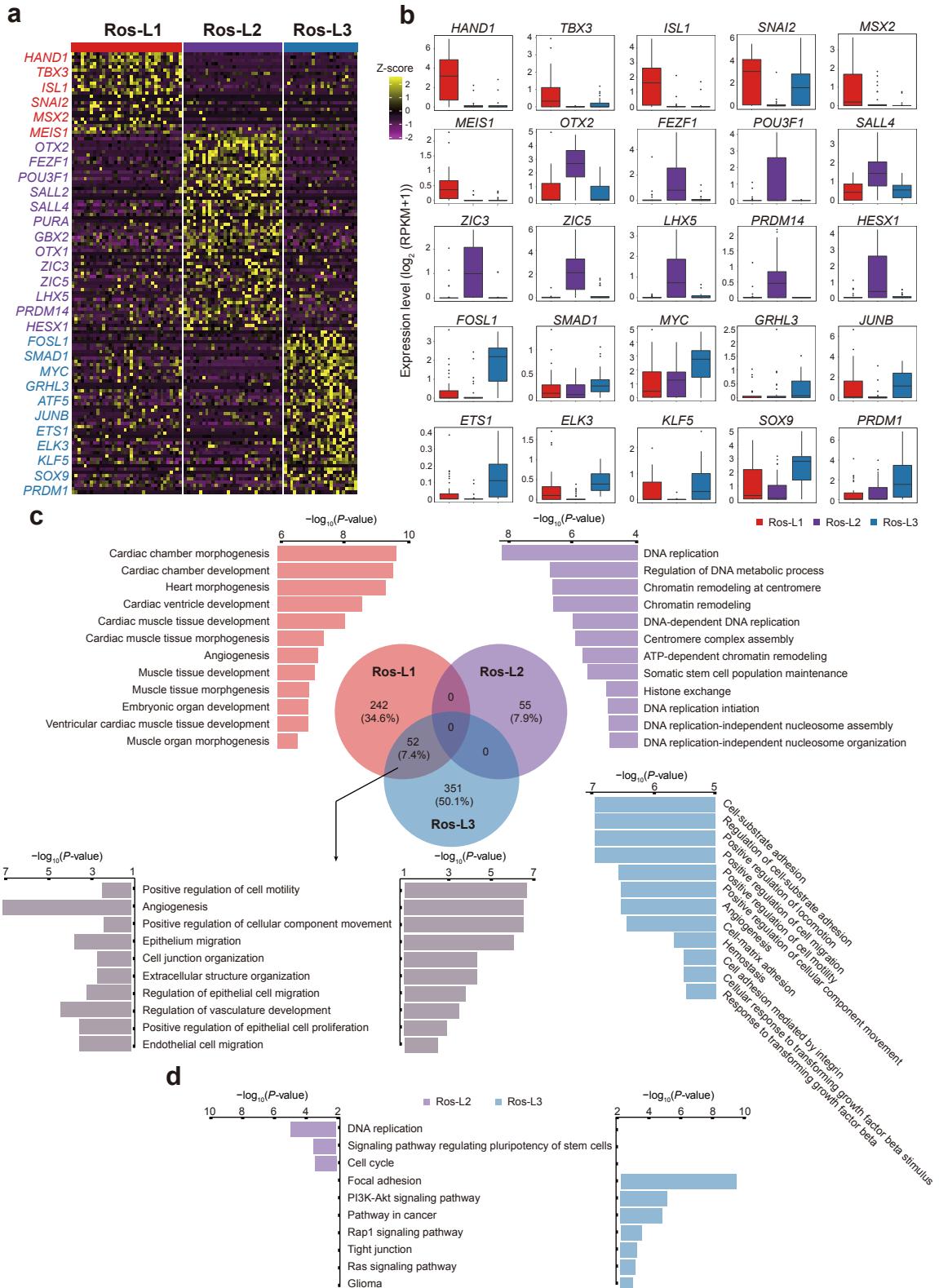
Additional file 3: Figure S3


Additional file 3: Figure S3. Stage-specific features of *cis*-regulatory elements during neural differentiation. **a** Bar plot showing the number of stage specific ATAC peaks at iPSCs, EB, Ros-E, Ros-L and NPCs stage (adjusted P -value ≤ 0.01). **b** Pie chart shows genomic composition of stage specific peaks respectively. **c, d** GO term and KEGG enrichment analysis of stage specific peaks, respectively (adjusted P -value ≤ 0.05).

