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Abstract

In natural conditions the human visual system can estimate the 3D shape of specular
objects even from a single image. Although previous studies suggested that the
orientation field plays a key role for 3D shape perception from specular reflections, its
computational plausibility and possible mechanisms have not been investigated. In this
study, to complement the orientation field information, we first add prior knowledge
that objects are illuminated from above and utilize the vertical polarity of the intensity
gradient. Then we construct an algorithm that incorporates these two image cues to
estimate 3D shapes from a single specular image. We evaluated the algorithm with
glossy and mirrored surfaces and found that 3D shapes can be recovered with a high
correlation coefficient of around 0.8 with true surface shapes. Moreover, under a specific
condition, the algorithm’s errors resembled those made by human observers. These
findings show that the combination of the orientation field and the vertical polarity of
the intensity gradient is computationally sufficient and probably reproduces essential
representations used in human shape perception from specular reflections.
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Introduction

Specular reflections, which are seen in many daily objects, provide information about
their material and surface finish [1-3], enhance the reality of animation and computer
graphics, support 3D shape perception [4—6], and increase the 3D appearance of images
[7]. A specular reflection component in a single image can be regarded as a marking that
is pasted on an object’s surface. However, the human visual system solves inverse optics,
and we intuitively recognize that an image pattern is generated by a specular reflection
[8]. The regularity of the image patterns of specular reflections is closely related to 3D
shape, and the human visual system perceives and evaluates specular reflection
through coupled computation with 3D shape perception [9-11].

A previous psychophysical study showed that humans could recover 3D shapes from a
single mirrored surface image under unknown natural illumination [12]. Furthermore,
they hypothesized that the human visual system uses the orientation field for 3D shape
perception from specular reflection and texture [12—14]. The orientation field is a
collection of dominant orientations at every image location (Fig 1A), and this
information is represented in the primary visual cortex (V1), which contains cells tuned
to specific orientations [15]. In support of their hypothesis, they showed that 3D shape
perception is modulated by psychophysical adaptation to specific orientation fields [13].
However, how 3D shapes are reconstructed from the orientation field, and whether it is
adequate for 3D shape recovery remains unknown. Tappen [16] proposed a shape
recovery algorithm and recovered the 3D shape of simple mirrored surfaces with
curvature constraints by an orientation field from a single image under an unknown
natural illumination. This suggests a possible mechanism of 3D shape perception from
specular reflections. However, since the method is limited to convex shapes, it only
explains a small part of human shape perception, which can recover more general
shapes including both convex and concave regions [12].
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Fig 1. Orientation field of mirrored surface patches. Orientation fields are depicted on
right side of images. Hue represents image orientation to which V1-cell-like oriented
filter maximally responds at each location. Saturation represents degree of clarity of the
image orientation (i.e., image anisotropy). (A) Surface second derivatives’ orientations of
surface patch are explained in red on the mirrored surface. kmax and kmin represent large
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and small surface second derivative. 0s represents surface orientation. Omax and Omin
represent signs of kmax and kmin. (B), (C), (D) Surface patches have identical magnitude
and orientation of surface second derivatives as A, but second derivative signs are
different.

Other algorithms have also been proposed to recover 3D shapes from specular images.
They employed either a known calibrated scene [17-19] or multiple images such as
specular flows [20], motions of reflection correspondences [21], or line tracking [22].
Although they are useful in some situations, they cannot recover 3D shapes from a
single specular image in an unknown scene. Li et al. recovered shapes using reflection
correspondences extracted by SIFT [23] just using a single image under an unknown
1llumination environment like our proposed algorithm. However, their method is limited
because it requires the known surface normal values of several surface points to
constrain their results.

In this study, we recover general shapes containing both convex and concave surface
regions using the orientation field. However, an innate problem prevents the recovery of
general shapes from it. Here, we briefly explain the information of 3D shapes contained
in the orientation field and its limitation as well as a strategy to overcome that
limitation.

Fig 1 shows the relationship between the orientation field and the second order
derivatives of the surface depth, which can be decomposed into two orthogonal
orientations (left side of Fig 1A). This decomposed second derivatives are closely related
to the principal curvatures, but these are not strictly the same (see Methods). The right
side of Fig 1A represents the orientation field. In specular reflection, the illumination
environment is reflected and appears in the image. At that time, the illumination
environment is compressed toward a strong surface second derivative orientation and
elongated along a weak surface second derivative orientation [12, 24]. As a result, image
orientation 0 is generated along small surface second derivative orientation 0s.
Moreover, the image anisotropy (the degree of the image orientation’s clarity, see
Methods) also approximates the surface anisotropy (the ratio of the large and small
surface second derivatives, see Methods) [12, 24]. The proposed algorithm uses this
relationship for 3D surface recovery. Here, the problem is that the shape is ambiguous
whether concave or convex, as shown in Fig 1B, 1C, and 1D. The image orientations are
identical as Fig 1A because the surface orientations are also the same. However, the two
signs of the surface second derivatives are different. The orientation field cannot
distinguish among these four types.

We overcome the problem of concave/convex ambiguity by imposing a prior that
illumination is from above [25, 26] (hereafter called the “above illumination prior”). In
utilizing this prior knowledge, we actively use both a diffuse and a specular reflection
component. Since most objects that give specular reflection also give diffuse reflection, a
natural extension is to combine the features of both reflection components. Note that
this prior also works for mirrored surfaces (see the Results section) and the human
performance to resolve the concave/convex ambiguity from a mirrored surface increased
when the illumination environment was brighter in the upper hemisphere [27].

