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Long-read next generation amplicon sequencing shows promise
for studying complete genes or genomes from complex and
diverse populations. Current long-read sequencing technologies
have challenging error profiles, hindering data processing and
incorporation into downstream analyses. Here we consider
the problem of how to reconstruct, free of sequencing error,
the true sequence variants and their associated frequencies.
Called ‘““amplicon denoising”, this problem has been extensively
studied for short-read sequencing technologies, but current
solutions do not appear to generalize well to long reads with
high indel error rates. We introduce two methods: one that
runs nearly instantly and is very accurate for medium length
reads (here ~2.6kb) and high template coverage, and another,
slower method that is more robust when reads are very long or
coverage is lower.

On one real dataset with ground truth, and on a number of
simulated datasets, we compare our two approaches to each
other and to existing algorithms. We outperform all tested
methods in accuracy, with competitive run times even for our
slower method.

Fast Amplicon Denoising (FAD) and Robust Amplicon Denois-
ing (RAD) are implemented purely in the Julia scientific com-
puting language, and are hereby released along with a complete
toolkit of functions that allow long-read amplicon sequence
analysis pipelines to be constructed in pure Julia. Further, we
make available a webserver to dramatically simplify the pro-
cessing of long-read PacBio sequences.

Contact: bmurrell @ucsd.edu
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Introduction

The Pacific Biosciences platform allows complex popula-
tions of long DNA molecules to be sequenced at reasonable
depth. This has been used to study diverse viral populations
(1-5) and microbial communities (6, 7), and much more.

PacBio SMRT sequencing generates extremely long reads
(some >80kb), with very high error rates (~15%) (8). How-
ever, this length can be traded for accuracy. By ligating hair-
pin adapters that circularize linear DNA molecules, the se-
quencing polymerase can make multiple noisy passes around
single molecules, and these can be collapsed into Circular
Consensus Sequences (CCS) that have much higher accuracy
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Fig. 1. Under simple assumptions, the probability that a sequence will have no
errors decreases exponentially with the sequence length, and the slope of this de-
crease is determined by the per-base error rate.

When sequencing amplicons of a fixed length, the number
of passes (ie. the total raw read length divided by the am-
plicon length) is a primary determinant of the accuracy of
a CCS. The raw read length distribution has a long right
tail, which means that the number of passes around each
molecule, and consequently the CCS error rates, can vary
substantially. Here we confine our discussion to these CCS
reads.

A critical feature of PacBio sequences is a high homopoly-
mer indel rate. (3) show that, for a 2.6kb amplicon, with
a post-filtering error rate of 0.5%, 80% are indel and 20%
substitution errors, and the indel errors are concentrated in
homopolymer regions, increasing in rate with the length of
the homopolymer. While high indel rates can be computa-
tionally challenging to deal with, since sequence alignment
can be slow, they are favorable from a statistical perspective,
because the errors appear in predictable places, making them
more correctable (10).

Amplicon denoising (11-17) refers to a process that takes a
large set of reads, corrupted by sequencing errors, and at-
tempts to distill the noiseless variants and their frequencies.
This has been extensively studied for short-read sequencing
technology, but these approaches do not always generalize
well to longer reads.

It is helpful to distinguish between two sequencing regimes:
short and accurate (SA), and long and inaccurate (LI), and
PacBio sequencing datasets can span both of these. For a
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given error rate, the probability of an observed read being
noise free decreases exponentially with read length, and the
error rate determines how precipitous this decline is (see Fig-
ure 1). For short, accurate reads, we can expect to have many
noiseless representative reads in our dataset. Indeed, many
[lumina amplicon denoising strategies (11, 18) rely on this,
and amount to simply identifying these reads using their rel-
ative abundance information. Shorter PacBio reads fall into
this category as well. However, as the amplicon length in-
creases, not only are there more opportunities for error, but
the number of passes around each molecule decreases, in-
creasing the per base error rate. There may be variants that
simply do not have any noiseless representatives, forcing us
to abandon these “read-selection” strategies of amplicon de-
noising in this long, inaccurate regime. We can only hope to
reconstruct the noiseless reads, by identifying a set of noisy
reads that originate from the same variant, and averaging out
their noise.