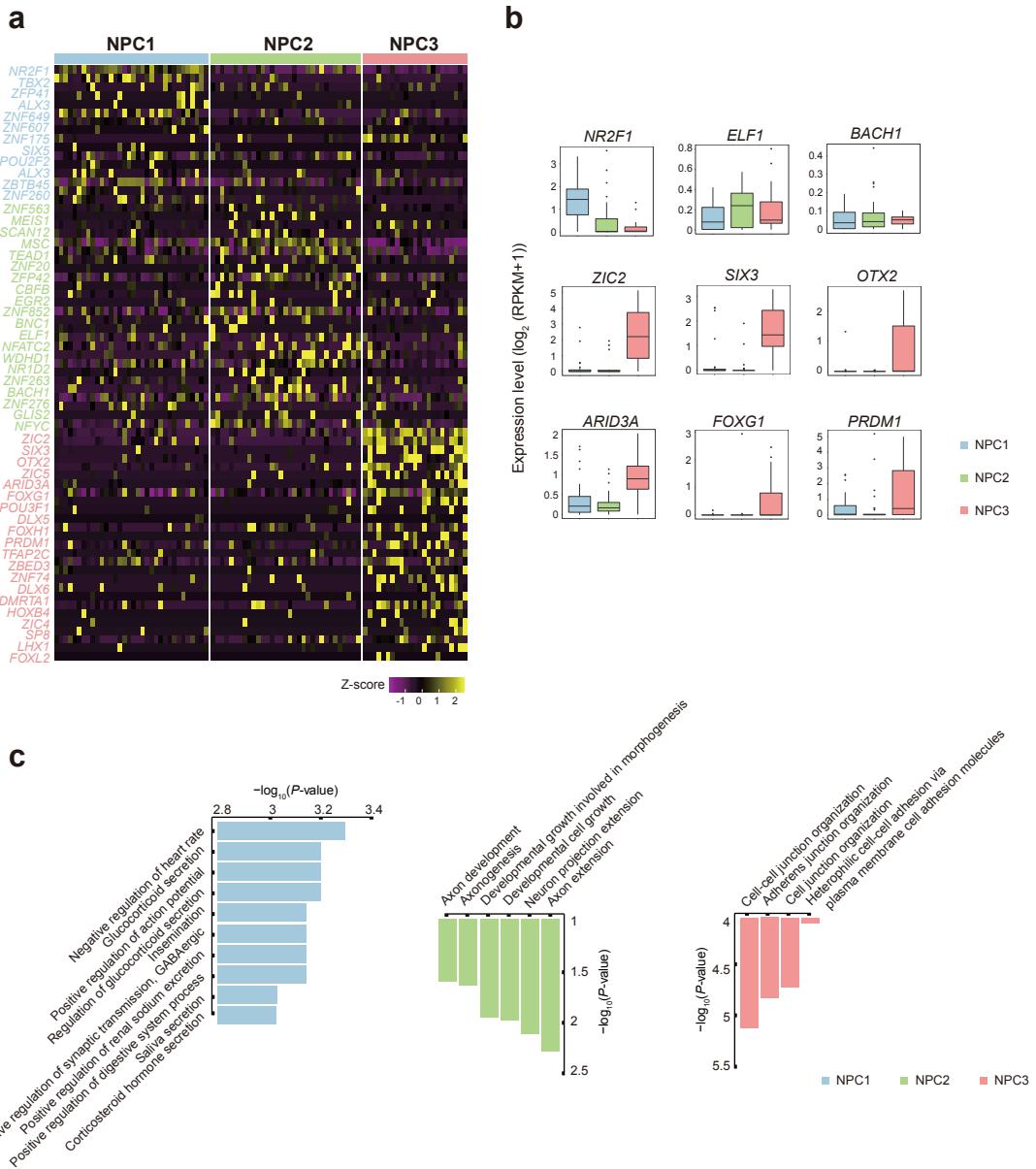
Additional file 4: Figure S4


Additional file 4: Figure S4. Quality control of scRNA-seq. **a** Graph indicates data quality of totally 527 single cells. Color scheme indicates the filter conditions, each dot represents one cell, and yellow dots showing the cells that successfully passed all criteria were used for downstream analysis. **b** Bar plots show the percentage of filtered cells and remaining cells. **c** ERCC correlation analysis of all single cells showing very little batch effects. **d** Box plots report the number of expressed genes for each cell stage after quality control filtering. Each dot represents an outlier gene and each box represents the median and first and third quartiles. **e** Genomic distribution of genes at each cell stage. **f** Summary of up-regulated and down-regulated genes at each cell stage compared to other stages. **g** Expression pattern of pluripotency-associated genes in iPSCs. Color scheme is based on z-score distribution from -3 (light red) to 3 (red). **h** Expression pattern of representative differentially expressed TFs during neural differentiation (adjusted P -value ≤ 0.01).

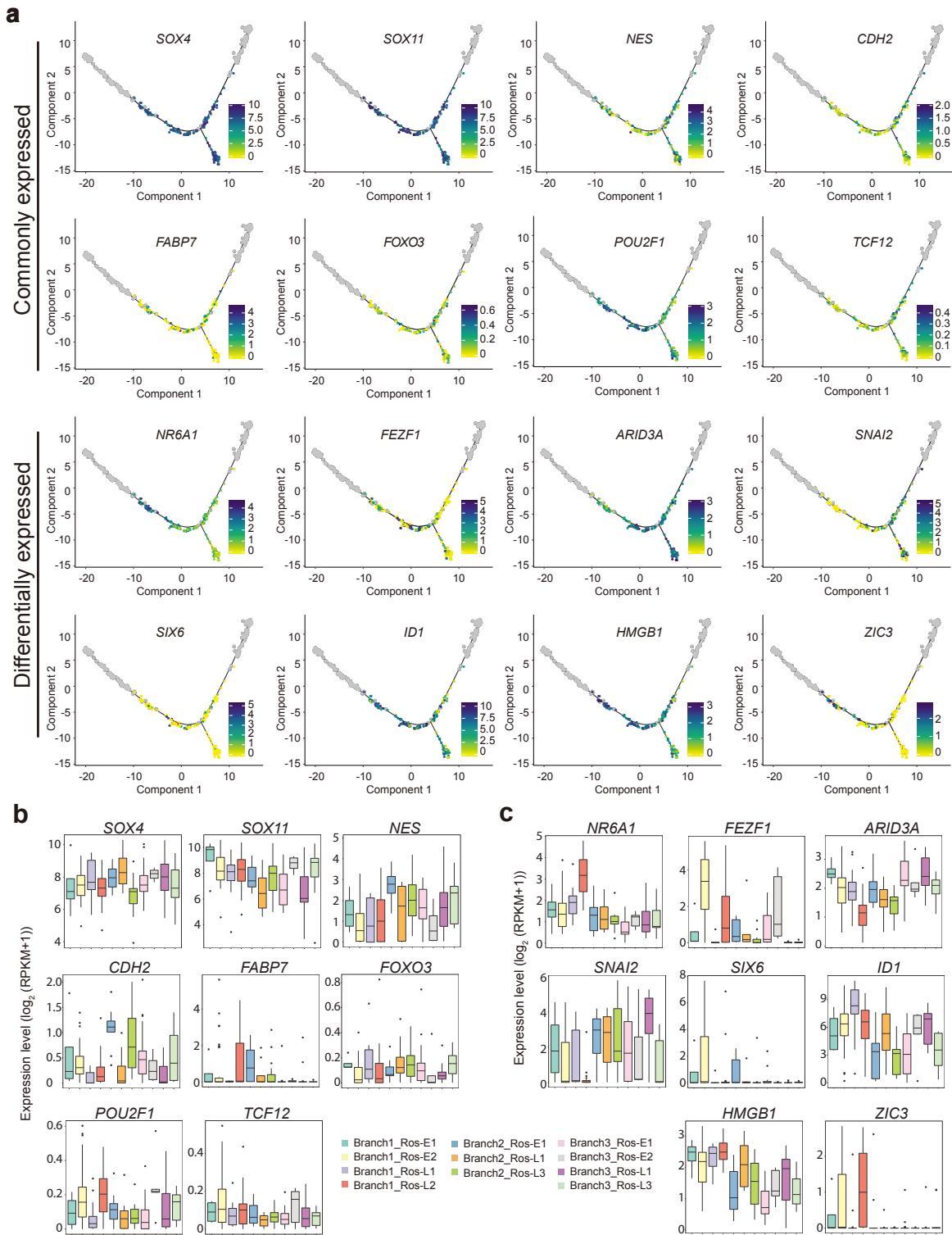
Additional file 5: Figure S5


Additional file 5: Figure S5. Subgroups identification and key transcriptomic features within Fib stage. **a** Heatmap reports scaled expression [$\log_2(\text{RPKM}+1)$] of discriminative TF sets for each cluster in Fib stage with P -value cutoff ≤ 0.01 . Color scheme is based on z-score distribution from -1 (purple) to 2 (yellow). Gene symbols highlight with color specific to the respective Fib subset. **b** Box plots of selected TFs defined in Figure S5a. **c** Selected GO terms identified by up-regulated genes specific to the respective Fib subpopulation with the color as indicated (Green: GO terms specific to Fib1; purple: GO terms specific to Fib2). **d** KEGG enrichment analysis of all terms in Fib subpopulation, respectively. **e** Fib-Group1 and Fib-Group2 based on their location on the t-SNE are marked by dashed ellipse. The columns represent the components of Fib-Group1 and Fib-Group2, respectively. **f** Comparison of differentially expressed (DE) genes between Fib subpopulation with CD markers dataset (HUGO Gene Nomenclature Committee, HGNC) and the heatmap of differentially expressed CD markers between the two Fib subpopulation.

