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Abstract 
In natural conditions the human visual system can estimate the 3D shape of specular 

objects even from a single image. Although previous studies suggested that the 

orientation field plays a key role for 3D shape perception from specular reflections, its 

computational plausibility and possible mechanisms have not been investigated. In this 

study, to complement the orientation field information, we first add prior knowledge 

that objects are illuminated from above and utilize the vertical polarity of the intensity 

gradient. Then we construct an algorithm that incorporates these two image cues to 

estimate 3D shapes from a single specular image. We evaluated the algorithm with 

glossy and mirrored surfaces and found that 3D shapes can be recovered with a high 

correlation coefficient of around 0.8 with true surface shapes. Moreover, under a specific 

condition, the algorithm’s errors resembled those made by human observers. These 

findings show that the combination of the orientation field and the vertical polarity of 

the intensity gradient is computationally sufficient and probably reproduces essential 

representations used in human shape perception from specular reflections. 
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Introduction 
Specular reflections, which are seen in many daily objects, provide information about 

their material and surface finish [1–3], enhance the reality of animation and computer 

graphics, support 3D shape perception [4–6], and increase the 3D appearance of images 

[7]. A specular reflection component in a single image can be regarded as a marking that 

is pasted on an object’s surface. However, the human visual system solves inverse optics, 

and we intuitively recognize that an image pattern is generated by a specular reflection 

[8]. The regularity of the image patterns of specular reflections is closely related to 3D 

shape, and the human visual system perceives and evaluates specular reflection 

through coupled computation with 3D shape perception [9–11]. 

A previous psychophysical study showed that humans could recover 3D shapes from a 

single mirrored surface image under unknown natural illumination [12]. Furthermore, 

they hypothesized that the human visual system uses the orientation field for 3D shape 

perception from specular reflection and texture [12–14]. The orientation field is a 

collection of dominant orientations at every image location (Fig 1A), and this 

information is represented in the primary visual cortex (V1), which contains cells tuned 

to specific orientations [15]. In support of their hypothesis, they showed that 3D shape 

perception is modulated by psychophysical adaptation to specific orientation fields [13]. 

However, how 3D shapes are reconstructed from the orientation field, and whether it is 

adequate for 3D shape recovery remains unknown. Tappen [16] proposed a shape 

recovery algorithm and recovered the 3D shape of simple mirrored surfaces with 

curvature constraints by an orientation field from a single image under an unknown 

natural illumination. This suggests a possible mechanism of 3D shape perception from 

specular reflections. However, since the method is limited to convex shapes, it only 

explains a small part of human shape perception, which can recover more general 

shapes including both convex and concave regions [12]. 

 

 
 

Fig 1. Orientation field of mirrored surface patches. Orientation fields are depicted on 

right side of images. Hue represents image orientation to which V1-cell-like oriented 

filter maximally responds at each location. Saturation represents degree of clarity of the 

image orientation (i.e., image anisotropy). (A) Surface second derivatives’ orientations of 

surface patch are explained in red on the mirrored surface. kmax and kmin represent large 
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and small surface second derivative. θs represents surface orientation. σmax and σmin 

represent signs of kmax and kmin. (B), (C), (D) Surface patches have identical magnitude 

and orientation of surface second derivatives as A, but second derivative signs are 

different. 

 

Other algorithms have also been proposed to recover 3D shapes from specular images. 

They employed either a known calibrated scene [17–19] or multiple images such as 

specular flows [20], motions of reflection correspondences [21], or line tracking [22]. 

Although they are useful in some situations, they cannot recover 3D shapes from a 

single specular image in an unknown scene. Li et al. recovered shapes using reflection 

correspondences extracted by SIFT [23] just using a single image under an unknown 

illumination environment like our proposed algorithm. However, their method is limited 

because it requires the known surface normal values of several surface points to 

constrain their results. 

In this study, we recover general shapes containing both convex and concave surface 

regions using the orientation field. However, an innate problem prevents the recovery of 

general shapes from it. Here, we briefly explain the information of 3D shapes contained 

in the orientation field and its limitation as well as a strategy to overcome that 

limitation. 

Fig 1 shows the relationship between the orientation field and the second order 

derivatives of the surface depth, which can be decomposed into two orthogonal 

orientations (left side of Fig 1A). This decomposed second derivatives are closely related 

to the principal curvatures, but these are not strictly the same (see Methods). The right 

side of Fig 1A represents the orientation field. In specular reflection, the illumination 

environment is reflected and appears in the image. At that time, the illumination 

environment is compressed toward a strong surface second derivative orientation and 

elongated along a weak surface second derivative orientation [12, 24]. As a result, image 

orientation θ is generated along small surface second derivative orientation θs. 

Moreover, the image anisotropy (the degree of the image orientation’s clarity, see 

Methods) also approximates the surface anisotropy (the ratio of the large and small 

surface second derivatives, see Methods) [12, 24]. The proposed algorithm uses this 

relationship for 3D surface recovery. Here, the problem is that the shape is ambiguous 

whether concave or convex, as shown in Fig 1B, 1C, and 1D. The image orientations are 

identical as Fig 1A because the surface orientations are also the same. However, the two 

signs of the surface second derivatives are different. The orientation field cannot 

distinguish among these four types. 

We overcome the problem of concave/convex ambiguity by imposing a prior that 

illumination is from above [25, 26] (hereafter called the “above illumination prior”). In 

utilizing this prior knowledge, we actively use both a diffuse and a specular reflection 

component. Since most objects that give specular reflection also give diffuse reflection, a 

natural extension is to combine the features of both reflection components. Note that 

this prior also works for mirrored surfaces (see the Results section) and the human 

performance to resolve the concave/convex ambiguity from a mirrored surface increased 

when the illumination environment was brighter in the upper hemisphere [27]. 

We propose using the vertical polarity of the intensity gradient (hereafter vertical 

polarity) as an image cue (Fig 2; see also Supplementary Note1 in S1 Text). As with the 

orientation field, vertical polarity can be obtained by a V1-like filter [28] and its relation 

with 3D shape perception was reported [29]. Assuming the above illumination and 

Lambert reflectance, vertical polarity corresponds to the surface second derivative sign 

of vertical orientation (see Method). This prior is used only as an initial value for the 
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optimization for 3D shape recovery. Because physically possible shape patterns given 

the orientation field are restricted [30, 31], it is expected that the remaining ambiguity 

(i.e., the surface second derivative sign of the horizontal orientation) is implicitly 

resolved and erroneous initial values are corrected through optimization. 

