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ABSTRACT
Genetic studies of psychiatric disorders often deal with phenotypes that are not directly
measurable. Instead, researchers rely on multivariate symptom data from questionnaires
and surveys like the PTSD Symptom Scale (PSS) and Beck Depression Inventory (BDI) to
indirectly assess a latent phenotype of interest. Researchers subsequently collapse such
multivariate questionnaire data into a univariate outcome to represent a surrogate for the
latent phenotype. However, when a causal variant is only associated with a subset of
collapsed symptoms, the effect will be challenging to detect using the univariate outcome.
We describe a more powerful strategy for genetic association testing in this situation that
jointly analyzes the original multivariate symptom data collectively using a statistical
framework that compares similarity in multivariate symptom-scale data from
questionnaires to similarity in common genetic variants across a gene. We use simulated
data to demonstrate this strategy provides substantially increased power over standard
approaches that collapse questionnaire data into a single surrogate outcome. We also
illustrate our approach using GWAS data from the Grady Trauma Project and identify genes
associated with BDI not identified using standard univariate techniques. The approach is
computationally efficient, scales to genome-wide studies, and is applicable to correlated
symptom data of arbitrary dimension (thereby aligning with National Institute of Mental

Health’s Research Domain Criteria).
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INTRODUCTION

Evidence indicates that common genetic variants should explain a sizeable role of
the variation in many psychiatric disorders. For example, common variants are estimated
to explain 40% of the heritability for bipolar disorder?, 21% of the heritability of
depression?, 30-45% of the heritability of post-traumatic stress disorder (PTSD)3-6, and
50% of the heritability of autism spectrum disorder’. However, even in studies involving
thousands of subjects, identification of specific common trait-influencing polymorphisms
remains a challenge. To discover new associations, much attention has been spent on
improving genotyping and sequencing technologies to interrogate more genetic variation;
however, comparatively less attention has been afforded to thorough characterization of
the underlying psychiatric phenotypes that are considered for genetic analysis.

In genetic analyses of a psychiatric phenotype, we often envision our outcome of
interest as a single, measurable entity. In practice, we are rarely able to measure the
outcome of interest directly and instead attempt to capture the true, latent phenotype via
several connected but discrete measurements. As an example, psychiatric genetic studies
attempt to account for the heterogeneity of symptoms found in a single psychiatric
disorder by measuring the symptoms from several angles via a questionnaire or exam. For
example, in studies of post-traumatic stress disorder (PTSD), researchers often measure
the outcome using the PTSD Symptom Scale (PSS), which is a 17-item questionnaire for
assessing and diagnosing PTSD according to the DSM-IV. Each item corresponds to a PTSD
symptom and is rated from 0 to 3, with higher scores indicating greater symptom
frequency/intensity 8 °. Meanwhile, in studies of depression, many studies attempt to

measure the phenotype using multiple symptom measurements from the Beck Depression
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Inventory-II (BDI). The BDI is a 21-item questionnaire with each question developed to
correspond to DSM-1V diagnostic criteria for major depressive disorder. The answers to
each question are scored from 0 to 3, with higher scores indicating more severe depressive
symptoms 10

Data captured by the PSS, BDI or other questionnaires can actually be considered a
collection of interrelated multivariate phenotypes that, in the case of symptom scales, are
usually ordinal in nature. The view of a mental disorder as a constellation of multiple
correlated symptoms is aligned with the National Institute of Mental Health’s (NIMH)
Research Domain Criteria (RDoC), which emphasize basic functional dimensions or
mechanisms involved in psychopathology (e.g., fear, reward-seeking, attention, perception,
arousal) rather than DSM or ICD diagnostic categories 1. Nevertheless, practical use of
such multivariate symptom data in genetic analysis is complicated by the fact that standard
statistical techniques for genetic analysis are generally univariate and designed to handle a
single outcome at a time. To improve analytical utility, many questionnaires like the BDI
and PSS were designed so that the multivariate symptoms are collapsed into a univariate
phenotype for analysis. The simplest and most common collapsing method is unweighted
summation of each question’s score 1% 12-14 jnto an univariate cumulative score. The
cumulative score can then be treated either as a continuous outcome, or cutoffs can be
applied to indicate presence/absence of disease symptoms.

