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Abstract  
 

Parkinson’s disease is primarily characterised by diminished dopaminergic 

function, however the impact of these impairments on large-scale brain 

dynamics remains unclear. It has been difficult to disentangle the direct effects of 

Parkinson’s disease from compensatory changes that reconfigure the functional 

signature of the whole brain network. To examine the causal role of dopamine 

depletion in network-level topology, we investigated time-varying network 

structure in 37 individuals with idiopathic Parkinson’s disease, both ‘On’ and 

‘Off’ dopamine replacement therapy, along with 50 age-matched, healthy control 

subjects using resting-state functional MRI. By tracking dynamic network-level 

topology, we found that the Parkinson’s disease ‘Off’ state was associated with 

greater network-level integration than in the ‘On’ state. The extent of integration 

in the ‘Off’ state inversely correlated with motor symptom severity, suggesting 

that a shift toward a more integrated network topology may be a compensatory 

mechanism associated with preserved motor function in the dopamine depleted 

‘Off’ state. Furthermore, we were able to demonstrate that measures of both 

cognitive and brain reserve (i.e., premorbid intelligence and whole brain grey 

matter volume) had a positive relationship with the relative increase in network 

integration observed in the dopaminergic ‘Off’ state. This suggests that each of 

these factors plays an important role in promoting network integration in the 

dopaminergic ‘Off’ state. Our findings provide a mechanistic basis for 

understanding the PD ‘Off’ state and provide a further conceptual link with 

network-level reconfiguration. Together, our results highlight the mechanisms 

responsible for pathological and compensatory change in Parkinson’s disease. 
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Introduction 

Parkinson’s disease (PD) is a common neurological disorder characterised by 

degeneration of the dopaminergic midbrain. This pathological insult to the 

brainstem results in a severe dopamine depletion throughout ascending neural 

pathways innervating the basal ganglia, thalamus and cortex (Braak et al., 2004). 

The impact of such extensive dopaminergic loss on brain network dynamics 

remains poorly understood, partly due to the fact that dopamine depletion has 

been linked to both pathological and compensatory changes in brain network 

organisation and connectivity (Bell et al., 2015; Bohnen and Martin, 2014; Poston 

et al., 2017).  

 

Studies utilising resting state fMRI in PD consistently show alterations in 

functional connectivity that impact a diverse set of brain regions, including both 

cortico-cortical and cortico-subcortical architectures. In the dopaminergic ‘Off’ 

state, cortico-striatal hyper-connectivity is often observed, particularly in motor 

networks involving the subthalamic nucleus and primary motor cortex 

(Baudrexel et al., 2011; Kwak et al., 2012; Wu et al., 2010). However, alterations in 

inter-striatal connectivity, and across a range of cortico-striatal networks, have 

also been shown (Bell et al., 2014; Helmich et al., 2010; Wu et al., 2010). 

Importantly, many of these abnormalities are normalised with dopamine 

replacement pharmacotherapy (Kwak et al., 2012; Wu et al., 2010), suggesting that 

dopamine medication may play a role in both correcting pathological activity 

and alleviating compensatory reorganisation.   

 

The effects of pharmacological manipulation on functional brain network 

architecture are often non-linear (Brezina, 2010; Marder, 2012; Tahmasian et al., 

2015). For instance, increases in neural activity when ‘Off’ dopaminergic therapy 
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may reflect the compensatory engagement of non-dopaminergic systems of the 

brainstem or network reorganisation across the cortex and subcortex. This 

concept is supported by a general principal of compensation observed in ageing 

and neurodegeneration, wherein relatively spared circuits and networks are 

over-engaged to support dysfunctional nodes (Grafman, 2000). In PD this effect 

can be observed as shifts in the topography of cortico-striatal connectivity. For 

example, less dopaminergically-depleted striatal zones (such as the anterior 

putamen) may increase their coupling with cortical sensorimotor areas to 

overcome relatively severe posterior striatal dopamine pathology (Hacker et al., 

2012; Helmich et al., 2010). Alternatively, cortico-cerebellar connections may be 

increasingly engaged to offset impaired cortico-striatal function (O'Callaghan et 

al., 2016; Wu and Hallett, 2013). When these instances of hyper-connectivity are 

associated with preserved behavioral function, this implies an adaptive 

reallocation of activity in response to focal pathological changes (Hillary and 

Grafman, 2017). It is also possible that in some instances, functional circuit 

reorganisation may represent a pathological loss of network segregation or 

specialisation (Fornito et al., 2015; Hillary and Grafman, 2017). This could 

conceivably occur as a “knock-on” effect at the cortical network level, stemming 

from a fundamental loss of segregation in basal ganglia sub-circuits (Nieuwhof et 

al., 2017), which in turn would cause an increase in correlated activity in 

previously segregated neural populations (Bar-Gad et al., 2003; C. J. Wilson, 

2013).   