 

 
 

Fig 2. Relationship between vertical polarity and surface second derivative sign. Shaded 

images of identical surface patches to Fig. 1 are shown on left. Vertical polarity of each 

shaded image, obtained by extracting a sign of oriented filter response of vertical 

direction, is depicted on right. White represents positive and black represents negative. 

 

Our proposed algorithm, which can recover general shapes including both convex and 

concave regions under an unknown natural illumination, is based on the information 

used by the human visual system. Therefore, it makes a critical contribution to 

understanding the mechanism of 3D shape perception from specular reflections. 

 

Results 
 

Flowchart of proposed algorithm 
Fig 3 shows the flowchart of the proposed algorithm that recovers the 3D surface 

depth from a single specular image. The main procedure is as follows. First, the 

orientation field is extracted from an image; second, the cost function is formulated 

based on the orientation field; finally, the 3D shape is recovered by minimizing the cost 

function. Additionally, we extracted the vertical polarity from the image to resolve the 

concave/convex ambiguity. The initial values of the surface second derivative signs, σmax 

and σmin, are calculated based on the vertical polarity and used to minimize the cost 

function. The boundary conditions are also used, although they are omitted from this 

flowchart. The boundary conditions to resolve the ambiguity about the translation and 

affine transformation are incorporated in the cost function. The curvature sign of the 2D 

contour is calculated to obtain the signs of the 3D surface second derivative near the 
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boundary. The details are described in Methods. The proposed algorithm outputs not 

only the recovered 3D surface depth but also the estimated surface second derivative 

signs, σmax and σmin, due to minimizing the cost function. 

 

 
 

Fig 3. Flowchart of proposed shape recovery algorithm. Orientation field and vertical 

polarity are extracted from an image. Cost function is formulated based on orientation 

field. Initial values of signs of surface second derivative, σmax and σmin, are obtained by 

dividing vertical polarity. Estimated surface depth, σmax, and σmin are obtained by 

minimizing cost function. 

 

Shape recovery of glossy surfaces 
The twelve glossy surfaces used to validate our proposed algorithm are shown in Fig 4. 

We generated them by computer graphics assuming both specular and diffuse 

reflections of the object’s surface (see Methods for details). The recovered shapes from 

these glossy surfaces are shown in Fig 5. The recovered depths are represented in 

grayscale; nearer surfaces are lighter and more distant surfaces are darker. Additionally, 

15 contour lines are superimposed. The estimated surface second derivative signs, σmax 

and σmin, are shown in S6 and S7 Figs. The true surface shapes and the true signs of the 

surface second derivative are shown in S1-S3 Figs. 
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Fig 4. Glossy surfaces used to validate our proposed 3D shape recovery algorithm. 

These surfaces were generated by computer graphics assuming both specular and 

diffuse reflection on object’s surface. 
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Fig 5. Recovered 3D shapes from glossy surfaces. Recovered surface shapes are 

represented by depth map and contour lines. 

 

We evaluated the image cues (i.e., orientation field and vertical polarity) and the 

estimation results as follows. The orientation field error was quantified by the mean 

absolute errors throughout the object region between the image and surface 

orientations and between the image and surface anisotropies. We quantified the error of 

the vertical polarity by the correct ratio between the initial and true values of σmax and 

σmin, where the initial values exist. The shape recovery performance was quantified with 

two measures: global depth correlation rg and local interior depth correlation rli. The 

global depth correlation is simply the correlation coefficient of the recovered and true 

depths throughout the object region. The local interior depth correlation is the averaged 

value of the correlation coefficients of the recovered and true depths calculated in the 

local regions except near the boundary. The local interior depth correction is more 

sensitive to the agreement of the concavity and convexity inside the object region than 

the global depth correlation. Note that both depth correlations are calculated after the 

affine transformation so that the slant of the true surface depth becomes zero, because 

there is ambiguity about the recovered shape’s affine transformation [32]. No values 

were obtained of the local interior depth correlation of objects #9 and #11 because most 

of the object region is near the boundary. The details of the measures are described in 

Methods. The estimation performance of the surface second derivative signs, σmax and 

σmin, was quantified by the correct ratio with true values throughout the object region. 

The average values of the mean absolute error of the orientation and anisotropy for 12 

objects were 11.3° and 0.15. The average values of the correct ratio of the initial values 

of σmax and σmin for 12 objects were 0.79 and 0.70. The initial values and the correct 

ratios of all objects are shown in S4 and S5 Figs. 

The shape recovery performances of 12 objects (#1, #2,. . . #12) were as follows: global 

depth correlation rg = 0.98, 0.91, 0.87, 0.82, 0.89, 0.88, 0.90, 0.95, 0.89, 0.65, 0.65, 0.80 

(average rg = 0.85); local interior depth correlation rli = 0.97, 0.71, 0.67, 0.66, 0.91, 0.86, 

0.84, 0.95, -, 0.45, -, 0.60 (average rli = 0.76). As an impression of appearance, the shape 

recovery seems successful if both the global and local interior depth correlations exceed 

0.7. The recovered shapes of objects #1, #2, #5, #6, #7, #8, and #9 resemble the 3D 

surface impressions received from the corresponding images in Fig 4. The global depth 

correlations of #10 and #11 and the local interior depth correlations of #3, #4, #10, and 

#12 were below 0.7. The recovered shapes of #3, #4, #11, and #12 were roughly good but 

lacked accuracy. The shape of object #10 was not well recovered. The following are the 

estimation performances of the surface second derivative signs: the correct ratios of the 

estimated σmax were 0.90, 0.90, 0.80, 0.81, 0.79, 0.86, 0.87, 0.93, 0.99, 0.86, 0.98, 0.70 

(average 0.86); the correct ratios of the estimated σmin were 0.77, 0.74, 0.63, 0.68, 0.64, 

0.68, 0.69, 0.82, 0.82, 0.75, 0.78, 0.60 (average 0.72). The correct ratios of the estimated 

σmax and σmin exceeded those of the initial values even though the initial values exist 

only in half of the object region. 