We propose using the vertical polarity of the intensity gradient (hereafter vertical
polarity) as an image cue (Fig 2; see also Supplementary Notel in S1 Text). As with the
orientation field, vertical polarity can be obtained by a V1-like filter [28] and its relation
with 3D shape perception was reported [29]. Assuming the above illumination and
Lambert reflectance, vertical polarity corresponds to the surface second derivative sign
of vertical orientation (see Method). This prior is used only as an initial value for the
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optimization for 3D shape recovery. Because physically possible shape patterns given
the orientation field are restricted [30, 31], it is expected that the remaining ambiguity
(i.e., the surface second derivative sign of the horizontal orientation) is implicitly
resolved and erroneous initial values are corrected through optimization.
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Fig 2. Relationship between vertical polarity and surface second derivative sign. Shaded
images of identical surface patches to Fig. 1 are shown on left. Vertical polarity of each
shaded image, obtained by extracting a sign of oriented filter response of vertical
direction, is depicted on right. White represents positive and black represents negative.

mi

Our proposed algorithm, which can recover general shapes including both convex and
concave regions under an unknown natural illumination, is based on the information
used by the human visual system. Therefore, it makes a critical contribution to
understanding the mechanism of 3D shape perception from specular reflections.

Results

Flowchart of proposed algorithm

Fig 3 shows the flowchart of the proposed algorithm that recovers the 3D surface
depth from a single specular image. The main procedure is as follows. First, the
orientation field is extracted from an image; second, the cost function is formulated
based on the orientation field; finally, the 3D shape is recovered by minimizing the cost
function. Additionally, we extracted the vertical polarity from the image to resolve the
concave/convex ambiguity. The initial values of the surface second derivative signs, Omax
and omin, are calculated based on the vertical polarity and used to minimize the cost
function. The boundary conditions are also used, although they are omitted from this
flowchart. The boundary conditions to resolve the ambiguity about the translation and
affine transformation are incorporated in the cost function. The curvature sign of the 2D
contour is calculated to obtain the signs of the 3D surface second derivative near the
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boundary. The details are described in Methods. The proposed algorithm outputs not
only the recovered 3D surface depth but also the estimated surface second derivative
s1gns, Omax and Omin, due to minimizing the cost function.
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Fig 3. Flowchart of proposed shape recovery algorithm. Orientation field and vertical
polarity are extracted from an image. Cost function is formulated based on orientation
field. Initial values of signs of surface second derivative, Omax and omin, are obtained by
dividing vertical polarity. Estimated surface depth, Omax, and omin are obtained by
minimizing cost function.

Shape recovery of glossy surfaces

The twelve glossy surfaces used to validate our proposed algorithm are shown in Fig 4.
We generated them by computer graphics assuming both specular and diffuse
reflections of the object’s surface (see Methods for details). The recovered shapes from
these glossy surfaces are shown in Fig 5. The recovered depths are represented in
grayscale; nearer surfaces are lighter and more distant surfaces are darker. Additionally,
15 contour lines are superimposed. The estimated surface second derivative signs, Omax
and Omin, are shown in S6 and S7 Figs. The true surface shapes and the true signs of the
surface second derivative are shown in S1-S3 Figs.
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Fig 4. Glossy surfaces used to validate our proposed 3D shape recovery algorithm.
These surfaces were generated by computer graphics assuming both specular and
diffuse reflection on object’s surface.
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Fig 5. Recovered 3D shapes from glossy surfaces. Recovered surface shapes are
represented by depth map and contour lines.

We evaluated the image cues (i.e., orientation field and vertical polarity) and the
estimation results as follows. The orientation field error was quantified by the mean
absolute errors throughout the object region between the image and surface
orientations and between the image and surface anisotropies. We quantified the error of
the vertical polarity by the correct ratio between the initial and true values of omax and
Omin, Where the initial values exist. The shape recovery performance was quantified with
two measures: global depth correlation rz and local interior depth correlation ri. The
global depth correlation is simply the correlation coefficient of the recovered and true
depths throughout the object region. The local interior depth correlation is the averaged
value of the correlation coefficients of the recovered and true depths calculated in the
local regions except near the boundary. The local interior depth correction is more
sensitive to the agreement of the concavity and convexity inside the object region than
the global depth correlation. Note that both depth correlations are calculated after the
affine transformation so that the slant of the true surface depth becomes zero, because
there is ambiguity about the recovered shape’s affine transformation [32]. No values
were obtained of the local interior depth correlation of objects #9 and #11 because most
of the object region is near the boundary. The details of the measures are described in
Methods. The estimation performance of the surface second derivative signs, omax and
Omin, Wwas quantified by the correct ratio with true values throughout the object region.

The average values of the mean absolute error of the orientation and anisotropy for 12
objects were 11.3° and 0.15. The average values of the correct ratio of the initial values
of Omax and omin for 12 objects were 0.79 and 0.70. The initial values and the correct
ratios of all objects are shown in S4 and S5 Figs.

The shape recovery performances of 12 objects #1, #2,. . . #12) were as follows: global
depth correlation rg = 0.98, 0.91, 0.87, 0.82, 0.89, 0.88, 0.90, 0.95, 0.89, 0.65, 0.65, 0.80
(average rg = 0.85); local interior depth correlation ri = 0.97, 0.71, 0.67, 0.66, 0.91, 0.86,
0.84, 0.95, -, 0.45, -, 0.60 (average ri = 0.76). As an impression of appearance, the shape
recovery seems successful if both the global and local interior depth correlations exceed
0.7. The recovered shapes of objects #1, #2, #5, #6, #7, #8, and #9 resemble the 3D
surface impressions received from the corresponding images in Fig 4. The global depth
correlations of #10 and #11 and the local interior depth correlations of #3, #4, #10, and
#12 were below 0.7. The recovered shapes of #3, #4, #11, and #12 were roughly good but
lacked accuracy. The shape of object #10 was not well recovered. The following are the
estimation performances of the surface second derivative signs: the correct ratios of the
estimated omax were 0.90, 0.90, 0.80, 0.81, 0.79, 0.86, 0.87, 0.93, 0.99, 0.86, 0.98, 0.70
(average 0.86); the correct ratios of the estimated omin were 0.77, 0.74, 0.63, 0.68, 0.64,
0.68, 0.69, 0.82, 0.82, 0.75, 0.78, 0.60 (average 0.72). The correct ratios of the estimated
Omax and omin exceeded those of the initial values even though the initial values exist
only in half of the object region.