Existing approaches to this have used off-the-shelf clustering
tools to render approximate reconstructions of the underlying
population (3, 19, 20), but these are not built for purpose and
can, as we show here, be improved upon substantially.

Our strategy mirrors this distinction, with one tool (FAD) that
operates in the SA regime, and one (RAD) that operates in
the LI regime. Both are implemented entirely in Julia, an
emerging language for scientific computing.

Approach

We present two methods: the Fast Amplicon Denoiser (FAD),
and the Robust Amplicon Denoiser (RAD). FAD is designed
for cases where an appreciable number of sequences are ex-
pected to be error free, and these can reliably serve as our
inferred templates, avoiding any form of clustering or con-
sensus calls, and exploiting abundance and neighborhood in-
formation to keep or reject templates. This method performs
better for shorter amplicons, higher quality sequencing, and
better read-per-template coverage.

RAD is more complex, and designed for cases where very
few reads are error free. This can occur in PacBio amplicon
sequence when either amplicons are very long, with fewer
passes per molecule, or for short movie lengths, reducing
raw read lengths, or for older sequencing chemistries. RAD
works in stages. First, we employ a kmer-domain clustering
approach, inspired by a non-parametric Bayesian procedure
(21, 22) to partition reads into clusters, followed by a recur-
sive cluster refinement procedure (also in kmer domain).

Methods

A. Kmer representation. For both RAD and FAD, we
heavily exploit a kmer-based distance calculation. We first
convert all sequences to their kmer counts. For all analyses
here, k = 5 or k = 6, representing each sequence as a vec-
tor of integers of length 4. We then seek to approximate
the pairwise edit distance between two sequences using these
kmer frequency vectors.
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Fig. 2. This distance approximates edit distance as mutations are introduced, start-
ing from the 2599bp NL4-3 HIV-1 env sequence. When only substitutions are intro-
duced, edit distance is extremely well approximated. When indels are introduced,
our kmer distance underestimates edit distance. This is desirable behavior when
the sequencing error process is dominated by indels, because they will be down-
weighted in our distance function.

While there exist sophisticated distance metrics based on
kmer similarity (23), we opt for a simple approach that scales
linearly with substitutions for low-divergences. Consider two
identical sequences, with identical associated kmer vectors.
When a random substitution is introduced, there will typi-
cally be ~2k differences between the kmer vectors. So our
kmer approximation of edit distance is simply:

4k
1
D(4,B) = o > (4 - B;)?

See figure 2 for a demonstration of how this behaves, com-
pared to edit distance. We can optionally scale this distance
by dividing by the sequence length, to yield a per-base per-
centage difference.

B. Fast Amplicon Denoising (FAD). FAD is the simpler
of the two algorithms, intended to work in low-noise sce-
narios. FAD proceeds by de-replicating reads, and sorting
them by abundance, ignoring all reads that do not occur at
least twice. FAD iterates through each read from largest to
smallest, maintaining a set of accepted templates. When the
current read is distant from all reads already included in the
set by > 1bp (as calculated by our corrected kmer distance),
then it is added to the set. If it is within 1bp, then the abun-
dances of the higher frequency template are considered when
deciding to keep or discard the lower frequency template.
We first, however, correct the abundances by the expected
proportion of error-free sequences. We convert the QV scores
into error probabilities, and obtain an expected number of
errors per sequence. We then evaluate the probability of each
sequence having zero errors, and take the mean of this. For
our LP135 dataset, this comes to 38%.

We take the most abundant template < 1bp from the current
template, and we calculate the p-value for the size of a spu-
rious offspring that differs at one base, under a Poisson er-
ror assumption, Bonferroni corrected for the average number
of sites in the template. If this is < « (default: o = 0.01),
then we reject the null hypothesis that we would obtain an
offspring template this large by chance, and we include this
template in the set.
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Finally, we take all reads, and assign each read to an accepted
template based on the minimum distance under the kmer ap-
proximation (using k£ = 5 here, since this method places an
emphasis on speed). These are used to compute the final fre-
quencies for all reads.