 

Shape recovery of mirrored surfaces 
The proposed algorithm is applicable to mirrored surfaces without shading although 

we assumed that shading exists to obtain good initial values of the surface second 

derivative signs by calculating the vertical polarity. Fig 6 shows the mirrored surfaces 

used to validate our proposed algorithm. 
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Fig 6. Mirrored surfaces used to validate our proposed 3D shape recovery algorithm. 

These surfaces were generated by computer graphics assuming only specular reflection 

on object’s surface. 

 

The average values of the correct ratio of the initial values of σmax and σmin for 12 

objects were 0.64 and 0.62. These correct ratios were significantly lower than those of 

the glossy surfaces, but still higher than a chance level of 0.5. The initial values and the 

correct ratios of all the objects are shown in S8 and S9 Figs. The average values of the 

mean absolute error of the orientation and the anisotropy for 12 objects were 10.9° and 

0.13. These orientation field errors were slightly lower than those of the glossy surfaces, 

suggesting that the shading component slightly disturbed the relationship between the 

orientation field and the surface second derivative based on specular reflections. 

The recovered shapes from the mirrored surfaces are shown in Fig 7. The following 

are the shape recovery performances: global depth correlation rg = 0.95, 0.93, 0.78, 0.81, 

0.89, 0.89, 0.81, 0.93, 0.91, 0.66, 0.66, 0.86 (average rg = 0.84); local interior depth 

correlation rli = 0.96, 0.74, 0.60, 0.67, 0.90, 0.85, 0.67, 0.91, -, 0.55, -, 0.65 (average rli = 

0.75). Although the appearances of the recovered shapes from the mirrored surfaces 

look noisier than those from the glossy surfaces (e.g., #1 and #8), the averaged global 

and local interior depth correlations differ by only 0.01 and 0.01, indicating that the 

proposed shape recovery algorithm is applicable to both mirrored and glossy surfaces. 

The following are the estimation performances of the surface second derivative signs. 

The correct ratios of the estimated σmax were 0.74, 0.85, 0.74, 0.72, 0.74, 0.79, 0.80, 0.84, 

0.97, 0.77, 0.99, 0.68 (average 0.80); the correct ratios of the estimated σmin were 0.67, 

0.73, 0.64, 0.68, 0.63, 0.67, 0.68, 0.79, 0.83, 0.70, 0.79, 0.61 (average 0.70). The noisier 

appearance of the recovered shapes of the mirrored surfaces is related to the lower 

correct ratio of the estimated σmax than that of the glossy surfaces. The estimated 

surface second derivative signs, σmax and σmin, are shown in S10 and S11 Figs. 
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Fig 7. Recovered 3D shapes from mirrored surfaces. Recovered surface shapes are 

represented by depth map and contour lines. 

 

Estimation accuracy in different conditions 

We tested the proposed algorithm in four different conditions. The first and second 

conditions are the shape recoveries from the glossy and mirrored surfaces shown in Figs 

4 and 6 (denoted as glossy and mirrored conditions). In the third condition, the shapes 

were recovered from the glossy surfaces shown in Fig 4, but the above illumination prior 

was not used (denoted as the noAIP condition). And in the fourth, the shapes were 

recovered from the shape orientation fields that were obtained from the true 3D shapes 

(denoted as the shapeOF condition). Note that in the shapeOF condition, the same 

initial values of σmax and σmin were used as the glossy condition. Tables 1 and 2 

summarize the errors of the image cues and the estimation performances of the four 

conditions. Additionally, we tested the algorithm in three more conditions to investigate 

the effect of the contour constraint, the illumination environment, and the image 

resolution. These results are shown in Supplementary Note 2 in S1 Text. 

 

Table 1. Errors of image cues. 

 Mean absolute error Correct ratio 

 Orientation Anisotropy Initial σmax Initial σmin 

Glossy 11.3° 0.15 0.79 0.70 

Mirrored 10.9° 0.13 0.64 0.62 

noAIP (11.3°) (0.15) 0.85 0.67 

shapeOF 0° 0 (0.79) (0.70) 

Orientation field errors and correct ratios of initial values of σmax and σmin, which are 
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averaged values of 12 objects. Values of orientation field errors of noAIP condition and 

correct ratios of initial values of shapeOF condition are parenthesized because these are 

identical as glossy condition. 

 

Table 2. Estimation performances. 

 Shape recovery accuracy Correct ratio 

 rg rli Estimated σmax Estimated σmin 

Glossy 0.85 0.76 0.86 0.72 

Mirrored 0.84 0.75 0.80 0.70 

noAIP 0.77 0.52 0.80 0.67 

shapeOF 0.87 0.88 0.92 0.80 

Global and local interior depth correlations of recovered shapes and correct ratios of 

estimated signs of surface second derivative. These are averaged values of 12 objects. 

 

In the noAIP condition, the shapes were recovered from the glossy surfaces without 

the above illumination prior to check its necessity. In this condition, the initial values of 

σmax and σmin were all set to +1 based on the convex prior possessed by humans [33, 34]. 

The average values of the correct ratio of the initial values of σmax and σmin for 12 objects 

were 0.85 and 0.67. First, the shapes were recovered with the same algorithm that was 

used with the other conditions. As a result, the estimated σmax and σmin were almost the 

same as the initial values; 98% and 88% of the estimated σmax and σmin were +1. This 

means that the estimation failed. The average values of the global and local interior 

depth correlations for 12 objects were rg = 0.74 and rli = 0.48. These estimation 

performances are not summarized in Table 2, because the estimation completely failed. 

Next we altered the temperature parameter of the mean field algorithm (see 

Supplementary Note 3 in S1 Text for details) from β0=10 to β0=1 to extend the search 

range, since the initial values were not reliable in this condition. As a result, we 

obtained better shape recovery results. The average values of the global and local 

interior depth correlation for 12 objects were rg = 0.77 and rli = 0.52. The average values 

of the correct ratio of the estimated σmax and σmin for 12 objects were 0.80 and 0.67. The 

estimation performances of objects #1, #8, and #9 were high despite the noAIP condition. 