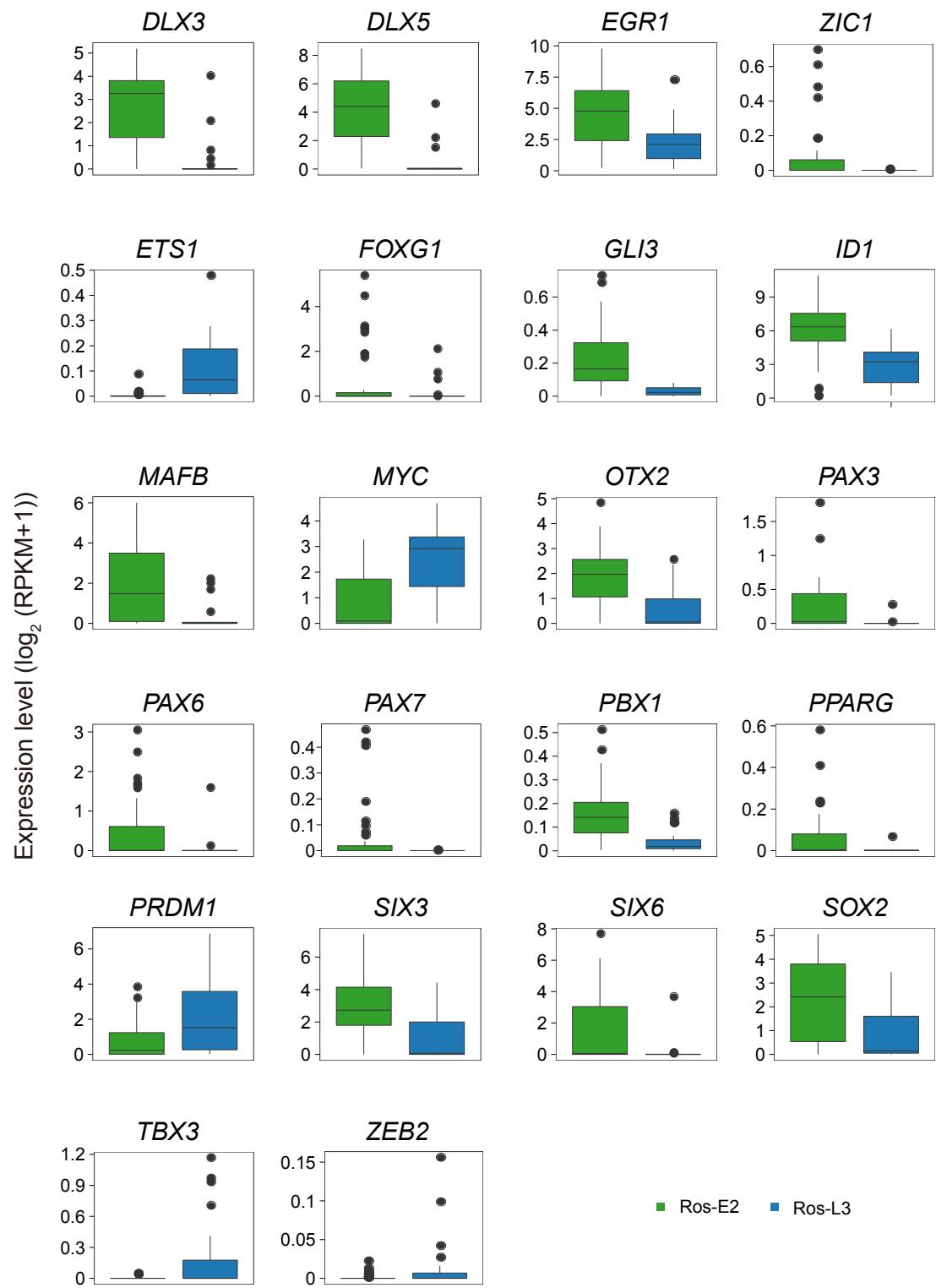
Additional file 6: Figure S6


Additional file 6: Figure S6. Subgroups identification and key transcriptomic features within EB stage. **a** David for tissue enrichment analysis of up-regulated genes defined by three EB subgroups compared to iPSCs stage respectively. **b** Box plots of commonly expressed genes across EB subsets. **c** Heatmap reports scaled expression [$\log_2(RPKM+1)$] of discriminative TF sets for each cluster in EB stage with P -value cutoff ≤ 0.01 . Color scheme is based on z-score distribution from -1(purple) to 2 (yellow). Gene symbols highlight with color specific to the respective EB subset. **d** Box plot of selected TFs defined in Figure S6a.

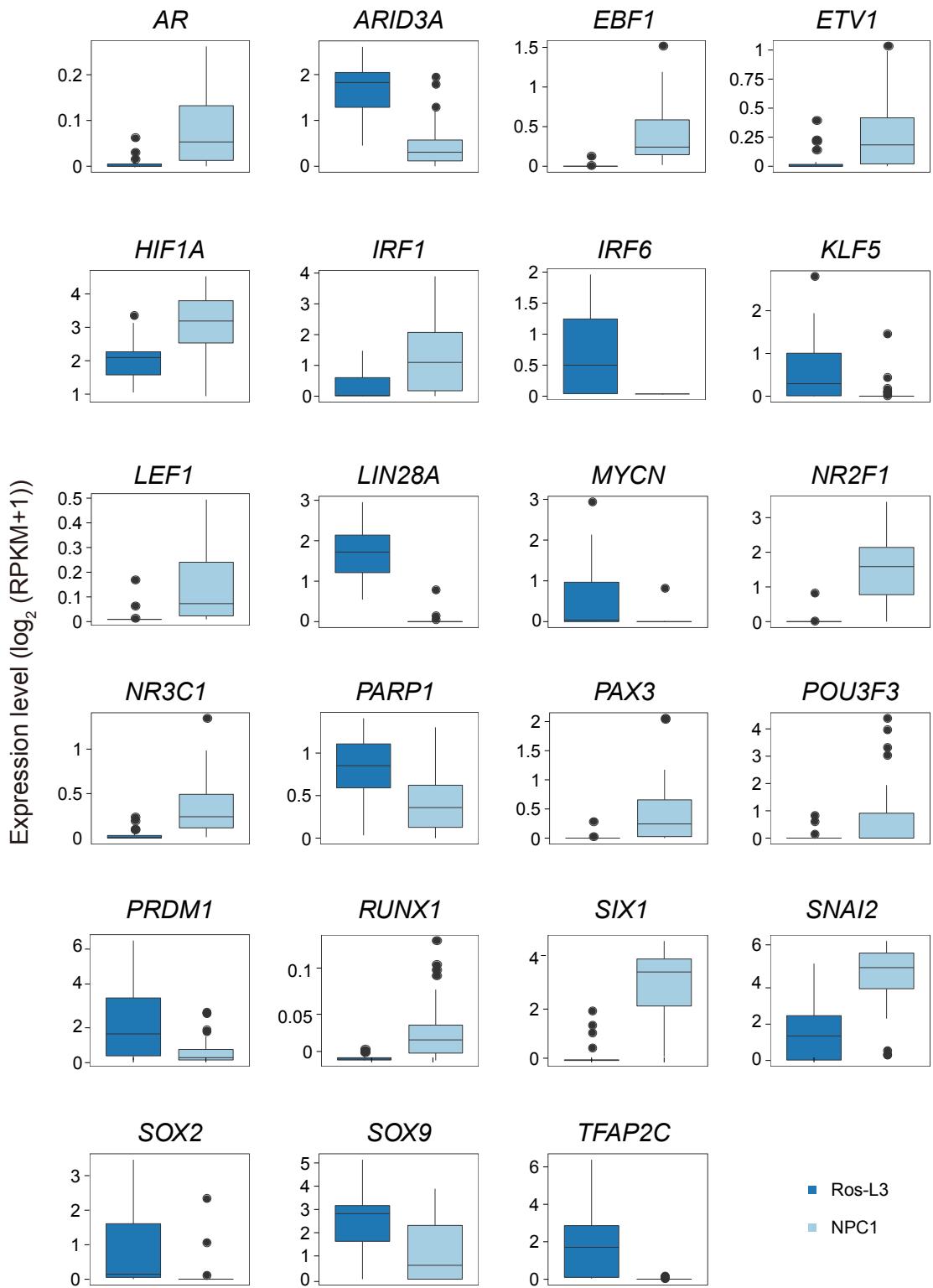
Additional file 7: Figure S7


Additional file 7: Figure S7. Subgroups identification and key transcriptomic features within Ros-L stage. **a** Heatmap reports scaled expression [$\log_2(\text{RPKM}+1)$] of discriminative TF sets for each cluster in Ros-L stage with P -value cutoff ≤ 0.01 . Color scheme is based on z-score distribution from -2 (purple) to 2 (yellow). Gene symbols highlight with color specific to the respective Ros-L subset. **b** Box plots of selected TFs defined in Figure S7a. **c** Top 12 of GO terms identified by up-regulated genes specific to the respective Ros-L subpopulation with the color as indicated (red: GO terms specific to Ros-L1; purple: GO terms specific to Ros-L2; blue: GO terms specific to Ros-L3; gray: selected GO terms shared by Ros-L1 and Ros-L3). **d** KEGG enrichment analysis of Ros-L2 (all terms) and Ros-L3 (selected terms), respectively.

