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ABSTRACT 

Genetic studies of psychiatric disorders often deal with phenotypes that are not directly 

measurable. Instead, researchers rely on multivariate symptom data from questionnaires 

and surveys like the PTSD Symptom Scale (PSS) and Beck Depression Inventory (BDI) to 

indirectly assess a latent phenotype of interest. Researchers subsequently collapse such 

multivariate questionnaire data into a univariate outcome to represent a surrogate for the 

latent phenotype. However, when a causal variant is only associated with a subset of 

collapsed symptoms, the effect will be challenging to detect using the univariate outcome. 

We describe a more powerful strategy for genetic association testing in this situation that 

jointly analyzes the original multivariate symptom data collectively using a statistical 

framework that compares similarity in multivariate symptom-scale data from 

questionnaires to similarity in common genetic variants across a gene. We use simulated 

data to demonstrate this strategy provides substantially increased power over standard 

approaches that collapse questionnaire data into a single surrogate outcome. We also 

illustrate our approach using GWAS data from the Grady Trauma Project and identify genes 

associated with BDI not identified using standard univariate techniques.  The approach is 

computationally efficient, scales to genome-wide studies, and is applicable to correlated 

symptom data of arbitrary dimension (thereby aligning with National Institute of Mental 

Health’s Research Domain Criteria).  
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INTRODUCTION 
 
Evidence indicates that common genetic variants should explain a sizeable role of 

the variation in many psychiatric disorders. For example, common variants are estimated 

to explain 40% of the heritability for bipolar disorder1, 21% of the heritability of 

depression2, 30-45% of the heritability of post-traumatic stress disorder (PTSD)3-6, and 

50% of the heritability of autism spectrum disorder7. However, even in studies involving 

thousands of subjects, identification of specific common trait-influencing polymorphisms 

remains a challenge. To discover new associations, much attention has been spent on 

improving genotyping and sequencing technologies to interrogate more genetic variation; 

however, comparatively less attention has been afforded to thorough characterization of 

the underlying psychiatric phenotypes that are considered for genetic analysis.  

In genetic analyses of a psychiatric phenotype, we often envision our outcome of 

interest as a single, measurable entity. In practice, we are rarely able to measure the 

outcome of interest directly and instead attempt to capture the true, latent phenotype via 

several connected but discrete measurements. As an example, psychiatric genetic studies 

attempt to account for the heterogeneity of symptoms found in a single psychiatric 

disorder by measuring the symptoms from several angles via a questionnaire or exam. For 

example, in studies of post-traumatic stress disorder (PTSD), researchers often measure 

the outcome using the PTSD Symptom Scale (PSS), which is a 17-item questionnaire for 

assessing and diagnosing PTSD according to the DSM-IV. Each item corresponds to a PTSD 

symptom and is rated from 0 to 3, with higher scores indicating greater symptom 

frequency/intensity 8; 9. Meanwhile, in studies of depression, many studies attempt to 

measure the phenotype using multiple symptom measurements from the Beck Depression 
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Inventory-II (BDI). The BDI is a 21-item questionnaire with each question developed to 

correspond to DSM-IV diagnostic criteria for major depressive disorder. The answers to 

each question are scored from 0 to 3, with higher scores indicating more severe depressive 

symptoms 10.  

Data captured by the PSS, BDI or other questionnaires can actually be considered a 

collection of interrelated multivariate phenotypes that, in the case of symptom scales, are 

usually ordinal in nature. The view of a mental disorder as a constellation of multiple 

correlated symptoms is aligned with the National Institute of Mental Health’s (NIMH) 

Research Domain Criteria (RDoC), which emphasize basic functional dimensions or 

mechanisms involved in psychopathology (e.g., fear, reward-seeking, attention, perception, 

arousal) rather than DSM or ICD diagnostic categories 11. Nevertheless, practical use of 

such multivariate symptom data in genetic analysis is complicated by the fact that standard 

statistical techniques for genetic analysis are generally univariate and designed to handle a 

single outcome at a time. To improve analytical utility, many questionnaires like the BDI 

and PSS were designed so that the multivariate symptoms are collapsed into a univariate 

phenotype for analysis. The simplest and most common collapsing method is unweighted 

summation of each question’s score 10; 12-14 into an univariate cumulative score.  The 

cumulative score can then be treated either as a continuous outcome, or cutoffs can be 

applied to indicate presence/absence of disease symptoms.   