However, most of the recovered shapes look noisy, probably because of the alternation of 

the temperature parameter, and the estimation performance was lowest in the four 

conditions. The recovered shapes and the estimated signs of the surface second 

derivative of the noAIP condition are shown in S12-S14 Figs. 

In the shapeOF condition, the shapes were recovered from the surface orientations 

that were obtained from the true 3D shapes instead of the image orientations to 

investigate the effect of the orientation field errors on the shape recovery errors. In this 

condition, the vertical polarity of the glossy surfaces was used to resolve the 

concave/convex ambiguity. The average values of the global and local interior depth 

correlations for 12 objects were rg = 0.87 and rli = 0.88. The average values of the correct 

ratio of the estimated σmax and σmin for 12 objects were 0.92 and 0.80. The estimation 

performances of the shapeOF condition were very high, except for objects #9 and #10, 

and significantly higher than the other conditions. The recovered shapes and the 

estimated signs of the surface second derivative of the shapeOF condition are shown in 

S15-S17 Figs. 

 

Consistency with human shape perception 
Finally, we conducted a psychophysical experiment to investigate the linkage between 
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the shape recovery algorithm and human shape perception. We prepared a glossy 

surface image that evokes 3D shape misperception (Fig 8A) by using another 

illumination environment that is inconsistent with the above illumination prior 

(Galileo's Tomb of the Devebec dataset) and carefully modifying the 3D object’s shape. 

Fig 8B is an image of the same object rendered under identical illumination 

environments as Figs 4 and 6 (Eucalyptus Grove of the Devebec dataset). Fig 8C 

represents the depth map of the true 3D shapes. The red cross indicates where the 

surface looks concave from Fig 8A, although the surface looks convex from Fig 8B and 

the true surface is convex. Fig 8D and 8E indicate the recovered shapes from the images 

of Fig 8A and 8B. In accordance with the appearance, the recovered shape from Fig 8A is 

concave and that from Fig 8B is convex around the red cross mark. The estimation 

performances (rg, rli, correct ratio of estimated σmax and correct ratio of estimated σmin) of 

Fig 8D and 8E were (0.91, 0.76, 0.73, 0.60) and (0.98, 0.99, 0.90, 0.84). 

 

 
 

Fig 8. Images used for psychophysical experiment. (A) Glossy surface rendered in indoor 

environment. Red crosses indicate position where misperception likely occurs. (B) 

Glossy surface of identical object as A rendered in outdoor environment. (C) Depth map 

of true 3D shapes of A and B. (D) Recovered shape from image in A. (E) Recovered shape 

from image in B. 

 

In psychophysical experiments, five subjects were first asked whether the local 3D 

surface around the red crosses in Fig 8A and 8B looks convex or concave. After that, 

they were asked whether the true 3D shape (Fig 8C), the recovered 3D shape (Fig 8D, or 

8E) was more similar to the perceived 3D shape from the image. Four of five subjects 

answered that the local surface of Fig 8A looked concave and only one thought that it 

looked convex. All five subjects answered that the local surface of Fig 8B looked convex. 

Four of five subjects answered that the recovered shape (Fig 8D) was closer to the 

perceived shape of the image shown in Fig 8A, and one thought that the true shape (Fig 

8C) was closer. Four of five subjects answered that the recovered shape (Fig 8E) was 

closer to the perceived shape from the image shown in Fig 8B and one answered that 

the true shape was closer. To summarize, most subjects (4 of 5) perceived the incorrect 

shape from Fig 8A and the recovered shape (Fig 8D) was consistent with the 
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misperceived shape. 

 

Discussion 
We developed an algorithm that estimates 3D shapes from a single specular image to 

investigate a possible mechanism of human 3D shape perception from specular 

reflections. This algorithm mainly relies on the orientation field suggested by a previous 

psychophysical study [12]. However, since the orientation field cannot resolve the local 

concave/convex ambiguity, the 3D shape recovery from it alone was difficult (see the 

noAIP condition, Table 2). To resolve the concave/convex ambiguity, we added the prior 

knowledge that objects are illuminated from above. The vertical polarity of the intensity 

gradient is an image cue to utilize this prior knowledge. We evaluated the developed 

algorithm with the glossy and mirrored surfaces of 12 complex shapes. The depth 

correlations between the recovered and the true shapes were as high as around 0.8. To 

further confirm the necessity of the vertical polarity information, we also conducted a 

psychophysical experiment with an image that caused human misperception due to the 

inconsistency with the above illumination prior. The human-misperceived and 

recovered shapes were consistent in most subjects. These findings show that the vertical 

polarity of the intensity gradient as well as the orientation field are related to 3D shape 

perception and the combination of both enables 3D shape recovery from a single 

specular image. 

 

Shape recovery of mirrored surfaces 

The shape recovery performance of the mirrored condition was almost as high as the 

glossy condition (Table 2), although the relationship between the vertical polarity and 

the surface second derivative sign was only proved in the diffuse reflection component 

(see Methods). The present result indicates that vertical polarity of the specular 

component was also useful for the initial second derivative signs for the following 

reason. The diffuse reflectance component in Fig 2 shows a relationship where the 

luminance is high in the upper side and low in the lower side when the surface is convex 

with respect to the vertical orientation (Fig 2A and 2B) and vice versa (Fig 2C and 2D). 

The same relationship holds for the mirrored surfaces of Fig 1. The luminance tends to 

be higher in the upper side than the lower side when the surface is convex (Fig 1A and 

1B) and vice versa (Fig 1C and 1D). Thus, the vertical polarity of the mirrored surface at 

low frequencies is related to the surface second derivative sign of the vertical 

orientation, although the high-frequency component is not related to it. When the 

vertical polarity is calculated, a relatively low-frequency image component is extracted 

and further smoothed to remove the high-frequency component of the specular 

reflection (see Methods). Therefore, it provides meaningful information about second 

derivative signs even from mirrored surfaces, although the correct ratio of the initial 

sign values of the mirrored condition is actually worse than that of the glossy condition 

(Table 1). 