C. Robust Amplicon Denoising (RAD). RAD is intended
for high-noise scenarios, where we do not expect sufficient
numbers of reads to be noise free for the strategy employed
by FAD to succeed. We nevertheless aim to keep the com-
putation time as low as possible, exploiting kmer distances
extensively.

C.1. Dirichlet process means clustering. We wish to cluster
our kmer frequency vectors. We do not know how many
clusters we have in advance (ruling out traditional options
like k-means), and we need the algorithm to scale well with
the input dataset size and the number of clusters. PacBio er-
ror rates per read are, however, highly predictable from the
quality scores, so we have information about the distance
by which a noisy read can differ, by error alone, from its
noise-free platonic ideal. Fortunately, the “Dirichlet process
means” (DP-means) clustering approach (21) is ideal here.

It is frequently observed that k-means clustering can be de-
rived as an expectation maximization algorithm for a finite
mixture of isotropic Gaussians, where the variance of the
Gaussians is sent to zero, forcing hard-assignments of el-
ements to clusters (24). Similarly, DP-means can be de-
rived as the limit of sampling procedure for a non-parametric
Bayesian Dirichlet process infinite mixture of Gaussians
model, where the variance is similarly driven to zero. This
yields a surprisingly simple deterministic algorithm that uses
a “radius” parameter \ to control the number of clusters (21).
Briefly, the DP-means algorithm works by maintaining an ar-
ray of centroids, and passing through the elements one at a
time, computing the distance to all cluster centroids: if the
distance between the element and any centroid is < A, then
assign the element to the cluster with the nearest centroid,
and if not, seed a new cluster, using that element as the clus-
ter centroid. After each pass through the elements, recompute
the cluster centroids by averaging all the elements that are as-
signed to them. This iterates until convergence. See (21) for
a technical description.

We use this algorithm to cluster our kmer vectors, using the
scaled kmer distance, and a radius A = 0.01, which is the
error rate we typically use to retain .fastq reads in our data
filtering steps.

C.2. The triangle inequality. The number of clusters is typi-
cally be much lower than the number of reads. After the first
DP-means clustering pass yields a set of centroids, we cluster
these centroids to construct a set of "meta-centroids", and we
compute, just once, the pairwise distance between all reads
and all meta-centroids. Upon each subsequent iteration, we
compute the pairwise distance between all current centroids
and all meta-centroids, and we use the triangle inequality to
avoid computing the read-to-centroid distances when we can
deduce that they are > ), reducing computation by a factor
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Fig. 3. SMD accurately approximates the average error rate, when computed be-
tween a set of templates, and a set of sequences that are derived from the templates
by some noisy process.

that depends on the template diversity.

C.3. Fine cluster splitting. Clustering reads using a radius
equal to the error filtering cutoff (we often use 1%) can fail
to distinguish variants that are very closely related. We there-
fore introduce a second layer of cluster refinement that di-
rectly seeks to split clusters that are different at any bases.
Again, for computational efficiency, we remain in the kmer
frequency vector domain to avoid sequence alignment.
Consider a cluster of a few closely related variants, each with
multiple reads corrupted by sequencing noise (which has er-
rors scattered at random bases). We attempt to suppress
the noise by identifying the kmers that differ the most, and
cluster just on these, with a very low clustering radius. To
avoid splitting on homopolyer errors, we choose M (default
M=20) kmers with the largest variance, and search this set
of high-variance kmers for kmer pairs that differ by a single
homopolymer length edit, discarding these. We take the high-
est variance remaining N (default N=6) kmers, and run DP-
means clustering on this very low dimensional representation
of the reads, with euclidean distance, and a default radius of
1. Ie. if any reads differ at more than one of these kmers, we
separate them. Please note that 1bp difference should cause
at least 6 kmers to differ, so this can split reads that differ by
a single base.

This clustering step produces a “candidate” cluster split,
which we then decide to accept or reject, using the abundance
information of these sub-clusters. If the original cluster gets
fragmented into too many small clusters that fall below a size
threshold, we reject the split. For this, we use the same Bon-
ferroni corrected Poisson p-value approach as used in FAD.
After splitting, we recurse, and continue splitting each sub-
cluster until there is no evidence of heterogeneity.