An important issue with applying a univariate cumulative score in genetic analysis is 

that reducing multivariate information to univariate data nearly always comes at a cost. 

Carefully defining a phenotype is as vital in a GWAS as reliable genotyping; any association 

between gene and trait may be diluted by phenotypic heterogeneity. For example, if a gene 
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were associated with a subset of the BDI questionnaire outcomes (e.g. a somatic symptom 

of depression-like changes in sleep patterns) but not other subsets (e.g. affective symptoms 

like mood or attitude), the magnitude of the overall effect size of the gene would be 

attenuated if the two subsets were combined into a univariate outcome measure.  

A few key assumptions must be met in order for a univariate cumulative score to 

sufficiently summarize multivariate ordinal data. As noted by Van der Sluis et al.15-17, the 

three primary assumptions that must be met are: (1) the correlation between all questions 

in the questionnaire must be explained by a single (latent) phenotype; (2) the genetic effect 

must be on the latent phenotype; (3) the genetic effect—acting through the latent 

phenotype—must have identical effects on all of the questions in the questionnaire.  For 

applied psychiatric phenotypes, it is more plausible that the assumptions are violated than 

maintained, a perspective that is supported by NIMH’s focus on RDoC. Depressive 

symptoms identified by the BDI might come from multiple sources (e.g. major depressive 

disorder, bereavement, post-traumatic stress disorder), violating the first assumption. The 

causal genetic effect might directly increase somatic symptoms of depression such as 

changes in appetite and sleep, but not impact mood, violating the second assumption. 

Alternatively, a variant might in fact affect each trait identified by every question, but have 

slightly different effect sizes on different questions. If any of these assumptions are not met, 

association analysis using the cumulative score will result in a substantial loss of power 15; 

17-19.  

A few alternatives have been presented to model the complex multivariate data 

captured within questionnaires. A popular type of approach is a data reduction method like 

principal component analysis (PCA), which relies on identifying a linear combination of the 
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set of questionnaire responses that maximizes response variance across questions. Once 

the top few principal components are identified (i.e. those principal components that 

explain most of the questionnaire variance), association testing is performed between 

those top principal components and genotype 20; 21. However, PCA-based strategies that 

consider only high-variance principal components were recently shown to be generally 

suboptimal 22. As an alternative, Van der Sluis et al. 17 presented a multivariate gene-based 

association test by extended Simes procedure (MGAS) that combines the P-values obtained 

from standard, single-SNP association tests for each outcome to produce a single 

multivariate gene-based P-value. However, MGAS relies on permutations to establish 

significance, which make genome-wide analyses of psychiatric phenotypes cumbersome. 

Alternatively, Basu et al. 23 introduced a rapid multivariate multiple linear regression 

method (RMMLR), which operates on a MANOVA-based platform. However, while RMMLR 

establishes significance analytically, it cannot incorporate the important ordinal outcomes 

commonly measured in questionnaires and surveys.  

To allow computationally-efficient and powerful genetic analysis of multivariate 

symptom data, we show in this paper that we can use a kernel distance-covariance (KDC) 

24-28 method called the Gene Association with Multiple Traits (GAMuT) test 29, to assess 

association between high-dimensional symptom data and multiple variants (common or 

rare) in a gene. The framework is designed to test whether pairwise similarity in 

questionnaire responses is independent of pairwise genotypic similarity in a region of 

interest. The framework allows for an arbitrary number of categorical questions within the 

questionnaire as well as an arbitrary number of genotypes, thereby permitting gene-based 

or pathway-based testing of genetic variants. The method allows for covariate adjustment 
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and is a closed-form test that yields analytic P-values, thus scaling easily to genome-wide 

analysis. GAMuT is therefore well-suited to facilitate research that is directly aligned with 

RDoC’s goal of encouraging investigation of biological, cognitive-behavioral, and self-report 

data using multivariate methods 11.  