 

Representation of surface curvatures 

In this study, the sign and magnitude of the surface second derivatives are separately 

described. Similar representation can be seen in some psychophysical experiments [35, 

36], in which subjects classified 3D shapes based on curvature signs. Furthermore, the 

neural representation of surface curvatures was studied in electrophysiological 

experiments. Srivastava et al. showed that the neurons in the inferior temporal cortex 

(the area for object recognition) of macaques are mainly sensitive to the curvature sign, 
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but the neurons in the anterior intraparietal area (the area for motor planning) are 

sensitive to the curvature magnitude as well as the sign [37]. This might suggest that 

the curvature sign’s representation is important for object recognition, and its 

magnitude is also required for motor planning. These and other psychophysical and 

electrophysiological studies [38, 39] provide hints to develop more efficient and 

human-like shape recovery algorithms. 

The estimation of a small surface second derivative sign, σmin, was more difficult than 

that of a large surface second derivative, σmax, in all four conditions (see right half of 

Table 2). A similar phenomenon can be seen in human shape perception. When subjects 

classified local shapes based on the curvature signs, saddles were often misclassified as 

ridges or ruts (convex or concave cylinders) [35, 36], suggesting that humans often 

neglect the small surface curvature of saddle shapes. Since the small surface curvature 

is less visible in the image, its estimation is intrinsically difficult. In the proposed 

algorithm, the small second derivative sign is forcibly classified as +1 or -1, but it might 

be better to treat it ambiguously like the quantum superposition when its classification 

is difficult. 

Note here that the shape recovery from specular reflections has much in common with 

that from line drawings because lines or specular orientations appear at the high 

curvature in both cases [40, 41]. In a line drawing study, edge-labeling algorithms 

classified the orientation edges as either convex or concave [30, 31]. This corresponds to 

the determination of the large surface second derivative sign in our study. It would be 

interesting to find and utilize the similarities of the shape recovery algorithms from 

specular reflection and line drawing [42]. 

 

Origin of shape recovery errors 

The orientation field error is a major error factor of the proposed algorithm, because 

the shape recovery performance was very high in the shapeOF condition (Table 2 and 

S15 Fig). In this condition, the surface second derivative signs were accurately 

estimated even though the initial values from the vertical polarity were somewhat 

incorrect and absent in half of the region. This result indicates that the proposed shape 

recovery algorithm works well at least under such ideal conditions. Therefore, the error 

due to the proposed algorithm’s methodological imperfection is relatively small. It also 

indicates that the orientation field is satisfactory for the 3D shape recovery of such 

curved surfaces examined in this study with the help of the above illumination prior. 

The difference of the shape recovery performances between the glossy and shapeOF 

conditions reflects errors that originate from the image orientation field. Compared 

with the orientation field error, the effects of the initial second derivative sign errors are 

limited because they are expected to be corrected through optimization; orientation field 

error inevitably affects the resultant shape because it is directly incorporated in the cost 

function. Actually, the shape recovery performance of the mirrored condition was 

comparable to the glossy condition even though the initial second derivative sign errors 

of the mirrored condition were significantly larger than those of the glossy condition. Of 

course, too many initial errors cannot be corrected as suggested by the poor shape 

recovery performance of the noAIP condition. The orientation field errors probably 

affect the error corrections of the initial values through optimization. 

 

Interpretation of human shape misperception 
The glossy surface Fig 8A, which was used for our psychophysical experiment, looks 

concave around the red cross mark, but Fig 8B looks convex. The illumination 
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environment caused this difference. The Eucalyptus Grove environment for Fig 8B is 

outdoors and consistent with the above illumination prior of humans. However, the 

Galileo's Tomb environment for Fig 8A is indoors and the ceiling is dark that is against 

the above illumination prior. The dark ceiling caused a negative value of the vertical 

polarity around the red cross mark despite its convex 3D shape, which presumably 

caused the concave interpretation. In this example, both the convex and concave 

interpretations are consistent with the surrounding information. Therefore, humans 

may interpret images as convex or concave depending on the illumination environment. 

 

Limitations and future work 

The following are the limitations of our shape recovery algorithm. First, since it is 

based on the relationship between the orientation field and the surface second 

derivative, large error occurs when this relationship is invalid. For example, if the 

illumination environment is biased to a specific orientation (e.g., striped illumination), 

it biases the image orientation [24]. The orientation error becomes large where the 

surface anisotropy is small [24]. For example, if the true shape is a plane (i.e., the 

surface anisotropy is zero), the image orientation reflects not the surface second 

derivative but only the orientation of the illumination environment and causes shape 

recovery errors. Second, images under an unnatural illumination environment against 

the above illumination prior could not be properly recovered as it is difficult for humans 

[27, 43]. Third, the proposed algorithm cannot estimate the depth scale as well as the 

slant due to the ambiguity about the affine transformation of the recovered shape [32]. 

Humans also have difficulty estimating the slant [6, 44] and the depth scale [6, 32] from 

a single image without prior knowledge of the object’s shape. Therefore, we evaluated 

the recovered shapes by depth correlations after the affine transformation so that the 

slant of the true surface depth becomes zero. We did not evaluate the normal map 

because it depends on the depth scale. Fourth, because the proposed algorithm assumes 

that the surface depth is second order differentiable, it cannot properly treat bends, 

cusps, and self-occlusion inside the object region (occluding edges or limbs [31]) and 

generates smoother shapes than actual shapes. This property may worsen the shape 

recovery performance of objects #10, #3, and #4. Note that the limitations listed above 

(except for the fourth) are closely related to the limitations of human shape perception. 

Future work has several promising directions. First, further psychophysical 

experiments are required to understand human shape perception from specular 

reflections in detail and will help improve the shape recovery algorithm to better 

simulate the human shape perception. It would be interesting to use the image-based 

shape manipulation method based on the orientation field [45] to compare the recovered 

and human-perceived shapes. Second, the proposed shape recovery algorithm will be 

useful for computer vision methods. By integrating it with a study that estimates 

material (BRDF) from a single image of a known shape [46], it might become possible to 

estimate an unknown shape’s material. By providing more accurate recovered depth 

information, we expect to enhance the reality of the image-based material editing that 

is based on shape information [47]. For further improvement of the shape recovery 

performance, the proposed shape from the specularity algorithm could be integrated 

with the shape from shading algorithms [48, 49], where it would be helpful to use color 

information to separate diffuse and specular reflection components [50]. Third, it would 

be interesting to study whether 3D shapes can be recovered from translucent images 

with specularities. A previous study [51] argued that an object looks translucent when 

images are manipulated so that the diffuse reflection component is contrast-reversed, 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2018. ; https://doi.org/10.1101/383174doi: bioRxiv preprint 

https://doi.org/10.1101/383174
http://creativecommons.org/licenses/by/4.0/


15 

 

but the specular reflection component is left intact. This result suggests that we must 

alter how the specular and diffuse reflection components are combined for shape 

recovery from translucent images, such as reversing the sign of the vertical polarity in 

the case of translucent images compared with opaque images. 