C.4. Kmer-seeded alignment consensus. Unlike FAD, the
clusters identified by RAD are not expected to have noise-
free sequences associated with them. We thus rely on a con-
sensus approach to infer these templates. We start by finding
the sequence whose kmer vector is nearest to the cluster av-
erage kmer vector, which we take as a draft consensus. We
then align all reads, pairwise, to this draft consensus. Using
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these pairwise alignment coordinates, we run a sliding win-
dow over the draft consensus, and when any blocks of this
draft reference do not match the most common sub-sequence
of the aligned reads, we replace that block of the draft refer-
ence with this modal value. We exploit kmer seeding (k=30),
and this approximate pairwise alignment algorithm scales lin-
early with sequence length.

If the amplicon spans a coding sequence, then Rifraf.jl (10)
can be used to infer a frame-shift corrected template se-
quence, as long as a reference sequence with a trusted reading
frame is available.

D. A metric for comparing inferred to true templates.
A population can be represented by a set of sequences, and
their associated frequencies. We seek a metric that can be
used to evaluate the reconstruction accuracy of an algorithm.
A useful distance metric for evaluating reconstruction accu-
racy must be zero when the reconstructed sequences and fre-
quencies are identical to the ground truth, should grow as the
divergence between the two sets grows, and should have a
meaningful numerical interpretation. One attractive option
here is the Earth Mover’s Distance, operating on the matrix
of pairwise distances and frequencies. We have previously
advocated this (19), but here we expand on this a little. We
now refer to this as "Sequence Mutation Distance" (SM D),
and release SMD.jl, which calculates this metric. A related
approach, UniFrac (25, 26) is commonly used to compare mi-
crobial communities, but UniFrac computes distances over a
phylogeny, where as SMD operates directly on the pairwise
distance matrix.

Consider the ground truth sequences A, and the inferred tem-
plates BB and a distance matrix D wherein D; ; is the distance
between A; and B; (here we use edit distance). Construct a
flow matrix I, which is of the same shape as D but F; ; rep-
resents how much of A; maps onto B;.

SM D can be defined as:

SMD = m};n(ZZFi,j X Di,j)
J

i
with respect to constraints:

ZFi,j = freq(4;) and ZFH = freq(B;)
j .

7

Where freq(X) is the frequency associated with variant X.
This SMD score corresponds to the weighted average number
of nucleotide changes per sequence required to convert A to
B, finding the (possibly non-unique) minimum by optimizing
over F. In our implementation, we use the Julia package
JuMP,jl (27) to perform this optimization.

This can be interpreted as the total error in the reconstruc-
tion per sequence. Indeed, if we compute the SM D between
noisy sequences and the templates from which they were de-
rived, we obtain a very precise estimate of the empirical error
rate, biased only very slightly towards underestimation (see
figure 3).

The SMD score is optimized while respecting frequency con-
straints on both ground truth sequences A, and the inferred

4 | bioRxiv

LP135

Dataset: LP135
Mean (Length): 2629.6375
Pairwise Diversity (%): 2.151208573
Average Nearest (%): 0.442076142
# templates: 80
Mean (frequency): 226.4
STD (frequency): 124.8187141

Mean errors/read: 5.85

P0O18 early

Dataset: P018 early
Mean (Length): 2609.054545
Pairwise Diversity (%): 0.447359001
Average Nearest (%): 0.089199849
# templates: 165
Mean (frequency): 107.769697
STD (frequency): 54.08390323

Mean errors/read: 9.06

P018 late

Dataset: P018 late
Mean (Length): 2573.713043
Pairwise Diversity (%): 2.209305145
Average Nearest (%): 0.131429131
# templates: 115
Mean (frequency): 102.5913043
STD (frequency): 51.44404142

Mean errors/read: 8.86

9kb

Dataset: 9kb

Mean (Length): 9698.75
Pairwise Diversity (%): 0.361307784
Average Nearest (%): 0.066374533