An important issue with applying a univariate cumulative score in genetic analysis is
that reducing multivariate information to univariate data nearly always comes at a cost.
Carefully defining a phenotype is as vital in a GWAS as reliable genotyping; any association

between gene and trait may be diluted by phenotypic heterogeneity. For example, if a gene
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were associated with a subset of the BDI questionnaire outcomes (e.g. a somatic symptom
of depression-like changes in sleep patterns) but not other subsets (e.g. affective symptoms
like mood or attitude), the magnitude of the overall effect size of the gene would be
attenuated if the two subsets were combined into a univariate outcome measure.

A few key assumptions must be met in order for a univariate cumulative score to
sufficiently summarize multivariate ordinal data. As noted by Van der Sluis et al.15-17, the
three primary assumptions that must be met are: (1) the correlation between all questions
in the questionnaire must be explained by a single (latent) phenotype; (2) the genetic effect
must be on the latent phenotype; (3) the genetic effect—acting through the latent
phenotype—must have identical effects on all of the questions in the questionnaire. For
applied psychiatric phenotypes, it is more plausible that the assumptions are violated than
maintained, a perspective that is supported by NIMH’s focus on RDoC. Depressive
symptoms identified by the BDI might come from multiple sources (e.g. major depressive
disorder, bereavement, post-traumatic stress disorder), violating the first assumption. The
causal genetic effect might directly increase somatic symptoms of depression such as
changes in appetite and sleep, but not impact mood, violating the second assumption.
Alternatively, a variant might in fact affect each trait identified by every question, but have
slightly different effect sizes on different questions. If any of these assumptions are not met,
association analysis using the cumulative score will result in a substantial loss of power 15;
17-19,

A few alternatives have been presented to model the complex multivariate data
captured within questionnaires. A popular type of approach is a data reduction method like

principal component analysis (PCA), which relies on identifying a linear combination of the
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set of questionnaire responses that maximizes response variance across questions. Once
the top few principal components are identified (i.e. those principal components that
explain most of the questionnaire variance), association testing is performed between
those top principal components and genotype 2% 21, However, PCA-based strategies that
consider only high-variance principal components were recently shown to be generally
suboptimal 22. As an alternative, Van der Sluis et al. 17 presented a multivariate gene-based
association test by extended Simes procedure (MGAS) that combines the P-values obtained
from standard, single-SNP association tests for each outcome to produce a single
multivariate gene-based P-value. However, MGAS relies on permutations to establish
significance, which make genome-wide analyses of psychiatric phenotypes cumbersome.
Alternatively, Basu et al. 23 introduced a rapid multivariate multiple linear regression
method (RMMLR), which operates on a MANOVA-based platform. However, while RMMLR
establishes significance analytically, it cannot incorporate the important ordinal outcomes
commonly measured in questionnaires and surveys.

To allow computationally-efficient and powerful genetic analysis of multivariate
symptom data, we show in this paper that we can use a kernel distance-covariance (KDC)
24-28 method called the Gene Association with Multiple Traits (GAMuT) test 29, to assess
association between high-dimensional symptom data and multiple variants (common or
rare) in a gene. The framework is designed to test whether pairwise similarity in
questionnaire responses is independent of pairwise genotypic similarity in a region of
interest. The framework allows for an arbitrary number of categorical questions within the
questionnaire as well as an arbitrary number of genotypes, thereby permitting gene-based

or pathway-based testing of genetic variants. The method allows for covariate adjustment
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and is a closed-form test that yields analytic P-values, thus scaling easily to genome-wide
analysis. GAMuT is therefore well-suited to facilitate research that is directly aligned with
RDoC’s goal of encouraging investigation of biological, cognitive-behavioral, and self-report
data using multivariate methods 11.

The remainder of this manuscript is organized as follows. We first provide a short
overview of the GAMuT method and its features. We then present simulation work to
demonstrate that the framework can be considerably more powerful than the standard
univariate test based on a cumulative score derived from a questionnaire. We then
illustrate the approach using a GWAS study of BDI scores collected as part of the Grady
Trauma Project39-32, We finish with concluding remarks and discuss potential extensions to

our approach.