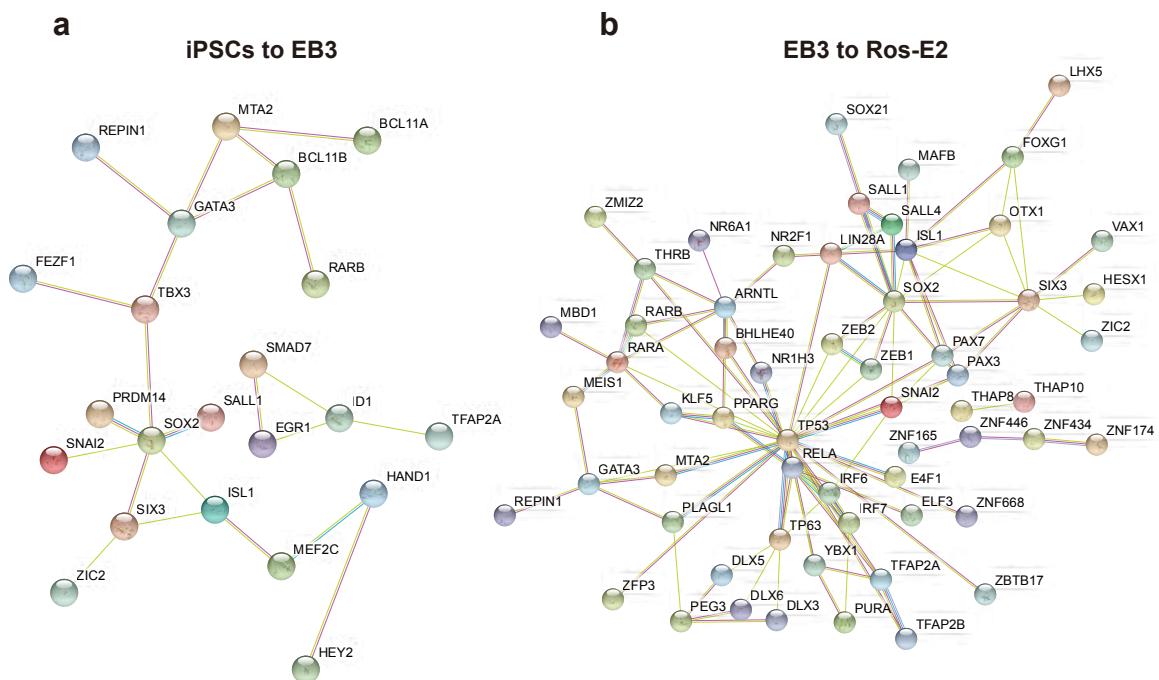
Additional file 8: Figure S8


Additional file 8: Figure S8. Subgroups identification and key transcriptomic features within NPCs stage. **a** Heatmap reports scaled expression [$\log_2(\text{RPKM}+1)$] of discriminative TF sets for each cluster in NPCs stage with P -value cutoff ≤ 0.01 . Color scheme is based on z-score distribution from -1 (purple) to 2 (yellow). Gene symbols highlight with color specific to the respective NPC subset. **b** Box plot of selected TFs defined in Figure S8a. **c** Top 10 (NPC1) and all (NPC2 and NPC3) of GO terms identified by up-regulated genes specific to the respective Ros-L subpopulation with the color as indicated (blue: GO terms specific to NPC1; green: GO terms specific to NPC2; pink: GO terms specific to NPC3).

Additional file 9: Figure S9


Additional file 9: Figure S9. Expression pattern of selected transcription factors (TFs) within rosettes (Ros-E and Ros-L) stage. **a** Expression enrichment of commonly and differentially expressed TFs along the differentiation trajectory. Color scheme is based on expression [\log_2 (RPKM+1)]. **b, c** Expression pattern of selected TFs with respect to Figure S9a (adjusted P -value ≤ 0.01).

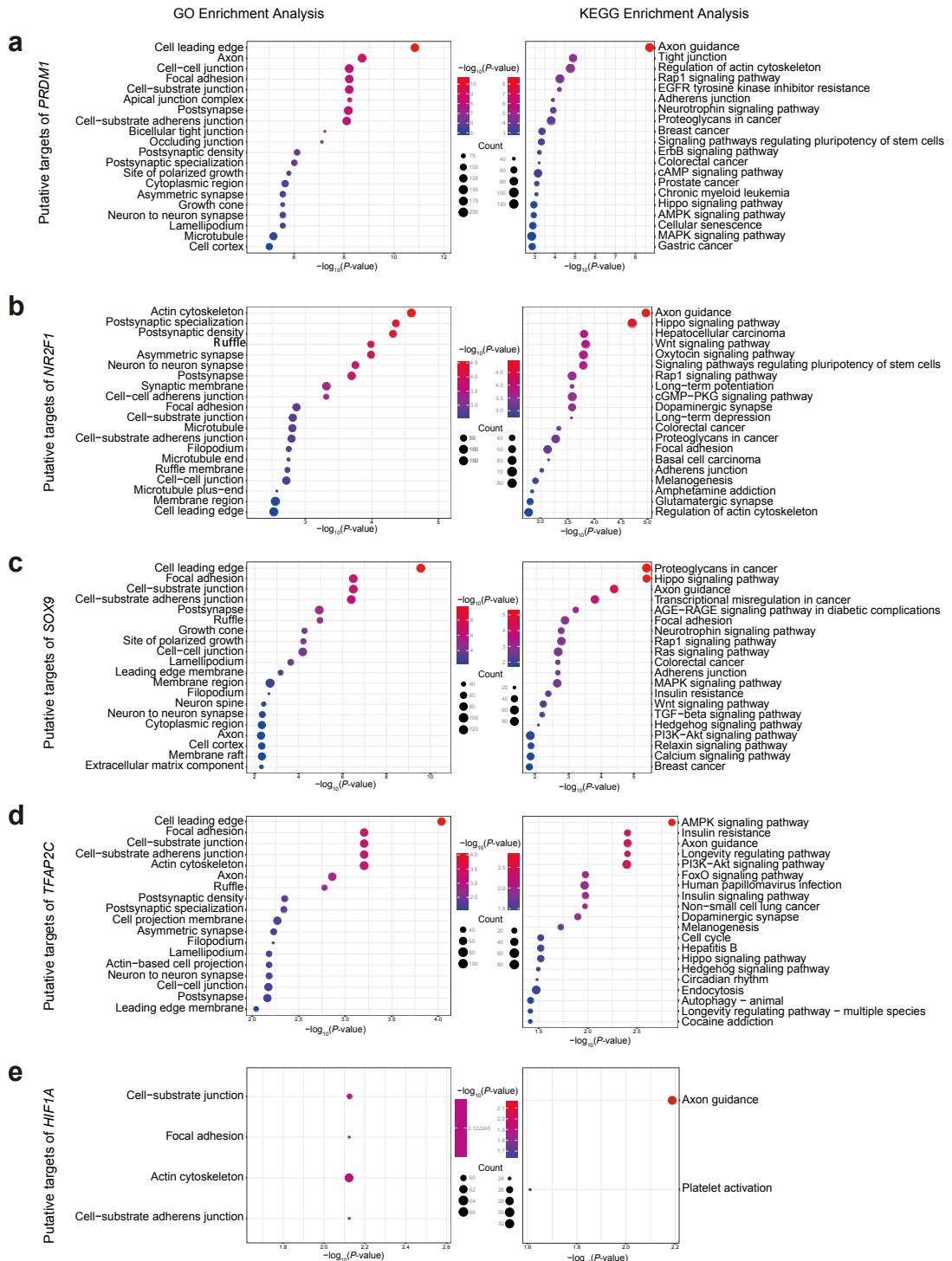
Additional file 10: Figure S10


Additional file 10: Figure S10. Differentially expressed transcription factors (TFs) between Ros-E2 and Ros-L3. Ros-E2 and Ros-L3 were shown in green and blue column, respectively (adjusted *P*-value ≤ 0.01).