# templates: 32

Mean (frequency): 184.875

STD (frequency): 81.51261529
Mean errors/read: 111.57

3084

Fig. 4. Four test datasets. See main text for more detailed descriptions. Here
we show maximum likelihood phylogenies of the template sequences, along with
summary statistics: the mean read length, the mean pairwise diversity, the average
distance from each template to its closest neighbour, the number of templates, the
average template frequency, the standard deviation over template frequencies, and
the mean number of errors per read.

templates B. We can additionally derive two scores of inter-
est: By relaxing the constraint on frequencies of A, we get
SM D p, which increases with the extent and frequency of
false positives (ie. reconstructed sequences that are absent
from the ground truth). Similarly, by eliminating the con-
straint on B, we get SM Dpy, a measure of false-negatives,
which increases when our reconstructions are missing se-
quences that are present in the ground truth.
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E. Comparison methods.

1. baseline: This refers to the original set of reads with no
denoising.

2. VSEARCH: VSEARCH’s cluster-fast is run with an
identity threshold of 0.99 (equivalent to our radius
threshold of 0.01), and the consensus output is eval-
uated.

3. USEARCH: USEARCH’s cluster-fast is run with iden-
tical parameters to VSEARCH, with an id threshold of
0.99. The "consensus output" is used as inferred tem-
plates.

4. deep USEARCH: Similar parameters as the USE-
ARCH method, but with the "max-accepts" parame-
ter set to 300 instead of the default, and the "max-
rejects" parameter set to 600 instead of the default, to
cause USEARCH to search more aggressively for bet-
ter matches during clustering.

5. UNOISE: Fastx_uniques is run with a size output to
dereplicate reads, followed by UNOISE3, using the
"amplicon output" (without chimera filtering) as in-
ferred templates. Please note that the UNOISE doc-
umentation asserts that UNOISE is not designed for
PacBio data.

All methods were run single-threaded on an AMD Ryzen 7
1700 processor @ 3.0 Ghz.

Results

We assembled four datasets to compare methods; one real,
and three simulated using the PacBio sequence simulator de-
veloped in (19):

1. LP135: We used a number of HIV envelope clones
available in our lab, all from the same time point,
and isolated from the same donor. To construct a
ground truth clustering for these reads, we amplified
96 wells using paired forward and backwards primers
that uniquely identify the well, sequenced on the RS-
IT using P6/C4 chemistry, with 6 hour movie lengths.
CCS reads were inferred with PacBio’s CCS algorithm
(v3.0). From this .fastq sequencing dataset, we first
filter at the 1% accuracy threshold (3), partly to guar-
antee accurate barcode sequencing, and we recover 80
pure clones. The consensus of reads from each well
is taken as the ground truth sequence. When infer-
ring templates using RAD, FAD, and other methods,
we first trim off the barcodes from the .fastq reads, to
ensure the true clustering is obscured. The full dataset
had ~18k reads, but we also subsampled datasets of
10k, 5k, and 2k to investigate lower template coverage
(which could occur when multiplexing samples).

2. PO18 early. This is a simulated dataset. We ob-
tained templates and frequencies from a run of the Full
Length Envelope Analysis pipeline (FLEA) (3). The
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Fig. 5. Panel A: Error rates (measured by Sequence Mutation Distance) of recon-
structions against ground truth for a number of datasets. LP135 is a real sequencing
dataset, using primer barcodes to obtain the ground truth clustering. P018 (~2.6kb)
comprises reads simulated in silico from a set of templates obtained from an HIV+
donor, from a low diversity, early time point, and a later, more diverse, time point.
The 9kb dataset comprises a set of closely related templates, with long reads sim-
ulated from these, using a higher error rate profile. The dashed "baseline" depicts
the SMD scores of the uncorrected reads against the ground truth templates. Also
shown are run times of the various methods. Panel B: From the LP135 full dataset,
we show a phylogeny depicting the ground truth templates, as well as the inferred
templates for FAD and RAD.

"early" dataset is simulated from the P018 "V06" time
point, approximately 6 months post-infection, repre-
senting a challenging dataset of low diversity. We in-
clude an unfiltered, and a 1% filtered dataset.