MATERIALS AND METHODS

Overview of GAMuT: We provide a brief overview of the GAMuT method?? here and

relegate the technical details of the procedure to the Supplementary Methods section. For
a sample of N unrelated subjects, GAMuT examines the relationship between a set of Q
questions (each question assumed to be an ordinal categorical variable with an arbitrary
number of levels) and a set of V genetic variants within a gene or pathway of interest.
GAMuT is motivated by the idea that, for a pair of individuals, increased genetic similarity
at trait-influencing loci across a gene should lead to increased similarity of their
questionnaire outcome data. Consequently, GAMuT constructs two different similarity
matrices; one similarity matrix for the questionnaire outcomes and the other similarity
matrix for the genetic variation within a gene. Each similarity matrix has N rows and N

columns with individual elements of the matrix denoting the similarity (phenotypic or
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genetic) among different pairs of subjects. GAMuT creates a test statistic that evaluates
whether the pairwise elements in the similarity matrix of questionnaire outcomes is
independent of the pairwise elements in the genetic similarity matrix. The resulting test
follows a known asymptotic distribution, which leads to easy and rapid calculation of p-
values. GAMuT allows for questionnaire outcomes of arbitrary dimension and can further
adjust for covariates.

Simulations: We conducted simulations to verify that GAMuT properly preserves
type I error (i.e., empirical size) and to assess power of GAMuT relative to standard
association tests that treat questionnaire responses as a univariate outcome variable
resulting from summing the responses into a continuous score. We briefly summarize the
simulation design here and provide more comprehensive details in the Supplemental
Methods section. We considered sample sizes of either 1000 or 2500 independent subjects.
We performed simulations based on SNPs and LD patterns located within 2 kb up- and
down-stream from signal transducer and activator of transcription 3 (STAT3), a gene on
chromosome 17q21.31 (see Supplementary Figure 1 for the MAF and pairwise LD structure
of SNPs in STAT3). We generated simulated genotypes for all SNPs identified in HapMap
within the STAT3 gene (27 SNPs), but applied the testing approaches only to those SNPs
that would be typed on standard genotyping arrays (14 SNPs).

We simulated multivariate questionnaire data to mimic the BDI questionnaire
results obtained from Grady Trauma Project participants. The BDI consists of 21 groups of
statements that reflect various symptoms and attitudes associated with depression. Each
group includes 4 statements, which correspond to a scale of 0 to 3 in terms of intensity. The

BDI is scored by summing the ratings given to each of the 21 items, yielding a cumulative


https://doi.org/10.1101/383471
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/383471; this version posted August 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

score ranging from 0-63. To mimic BDI, we generated 21 ordinal responses using the
observed distributions and correlations of these responses within the GTP BDI dataset. We
show the correlation matrix among ordinal responses in Supplementary Figure 2 and the
distribution of observations for each of the 21 ordinal responses in Supplementary Figure
3.

We applied GAMuT to 10,000 null simulated datasets to estimate empirical size. To
investigate the performance of GAMuT under confounding and to assess whether the
approach can successfully adjust for relevant covariates in this setting, we also tested
empirical size by simulating questions under a confounding model where question
responses were independent of genotype, but both questions and genotype were
associated with a continuous covariate. For power models, we simulated data sets in which
each of the 27 SNPs was modeled as being causal with effect size of the causal SNP on each
question resulting in mean effect sizes with modest effect on the overall cumulative score.
We varied the number of questions associated with the causal SNP, considering situations
where 18/21,12/21,and 6/21 questions were actually associated with the causal SNP.

Using the simulated data, we evaluated GAMuT using either projection matrices or
linear kernels to model phenotypic similarity and using weighted linear kernels to model
genotypic similarity (with weights based on sample MAF). We compared GAMuT to two
standard approaches that use the univariate cumulative questionnaire score for inference:
standard linear regression and kernel machine regression (KMR).33 Standard linear
regression considers individual SNPs for analysis. KMR tests, on the other hand, jointly
model multiple SNPs within a gene. KMR can be thought of as a specialized version of

GAMuT that considers only 1 phenotype (the univariate cumulative sum of
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symptoms/questions) rather than the observed multivariate phenotypes. For KMR, we
modeled genotypic similarity in in a fashion analogous to GAMuT by using a weighted
linear kernel with weights based on sample MAF. Thus, comparison of GAMuT to KMR
helps highlight the benefit of considering a multivariate questionnaire phenotype over a

traditional cumulative-based score for gene-based analysis.

Analysis of the Grady Trauma Project: Data used in our analyses were collected as
part of the Grady Trauma Project (GTP), which investigates the role of genetic risk factors
for psychiatric disorders such as PTSD and depression 3234, Participants in the GTP are
served by the Grady Hospital in Atlanta, Georgia, and are predominantly urban, African
American, and of low socioeconomic status. GTP staff approach subjects in the waiting
rooms of Grady Primary Care, Obstetrics and Gynecology, and other clinics, obtaining their
written consent to participate. In addition to collecting an Oragene salivary sample for DNA
extraction, GTP staff conduct an extensive verbal interview, which includes demographic
information, a history of stressful life events, and several psychological surveys, including
the BDI.