Additional file 11: Figure S11

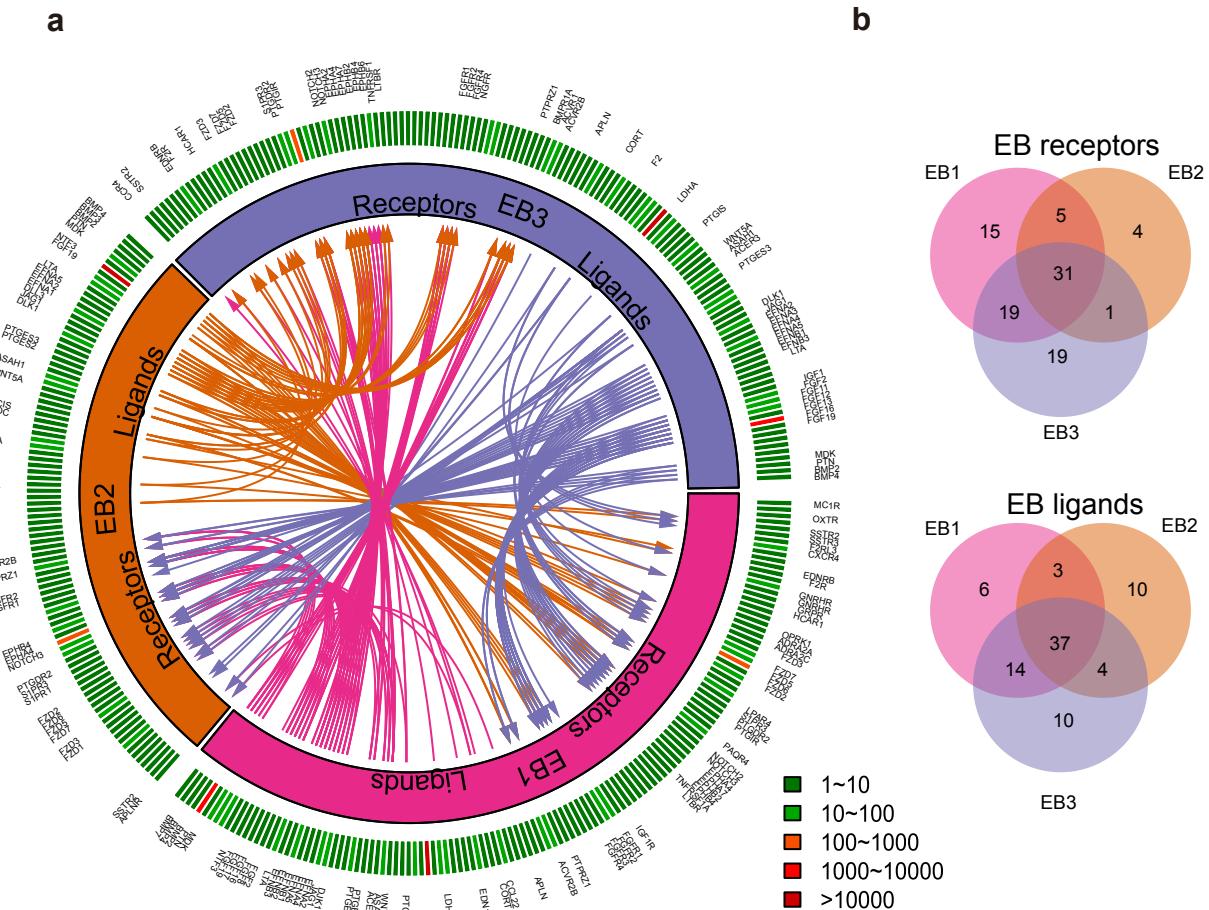
Additional file 11: Figure S11. Differentially expressed transcription factors (TFs) between Ros-L3 and NPC1. Ros-L3 and NPC1 were shown in dark blue and light blue column, respectively (adjusted *P*-value ≤ 0.01).