Shape recovery of mirrored surfaces

The proposed algorithm is applicable to mirrored surfaces without shading although
we assumed that shading exists to obtain good initial values of the surface second
derivative signs by calculating the vertical polarity. Fig 6 shows the mirrored surfaces
used to validate our proposed algorithm.
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Fig 6. Mirrored surfaces used to validate our proposed 3D shape recovery algorithm.
These surfaces were generated by computer graphics assuming only specular reflection
on object’s surface.

The average values of the correct ratio of the initial values of Omax and Omin for 12
objects were 0.64 and 0.62. These correct ratios were significantly lower than those of
the glossy surfaces, but still higher than a chance level of 0.5. The initial values and the
correct ratios of all the objects are shown in S8 and S9 Figs. The average values of the
mean absolute error of the orientation and the anisotropy for 12 objects were 10.9° and
0.13. These orientation field errors were slightly lower than those of the glossy surfaces,
suggesting that the shading component slightly disturbed the relationship between the
orientation field and the surface second derivative based on specular reflections.

The recovered shapes from the mirrored surfaces are shown in Fig 7. The following
are the shape recovery performances: global depth correlation rg = 0.95, 0.93, 0.78, 0.81,
0.89, 0.89, 0.81, 0.93, 0.91, 0.66, 0.66, 0.86 (average rg = 0.84); local interior depth
correlation ri = 0.96, 0.74, 0.60, 0.67, 0.90, 0.85, 0.67, 0.91, -, 0.55, -, 0.65 (average rii =
0.75). Although the appearances of the recovered shapes from the mirrored surfaces
look noisier than those from the glossy surfaces (e.g., #1 and #8), the averaged global
and local interior depth correlations differ by only 0.01 and 0.01, indicating that the
proposed shape recovery algorithm is applicable to both mirrored and glossy surfaces.
The following are the estimation performances of the surface second derivative signs.
The correct ratios of the estimated omax were 0.74, 0.85, 0.74, 0.72, 0.74, 0.79, 0.80, 0.84,
0.97, 0.77, 0.99, 0.68 (average 0.80); the correct ratios of the estimated omin were 0.67,
0.73, 0.64, 0.68, 0.63, 0.67, 0.68, 0.79, 0.83, 0.70, 0.79, 0.61 (average 0.70). The noisier
appearance of the recovered shapes of the mirrored surfaces is related to the lower
correct ratio of the estimated omax than that of the glossy surfaces. The estimated
surface second derivative signs, Omax and Omin, are shown in S10 and S11 Figs.
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Fig 7. Recovered 3D shapes from mirrored surfaces. Recovered surface shapes are
represented by depth map and contour lines.

Estimation accuracy in different conditions

We tested the proposed algorithm in four different conditions. The first and second
conditions are the shape recoveries from the glossy and mirrored surfaces shown in Figs
4 and 6 (denoted as glossy and mirrored conditions). In the third condition, the shapes
were recovered from the glossy surfaces shown in Fig 4, but the above illumination prior
was not used (denoted as the noAIP condition). And in the fourth, the shapes were
recovered from the shape orientation fields that were obtained from the true 3D shapes
(denoted as the shapeOF condition). Note that in the shapeOF condition, the same
initial values of Omax and omin were used as the glossy condition. Tables 1 and 2
summarize the errors of the image cues and the estimation performances of the four
conditions. Additionally, we tested the algorithm in three more conditions to investigate
the effect of the contour constraint, the illumination environment, and the image
resolution. These results are shown in Supplementary Note 2 in S1 Text.

Table 1. Errors of image cues.

Mean absolute error Correct ratio
Orientation Anisotropy Initial omax Initial omin
Glossy 11.3° 0.15 0.79 0.70
Mirrored 10.9° 0.13 0.64 0.62
noAIP (11.8°) (0.15) 0.85 0.67
shapeOF 0° 0 (0.79) (0.70)

Orientation field errors and correct ratios of initial values of Omax and omin, which are
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averaged values of 12 objects. Values of orientation field errors of noAIP condition and
correct ratios of initial values of shapeOF condition are parenthesized because these are
identical as glossy condition.

Table 2. Estimation performances.

Shape recovery accuracy Correct ratio
Iy Tii Estimated Omax | Estimated Omin
Glossy 0.85 0.76 0.86 0.72
Mirrored 0.84 0.75 0.80 0.70
noAIP 0.77 0.52 0.80 0.67
shapeOF 0.87 0.88 0.92 0.80

Global and local interior depth correlations of recovered shapes and correct ratios of
estimated signs of surface second derivative. These are averaged values of 12 objects.

In the noAIP condition, the shapes were recovered from the glossy surfaces without
the above illumination prior to check its necessity. In this condition, the initial values of
Omax and omin were all set to +1 based on the convex prior possessed by humans [33, 34].
The average values of the correct ratio of the initial values of omax and omin for 12 objects
were 0.85 and 0.67. First, the shapes were recovered with the same algorithm that was
used with the other conditions. As a result, the estimated omax and omin were almost the
same as the initial values; 98% and 88% of the estimated Omax and omin were +1. This
means that the estimation failed. The average values of the global and local interior
depth correlations for 12 objects were rg = 0.74 and ri = 0.48. These estimation
performances are not summarized in Table 2, because the estimation completely failed.
Next we altered the temperature parameter of the mean field algorithm (see
Supplementary Note 3 in S1 Text for details) from Bo=10 to Bo=1 to extend the search
range, since the initial values were not reliable in this condition. As a result, we
obtained better shape recovery results. The average values of the global and local
interior depth correlation for 12 objects were rg = 0.77 and ri = 0.52. The average values
of the correct ratio of the estimated Omax and omin for 12 objects were 0.80 and 0.67. The
estimation performances of objects #1, #8, and #9 were high despite the noAIP condition.
However, most of the recovered shapes look noisy, probably because of the alternation of
the temperature parameter, and the estimation performance was lowest in the four
conditions. The recovered shapes and the estimated signs of the surface second
derivative of the noAIP condition are shown in S12-S14 Figs.