The GTP initially genotyped participants on the [llumina HumanOmnil-Quad array
to permit GWAS analyses. Applying standard GWAS quality control filters left 4,607 African-
American subjects with good quality genotype data. Further removal of subjects who did
not report at least one past trauma, subjects with missing BDI scores, or subjects with
incomplete covariate data (age, gender, and the top ten principal components to account
for ancestry) yielded a final sample size of 3,520 subjects.

For our sample, we used the support files provided by Illumina to identify 765,580

common genetic variants (MAF > 5%) that fell within 19,609 autosomal genes. We applied

10
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GAMuT to the BDI data using a linear kernel to measure pairwise phenotypic similarity in
multivariate symptom scores. To measure genetic similarity, we used a linear genotype
kernel within GAMuT and performed unweighted analyses as well as weighted analyses,
with weights based on variants’ MAF or the variants’ estimated log odds ratios derived
from external and independent GWAS studies of MDD, bipolar disorder, and schizophrenia
that are available from the Psychiatric Genomics Consortium 35-37, For comparison, we also
applied SNP-based linear regression and gene-based univariate KMR on the cumulative BDI
score. For KMR, we applied the same genotype weighting schemes as used for the GAMuT

analyses.

RESULTS

Type-I Error Simulations: Figure 1 shows the quantile-quantile (QQ) plots based on
application of GAMuT, KMR, and linear regression to null datasets consisting of 1,000 or
2,500 subjects assayed for 21 BDI questions. For both sample sizes tested, GAMuT properly
controls for type I error, even at the extreme tails of the test. KMR and linear regression,
using the cumulative score approach, also demonstrated appropriate empirical size.
Supplementary Figure 4 shows that residualization of questionnaire data prior to GAMUT
analysis effectively controls for confounding that, unadjusted, would yield inflated results.

Power Simulations: Next we compared the power of GAMuT with univariate KMR

and linear regression analyses in a series of simulation studies. For these power
simulations, we set sample size to 1,000. Power was estimated as the proportion of P-
values < 2.5x10-¢ (reflecting a genome-wide correction for 20,000 genes) and was
evaluated based on 500 replicates of the data per model. Figure 2 shows the power results.

We plot power as a function of the causal SNP, where the causal SNPs are ordered by

11
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genomic location. The 14 genotyped SNPs (denoted by ‘x’ on the bottom of Supplementary
Figure 1) were used to calculate test statistics, but all 27 SNPs were treated as causal in
turn. Therefore, in situations where the causal SNP is not typed, we rely on correlation of
the causal SNP with observed typed SNPs in STAT3 to gain statistical power. GAMuT offers
considerably more power than the two competing univariate methods using cumulative
scores for each of the three simulation models considered. When approximately half of the
questions (12/21) are associated with the causal SNP, both KMR and linear regression
observe nearly zero power to detect the effect; by comparison, GAMuT maintains power
greater than 50% for 23 of the 27 causal SNPs. We observe a drop in power using GAMuT
when nearly all of the questions (left column Figure 2) are associated with the causal
variant compared with when a more modest number of questions are associated (middle
column Figure 2). This pattern of decreased power when the proportion of associated
phenotypes is close to 1 has been observed in other multivariate approaches, including
multivariate analysis of variance (MANOVA) 3839, Regardless, our power results
demonstrate the benefits of modeling the questionnaire data in a multivariate framework
like that employed by GAMuT rather than using a traditional cumulative score.

Application to Grady Trauma Project: We used the GTP dataset to test for

associations between the BDI questionnaire and common variants in up to 19,609 genes.
Prior to analyses, we controlled for gender, age, and ancestry in the 3,520 unrelated
subjects. We applied GAMuT using a linear kernel to measure pairwise phenotypic
similarity. We used several approaches for weighting SNPs, including MAF-based weights
as well as external weights based on log odds ratio estimates from the PGC GWAS of MDD,

bipolar disorder, and schizophrenia. For external weights, we note that not all GTP variants

12
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were present within the PGC GWAS results, and therefore the GAMuT analyses utilizing
PGC-based genotype weights necessarily included fewer SNPs and corresponding genes
than the analyses using MAF-based weights or no weights. Specifically, GAMuT analyses
using PGC MDD weights involved 16,716 genes containing 469,582 SNPs. Meanwhile,
GAMuT analyses using PGC bipolar disorder weights involved 16,761 genes containing
586,505 SNPs while analyses using PGC schizophrenia weights involved 18,067 genes
containing 661,879 SNPs. For comparison with the GAMuT results, we ran univariate KMR
using the cumulative BDI. For these KMR analyses, we employed the same genotype
weighting schemes as used for GAMuT, and tested the exact same genes as tested in the
GAMuT analyses. We also performed standard univariate linear regression of each of
775,255 common variants (SNP-level analyses) on the cumulative BDI score.