Additional file 12: Figure S12

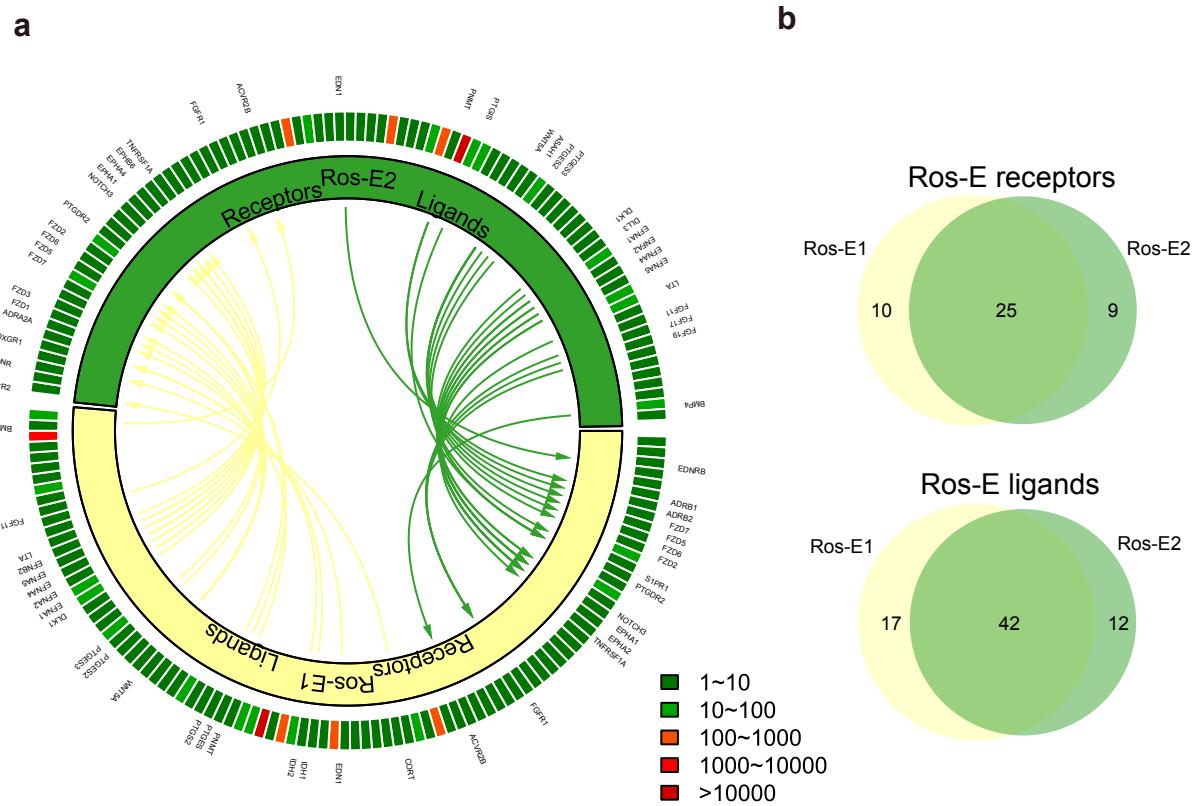


Additional file 12: Figure S12. Key regulators during neural differentiation. a

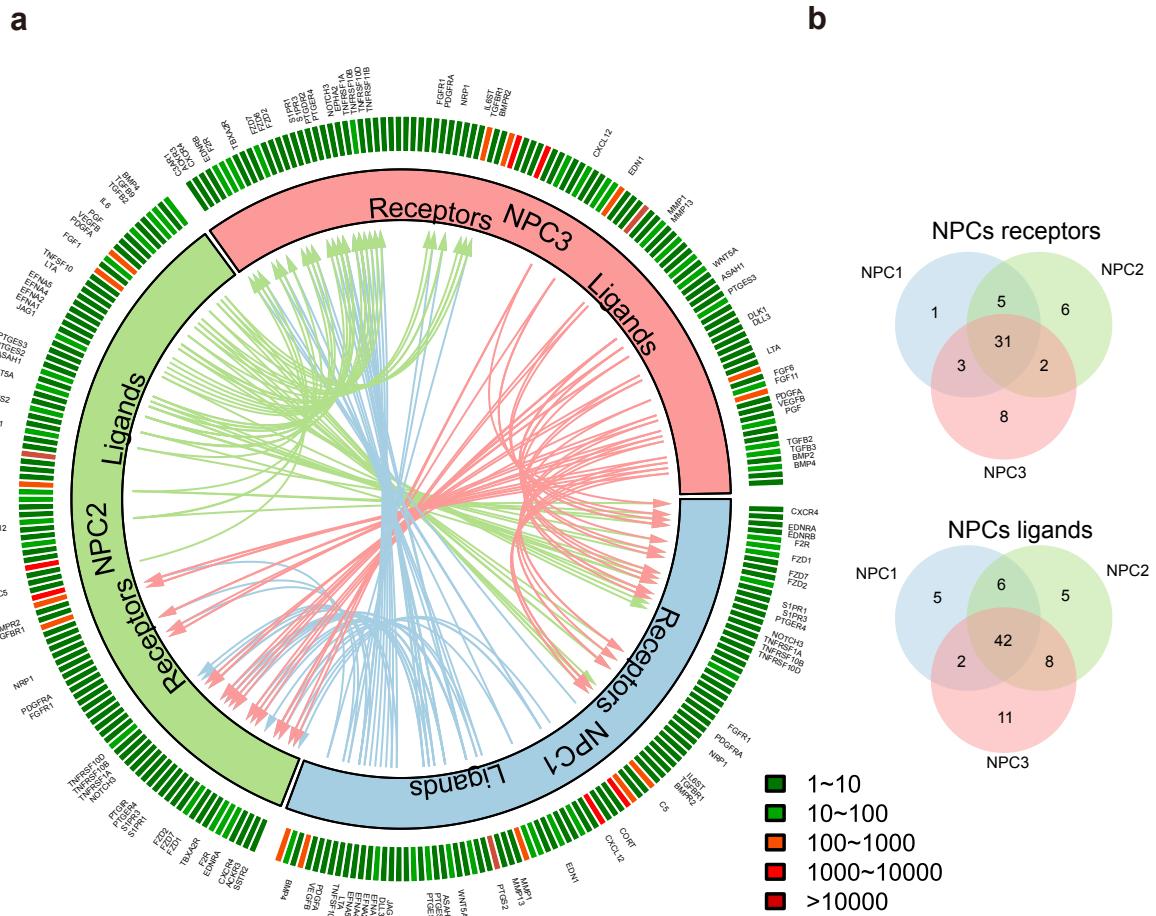
Regulatory network of differentially expressed TFs between iPSCs and EB3. **b**


Regulatory network of differentially expressed TFs between EB3 and Ros-E2.

Additional file 13: Figure S13


Additional file 13: Figure S13. GO term and KEGG enrichment analysis of selected transcription factors (TFs) targets. GO term and KEGG enrichment analysis for putative targets of *PRDM1* (a), *NR2F1* (b), *SOX9* (c), *TFAP2C* (d) and *HIF1A* (e), adjusted *P*-value ≤ 0.05 .

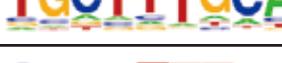
Additional file 14: Figure S14


Additional file 14: Figure S14. Putative signaling between expressed receptors and their ligands in EB subsets. **a** The inner layer compartments represent different cell subpopulations (EB1, EB2 and EB3). The outer layer indicates the expression profiles of ligands and receptors expressed in each cell subset, with low expressed molecular in green color while high expressed ones in red color. Arrows indicate putative interactions between ligands and receptors among cell subsets. **b** Venn plot showing the overlapping of ligands and receptors among cellular subpopulations.

Additional file 15: Figure S15

Additional file 15: Figure S15. Putative signaling between expressed receptors and their ligands in Ros-E subsets. **a** The inner layer compartments represent different cell subpopulations (Ros-E1 and Ros-E2). The outer layer indicates the expression profiles of ligands and receptors expressed in each cell subset, with low expressed molecular in green color while high expressed ones in red color. Arrows indicate putative interactions between ligands and receptors among cell subsets. **b** Venn plot showing the overlapping of ligands and receptors among cellular subpopulations.

Additional file 16: Figure S16


Additional file 16: Figure S16. Putative signaling between expressed receptors and their ligands in NPC subsets. **a** The inner layer compartments represent different cell subpopulations (NPC1, NPC2 and NPC3). The outer layer indicates the expression profiles of ligands and receptors expressed in each cell subset, with low expressed molecular in green color while high expressed ones in red color. Arrows indicate putative interactions between ligands and receptors among cell subsets. **b** Venn plot showing the overlapping of ligands and receptors among cellular subpopulations.

Additional file 17: Figure S17

a. iPSCs stage

Motif	P-value	Best Match/Details
	1e-279	Pou5f1::Sox2/MA0142.1/Jaspar(0.924)
	1e-73	BORIS(Zf)/K562-CT CFL-ChIP-Seq(GSE32465)/Homer(0.899)
	1e-57	Sox3(HMG)/NPC-Sox3-ChIP-Seq(GSE33059)/Homer(0.956)
	1e-47	Otx6(POU,Homeobox)/NPC-Otx6-ChIP-Seq(GSE35496)/Homer(0.693)
	1e-43	FOXB1/MA0845.1/Jaspar(0.759)
	1e-41	PH0098.1_Lhx8/Jaspar(0.881)
	1e-37	BORIS(Zf)/K562-CT CFL-ChIP-Seq(GSE32465)/Homer(0.753)
	1e-33	POL003.1_GC-box/Jaspar(0.820)
	1e-28	LIN54/MA0619.1/Jaspar(0.778)
	1e-27	Unknown-ESC-element/mES-Nanog-ChIP-Seq(GSE11724)/Homer(0.797)
	1e-25	PB0097.1_Zfp281_1/Jaspar(0.919)
	1e-25	NFYB/MA0502.1/Jaspar(0.736)
	1e-24	MF0006.1_bZIP_cEBP-like_subdass/Jaspar(0.595)
	1e-23	MZF1/MA0056.1/Jaspar(0.610)
	1e-22	YY2/MA0748.1/Jaspar(0.660)