3. PO18 late. As for "early", but using the 33 months post-
infection templates and frequencies, which had higher
diversity. The error profiles for the PO18 datasets were
generated to match P5/C3 chemistry (the previous gen-
eration), and have a higher mean error rate than our
real P6/C4 dataset, which impacts the relative perfor-
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mance of the methods. We include unfiltered 1% fil-
tered datasets.

4. 9kb. We simulated low-diversity evolution of 9kb
templates, starting from the full-length nl43 plasmid,
with random mutations (including indels), generating
32 closely-related templates. Frequencies were sim-
ulated from a uniform distribution. We matched the
error rates in the simulated reads to those from a 9kb
plasmid sequence (data not shown), and these are sub-
stantially lower than the ~2.6kb amplicons, primarily
due to the amplicon length. Here we include unfiltered,
1% filtered, and 2% filtered datasets.

Template sequence phylogenies and summary statistics for
these datasets are depicted in figure 4.

F. Performance. See figure 5 for accuracy (SMD scores)
and timing results. These SMD scores are not normalized by
sequence length, and can be interpreted as the per-sequence
error rate. So an SMD of 1.0 means that there is, on aver-
age, 1bp incorrect in each sequence. False positive and false
negative SMDs are shown in figures S1 and S2.

USEARCH (with default parameters) and UNOISE are fast,
but inaccurate. In many cases, USEARCH has an accuracy
similarly to the SMD of uncorrected reads ("baseline” in the
figure). UNOISE, as expected, is not well suited to these
long-read datasets. Deep USEARCH, modified for a more
extensive search during clustering, is slower and more ac-
curate than USEARCH. The timing difference can be dra-
matic: from a minute for USEARCH, to nearly an hour for
deep USEARCH, when inferring templates from the unfil-
tered 9kb dataset. VSEARCH has intermediate accuracy,
with SMDs as low as 0.51 for the PO18 low-diversity dataset.
VSEARCH runs in time comparable to deep USEARCH for
2.6kb datasets, but becomes very slow for 9kb datasets, tak-
ing 10 hours on the slowest dataset.

FAD (like UNOISE), does not complete on the 9kb datasets,
because it requires an appreciable proportion of error-free
reads. FAD is extremely fast on all 2.6kb datasets, never
taking longer than 10 seconds. FAD is also the most accu-
rate method on the full LP135 dataset, with an SMD of 0.057
(which translates to a per-base error rate of 1 in ~46000).
As expected, FAD’s performance degrades as the template
coverage decreases, and as the error rates increase (the sim-
ulated 2.6kb datasets had higher error rates than LP135).
RAD is always faster than deep USEARCH, and faster than
VSEARCH in all-but-two datasets, and has especially well
controlled run times for the 9kb datasets. RAD, however,
stands out as being consistently accurate across all datasets,
with results close to FAD in the low-noise LP135 datasets,
but with clearly superior results across the noisier regimes.
The closest competitor, VSEARCH, has substantially higher
SMD scores than RAD on all datasets, with accuracies rang-
ing from 3.2x to 18.7x worse.

Please note that these results should not be taken as a criti-
cism of USEARCH or VSEARCH?s clustering, or UNOISE,
as these algorithms were not designed with this problem in
mind.
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Conclusion

We have presented two algorithms, FAD and RAD, for de-
noising long PacBio amplicons. While we intend to use these
tools primarily for applications in virology, which has moti-
vated our choice in datasets, there is no reason why they can-
not be used in any long-read amplicon sequencing domain,
especially for metagenomics (eg. 16S).

With this paper we release four Julia packages: NextGenSe-
qUtils.jl, Rad.jl, DPMeansClustering.jl, and SMD.jl, which
should be a helpful contribution to the Julia next gen-
eration sequencing ecosystem. We also provide a web
server (https://tools.murrell.group/denoise)
for convenient analyses. A .fastq CCS file is uploaded, and
filtering options can be selected. RAD is run, and the inferred
templates, as well as a number of visualizations (see figure 6),
are provided.

The algorithms could potentially be improved along multiple
dimensions:

1. Automatically determining the optimal method for am-
plicon denoising: we currently use a simple heuris-
tic to choose which of RAD or FAD should be used.
This uses the QV scores to obtain an estimate of the
expected number of error free reads, and it uses the
proportion of identical reads. If both of these are suf-
ficiently high, use FAD, but if either is low, we recom-
mend RAD. The details of what counts as high or low
require further exploration on additional datasets.