In the shapeOF condition, the shapes were recovered from the surface orientations
that were obtained from the true 3D shapes instead of the image orientations to
investigate the effect of the orientation field errors on the shape recovery errors. In this
condition, the vertical polarity of the glossy surfaces was used to resolve the
concave/convex ambiguity. The average values of the global and local interior depth
correlations for 12 objects were rg = 0.87 and ri; = 0.88. The average values of the correct
ratio of the estimated Omax and omin for 12 objects were 0.92 and 0.80. The estimation
performances of the shapeOF condition were very high, except for objects #9 and #10,
and significantly higher than the other conditions. The recovered shapes and the
estimated signs of the surface second derivative of the shapeOF condition are shown in
S15-S17 Figs.

Consistency with human shape perception
Finally, we conducted a psychophysical experiment to investigate the linkage between
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the shape recovery algorithm and human shape perception. We prepared a glossy
surface image that evokes 3D shape misperception (Fig 8A) by using another
illumination environment that is inconsistent with the above illumination prior
(Galileo's Tomb of the Devebec dataset) and carefully modifying the 3D object’s shape.
Fig 8B is an image of the same object rendered under identical illumination
environments as Figs 4 and 6 (Eucalyptus Grove of the Devebec dataset). Fig 8C
represents the depth map of the true 3D shapes. The red cross indicates where the
surface looks concave from Fig 8A, although the surface looks convex from Fig 8B and
the true surface is convex. Fig 8D and 8E indicate the recovered shapes from the images
of Fig 8A and 8B. In accordance with the appearance, the recovered shape from Fig 8A is
concave and that from Fig 8B is convex around the red cross mark. The estimation
performances (rg, rii, correct ratio of estimated omax and correct ratio of estimated omin) of
Fig 8D and 8E were (0.91, 0.76, 0.73, 0.60) and (0.98, 0.99, 0.90, 0.84).

A B

Fig 8. Images used for psychophysical experiment. (A) Glossy surface rendered in indoor
environment. Red crosses indicate position where misperception likely occurs. (B)
Glossy surface of identical object as A rendered in outdoor environment. (C) Depth map
of true 3D shapes of 4 and B. (D) Recovered shape from image in A. (E) Recovered shape
from image in B.

In psychophysical experiments, five subjects were first asked whether the local 3D
surface around the red crosses in Fig 8A and 8B looks convex or concave. After that,
they were asked whether the true 3D shape (Fig 8C), the recovered 3D shape (Fig 8D, or
8E) was more similar to the perceived 3D shape from the image. Four of five subjects
answered that the local surface of Fig 8A looked concave and only one thought that it
looked convex. All five subjects answered that the local surface of Fig 8B looked convex.
Four of five subjects answered that the recovered shape (Fig 8D) was closer to the
perceived shape of the image shown in Fig 8A, and one thought that the true shape (Fig
8C) was closer. Four of five subjects answered that the recovered shape (Fig 8E) was
closer to the perceived shape from the image shown in Fig 8B and one answered that
the true shape was closer. To summarize, most subjects (4 of 5) perceived the incorrect
shape from Fig 8A and the recovered shape (Fig 8D) was consistent with the

11


https://doi.org/10.1101/383174
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/383174; this version posted August 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

misperceived shape.

Discussion

We developed an algorithm that estimates 3D shapes from a single specular image to
investigate a possible mechanism of human 3D shape perception from specular
reflections. This algorithm mainly relies on the orientation field suggested by a previous
psychophysical study [12]. However, since the orientation field cannot resolve the local
concave/convex ambiguity, the 3D shape recovery from it alone was difficult (see the
noAIP condition, Table 2). To resolve the concave/convex ambiguity, we added the prior
knowledge that objects are illuminated from above. The vertical polarity of the intensity
gradient is an image cue to utilize this prior knowledge. We evaluated the developed
algorithm with the glossy and mirrored surfaces of 12 complex shapes. The depth
correlations between the recovered and the true shapes were as high as around 0.8. To
further confirm the necessity of the vertical polarity information, we also conducted a
psychophysical experiment with an image that caused human misperception due to the
inconsistency with the above illumination prior. The human-misperceived and
recovered shapes were consistent in most subjects. These findings show that the vertical
polarity of the intensity gradient as well as the orientation field are related to 3D shape
perception and the combination of both enables 3D shape recovery from a single
specular image.

Shape recovery of mirrored surfaces

The shape recovery performance of the mirrored condition was almost as high as the
glossy condition (Table 2), although the relationship between the vertical polarity and
the surface second derivative sign was only proved in the diffuse reflection component
(see Methods). The present result indicates that vertical polarity of the specular
component was also useful for the initial second derivative signs for the following
reason. The diffuse reflectance component in Fig 2 shows a relationship where the
luminance is high in the upper side and low in the lower side when the surface is convex
with respect to the vertical orientation (Fig 2A and 2B) and vice versa (Fig 2C and 2D).
The same relationship holds for the mirrored surfaces of Fig 1. The luminance tends to
be higher in the upper side than the lower side when the surface is convex (Fig 1A and
1B) and vice versa (Fig 1C and 1D). Thus, the vertical polarity of the mirrored surface at
low frequencies is related to the surface second derivative sign of the vertical
orientation, although the high-frequency component is not related to it. When the
vertical polarity is calculated, a relatively low-frequency image component is extracted
and further smoothed to remove the high-frequency component of the specular
reflection (see Methods). Therefore, it provides meaningful information about second
derivative signs even from mirrored surfaces, although the correct ratio of the initial
sign values of the mirrored condition is actually worse than that of the glossy condition
(Table 1).

Representation of surface curvatures

In this study, the sign and magnitude of the surface second derivatives are separately
described. Similar representation can be seen in some psychophysical experiments [35,
36], in which subjects classified 3D shapes based on curvature signs. Furthermore, the
neural representation of surface curvatures was studied in electrophysiological
experiments. Srivastava et al. showed that the neurons in the inferior temporal cortex
(the area for object recognition) of macaques are mainly sensitive to the curvature sign,
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but the neurons in the anterior intraparietal area (the area for motor planning) are
sensitive to the curvature magnitude as well as the sign [37]. This might suggest that
the curvature sign’s representation is important for object recognition, and its
magnitude is also required for motor planning. These and other psychophysical and
electrophysiological studies [38, 39] provide hints to develop more efficient and
human-like shape recovery algorithms.