b. EB stage

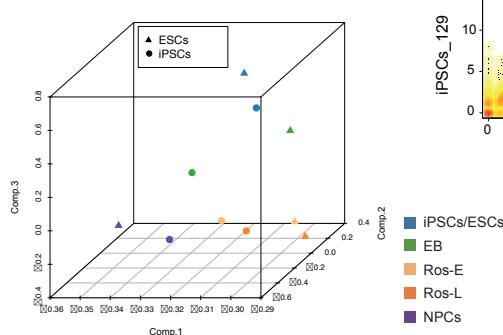
Motif	P-value	Best Match/Details
	1e-298	BORIS(Zf)/K562-CTCFL-ChIP-Seq(GSE32465)/Homer(0.932)
	1e-74	AP-2alpha(AP2)/Hela-AP2alpha-ChIP-Seq(GSE31477)/Homer(0.877)
	1e-58	Sox3(HMG)/NPC-Sox3-ChIP-Seq(GSE33059)/Homer(0.962)
	1e-57	MEOX1/MA0661.1/Jaspar(0.902)
	1e-53	PB0099.1_Zfp691_1/Jaspar(0.622)
	1e-51	GRHL1/MA0647.1/Jaspar(0.859)
	1e-50	POL010.1_DCE_S_III/Jaspar(0.698)
	1e-44	PRDM9(Zf)/Testis-DMC1-ChIP-Seq(GSE35498)/Homer(0.685)
	1e-44	Rhox11/MA0629.1/Jaspar(0.782)
	1e-42	TEAD(TEA)/Fibroblast-PU.1-ChIP-Seq(Unpublished)/Homer(0.810)
	1e-41	POU2F2/MA0507.1/Jaspar(0.671)
	1e-39	Nr5a2(NR)/mES-Nr5a2-ChIP-Seq(GSE19019)/Homer(0.624)
	1e-36	Six1(Homeobox)/Myoblast-Six1-ChIP-Chip(GSE20150)/Homer(0.836)
	1e-34	Myb/MA0100.2/Jaspar(0.769)
	1e-33	PH0137.1_Pitx1/Jaspar(0.653)

c. Ros-E stage

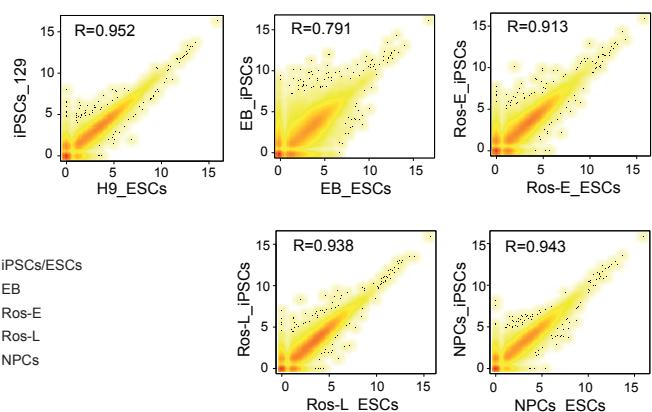
Motif	P-value	Best Match/Details
	1e-30	TEAD4/MA0809.1/Jaspar(0.941)
	1e-22	CTCF(Zf)/CD4+-CTCF-ChIP-Seq(Barski_et_al.)/Homer(0.833)
	1e-19	Lhx2(Homeobox)/HFSC-Lhx2-ChIP-Seq(GSE48068)/Homer(0.951)
	1e-18	TFCP2/MA0145.3/Jaspar(0.933)
	1e-17	Rfx1(HTH)/NPC-H3K4me1-ChIP-Seq(GSE16256)/Homer(0.937)
	1e-16	Sox15(HMG)/CPA-Sox15-ChIP-Seq(GSE62909)/Homer(0.882)
	1e-16	Nrf2(bZIP)/Lymphoblast-Nrf2-ChIP-Seq(GSE37589)/Homer(0.772)
	1e-15	Pknox1(Homeobox)/ES-Prep1-ChIP-Seq(GSE63282)/Homer(0.853)
	1e-15	Ets1-distal(ETS)/CD4+-PolII-ChIP-Seq(Barski_et_al.)/Homer(0.676)
	1e-15	RUNX1(Runt)/Jurkat-RUNX1-ChIP-Seq(GSE29180)/Homer(0.691)
	1e-14	ZFX(Zf)/mES-Zfx-ChIP-Seq(GSE11431)/Homer(0.790)
	1e-14	CRX(Homeobox)/Retina-Crx-ChIP-Seq(GSE20012)/Homer(0.688)
	1e-13	MEIS1/MA0498.2/Jaspar(0.906)
	1e-13	FoxL2(Forkhead)/Ovary-FoxL2-ChIP-Seq(GSE60858)/Homer(0.610)
	1e-13	AR-halflsite(NR)/LNCaP-AR-ChIP-Seq(GSE27824)/Homer(0.627)

d. Ros-L stage

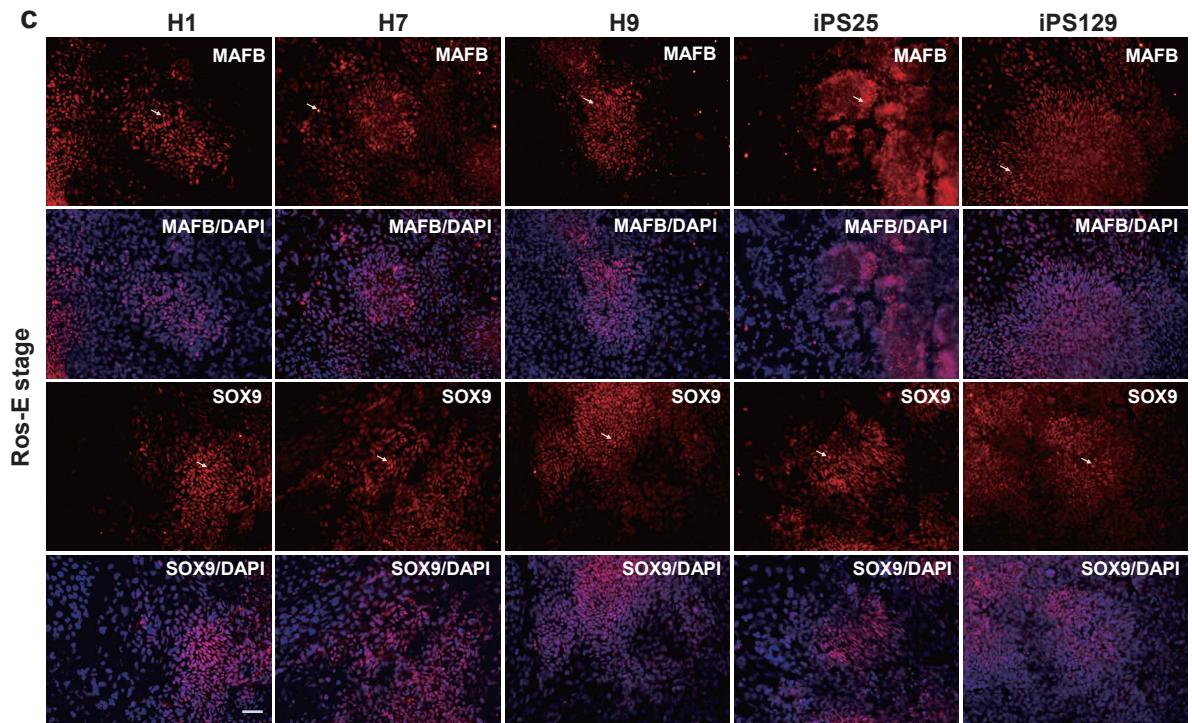
Motif	P-value	Best Match/Details
	1e-156	TEAD4/MA0809.1/Jaspar(0.970)
	1e-61	FOSL1/MA0477.1/Jaspar(0.944)
	1e-45	AP-2alpha(AP2)/Hela-AP2alpha-ChIP-Seq(GSE31477)/Homer(0.967)
	1e-38	Tcf3(HMG)/mES-Tcf3-ChIP-Seq(GSE11724)/Homer(0.891)
	1e-27	Pax2/MA0067.1/Jaspar(0.780)
	1e-26	Nur77(NR)/K562-NR4A1-ChIP-Seq(GSE31363)/Homer(0.750)
	1e-23	Six1(Homeobox)/Myoblast-Six1-ChIP-Chip(GSE20150)/Homer(0.903)
	1e-21	MYB(HTH)/ERMYB-Myb-ChIPSeq(GSE22095)/Homer(0.749)
	1e-20	Dux/MA0611.1/Jaspar(0.880)
	1e-18	Rhox11/MA0629.1/Jaspar(0.851)
	1e-18	TFCP2/MA0145.3/Jaspar(0.756)
	1e-17	ZFX(Zf)/mES-Zfx-ChIP-Seq(GSE11431)/Homer(0.814)
	1e-17	FOXO3/MA0157.2/Jaspar(0.748)
	1e-17	KLF5(Zf)/LoVo-KLF5-ChIP-Seq(GSE49402)/Homer(0.804)
	1e-16	Bach1::Mafk/MA0591.1/Jaspar(0.632)