2. Test other kinds of sequencing data: future work
should compare amplicon denoising methods on
datasets from a wider range of sources, spanning a
range of length and template diversity.

3. Using error rates when clustering: since the error rates
are highly predictable, the distance between a read and
a centroid could be adjusted by the expected error in
each, which could result in more accurate clustering.

4. Using error rates when splitting: per-base error rates
could also be exploited during cluster splitting for both
FAD and RAD, potentially improving accuracy.

5. Parallelization: We could gain run-time improvements
by parallelizing some components of our model. The
simplest of these would be the RAD consensus step,
where each consensus can be executed on a different
thread.

Additional extensions may be domain specific. For example,
chimera filtering (29-31) is not useful in domains like HIV,
where extensive biological recombination produces the same
signals as artificial chimeras. However, this could be useful
in other domains, and should be implemented.

PacBio have released a "Long Amplicon Analysis" (LAA)
tool. This tool runs directly on the raw sequence data, how-
ever. This prevents comparison on any of our simulated
datasets, where we simulate the .fastq reads directly, and even
our real PacBio dataset had primer barcodes trimmed at the
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Fig. 6. Interactive visualization of inferred templates and their frequencies is avail-
able in multiple layouts on the RAD/FAD webserver. Neighbour joining (28) phy-
logenies are inferred from fast corrected kmer distance matrices, and displayed
in traditional phylogeny format (A), as well as D3 force directed graph layout (B).
Sequence names are shown interactively. We also display distance matrices (C).
Together, these allow a rapid assessment of the diversity and population structure
of the inferred template sequences.
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CCS level, preventing comparison. Future work should find
a way to compare LAA to these approaches where ground
truth is available.

The advent of accurate long-read denoising approaches shifts
the developmental burden away from data processing. Going
forward, the primary impediment to extending the length of
amplicons that can be sequenced is the design of PCR strate-
gies that can successfully amplify very long templates.
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Dataset Method Time SMD SMD_FP SMD_FN
LP135_2000 FAD 0.529428005 1.19 0.0 0.7805
LP135_2000 RAD 18.34718585  0.750451427  0.015523285 0.442
LP135_2000 UNOISE 0.363973141 10.15344068 0.0 6.325
LP135_2000 USEARCH 1.691693068  7.839674207 1.025658339 4.6495
LP135_2000 deep USEARCH  24.61717916  3.339864407  0.848587571 2.076
LP135_2000 VSEARCH 51.52917194  2.424851197  0.350057013 1.0615
LP135_5000 FAD 1.898756027 0.353 0.0 0.2822
LP135_5000 RAD 49.55263019  0.365213846  0.016806723 0.1516
LP135_5000 UNOISE 0.724266052  5.923901299 0.0 1.5628
LP135_5000 USEARCH 4.379507065 8.148839892  0.860107817 2.7488
LP135_5000 deep USEARCH 124.194135 2490797184  0.760008799 1.489
LP135_5000 VSEARCH 128.1675749 1.7074 0.186666667 0.822