The remainder of this manuscript is organized as follows. We first provide a short 

overview of the GAMuT method and its features. We then present simulation work to 

demonstrate that the framework can be considerably more powerful than the standard 

univariate test based on a cumulative score derived from a questionnaire. We then 

illustrate the approach using a GWAS study of BDI scores collected as part of the Grady 

Trauma Project30-32. We finish with concluding remarks and discuss potential extensions to 

our approach. 

 
MATERIALS AND METHODS 

Overview of GAMuT: We provide a brief overview of the GAMuT method29 here and 

relegate the technical details of the procedure to the Supplementary Methods section.  For 

a sample of N unrelated subjects, GAMuT examines the relationship between a set of Q 

questions (each question assumed to be an ordinal categorical variable with an arbitrary 

number of levels) and a set of V genetic variants within a gene or pathway of interest. 

GAMuT is motivated by the idea that, for a pair of individuals, increased genetic similarity 

at trait-influencing loci across a gene should lead to increased similarity of their 

questionnaire outcome data. Consequently, GAMuT constructs two different similarity 

matrices; one similarity matrix for the questionnaire outcomes and the other similarity 

matrix for the genetic variation within a gene. Each similarity matrix has N rows and N 

columns with individual elements of the matrix denoting the similarity (phenotypic or 
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genetic) among different pairs of subjects. GAMuT creates a test statistic that evaluates 

whether the pairwise elements in the similarity matrix of questionnaire outcomes is 

independent of the pairwise elements in the genetic similarity matrix. The resulting test 

follows a known asymptotic distribution, which leads to easy and rapid calculation of p-

values. GAMuT allows for questionnaire outcomes of arbitrary dimension and can further 

adjust for covariates.  

Simulations: We conducted simulations to verify that GAMuT properly preserves 

type I error (i.e., empirical size) and to assess power of GAMuT relative to standard 

association tests that treat questionnaire responses as a univariate outcome variable 

resulting from summing the responses into a continuous score. We briefly summarize the 

simulation design here and provide more comprehensive details in the Supplemental 

Methods section. We considered sample sizes of either 1000 or 2500 independent subjects. 

We performed simulations based on SNPs and LD patterns located within 2 kb up- and 

down-stream from signal transducer and activator of transcription 3 (STAT3), a gene on 

chromosome 17q21.31 (see Supplementary Figure 1 for the MAF and pairwise LD structure 

of SNPs in STAT3). We generated simulated genotypes for all SNPs identified in HapMap 

within the STAT3 gene (27 SNPs), but applied the testing approaches only to those SNPs 

that would be typed on standard genotyping arrays (14 SNPs).  

We simulated multivariate questionnaire data to mimic the BDI questionnaire 

results obtained from Grady Trauma Project participants. The BDI consists of 21 groups of 

statements that reflect various symptoms and attitudes associated with depression. Each 

group includes 4 statements, which correspond to a scale of 0 to 3 in terms of intensity. The 

BDI is scored by summing the ratings given to each of the 21 items, yielding a cumulative 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/383471doi: bioRxiv preprint 

https://doi.org/10.1101/383471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

score ranging from 0-63. To mimic BDI, we generated 21 ordinal responses using the 

observed distributions and correlations of these responses within the GTP BDI dataset. We 

show the correlation matrix among ordinal responses in Supplementary Figure 2 and the 

distribution of observations for each of the 21 ordinal responses in Supplementary Figure 

3.  