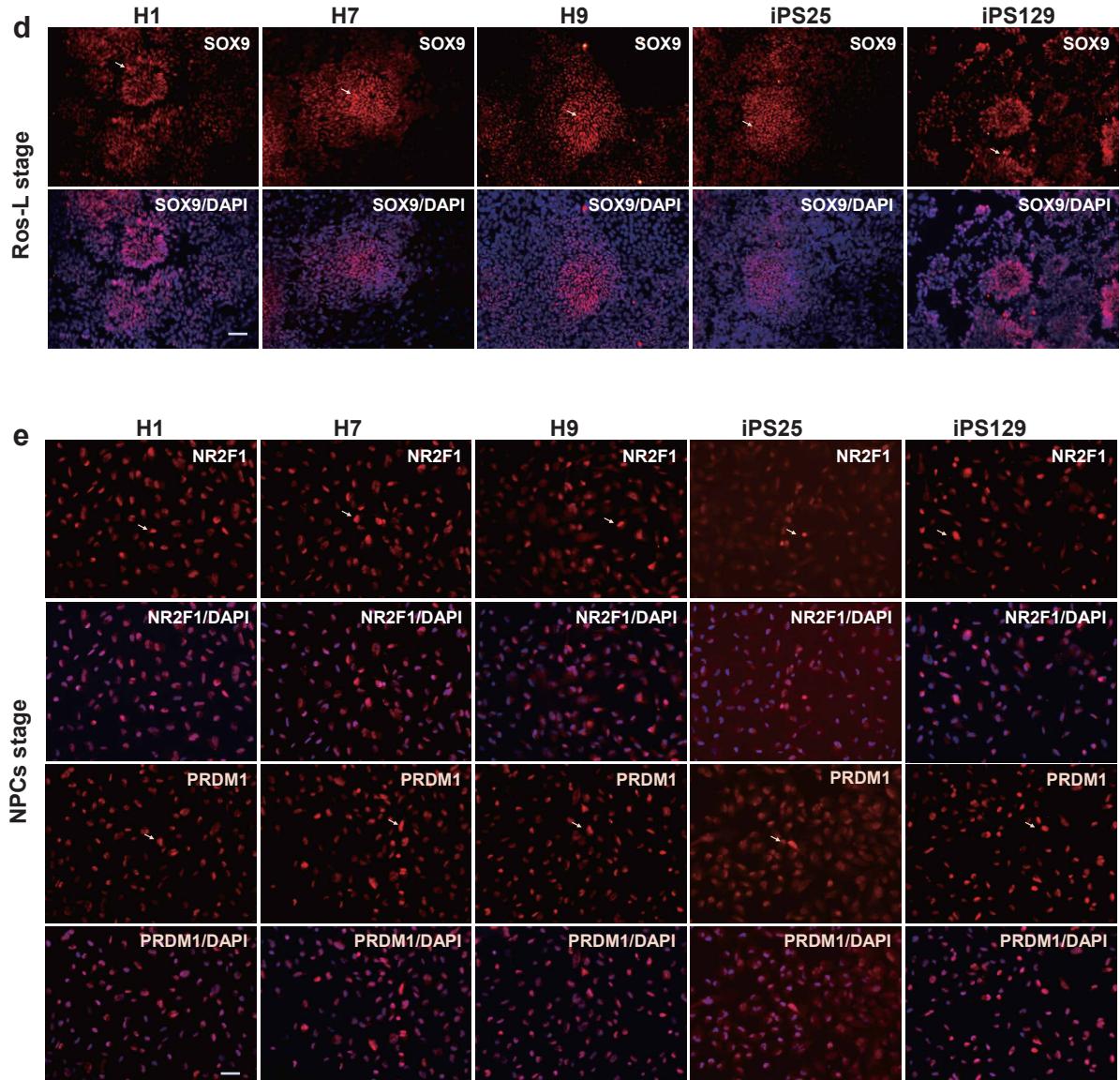

e. NPCs stage

Motif	P-value	Best Match/Details
	1e-7054	AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer(0.990)
	1e-1065	CTCF(Zf)/CD4+-CTCF-ChIP-Seq(Barski_et_al.)/Homer(0.920)
	1e-928	Atf1/MA0604.1/Jaspar(0.898)
	1e-776	RUNX(Runt)/HPC7-Runx1-ChIP-Seq(GSE22178)/Homer(0.989)
	1e-524	Ascl1(bHLH)/NeuralTubes-Ascl1-ChIP-Seq(GSE55840)/Homer(0.961)
	1e-475	NFATC1/MA0624.1/Jaspar(0.870)
	1e-259	Ets1-distal(ETS)/CD4+-PolII-ChIP-Seq(Barski_et_al.)/Homer(0.935)
	1e-251	TFAP2A(var.2)/MA0810.1/Jaspar(0.780)
	1e-241	Smad4(MAD)/ESC-SMAD4-ChIP-Seq(GSE29422)/Homer(0.652)
	1e-226	TEAD(TEA)/Fibroblast-PU.1-ChIP-Seq(Unpublished)/Homer(0.754)
	1e-202	POL010.1_DCE_S_III/Jaspar(0.646)
	1e-189	c-Jun-CRE(bZIP)/K562-cJun-ChIP-Seq(GSE31477)/Homer(0.958)
	1e-186	POL010.1_DCE_S_III/Jaspar(0.711)
	1e-170	Foxo1(Forkhead)/RAW-Foxo1-ChIP-Seq(Fan_et_al.)/Homer(0.767)
	1e-168	POL010.1_DCE_S_III/Jaspar(0.795)


Additional file 17: Figure S17. Transcription factor motifs enriched in stage specific peaks. Motifs enriched in stage specific ATAC peaks were listed in tables containing the following information: motif, *P*-value and best match/details for iPSCs (a), EB (b), Ros-E (c), Ros-L (d) and NPCs stage (e), respectively.

Additional file 18: Figure S18


a


b

c

Additional file 18: Figure S18

Additional file 18: Figure S18. Validation of neural differentiation in different genetic background cell lines. **a** 3D PCA plot of the indicated cell stage derived from ESCs or iPSCs designated by colors and symbols. **b** The Pearson correlation coefficient between the corresponding cell stage derived from iPSCs and ESCs. **c, d,** **e** Immunostaining of MAFB and SOX9 at Ros-E stage (**c**), SOX9 at Ros-L stage (**d**), NR2F1 and PRDM1 at NPCs stage (**e**) across different genetic background cell lines (H1_ESCs, H7_ESCs, H9_ESCs, iPS25 and iPS129). Scale bar represents 50 μ m.

Additional file 19: Table S1. TFs differentially expressed among neighbouring cell subsets.

Additional file 20: Table S2. Putative targets of selected regulators.

Additional file 21: Table S3. Subpopulations interaction networks.

Additional file 22: Table S4. Differentially expressed receptors and ligands among Ros-L subpopulations.