LP135_10000 FAD 4.062191963 0.1248 0.0069 0.0635
LP135_10000 RAD 115.500721 0.244969081 0.02721633 0.1496
LP135_10000 UNOISE 1.397036076  3.555361582 0.0 0.6545
LP135_10000 USEARCH 9.790716171 7.949061126 0.8086386 3.2107
LP135_10000 deep USEARCH  410.9284868  2.529141943 0.71510222 1.3111
LP135_10000 VSEARCH 274.4071872 1.2691428 0.161719096 0.443
LP135_18112 FAD 6.140394926  0.056647527  0.006404594  0.010103799
LP135_18112 RAD 244904155 0.111601287 0.03318975 0.027385159
LP135_18112 UNOISE 2.334758997  2.258735458 0.0 0.114675353
LP135_18112 USEARCH 17.54733491 9.48204451 0.508407756 1.450640459
LP135_18112 deep USEARCH  857.4190199  2.183995122  0.544159372 1.105675795
LP135_18112 VSEARCH 453.11621 1.108383671 0.080107134  0.239068021
P018_low_D FAD 7.381646156  0.480317175 0.0 0.429310539
PO18_low_D RAD 930.7800851 0.024111227 0.0 0.014059161
P0O18_low_D UNOISE 2.189254999  3.412146332 0.0 1.597064447
PO18_low_D USEARCH 20.39851213 5.36600672 0.050422902  3.902766843
P018_low_D deep USEARCH  2298.212697  3.707657171 0.820386618  2.070408278
P0O18_low_D VSEARCH 482.140717 0.51757209 0.035695961 0.15465077
P0O18_low_D_filt FAD 7.172053814  0.501284493 0.0 0.429310539
P0O18_low_D_filt RAD 640.839519 0.149100384 0.0 0.097233157
PO18_low_D_filt UNOISE 2214979172 3.412146332 0.0 1.597064447
PO18_low_D_filt USEARCH 20.86764693  6.044407546  0.965805406  4.393993926
P0O18_low_D_filt deep USEARCH  2328.007018  2.329603861 0.240870527  0.905522438
P0O18_low_D_filt VSEARCH 462.745703 0.586916761 0.04795373 0.128669441
PO18_high_D FAD 4.176362991 0.670113579 0.0 0.633073402
PO18_high_D RAD 181.33832 0.150246184  0.002798507  0.120867944
PO18_high_D UNOISE 1.350667 10.34358931 0.0 6.253432785
PO18_high_D USEARCH 10.27629089 1277710231 0.133790738 1.7104594
PO18_high_D deep USEARCH 408.661937 2.834875035  0.328613629 1.064248178
PO18_high_D VSEARCH 277.8375401 1.099081516  0.020323427  0.239447364
P0O18_high_D_filt FAD 4.062068939 0.78546184 0.0 0.633073402
PO18_high_D_filt RAD 143.951633 0.261548057  0.001048584  0.106373962
P0O18_high_D_filt UNOISE 1.359381914 10.34358931 0.0 6.253432785
P0O18_high_D_filt USEARCH 10.40896988 11.48160262  0.062843296 1.48008137
PO18_high_D_filt =~ deep USEARCH  388.9146309  2.509755897  0.248885202 1.04602475
P0O18_high_D_filt VSEARCH 277.8611 1.070193933  0.011554393 0.23673504
9kb FAD 5.053105116 NaN 0.0 NaN
9kb RAD 867.3528638  0.193204868 0.0 0.189317106
9kb UNOISE 2.392202139 NaN 0.0 NaN
9kb USEARCH 62.53130293 26.0050563 9.884057971 23.83536173
9kb deep USEARCH  3294.691269 11.0451932 5.82962963 5.594996619
9kb VSEARCH 36730.41921 3.623855472  0.211838006  0.640804598

9kb_filt2 FAD 4.358752966 NaN 0.0 NaN
9kb_filt2 RAD 637.2588739  0.450119459 0.0 0.189317106
9kb_filt2 UNOISE 2.134759903 NaN 0.0 NaN
9kb_filt2 USEARCH 49.09791207  25.99045984  7.318681319  23.76200135
9kb_filt2 deep USEARCH  2682.655685 11.42585245  5.905109489  5.950811359
9kb_filt2 VSEARCH 31920.33632  3.623855472  0.211838006  0.640804598
9kb_filtl FAD 1.947170019 NaN 0.0 NaN

9kb_filtl RAD 121.6790071 0.636113083 0.0 0.054428668

9kb_filtl UNOISE 1.025439024 NaN 0.0 NaN

9kb_filtl USEARCH 25.10640097 27.6137593 10.33333333  25.46771467
9kb_filtl deep USEARCH 1322.334428  9.144750493 5266313933  5.835192698
9kb_filtl VSEARCH 12609.67987 3.62229784 0.211838006  0.640804598

Table S1. Single-threaded timing results and SMD scores for all tested datasets.
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Fig. S1. False positive error rates (measured by SM D p) of reconstructions against ground truth for a number of datasets. Values of
0 are set to 10~° for the log transform.
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