We applied GAMuT to 10,000 null simulated datasets to estimate empirical size. To 

investigate the performance of GAMuT under confounding and to assess whether the 

approach can successfully adjust for relevant covariates in this setting, we also tested 

empirical size by simulating questions under a confounding model where question 

responses were independent of genotype, but both questions and genotype were 

associated with a continuous covariate. For power models, we simulated data sets in which 

each of the 27 SNPs was modeled as being causal with effect size of the causal SNP on each 

question resulting in mean effect sizes with modest effect on the overall cumulative score. 

We varied the number of questions associated with the causal SNP, considering situations 

where 18/21, 12/21, and 6/21 questions were actually associated with the causal SNP.  

Using the simulated data, we evaluated GAMuT using either projection matrices or 

linear kernels to model phenotypic similarity and using weighted linear kernels to model 

genotypic similarity (with weights based on sample MAF). We compared GAMuT to two 

standard approaches that use the univariate cumulative questionnaire score for inference: 

standard linear regression and kernel machine regression (KMR).33 Standard linear 

regression considers individual SNPs for analysis. KMR tests, on the other hand, jointly 

model multiple SNPs within a gene. KMR can be thought of as a specialized version of 

GAMuT that considers only 1 phenotype (the univariate cumulative sum of 
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symptoms/questions) rather than the observed multivariate phenotypes. For KMR, we 

modeled genotypic similarity in in a fashion analogous to GAMuT by using a weighted 

linear kernel with weights based on sample MAF. Thus, comparison of GAMuT to KMR 

helps highlight the benefit of considering a multivariate questionnaire phenotype over a 

traditional cumulative-based score for gene-based analysis. 

Analysis of the Grady Trauma Project: Data used in our analyses were collected as 

part of the Grady Trauma Project (GTP), which investigates the role of genetic risk factors 

for psychiatric disorders such as PTSD and depression 32; 34. Participants in the GTP are 

served by the Grady Hospital in Atlanta, Georgia, and are predominantly urban, African 

American, and of low socioeconomic status. GTP staff approach subjects in the waiting 

rooms of Grady Primary Care, Obstetrics and Gynecology, and other clinics, obtaining their 

written consent to participate. In addition to collecting an Oragene salivary sample for DNA 

extraction, GTP staff conduct an extensive verbal interview, which includes demographic 

information, a history of stressful life events, and several psychological surveys, including 

the BDI.   

The GTP initially genotyped participants on the Illumina HumanOmni1-Quad array 

to permit GWAS analyses. Applying standard GWAS quality control filters left 4,607 African-

American subjects with good quality genotype data. Further removal of subjects who did 

not report at least one past trauma, subjects with missing BDI scores, or subjects with 

incomplete covariate data (age, gender, and the top ten principal components to account 

for ancestry) yielded a final sample size of 3,520 subjects.   

For our sample, we used the support files provided by Illumina to identify 765,580 

common genetic variants (MAF > 5%) that fell within 19,609 autosomal genes. We applied 
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GAMuT to the BDI data using a linear kernel to measure pairwise phenotypic similarity in 

multivariate symptom scores. To measure genetic similarity, we used a linear genotype 

kernel within GAMuT and performed unweighted analyses as well as weighted analyses, 

with weights based on variants’ MAF or the variants’ estimated log odds ratios derived 

from external and independent GWAS studies of MDD, bipolar disorder, and schizophrenia 

that are available from the Psychiatric Genomics Consortium 35-37. For comparison, we also 

applied SNP-based linear regression and gene-based univariate KMR on the cumulative BDI 

score. For KMR, we applied the same genotype weighting schemes as used for the GAMuT 

analyses. 

 
RESULTS 

 
Type-I Error Simulations: Figure 1 shows the quantile-quantile (QQ) plots based on 

application of GAMuT, KMR, and linear regression to null datasets consisting of 1,000 or 

2,500 subjects assayed for 21 BDI questions. For both sample sizes tested, GAMuT properly 

controls for type I error, even at the extreme tails of the test. KMR and linear regression, 

using the cumulative score approach, also demonstrated appropriate empirical size. 