 

Whether the changes are compensatory or pathological, the current mechanisms 

supporting rearrangement of large-scale cortical patterns in the dopamine-

depleted state are unclear. Ultimately, the degree of compensatory versus 

maladaptive change may be determined by the relative balance between focused 
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increases in connectivity and a more general loss of segregation. Importantly, 

this concept can be examined using network analytic approaches. Using the 

mathematical formalism of graph theory, network communities are taken to 

represent densely interconnected neural elements in which local connections are 

highly segregated. In contrast, network hubs integrate diverse communities, 

enabling channels for effective information integration (Bertolero et al., 2017; van 

den Heuvel and Sporns, 2013). These organisational principles are thought to 

balance the specialisation of function with the integration of information (Deco et 

al., 2015; Park and Friston, 2013), and this balance gives rise to complex neural 

dynamics that span multiple spatiotemporal scales (Deco et al., 2013; Honey et al., 

2012).   

 

Here, we used time-resolved functional connectivity of resting state fMRI in 

combination with graph theoretical analyses to determine the balance between 

integration and segregation in the face of dopaminergic depletion in Parkinson’s 

disease. To date, studies of network topology in neurological disease have 

largely focused on structural brain networks and time-averaged resting-state 

functional networks, which represent an inherently ‘static’ snapshot of brain 

architecture (Breakspear, 2017). However, recent advances in the statistical 

analysis of time-varying resting-state functional MRI data have demonstrated 

that functional brain organisation is dynamic over the course of seconds to 

minutes (Betzel et al., 2016; Shine et al., 2016; Zalesky et al., 2014) and that 

fluctuating network dynamics are crucial for normal cognitive (Hearne et al., 

2017; Shine et al., 2016) and motor (Bassett et al., 2011) function. Examination of 

time varying functional network architecture provides an opportunity to explore 

the balance between segregated and integrated neural dynamics in both health 

and disease.  
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In determining the impact of dopamine depletion on dynamic network 

architecture in PD, we further aimed to establish whether certain functional 

patterns in the ‘Off’ state may be linked to a compensatory mechanism. Defining 

compensatory activity in neurodegeneration is a nontrivial problem (Gregory et 

al., 2017). Brain and cognitive reserve, respectively, refer to aspects of structural 

integrity that support increased functional resilience, and the preservation of 

function in the face of underlying degeneration (Fratiglioni and Wang, 2007). 

Importantly, these concepts can be operationalised using grey matter integrity 

(as a surrogate of brain reserve) and educational level or general intelligence 

quotient (as a surrogate of pre-morbid cognitive reserve) (Stern, 2017). These 

metrics can then be compared to network-level topological changes to provide an 

estimate of the extent to which brain organisation is related to functional and 

structural resilience. 

 

To examine the dynamic network architecture of the resting brain in the ‘Off’ 

compared with the ‘On’ dopaminergic state, we related network topology to 

motor function in the ‘Off’ state, and also to measures of cognitive and brain 

reserve. We hypothesised that removal of dopaminergic medications would lead 

to a relatively integrated network topology, which should also relate to a 

preservation of motor function in the ‘Off’ state. In addition, any compensatory 

pattern should be observed in the positive relationship between network 

topology and both cognitive and brain reserve. 

  

Materials and Methods 

Participants 
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37 patients were recruited from the Parkinson’s Disease Research Clinic at the 

Brain and Mind Centre, University of Sydney, Australia. All patients satisfied the 

United Kingdom Parkinson’s Disease Society Brain Bank criteria and were not 

demented (Martinez-Martin et al., 2011). Patients were assessed on the Hoehn 

and Yahr Scale and the motor section of the unified Parkinson’s disease rating 

scale (UPDRS-III) in the dopaminergic ‘Off’ state. The Mini-mental state 

examination (MMSE) was administered as a measure of general cognition. 

 

Participants with Parkinson’s disease were assessed on two occasions: ‘On’ their 

regular dopaminergic medications and ‘Off’ following overnight withdrawal (i.e. 

12-18 hours) of dopaminergic medications (5.2 ± 1.4 weeks between sessions). 

Dopaminergic dose equivalence (DDE) scores were calculated for each patient. 

Specifically, 10 patients were on L-dopa monotherapy; 9 were on L-dopa plus a 

dopaminergic agonist; a further 8 were on L-dopa plus adjuvant therapy 

(rasagaline, entacapone or a monoamine oxidase inhibitor); 7 were on a 

combination of L-dopa, dopaminergic agonist and adjuvant therapy; one patient 

was on dopaminergic agonist monotherapy, and two were on an agonist plus 

adjuvant therapy. No participant was taking any psychoactive medications. 