The estimation of a small surface second derivative sign, Omin, was more difficult than
that of a large surface second derivative, omax, in all four conditions (see right half of
Table 2). A similar phenomenon can be seen in human shape perception. When subjects
classified local shapes based on the curvature signs, saddles were often misclassified as
ridges or ruts (convex or concave cylinders) [35, 36], suggesting that humans often
neglect the small surface curvature of saddle shapes. Since the small surface curvature
1s less visible in the image, its estimation is intrinsically difficult. In the proposed
algorithm, the small second derivative sign is forcibly classified as +1 or -1, but it might
be better to treat it ambiguously like the quantum superposition when its classification
1s difficult.

Note here that the shape recovery from specular reflections has much in common with
that from line drawings because lines or specular orientations appear at the high
curvature in both cases [40, 41]. In a line drawing study, edge-labeling algorithms
classified the orientation edges as either convex or concave [30, 31]. This corresponds to
the determination of the large surface second derivative sign in our study. It would be
interesting to find and utilize the similarities of the shape recovery algorithms from
specular reflection and line drawing [42].

Origin of shape recovery errors

The orientation field error is a major error factor of the proposed algorithm, because
the shape recovery performance was very high in the shapeOF condition (Table 2 and
S15 Fig). In this condition, the surface second derivative signs were accurately
estimated even though the initial values from the vertical polarity were somewhat
incorrect and absent in half of the region. This result indicates that the proposed shape
recovery algorithm works well at least under such ideal conditions. Therefore, the error
due to the proposed algorithm’s methodological imperfection is relatively small. It also
indicates that the orientation field is satisfactory for the 3D shape recovery of such
curved surfaces examined in this study with the help of the above illumination prior.
The difference of the shape recovery performances between the glossy and shapeOF
conditions reflects errors that originate from the image orientation field. Compared
with the orientation field error, the effects of the initial second derivative sign errors are
limited because they are expected to be corrected through optimization; orientation field
error inevitably affects the resultant shape because it is directly incorporated in the cost
function. Actually, the shape recovery performance of the mirrored condition was
comparable to the glossy condition even though the initial second derivative sign errors
of the mirrored condition were significantly larger than those of the glossy condition. Of
course, too many initial errors cannot be corrected as suggested by the poor shape
recovery performance of the noAIP condition. The orientation field errors probably
affect the error corrections of the initial values through optimization.

Interpretation of human shape misperception
The glossy surface Fig 8A, which was used for our psychophysical experiment, looks
concave around the red cross mark, but Fig 8B looks convex. The illumination
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environment caused this difference. The Eucalyptus Grove environment for Fig 8B is
outdoors and consistent with the above illumination prior of humans. However, the
Galileo's Tomb environment for Fig 8A is indoors and the ceiling is dark that is against
the above illumination prior. The dark ceiling caused a negative value of the vertical
polarity around the red cross mark despite its convex 3D shape, which presumably
caused the concave interpretation. In this example, both the convex and concave
interpretations are consistent with the surrounding information. Therefore, humans
may interpret images as convex or concave depending on the illumination environment.

Limitations and future work

The following are the limitations of our shape recovery algorithm. First, since it is
based on the relationship between the orientation field and the surface second
derivative, large error occurs when this relationship is invalid. For example, if the
illumination environment is biased to a specific orientation (e.g., striped illumination),
it biases the image orientation [24]. The orientation error becomes large where the
surface anisotropy is small [24]. For example, if the true shape is a plane (.e., the
surface anisotropy is zero), the image orientation reflects not the surface second
derivative but only the orientation of the illumination environment and causes shape
recovery errors. Second, images under an unnatural illumination environment against
the above illumination prior could not be properly recovered as it is difficult for humans
[27, 43]. Third, the proposed algorithm cannot estimate the depth scale as well as the
slant due to the ambiguity about the affine transformation of the recovered shape [32].
Humans also have difficulty estimating the slant [6, 44] and the depth scale [6, 32] from
a single image without prior knowledge of the object’s shape. Therefore, we evaluated
the recovered shapes by depth correlations after the affine transformation so that the
slant of the true surface depth becomes zero. We did not evaluate the normal map
because it depends on the depth scale. Fourth, because the proposed algorithm assumes
that the surface depth is second order differentiable, it cannot properly treat bends,
cusps, and self-occlusion inside the object region (occluding edges or limbs [31]) and
generates smoother shapes than actual shapes. This property may worsen the shape
recovery performance of objects #10, #3, and #4. Note that the limitations listed above
(except for the fourth) are closely related to the limitations of human shape perception.

Future work has several promising directions. First, further psychophysical
experiments are required to understand human shape perception from specular
reflections in detail and will help improve the shape recovery algorithm to better
simulate the human shape perception. It would be interesting to use the image-based
shape manipulation method based on the orientation field [45] to compare the recovered
and human-perceived shapes. Second, the proposed shape recovery algorithm will be
useful for computer vision methods. By integrating it with a study that estimates
material (BRDF) from a single image of a known shape [46], it might become possible to
estimate an unknown shape’s material. By providing more accurate recovered depth
information, we expect to enhance the reality of the image-based material editing that
is based on shape information [47]. For further improvement of the shape recovery
performance, the proposed shape from the specularity algorithm could be integrated
with the shape from shading algorithms [48, 49], where it would be helpful to use color
information to separate diffuse and specular reflection components [50]. Third, it would
be interesting to study whether 3D shapes can be recovered from translucent images
with specularities. A previous study [51] argued that an object looks translucent when
images are manipulated so that the diffuse reflection component is contrast-reversed,
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but the specular reflection component is left intact. This result suggests that we must
alter how the specular and diffuse reflection components are combined for shape
recovery from translucent images, such as reversing the sign of the vertical polarity in
the case of translucent images compared with opaque images.