Supplementary Figure 4 shows that residualization of questionnaire data prior to GAMUT 

analysis effectively controls for confounding that, unadjusted, would yield inflated results. 

Power Simulations: Next we compared the power of GAMuT with univariate KMR 

and linear regression analyses in a series of simulation studies. For these power 

simulations, we set sample size to 1,000. Power was estimated as the proportion of P-

values < 2.5x10-6 (reflecting a genome-wide correction for 20,000 genes) and was 

evaluated based on 500 replicates of the data per model. Figure 2 shows the power results. 

We plot power as a function of the causal SNP, where the causal SNPs are ordered by 
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genomic location. The 14 genotyped SNPs (denoted by ‘x’ on the bottom of Supplementary 

Figure 1) were used to calculate test statistics, but all 27 SNPs were treated as causal in 

turn. Therefore, in situations where the causal SNP is not typed, we rely on correlation of 

the causal SNP with observed typed SNPs in STAT3 to gain statistical power. GAMuT offers 

considerably more power than the two competing univariate methods using cumulative 

scores for each of the three simulation models considered. When approximately half of the 

questions (12/21) are associated with the causal SNP, both KMR and linear regression 

observe nearly zero power to detect the effect; by comparison, GAMuT maintains power 

greater than 50% for 23 of the 27 causal SNPs. We observe a drop in power using GAMuT 

when nearly all of the questions (left column Figure 2) are associated with the causal 

variant compared with when a more modest number of questions are associated (middle 

column Figure 2). This pattern of decreased power when the proportion of associated 

phenotypes is close to 1 has been observed in other multivariate approaches, including 

multivariate analysis of variance (MANOVA) 38; 39. Regardless, our power results 

demonstrate the benefits of modeling the questionnaire data in a multivariate framework 

like that employed by GAMuT rather than using a traditional cumulative score.  

Application to Grady Trauma Project: We used the GTP dataset to test for 

associations between the BDI questionnaire and common variants in up to 19,609 genes. 

Prior to analyses, we controlled for gender, age, and ancestry in the 3,520 unrelated 

subjects. We applied GAMuT using a linear kernel to measure pairwise phenotypic 

similarity. We used several approaches for weighting SNPs, including MAF-based weights 

as well as external weights based on log odds ratio estimates from the PGC GWAS of MDD, 

bipolar disorder, and schizophrenia. For external weights, we note that not all GTP variants 
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were present within the PGC GWAS results, and therefore the GAMuT analyses utilizing 

PGC-based genotype weights necessarily included fewer SNPs and corresponding genes 

than the analyses using MAF-based weights or no weights. Specifically, GAMuT analyses 

using PGC MDD weights involved 16,716 genes containing 469,582 SNPs. Meanwhile, 

GAMuT analyses using PGC bipolar disorder weights involved 16,761 genes containing 

586,505 SNPs while analyses using PGC schizophrenia weights involved 18,067 genes 

containing 661,879 SNPs. For comparison with the GAMuT results, we ran univariate KMR 

using the cumulative BDI. For these KMR analyses, we employed the same genotype 

weighting schemes as used for GAMuT, and tested the exact same genes as tested in the 

GAMuT analyses. We also performed standard univariate linear regression of each of 

775,255 common variants (SNP-level analyses) on the cumulative BDI score.  

Since GAMuT and KMR analyze genes whereas linear regression analyzes SNPs, the 

multiple-testing adjusted significance thresholds differ between the former tests and the 

latter test. For each GAMuT and KMR analysis, we set a stringent study-wise significance 

threshold corresponding to a Bonferroni correction based on the number of genes tested 

(e.g., 0.05/19,609 = 2.55x10-6). Thus, the study-wise significance threshold differed 

depending on the particular genotype weights used, ranging from a threshold of 

0.05/16,716 = 2.99x10-6 for PGC MDD weights to 0.05/19,609 = 2.55x10-6 for MAF-based 

weights and no weights. For all GAMuT and KMR analyses we considered P-values less than 

P<1x10-4 as suggestive. For SNP-based linear regression, we tested 775,255 SNPs across 

the genome. While we could apply the standard GWAS significance threshold of 5x10 -8, we 

note that this threshold is more conservative than a Bonferroni correction based on the 

number of SNPs tested. Thus, for linear regression, we instead used a study-wise 
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significance threshold of 0.05/775,255 = 6.45x10-8, and we considered P-values less than 

P<1x10-6 as suggestive.  