 

Methods 
As a precondition to 3D shape recovery, we assume that the image region is known 

where the object exists. It may be obtained by an edge detection algorithm or decided by 

humans. We denote the object region as Ω, the number of pixels in Ω as NΩ, the 

boundary region, which is the region between the boundary of Ω and one pixel inside it, 

as ∂Ω, and the number of pixels in ∂Ω as N∂Ω. The resolution of the 3D shape recovery 

was 256 × 256 pixels. We set a Cartesian coordinate on the image plane, where the x 

and y axes represent the horizontal and vertical axes of an image plane and the z axis 

represents the front direction. We represent the depth of the 3D object surface as z(x,y). 

The following notations are used: scalars are represented in normal-type letters as x; 

vectors are represented in lower-case boldface letters as x; matrices are represented in 

upper-case boldface letters as X. 

 

Images and extraction of image cues 
We used the images of 12 different 3D shapes to evaluate the proposed algorithm 

(Figs 4 and 6). The images had 1024 × 1024 pixel resolution and were colored, although 

they were downsampled to 256 × 256 pixels before the 3D shape recovery and became 

achromatic because the proposed algorithm does not use color information. These 

images were rendered by Radiance software (http://radsite.lbl.gov/radiance/). The 

surface reflection property was modeled by the Ward-Duer model [52, 53]. We set diffuse 

reflectance ρd, specular reflectance ρs, and the spread of specular reflection α as ρd = 0.1, 

ρs = 0.15, α = 0 for the glossy surfaces (Fig 4) and ρd = 0, ρs = 0.25, α = 0 for the mirrored 

surfaces (Fig 6). For the natural illumination environment, we used a high dynamic 

range image from the Devebec dataset (http://ict.debevec.org/~debevec/; Eucalyptus 

Grove). For the quadratic patch images in Figs 1 and 2, we set ρd = 0, ρs = 0.25, α = 0 for 

the mirrored surfaces in Fig 1, and ρd = 0.4, ρs = 0 for the matte images in Fig 2. 

The 3D shapes of objects #1-6 were randomly generated with spherical harmonics. To 

incrementally increase the complexity of the 3D shapes, the maximum degree of the 

spherical harmonics was limited to 5 for objects #1-2, 7 for objects #3-4, and 10 for 

objects #5-6. The weights of the spherical harmonics were determined by a random 

number and normalized so that the power of each degree is inversely proportional to the 

degree (pink noise). Then the maximum amplitude of the spherical harmonics was 

normalized to 0.5. The object’s radius of each angle is given by the sum of 1 and the 

value of the spherical harmonics. The 3D shapes of objects #7-12 were human-made and 

used in our previous electrophysiological studies of gloss perception [54, 55]. 

We extracted the orientation field as follows. The image orientation θ(x,y) is the angle 

that maximizes the magnitude of response p of the oriented filter (first-derivative 

operator) as     yxpyx ,'maxarg, 2

'




 . Image anisotropy α(x,y) is defined by the 

ratio of the minimum and maximum magnitudes of the oriented filter response with 

respect to its angle [12] as      yxpyxpyx ,,1, 2

max

2

min . α=0 means that the 

local image is isotropic, and α=1 means that it only consists of one directional 

component. The steerable pyramid [56, 57] (matlabPyrTools, 

https://github.com/LabForComputationalVision/matlabPyrTools) was used to extract 
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the image orientation in accordance with previous studies [12, 13, 24]. Responses were 

obtained by steering the filter through 120 equal orientation steps between 0 and 180°. 

The finest orientation responses were extracted in accordance with a previous study 

[12]. Then the amplitudes, which are the squared responses, were downsampled to 256 

× 256 pixels and convolved by a 3 × 3 constant filter for noise reduction. Then the image 

orientation and the image anisotropy were obtained based on the above equations. 

We obtained the vertical polarity of intensity gradient pv(x,y) by extracting the sign of 

the oriented filter response of the vertical direction (θ = 0°) as 

    yxpyxpv ,sgn,
0




. The steerable pyramid was used to extract the vertical 

polarity. The responses of the pyramid level of 256 × 256 resolution were extracted (a 

relatively low-frequency component compared to the original image resolution). The 

response values near the boundary are unreliable because they are affected by the 

image outside of the object region. Therefore, we overwrote the response values within 

five pixels from the boundary to zeros and smoothed them by a Gaussian filter whose 

standard deviation is four pixels to reduce the noise and the high-frequency components 

of the specular reflection. 
We derived the signs of the apparent curvature of the image contour as follows. First, 

we drew a circle centered at a boundary point with a radius of 128 pixels (1/8 of the 

image size); second, we determined that the curvature sign value at that boundary point 

is +1 or -1 when the object region’s area within the circle is smaller or larger than the 

area of the outside object region within the circle; third, for noise reduction, we 

smoothed the curvature sign values by convolving a constant circular filter of a radius of 

16 pixels (1/64 of the image size) and downsampled it to 256 × 256 pixels; then we 

extracted the signs. The resultant curvature signs of the image contour are shown in 

S18 Fig. 

 

Curvature formulation 
We described the surface shape of objects by Hessian matrix H(z) of surface depth 

z(x,y). Because the Hessian matrix is symmetric, H(z) is diagonalized with rotation 

matrix R as 

      ss R
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k
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z

yx

z

yx

z
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z
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
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


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









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










max

min

2

22

2

2

2

0

0
, (1) 

where kmax and kmin are the eigenvalues of the larger and smaller magnitudes. θs, which 

indicates the angle of the small surface second derivative, is called the surface 

orientation. There is a minus at the beginning of the right-hand side of Eq 1 so that the 

surface second derivatives become positive in the case of convex shapes (e.g., sphere). In 

this study, we described the surface curvature by Hessian matrix based on the image 

coordinate system instead of the standard curvature that is defined on the object 

surface’s intrinsic coordinate system. This difference was previously scrutinized [24]. 