Since GAMuT and KMR analyze genes whereas linear regression analyzes SNPs, the
multiple-testing adjusted significance thresholds differ between the former tests and the
latter test. For each GAMuT and KMR analysis, we set a stringent study-wise significance
threshold corresponding to a Bonferroni correction based on the number of genes tested
(e.g., 0.05/19,609 = 2.55x10-¢). Thus, the study-wise significance threshold differed
depending on the particular genotype weights used, ranging from a threshold of
0.05/16,716 = 2.99x10-¢ for PGC MDD weights to 0.05/19,609 = 2.55x10-¢ for MAF-based
weights and no weights. For all GAMuT and KMR analyses we considered P-values less than
P<1x10-% as suggestive. For SNP-based linear regression, we tested 775,255 SNPs across
the genome. While we could apply the standard GWAS significance threshold of 5x10-8, we
note that this threshold is more conservative than a Bonferroni correction based on the

number of SNPs tested. Thus, for linear regression, we instead used a study-wise
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significance threshold of 0.05/775,255 = 6.45x10-8, and we considered P-values less than
P<1x10-% as suggestive.

We provide QQ and Manhattan plots for all GAMuT, KMR, and linear regression
analyses of BDI in Supplementary Figure 5. We also list genes identified by GAMuT to be
associated with BDI at study-wise or suggestive significance levels within Table 1. The
GAMuT analyses of BDI identified one gene exceeding study-wise significance, while
univariate KMR and linear regression of BDI did not detect any study-wise associated genes
or SNPs. GAMUT found ZHX2, on chromosome 8, to be strongly associated with BDI
(P=2.73x10-%), when using genotype weights based on estimated log odds ratios from the
PGC GWAS for schizophrenia. We present QQ and Manhattan plots for this particular
analysis in the first column of Figure 3. As noted in Table 1, ZHX2 was also found to be
highly suggestively associated with BDI when employing genotype weights based on the
PGC GWAS of MDD (P=8.59 x 10-¢). Previous research suggests a possible link between
ZHXZ2 and autism spectrum disorder 49. In comparison with the GAMuT analyses, KMR of
cumulative BDI did not identify ZHXZ as having even suggestive association (Table 1;
Figure 3, middle column; Supplementary Figure 5b), and univariate linear regression
revealed no SNPs suggestively associated with BDI within ZHXZ or anywhere else across

the genome (Table 1; Figure 3, last column; Supplementary Figure 5c).

DISCUSSION
As genetic studies of mental-health and psychiatric disorders increasingly shift to
the study of high-dimensional symptom, questionnaire, and dimension data (such as those

aligned with the NIMH RDoC), it is imperative to employ powerful statistical tests that
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maximize the possibility of novel genetic discoveries. Here, we have shown that
multivariate methods like GAMuT are substantially more powerful for gene mapping of
multivariate symptom data than standard methods that typically summarize such
symptoms into a single univariate cumulative score for analysis. Methods like GAMuT that
jointly model individual questionnaire outcomes are robust to phenotypic heterogeneity, in
which a genetic risk factor only affects a subcategory within the questionnaire. In standard
cumulative approaches, including KMR and linear regression, phenotypic heterogeneity can
dilute the association between gene and trait, making the association extremely difficult to
detect. While we focused here on gene-based studies of common variants, we note that our
findings are generalizable to studies of rare genetic variation as well as studies of
methylation patterns throughout the genome.

We applied GAMuT to the GTP dataset to test for associations between the BDI
questionnaire and up to 19,609 genes. After controlling for important covariates, GAMuT
found a strong association between BDI and ZHX2 (P=2.73x10-¢), which previous research
suggests might be associated with autism spectrum disorder 49. In comparison, univariate
KMR and linear regression did not identify ZHX2 or SNPs within it to be associated with
BDI, at even suggestive levels. This demonstrates through use of real-world data the
capacity for multivariate methods like GAMuT to detect genotype-phenotype associations
that would be missed using standard cumulative univariate approaches.