We provide QQ and Manhattan plots for all GAMuT, KMR, and linear regression 

analyses of BDI in Supplementary Figure 5. We also list genes identified by GAMuT to be 

associated with BDI at study-wise or suggestive significance levels within Table 1. The 

GAMuT analyses of BDI identified one gene exceeding study-wise significance, while 

univariate KMR and linear regression of BDI did not detect any study-wise associated genes 

or SNPs. GAMUT found ZHX2, on chromosome 8, to be strongly associated with BDI 

(P=2.73x10-6), when using genotype weights based on estimated log odds ratios from the 

PGC GWAS for schizophrenia. We present QQ and Manhattan plots for this particular 

analysis in the first column of Figure 3. As noted in Table 1, ZHX2 was also found to be 

highly suggestively associated with BDI when employing genotype weights based on the 

PGC GWAS of MDD (P=8.59 x 10-6). Previous research suggests a possible link between 

ZHX2 and autism spectrum disorder 40. In comparison with the GAMuT analyses, KMR of 

cumulative BDI did not identify ZHX2 as having even suggestive association (Table 1; 

Figure 3, middle column; Supplementary Figure 5b), and univariate linear regression 

revealed no SNPs suggestively associated with BDI within ZHX2 or anywhere else across 

the genome (Table 1; Figure 3, last column; Supplementary Figure 5c).  

 

DISCUSSION 

As genetic studies of mental-health and psychiatric disorders increasingly shift to 

the study of high-dimensional symptom, questionnaire, and dimension data (such as those 

aligned with the NIMH RDoC), it is imperative to employ powerful statistical tests that 
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maximize the possibility of novel genetic discoveries. Here, we have shown that 

multivariate methods like GAMuT are substantially more powerful for gene mapping of 

multivariate symptom data than standard methods that typically summarize such 

symptoms into a single univariate cumulative score for analysis. Methods like GAMuT that 

jointly model individual questionnaire outcomes are robust to phenotypic heterogeneity, in 

which a genetic risk factor only affects a subcategory within the questionnaire. In standard 

cumulative approaches, including KMR and linear regression, phenotypic heterogeneity can 

dilute the association between gene and trait, making the association extremely difficult to 

detect. While we focused here on gene-based studies of common variants, we note that our 

findings are generalizable to studies of rare genetic variation as well as studies of 

methylation patterns throughout the genome.  

We applied GAMuT to the GTP dataset to test for associations between the BDI 

questionnaire and up to 19,609 genes. After controlling for important covariates, GAMuT 

found a strong association between BDI and ZHX2 (P=2.73x10-6), which previous research 

suggests might be associated with autism spectrum disorder 40. In comparison, univariate 

KMR and linear regression did not identify ZHX2 or SNPs within it to be associated with 

BDI, at even suggestive levels. This demonstrates through use of real-world data the 

capacity for multivariate methods like GAMuT to detect genotype-phenotype associations 

that would be missed using standard cumulative univariate approaches.  

GAMuT derives analytic P-values based on Davies’ exact method, thereby improving 

computational efficiency and permitting application of the approach on a genome-wide 

scale. Like the popular KMR framework for univariate analysis, our approach allows for 

inclusion of prior information, such as biological plausibility of the SNPs under study. We 
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provide R software implementing the approach on our website (see Web Resources). 