The reason why we adopted the former is that orientation field depends on the Hessian 

matrix, not on the standard curvatures. For example, in the case of a sphere, the 

standard curvature is the same at every point on its surface. In contrast, the second 

derivatives are large near the boundary and small at the center, and correspondingly, 

the image orientation of the specular reflectance is clear near the boundary and not 

clear at the center (see Fig 16 of [24]). 
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Next we introduce other variables and transform the equation. First, surface 

anisotropy αs is defined as 2

max

2

min1 kks   [12]. αs=0 denotes that the magnitude 

of the two surface second derivatives is the same (e.g., a convex sphere, a concave 

sphere, or a saddle), and αs=1 means that the small surface second derivative is zero 

(e.g., a convex cylinder or a concave cylinder). Second, variables are introduced so that 

the surface second derivative’s sign and magnitude are separately described. The sign of 

the large surface second derivative is represented as σmax ∈ {+1, -1}. +1 and -1 

correspond to convex and concave shapes. The magnitude of the large surface second 

derivative is represented as ka=|kmax|. The sign of the small surface second derivative 

is represented as σmin ∈ {+1, -1}. Using these variables, the surface second derivatives 

are described: 

 maxmax akk  , (2) 

   minmin 1  as kk  . (3) 

 

Relationship between vertical polarity and surface second derivative signs 

With the prior knowledge that the object is illuminated from above, we can derive the 

relationship among the vertical polarity, pv, and the surface second derivative signs. In 

the case of the Lambert reflectance, the surface luminance is proportional to the inner 

product of the lighting direction and the surface’s normal direction. Here we assume 

that the illumination map is stronger as it gets closer to just above (x,y,z)=(0,1,0). As a 

result, the surface luminance becomes stronger as the surface slant (-∂z/∂y) is increased. 

By taking a derivative of this relationship with respect to y and taking the sign, the 

following equation is obtained: 

 













2

2

sgn
y

z
pv

. (4) 

Here we described it as nearly equal instead of equal because the two assumptions of 

the Lambert reflectance and the just above illumination do not strictly hold in real 

situations. For example, for images taken outdoors, the angle of the sun (dominant 

illumination) changes based on time. 

We transform Eq 4 into a more available form. The following equation is derived from 

Eqs 1, 2, and 3 as   sssak
y

z
 2

min

2

max2

2

sin1cos 



 . Then we used the 

approximation of orientation θ ≈ θs and anisotropy α ≈ αs: 

    2

min

2

max sin1cossgn vp . (5) 

We divided object region Ω into two regions:    22 sin1cos   holds in Ωa, but not 

in Ωb. Then the following relationship is obtained: 
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,

min

max




. (6) 

The approximation of Eq 6 was evaluated in our experiment and summarized in the 

right half of Table 1. All of the results of the objects in the glossy and mirror conditions 

are shown in S4-S5 and S8-S9 Figs. 

 

Formulation of cost function 
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Cost function E consists of two terms: the second derivative constraint given by 

orientation field C and boundary condition B: 

 BCE  . (7) 

We first explain second derivative constraint C and then boundary condition B, which 

consists of the following three terms: B = B0 + B1 + Bc. 

The second derivative constraint is based on the relationship between the orientation 

field and the surface second derivatives where the image orientation approximates 

surface orientation θ ≈ θs and the image anisotropy approximates surface anisotropy α ≈ 

αs [12, 24]. These relationships are described with error terms as  s  and 

 s . These errors were evaluated in our experiment and summarized in the 

left half of Table 1. For more information, a previous study [24] assessed the orientation 

error, which depends on the surface anisotropy and the difference between the surface 

orientation and the illumination map’s orientation. By substituting these equations into 

Eq 1, we obtain 

      
 

    



 OOkkRzHR aa 







 


max

min

0

01
. (8) 

To simplify this equation, we introduce the coordinate axes (u, v) by rotating the original 

axes (x, y) by image orientation θ(x,y). Note that the axes (u, v) depend on each position 

based on the image orientation in that position. Then this equation is described as 
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,  (9) 

which indicates that the surface strongly bends toward the v direction (the orthogonal 

direction of the image orientation) by second derivative magnitude ka with sign σmax and 

the surface weakly bends toward the u direction by second derivative magnitude ka(1-α) 

with sign σmin. Second derivative constraint C is based on Eq 9 where the left-hand side 

is small. The cost is the sum of the squared Frobenius norm of the left-hand side of Eq 9 

throughout the object region: 
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Since this cost function is a quadratic function with respect to z and ka or with respect to 

σmax and σmin, it is relatively easy to optimize. 

Here, because the right-hand side of Eq 9 is proportional to ka, it would be more 

appropriate to use a cost function that is the sum of the amplitude of the left-hand side 

of Eq 9 after multiplied by 1/ka. We denote this cost function as C’: 
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However, cost function C’ is more difficult to optimize. Therefore, we use the first cost 

function C to obtain the solution, and then with the solution as an initial value, we 

obtain the improved solution with the second cost function C’. The summarized formula 

and the minimization of the second cost function are described in Supplementary Note 4 

in S1 Text. 
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Boundary conditions B0 and B1 were introduced to resolve the solution’s ambiguity. B0 

resolves the translation ambiguity along the z axis by making the mean depth value 

zero at the boundary region: 
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Another ambiguity exists about affine transformations [32]. B1 is introduced so that the 

solution is not slanted in both the x and y directions: 
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where CMx  and CMy  are the average values of x and y in boundary region ∂Ω. We 

summarize these boundary conditions as Bzz
TBB

2

1
10  , where z is the column 

vector of size NΩ × 1 that consists of z(x,y) in object region Ω and B is the coefficient 

matrix of size NΩ × NΩ. 