Methods

As a precondition to 3D shape recovery, we assume that the image region is known
where the object exists. It may be obtained by an edge detection algorithm or decided by
humans. We denote the object region as Q, the number of pixels in Q@ as Ng, the
boundary region, which is the region between the boundary of & and one pixel inside it,
as 0Q, and the number of pixels in 62 as Nag. The resolution of the 3D shape recovery
was 256 X 256 pixels. We set a Cartesian coordinate on the image plane, where the x
and y axes represent the horizontal and vertical axes of an image plane and the z axis
represents the front direction. We represent the depth of the 3D object surface as z(x,y).
The following notations are used: scalars are represented in normal-type letters as x;
vectors are represented in lower-case boldface letters as x; matrices are represented in
upper-case boldface letters as X.

Images and extraction of image cues

We used the images of 12 different 3D shapes to evaluate the proposed algorithm
(Figs 4 and 6). The images had 1024 x 1024 pixel resolution and were colored, although
they were downsampled to 256 X 256 pixels before the 3D shape recovery and became
achromatic because the proposed algorithm does not use color information. These
images were rendered by Radiance software (http://radsite.lbl.gov/radiance/). The
surface reflection property was modeled by the Ward-Duer model [52, 53]. We set diffuse
reflectance pq, specular reflectance ps, and the spread of specular reflection a as pa= 0.1,
ps=0.15, a = 0 for the glossy surfaces (Fig 4) and pa= 0, ps= 0.25, a = 0 for the mirrored
surfaces (Fig 6). For the natural illumination environment, we used a high dynamic
range image from the Devebec dataset (http://ict.debevec.org/~debevec/; Eucalyptus
Grove). For the quadratic patch images in Figs 1 and 2, we set pa= 0, ps= 0.25, a = 0 for
the mirrored surfaces in Fig 1, and pa= 0.4, ps= 0 for the matte images in Fig 2.

The 3D shapes of objects #1-6 were randomly generated with spherical harmonics. To
incrementally increase the complexity of the 3D shapes, the maximum degree of the
spherical harmonics was limited to 5 for objects #1-2, 7 for objects #3-4, and 10 for
objects #5-6. The weights of the spherical harmonics were determined by a random
number and normalized so that the power of each degree is inversely proportional to the
degree (pink noise). Then the maximum amplitude of the spherical harmonics was
normalized to 0.5. The object’s radius of each angle is given by the sum of 1 and the
value of the spherical harmonics. The 3D shapes of objects #7-12 were human-made and
used in our previous electrophysiological studies of gloss perception [54, 55].

We extracted the orientation field as follows. The image orientation 0(x,y) is the angle
that maximizes the magnitude of response p of the oriented filter (first-derivative
operator) as o(x, y): argmax p?(&'(x, y)) Image anisotropy a(x,y) is defined by the

p

ratio of the minimum and maximum magnitudes of the oriented filter response with

respect to its angle [12] as a(x, y)=l—\/p§]in (X, y)/ pﬁ]ax(x, y) . a=0 means that the

local image is isotropic, and a=1 means that it only consists of one directional
component. The steerable pyramid (56, 57] (matlabPyrTools,
https://github.com/LabForComputationalVision/matlabPyrTools) was used to extract
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the image orientation in accordance with previous studies [12, 13, 24]. Responses were
obtained by steering the filter through 120 equal orientation steps between 0 and 180°.
The finest orientation responses were extracted in accordance with a previous study
[12]. Then the amplitudes, which are the squared responses, were downsampled to 256
x 256 pixels and convolved by a 3 X 3 constant filter for noise reduction. Then the image
orientation and the image anisotropy were obtained based on the above equations.

We obtained the vertical polarity of intensity gradient pv(x,y) by extracting the sign of
the oriented filter response of the vertical direction (© = 0° as

p\,(X, y)=39ﬂ(pgzoo (X, Y)) The steerable pyramid was used to extract the vertical

polarity. The responses of the pyramid level of 256 x 256 resolution were extracted (a
relatively low-frequency component compared to the original image resolution). The
response values near the boundary are unreliable because they are affected by the
1image outside of the object region. Therefore, we overwrote the response values within
five pixels from the boundary to zeros and smoothed them by a Gaussian filter whose
standard deviation is four pixels to reduce the noise and the high-frequency components
of the specular reflection.

We derived the signs of the apparent curvature of the image contour as follows. First,
we drew a circle centered at a boundary point with a radius of 128 pixels (1/8 of the
image size); second, we determined that the curvature sign value at that boundary point
is +1 or -1 when the object region’s area within the circle is smaller or larger than the
area of the outside object region within the circle; third, for noise reduction, we
smoothed the curvature sign values by convolving a constant circular filter of a radius of
16 pixels (1/64 of the image size) and downsampled it to 256 X 256 pixels; then we
extracted the signs. The resultant curvature signs of the image contour are shown in
S18 Fig.

Curvature formulation

We described the surface shape of objects by Hessian matrix H(z) of surface depth
z(x,y). Because the Hessian matrix is symmetric, H(z) is diagonalized with rotation
matrix R as

|t oxey | Knin 0 )5/
)| %, 2w o) ®

oxoy oy’

where kmax and kmin are the eigenvalues of the larger and smaller magnitudes. 6s, which
indicates the angle of the small surface second derivative, is called the surface
orientation. There is a minus at the beginning of the right-hand side of Eq 1 so that the
surface second derivatives become positive in the case of convex shapes (e.g., sphere). In
this study, we described the surface curvature by Hessian matrix based on the image
coordinate system instead of the standard curvature that is defined on the object
surface’s intrinsic coordinate system. This difference was previously scrutinized [24].
The reason why we adopted the former is that orientation field depends on the Hessian
matrix, not on the standard curvatures. For example, in the case of a sphere, the
standard curvature is the same at every point on its surface. In contrast, the second
derivatives are large near the boundary and small at the center, and correspondingly,
the image orientation of the specular reflectance is clear near the boundary and not
clear at the center (see Fig 16 of [24]).