Computation run times for GAMuT are primarily dependent on sample size. Using a R script 

running single-threaded on a 1.7 GHz Intel Core i7 CPU processor, the time required for 

GAMuT to analyze 10 phenotypes for 1,000, 5,000, and 10,000 subjects is 0.52 

seconds/gene, 13.2 seconds/gene, and 68.6 seconds/gene. Thus, genome-wide 

implementation is feasible particularly when high-performance cluster services are 

available.  
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WEB RESOURCES 

Epstein Software: https://github.com/epstein-software 

OMIM: http://www.omim.org 
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Table 1: Full GAMuT Results for BDI (21 items) 
 

Gene  Chr 
Number 

of 
variants 

Genotype 
weights 

GAMuT KMR 

Linear 
regression 

(minimum p-
value of SNP in 

gene) 

ZHX2 8 
97 PGC SZ 2.73x10-6 4.42x10-4 

1.00x10-3 
76 PGC MDD 8.59x10-6 1.36x10-3 

FAM43A 3 115 PGC BPD 7.35x10-5 4.15x10-4 2.27x10-5 

NUP214 9 19 MAF-based 7.97x10-5 5.16x10-3 5.57x10-3 

E2F6 2 29 PGC MDD 9.45x10-5 4.91x10-2 3.32x10-2 

GUK1 1 6 PGC SZ 9.54x10-5 5.52x10-3 2.34x10-3 

SLC22A5 5 38 PGC SZ 9.69x10-5 3.20x10-3 3.98x10-4 

  
Genes with P < 1x10-4 identified in the GAMuT analyses are shown. GAMuT utilized a linear 
genotype kernel (possibly weighted) for all analyses. Of the genes listed, univariate KMR 
identified none using these same criteria, and standard linear regression identified no SNPs 
of suggestive significance (suggestive significance threshold for single SNPs: P < 1x10-6) 
within the gene. PGC MDD, PGC BPD, PGC SZ denote weights based on log odds ratios from 
the Psychiatric Genomics Consortium GWAS of major depressive disorder, bipolar disorder, 
and schizophrenia, respectively; MAF-based = weights based on minor allele frequencies of 
variants calculated using the Grady Trauma Project genotype data. 
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FIGURE LEGENDS 
 
Figure 1: The QQ plots applying GAMuT, KMR, and linear regression to 10,000 simulated 
null data sets assuming a sample size of 1,000 (top row) and 2,500 (bottom row). For each 
simulation, 21 ordinal questionnaires were generated. For KMR and linear regression, the 
21 questions were summed together to yield a single cumulative score.  
 
Figure 2: Power for GAMuT (red), KMR (blue), and linear regression (green) is plotted as a 
function of causal SNP. Left plot assumes the causal SNP is associated with 18 of the 21 BDI 
questions. Middle plot assumes 12 of 21 questions are associated with causal SNP. Right 
plot assumes only 6 of 21 questions are associated with the causal SNP. Sample size is 
1,000. 
 
Figure 3: QQ and Manhattan plots for GAMuT, KMR, and linear regression analyses of BDI. 
The GAMuT analysis used a linear kernel to model phenotypic similarity and genotype 
weights derived from results of the PGC GWAS for schizophrenia. The KMR analysis also 
used weights based on the PGC GWAS for schizophrenia. In the Manhattan plots, the red 
line represents the study-wise significance threshold and the blue line represents the 
suggestive significance threshold. The study-wise significance thresholds for the GAMuT 
and KMR analyses are based on a Bonferroni correction for 18,067 genes tested, while the 
study-wise significance threshold for the linear regression analysis is based on a 
Bonferroni correction for 775,255 SNPs tested. In the Manhattan plot for the GAMuT 
results, the point exceeding the study-wise significance threshold is the -log10(P-value) for 
ZHX2, a gene on chromosome 8. These analyses used a sample of N = 3,520. 
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Figure 1: QQ Plots for GAMuT, KMR, and Linear Regression 
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Figure 2: Power to Detect Genetic Effects 
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Figure 3: QQ and Manhattan Plots for GAMuT, KMR, and Linear Regression Analyses of BDI 
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