GAMuT derives analytic P-values based on Davies’ exact method, thereby improving
computational efficiency and permitting application of the approach on a genome-wide
scale. Like the popular KMR framework for univariate analysis, our approach allows for

inclusion of prior information, such as biological plausibility of the SNPs under study. We
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provide R software implementing the approach on our website (see Web Resources).
Computation run times for GAMuT are primarily dependent on sample size. Using a R script
running single-threaded on a 1.7 GHz Intel Core i7 CPU processor, the time required for
GAMuT to analyze 10 phenotypes for 1,000, 5,000, and 10,000 subjects is 0.52
seconds/gene, 13.2 seconds/gene, and 68.6 seconds/gene. Thus, genome-wide
implementation is feasible particularly when high-performance cluster services are

available.
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WEB RESOURCES

Epstein Software: https://github.com/epstein-software

OMIM: http://www.omim.org
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Table 1: Full GAMuT Results for BDI (21 items)

Linear
Number Genotvpe regression
Gene Chr of wei li,tr:; GAMuT KMR (minimum p-
variants g value of SNP in
gene)
97 PGC SZ 2.73x10-6 4.42x104
ZHX2 8 1.00x10-3
76 PGC MDD 8.59x10-¢ 1.36x10-3
FAM43A | 3 115 PGC BPD 7.35x10-5 4.15x10+4 2.27x10-5
NUP214 | 9 19 MAF-based 7.97x10-5 5.16x10-3 5.57x10-3
E2F6 2 29 PGC MDD 9.45x10-5 4.91x10-2 3.32x10-2
GUK1 1 6 PGC SZ 9.54x10-5 5.52x10-3 2.34x10-3
SLC22A5| 5 38 PGC SZ 9.69x10-5 3.20x10-3 3.98x104

Genes with P < 1x10-* identified in the GAMuT analyses are shown. GAMuT utilized a linear
genotype kernel (possibly weighted) for all analyses. Of the genes listed, univariate KMR
identified none using these same criteria, and standard linear regression identified no SNPs
of suggestive significance (suggestive significance threshold for single SNPs: P < 1x10-¢)
within the gene. PGC MDD, PGC BPD, PGC SZ denote weights based on log odds ratios from

the Psychiatric Genomics Consortium GWAS of major depressive disorder, bipolar disorder,
and schizophrenia, respectively; MAF-based = weights based on minor allele frequencies of
variants calculated using the Grady Trauma Project genotype data.
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FIGURE LEGENDS

Figure 1: The QQ plots applying GAMuT, KMR, and linear regression to 10,000 simulated
null data sets assuming a sample size of 1,000 (top row) and 2,500 (bottom row). For each
simulation, 21 ordinal questionnaires were generated. For KMR and linear regression, the
21 questions were summed together to yield a single cumulative score.

Figure 2: Power for GAMuT (red), KMR (blue), and linear regression (green) is plotted as a
function of causal SNP. Left plot assumes the causal SNP is associated with 18 of the 21 BDI
questions. Middle plot assumes 12 of 21 questions are associated with causal SNP. Right
plot assumes only 6 of 21 questions are associated with the causal SNP. Sample size is
1,000.

Figure 3: QQ and Manhattan plots for GAMuT, KMR, and linear regression analyses of BDI.
The GAMuT analysis used a linear kernel to model phenotypic similarity and genotype
weights derived from results of the PGC GWAS for schizophrenia. The KMR analysis also
used weights based on the PGC GWAS for schizophrenia. In the Manhattan plots, the red
line represents the study-wise significance threshold and the blue line represents the
suggestive significance threshold. The study-wise significance thresholds for the GAMuT
and KMR analyses are based on a Bonferroni correction for 18,067 genes tested, while the
study-wise significance threshold for the linear regression analysis is based on a
Bonferroni correction for 775,255 SNPs tested. In the Manhattan plot for the GAMuT
results, the point exceeding the study-wise significance threshold is the -log1o(P-value) for
ZHXZ2, a gene on chromosome 8. These analyses used a sample of N = 3,520.
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Figure 1: QQ Plots for GAMuT, KMR, and Linear Regression
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Figure 2: Power to Detect Genetic Effects
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Figure 3: QQ and Manhattan Plots for GAMuT, KMR, and Linear Regression Analyses of BDI
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