16


https://doi.org/10.1101/383174
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/383174; this version posted August 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Next we introduce other variables and transform the equation. First, surface
anisotropy as is defined as o, =1— 1/k§1in / k;ax [12]. as=0 denotes that the magnitude

of the two surface second derivatives is the same (e.g., a convex sphere, a concave
sphere, or a saddle), and as=1 means that the small surface second derivative is zero
(e.g., a convex cylinder or a concave cylinder). Second, variables are introduced so that
the surface second derivative’s sign and magnitude are separately described. The sign of
the large surface second derivative is represented as Omax € {+1, -1}. +1 and -1
correspond to convex and concave shapes. The magnitude of the large surface second
derivative is represented as ka=|kmax|. The sign of the small surface second derivative
is represented as omin € 1+1, -1}. Using these variables, the surface second derivatives
are described:

k =ko 2)

max a~ max»

kmin - (1—055 )kao-min- 3)

Relationship between vertical polarity and surface second derivative signs
With the prior knowledge that the object is illuminated from above, we can derive the
relationship among the vertical polarity, pv, and the surface second derivative signs. In
the case of the Lambert reflectance, the surface luminance is proportional to the inner
product of the lighting direction and the surface’s normal direction. Here we assume
that the illumination map is stronger as it gets closer to just above (x,y,z)=(0,1,0). As a
result, the surface luminance becomes stronger as the surface slant (-0z/0y) is increased.
By taking a derivative of this relationship with respect to y and taking the sign, the

following equation is obtained:
0°z
P, =sgn _6y2 . (4)

Here we described it as nearly equal instead of equal because the two assumptions of
the Lambert reflectance and the just above illumination do not strictly hold in real
situations. For example, for images taken outdoors, the angle of the sun (dominant
illumination) changes based on time.

We transform Eq 4 into a more available form. The following equation is derived from
2

02
Egs 1, 2, and 3 as ——— =Kk (O'
oy? "

cos’ @, + o, (1— e, )sin? 495). Then we used the

max

approximation of orientation 0 = 8s and anisotropy a = as'
p, ~50n (6, €052 0+ 0, (1—cx)sin? 6). ()

2 s 2
We divided object region Q into two regions: C0S” 6> (1— a )Sm 0 holds in Qa, but not
in Qp. Then the following relationship is obtained:
o X, X,yeQ
DV(X, y)z{ max( y) ( y a). (6)
o-min (X1 y) (X1 y € Qb)
The approximation of Eq 6 was evaluated in our experiment and summarized in the

right half of Table 1. All of the results of the objects in the glossy and mirror conditions
are shown in S4-S5 and S8-S9 Figs.

Formulation of cost function
17
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Cost function E consists of two terms: the second derivative constraint given by

orientation field C and boundary condition B:
E=C+B. (7)

We first explain second derivative constraint C and then boundary condition B, which
consists of the following three terms: B = Bo + B1 + Be.

The second derivative constraint is based on the relationship between the orientation
field and the surface second derivatives where the image orientation approximates
surface orientation 0 = 6s and the image anisotropy approximates surface anisotropy a =

as [12, 24]. These relationships are described with error terms as 05 =0+00 and

a,=a+ d0. . These errors were evaluated in our experiment and summarized in the

left half of Table 1. For more information, a previous study [24] assessed the orientation
error, which depends on the surface anisotropy and the difference between the surface
orientation and the illumination map’s orientation. By substituting these equations into
Eq 1, we obtain

l-a)o,, 0
R(-0)H(2)R(6)+ ka[( 0) min ) =k, (O(5ar)+0(50)). ®
O-max
To simplify this equation, we introduce the coordinate axes (u, v) by rotating the original
axes (x, y) by image orientation 6(x,y). Note that the axes (u, v) depend on each position
based on the image orientation in that position. Then this equation is described as

0%z 0%z

A 2 + ka (1_ a)amin

au s - ouov =k, (0(5a)+0(50)), ©)
EYEY o2 KaOma

which indicates that the surface strongly bends toward the v direction (the orthogonal
direction of the image orientation) by second derivative magnitude ka with sign omax and
the surface weakly bends toward the u direction by second derivative magnitude ka(1-a)
with sign omin. Second derivative constraint C is based on Eq 9 where the left-hand side
1s small. The cost is the sum of the squared Frobenius norm of the left-hand side of Eq 9
throughout the object region:

1 027 * (%2 * (o2 )
C== — +k. (1- |+ —+k +2 . (0
2 Z (8U2 a( a)aman (8\/2 ao-maxj (8U6VJ

X,yeQ

Since this cost function is a quadratic function with respect to z and ka or with respect to
Omax and Omin, it is relatively easy to optimize.

Here, because the right-hand side of Eq 9 is proportional to ka, it would be more
appropriate to use a cost function that is the sum of the amplitude of the left-hand side
of Eq 9 after multiplied by 1/ka. We denote this cost function as C”:

2 2 2 2 2 2
c=1 > ia—jJr(l—o:)cfmin + ia—eramax I P I )
2 2l K, au K, ov K, ouov

a

However, cost function C’ is more difficult to optimize. Therefore, we use the first cost
function C to obtain the solution, and then with the solution as an initial value, we
obtain the improved solution with the second cost function C’. The summarized formula
and the minimization of the second cost function are described in Supplementary Note 4
in S1 Text.
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Boundary conditions Bo and B1 were introduced to resolve the solution’s ambiguity. Bo
resolves the translation ambiguity along the z axis by making the mean depth value
zero at the boundary region:

2
1( 1
B=2|— Y.z|. (12)
2 Nag X,yeoQ
Another ambiguity exists about affine transformations [32]. B1 is introduced so that the
solution is not slanted in both the x and y directions:
2 2
1 1 1( 1
Blz_ N Z(X_XCM)Z TSl Z(y_yCM)Z ) (13)

2 NaQ X,yeoQ 2 N(’}Q X,yeoQ
where Xgy and Yoy are the average values of x and y in boundary region 0Q. We
summarize these boundary conditions as B, + B, zlzTBz, where z i1s the column

vector of size No X 1 that consists of z(x,y) in object region Q and B is the coefficient
matrix of size Ng X Na.