Next the constraint from the contour was introduced. Assuming that the 3D surface 

near the boundary is smooth and differentiable, the second derivative toward the 

normal direction of the contour at the boundary is minus infinity. Therefore, the surface 

orientation is parallel to the contour and σmax = +1. Moreover, a previous study [58] 

proved that the sign of the 3D curvature parallel to the contour (=σmin) equals the sign of 

the apparent curvature of the 2D contour. The apparent curvature sign of the image 

contour, which is calculated and utilized as the initial values of σmin near the boundary, 

is also incorporated in the cost function: 

  minminmaxmax σhσh
TT

cB  , (14) 

where hmin is a column vector that consists of the contour’s curvature sign (S18 Fig), 

hmax is a column vector that consists of +1 (near the boundary, where the value exists in 

S18 Fig) and 0 (otherwise) and σmax and σmin are column vectors that consist of σmax(x,y) 

and σmin(x,y). 

The cost function is summarized as 

 

 

   minminmaxmax

2

minmax

2

1

2

1

σhσhkHIk

σHKDσKDzAzz

TT

a

T

a

a

T

uua

T

vv

TTBCE





, (15) 

where ka and α are column vectors that consist of ka(x,y) and (x,y); Ka and H are 

diagonal matrices with diagonal elements ka and (1-α); D is a matrix that represents the 

second order differential operator with respect to subscript variables; 

BDDDDDDA  uv

T

uvuu

T

uuvv

T

vv 2 ; I is an identity matrix of size NΩ × NΩ. 

Optimal 3D shape z minimizes the cost function. Therefore, the derivative of the cost 

function with respect to z should be zero. The solution is obtained as 

  minmax

1
σHKDσKDAz a

T

uua

T

vv  
. (16) 

Here, matrix A is invertible since A is positive definite, which can be easily shown. First, 

the eigenvalue of A is non-negative from the definition (Eqs 7, 10, 12, and 13). Second, 

there is no zero eigenvalue because of the boundary condition (Eqs 12 and 13). By 
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substituting the solution Eq 16 into Eq 15, the cost function becomes a function of σmax, 

σmin, and ka: 

 

   

   minminmaxmax

2

minmax

1

minmax

2

1

2

1

σhσhkHIk

σHKDσKDAσHKDσKD

TT

a

T

a

a

T

uua

T

vv

T

a

T

uua

T

vvE



 

. (17) 

The procedure for minimizing the cost function is described in Supplementary Note 3 in 

S1 Text. 

 

Evaluation of recovered depths 
We quantify the shape recovery performance by taking the correlation between the 

recovered depth and the true depth. Note that here we apply the affine transformation 

so that the slant of the true surface depth becomes zero before taking the depth 

correlations. The proposed algorithm generates a shape whose slant is zero because of 

the boundary condition (Eq 13). Therefore, we compared the recovered shape with the 

true depth after the affine transformation. We summarized the depth correlations 

without the affine transformation in Supplementary Note 5 in S1 Text. 

We used two depth correlations: global and local interior. The global depth correlation 

is simply the correlation coefficient of the recovered and true depths throughout the 

object region. However, the global depth correlation tends to become high as long as the 

depth around the boundary is small, because the true depth is generally very small 

around the boundary and modest inside the object region. In other words, it is sensitive 

to the depth around the boundary and insensitive to the details of the shapes inside the 

object region. Therefore, we proposed a local interior depth correlation, which was 

calculated as follows. First, we drew a grid that divided the vertical and horizontal axes 

of the image region into eight (at 32 pixel intervals). Second, we drew a circle centered 

at an intersection of the grid with a radius of 32 pixels. Third, we measured a depth 

correlation in the intersection of the circle and the object area after removing the area 

near the boundary (within 24 pixels from the boundary). We did not measure a depth 

correlation if the intersection area was smaller than half of the circle’s area. Fourth, we 

averaged the depth correlation values. As a result, the local interior depth correlation is 

not affected by the shapes near the boundary and is sensitive to the agreement of the 

concavity and the convexity inside the object region. Note that we did not evaluate the 

local interior depth correlation for objects #9 and #11. No depth correlation values were 

obtained with the above procedure because most of the object region is near the 

boundary, and the global depth correlation seems sufficient as a measure because there 

is no fine shape structure inside these object regions. 

 

Psychophysical experiment 
Five unpaid volunteers participated in the experiment (three males and two females; 

age range, 33-58), all of whom had normal or corrected-to-normal vision and were naïve 

to its purpose. The experiment was approved by the Ethics Committee for Human 

Research of National Institute for Physiological Sciences. The experiment was 

conducted in accordance with the principles of the Helsinki Declaration. Written 

informed consent was obtained from all participants. 

Stimuli were presented on a 58.1 × 38.6 cm flat screen OLED monitor at a distance of 

60 cm in a darkened room. Each image subtended at about a 10° visual angle. The 

stimulus images are shown in Fig 8, although the red crosses in it were not displayed 
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during the experiment. The images of Fig 8A and 8B were rendered by Radiance 

software with the surface reflection property ρd = 0.1, ρs = 0.15, α = 0 under illumination 

environments of the Devebec dataset (Galileo's Tomb for Fig 8A and Eucalyptus Grove 

for Fig 8B) 

Subjects performed two tasks. Both were two-alternative forced choice tasks with no 

time limits. First, we presented either the image of Fig 8A (Galileo illumination 

condition) or Fig 8B (Eucalyptus illumination condition). Unfilled, 2.7-cm diameter gray 

circle centered at the red cross position was superimposed in the first task. Subjects 

were asked whether the local surface indicated by the circle was convex or concave. 

Next, we presented the same image and the recovered depth map by the proposed 

algorithm and the true depth map. The image was located in the center, and the two 

depth maps were located at the image’s left and right. The left and right arrangements 

of the recovered and the true depth maps were random. Subjects were asked whether 

the recovered 3D shape or the true 3D shape more closely resembled the perceived 3D 

shape from the image. They sequentially performed two tasks for two conditions: the 

Galileo illumination condition and the Eucalyptus illumination condition. The order of 

the conditions was counter-balanced among the subjects (two subjects performed the 

Galileo illumination condition first and three performed the Eucalyptus illumination 

condition first). Before the experiment, the subjects performed a practice trial with 

sphere images rendered under another illumination environment (Campus at Sunset of 

the Devebec dataset) and were instructed about the depth map’s meaning. 
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