Next the constraint from the contour was introduced. Assuming that the 3D surface
near the boundary is smooth and differentiable, the second derivative toward the
normal direction of the contour at the boundary is minus infinity. Therefore, the surface
orientation is parallel to the contour and omax = +1. Moreover, a previous study [58]
proved that the sign of the 3D curvature parallel to the contour (=omin) equals the sign of
the apparent curvature of the 2D contour. The apparent curvature sign of the image
contour, which is calculated and utilized as the initial values of omin near the boundary,
1s also incorporated in the cost function:

BC:—(hT 6 +h! Gmin)’ (14)

max ™™ max min
where hmin is a column vector that consists of the contour’s curvature sign (S18 Fig),
hmax is a column vector that consists of +1 (near the boundary, where the value exists in
S18 Fig) and 0 (otherwise) and Omax and Gmin are column vectors that consist of Omax(x,y)
and Omin(x,y).
The cost function is summarized as

E=C+B= %ZTAZ +ZT (DVVTKaGmax + DuuTHKaGmin)
, (15)
Jr%kaT (I + H2)<a —(hT G ax T hzqinsmin)

max ™ max

where k. and a are column vectors that consist of ka(x,y) and a(x,y); Ka and H are
diagonal matrices with diagonal elements ka and (1-a); D is a matrix that represents the
second order differential operator with respect to subscript variables;

T T T . . : . .
A=D, D,+D, D,+2D, D,,+B; I is an identity matrix of size No X No.

Optimal 3D shape z minimizes the cost function. Therefore, the derivative of the cost
function with respect to z should be zero. The solution is obtained as

1 T T
z=-A"D,,"K,6,., + D, HK, 0, ). (16)
Here, matrix A is invertible since A is positive definite, which can be easily shown. First,

the eigenvalue of A is non-negative from the definition (Eqs 7, 10, 12, and 13). Second,
there is no zero eigenvalue because of the boundary condition (Eqs 12 and 13). By

max
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substituting the solution Eq 16 into Eq 15, the cost function becomes a function of Omax,
Omin, and ka:

1

E= _E(DVVT Kacmax + DuuT HKaGmin )T Ail(vaT Kaomax + DuuT HKaGmiﬂ)

17

1
+ E kaT (I +H 2 )<a - (h-rrnaxcmax + h-rrnin(smin)
The procedure for minimizing the cost function is described in Supplementary Note 3 in
S1 Text.

Evaluation of recovered depths

We quantify the shape recovery performance by taking the correlation between the
recovered depth and the true depth. Note that here we apply the affine transformation
so that the slant of the true surface depth becomes zero before taking the depth
correlations. The proposed algorithm generates a shape whose slant is zero because of
the boundary condition (Eq 13). Therefore, we compared the recovered shape with the
true depth after the affine transformation. We summarized the depth correlations
without the affine transformation in Supplementary Note 5 in S1 Text.

We used two depth correlations: global and local interior. The global depth correlation
1s simply the correlation coefficient of the recovered and true depths throughout the
object region. However, the global depth correlation tends to become high as long as the
depth around the boundary is small, because the true depth is generally very small
around the boundary and modest inside the object region. In other words, it is sensitive
to the depth around the boundary and insensitive to the details of the shapes inside the
object region. Therefore, we proposed a local interior depth correlation, which was
calculated as follows. First, we drew a grid that divided the vertical and horizontal axes
of the image region into eight (at 32 pixel intervals). Second, we drew a circle centered
at an intersection of the grid with a radius of 32 pixels. Third, we measured a depth
correlation in the intersection of the circle and the object area after removing the area
near the boundary (within 24 pixels from the boundary). We did not measure a depth
correlation if the intersection area was smaller than half of the circle’s area. Fourth, we
averaged the depth correlation values. As a result, the local interior depth correlation is
not affected by the shapes near the boundary and is sensitive to the agreement of the
concavity and the convexity inside the object region. Note that we did not evaluate the
local interior depth correlation for objects #9 and #11. No depth correlation values were
obtained with the above procedure because most of the object region is near the
boundary, and the global depth correlation seems sufficient as a measure because there
1s no fine shape structure inside these object regions.

Psychophysical experiment

Five unpaid volunteers participated in the experiment (three males and two females;
age range, 33-58), all of whom had normal or corrected-to-normal vision and were naive
to its purpose. The experiment was approved by the Ethics Committee for Human
Research of National Institute for Physiological Sciences. The experiment was
conducted in accordance with the principles of the Helsinki Declaration. Written
informed consent was obtained from all participants.

Stimuli were presented on a 58.1 x 38.6 cm flat screen OLED monitor at a distance of
60 cm in a darkened room. Each image subtended at about a 10° visual angle. The
stimulus images are shown in Fig 8, although the red crosses in it were not displayed
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during the experiment. The images of Fig 8A and 8B were rendered by Radiance
software with the surface reflection property pa= 0.1, ps= 0.15, a = 0 under illumination
environments of the Devebec dataset (Galileo's Tomb for Fig 8A and Eucalyptus Grove
for Fig 8B)

Subjects performed two tasks. Both were two-alternative forced choice tasks with no
time limits. First, we presented either the image of Fig 8A (Galileo illumination
condition) or Fig 8B (Eucalyptus illumination condition). Unfilled, 2.7-cm diameter gray
circle centered at the red cross position was superimposed in the first task. Subjects
were asked whether the local surface indicated by the circle was convex or concave.
Next, we presented the same image and the recovered depth map by the proposed
algorithm and the true depth map. The image was located in the center, and the two
depth maps were located at the image’s left and right. The left and right arrangements
of the recovered and the true depth maps were random. Subjects were asked whether
the recovered 3D shape or the true 3D shape more closely resembled the perceived 3D
shape from the image. They sequentially performed two tasks for two conditions: the
Galileo illumination condition and the Eucalyptus illumination condition. The order of
the conditions was counter-balanced among the subjects (two subjects performed the
Galileo illumination condition first and three performed the Eucalyptus illumination
condition first). Before the experiment, the subjects performed a practice trial with
sphere images rendered under another illumination environment (Campus at Sunset of
the Devebec dataset) and were instructed about the depth map’s meaning.
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