 

50 healthy controls were recruited to participate in the study. Control 

participants were screened for a history of neurological or psychiatric disorders, 

and no controls were using psychoactive medications. Patients with PD and 

healthy controls were matched for age and education. The study was approved 

by the local Ethics Committees and all participants provided informed consent in 

accordance with the Declaration of Helsinki. See Table 1 for demographic details 

and clinical characteristics.  
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Behavioural and neuropsychological assessment  

Mood was assessed via a self-report questionnaire, the Beck Depression 

Inventory-II (BDI-II; Beck et al., 1996). Patients were also administered the 

National Adult Reading Test (NART (Bright et al., 2016), and their predicted 

pre-morbid full scale IQ was calculated. The NART is an established measure of 

premorbid intelligence and serves as a surrogate of cognitive reserve, with the 

benefit of offering greater variance than years of education in a homogenous 

sample (Stern et al., 2003). These measures were assessed in the dopaminergic 

‘On’ state. Results from these measures are also shown in Table 1.  

 

Table 1. Mean (standard deviation) for demographics and patient clinical characteristics.  

 
Control PD 

N 

Sex (M:F) 

Age 

Education  

MMSE  

BDI-II 

Duration (yrs diagnosed) 

DDE (mg/day) 

Hoehn & Yahr stage 

UPDRS III, ‘Off’ 

NART 

50 

14:36 

65.82 (7.8) 

13.51 (2.8) 

29.00 (1.2) 

9.41 (7.3) 

- 

- 

- 

- 

- 

37 

29:8 

65.05 (7.2) 

13.50 (3.0) 

28.59 (2.2) 

10.67 (8.6) 

6.41 (4.2) 

808.54 (503.0) 

2.14 (0.8) 

32.00 (16.3) 

111.08 (10.3) 

MMSE = Mini-Mental State Examination; DDE = Dopaminergic dose equivalence; UPDRS III = 

Motor section of the unified Parkinson’s disease rating scale; BDI-II = Beck Depression Inventory-
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II. There were no significant differences in age, education, MMSE or BDI-II between the two 

groups, though there were differences in gender (p < 0.05). 

  

Imaging acquisition 

Imaging was conducted on a General Electric 3 Tesla MRI (General Electric, 

Milwaukee, USA). Whole-brain three dimensional T1-weighted sequences were 

acquired as follows: coronal orientation, matrix 256 x 256, 200 slices, 1 x 1 mm2 

in-plane resolution, slice thickness 1 mm, TE/TR = 2.6/5.8 ms. T2*-weighted echo 

planar functional images were acquired in interleaved order with repetition time 

(TR) = 3 s, echo time (TE) = 32 ms, flip angle 900, 32 axial slices covering the whole 

brain, field of view (FOV) = 220 mm, interslice gap = 0.4 mm, and raw voxel size 

= 3.9 mm by 3.9 mm by 4 mm thick. Each resting state scan lasted 7 min (140 

TRs). During the resting-state scan, patients were instructed to lie awake with 

their eyes closed and to let their minds wander freely. 

 

Resting state fMRI data 

Preprocessing and analyses of resting state data were conducted using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/). Scans were first slice-time corrected 

to the median slice in each TR, then realigned to create a mean realigned image, 

with measures of 6 degrees of rigid head movements calculated for later use in 

the correction of minor head movements. For quality assurance, each trial was 

analyzed using ArtRepair (Mazaika et al., 2009) and trials with a large amount of 

global drift or scan-to-scan head movements greater than 1 mm were corrected 

using interpolation. None of the subjects included in this study demonstrated 

scan-to-scan head movements >3mm (less than one voxel breadth). Images were 

normalized to the Echo Planar Image template, resampled to 3mm isotropic 
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voxels and then subsequently smoothed using a 4mm full-width half-maximum 

isotropic Gaussian kernel.  

 

Temporal artifacts were identified in each dataset by calculating framewise 

displacement (FD) from the derivatives of the six rigid-body realignment 

parameters estimated during standard volume realignment (Power et al., 2014), 

as well as the root mean square change in BOLD signal from volume to volume 

(DVARS). Frames associated with FD > 0.25mm or DVARS > 2.5% were 

identified, however as no participants were identified with greater than 10% of 

the resting time points exceeding these values, no sessions were excluded from 

further analysis. However, to ensure that neither head motion or the global 

signal were responsible for any group effects, we re-ran the analysis after: i) 

scrubbing data with FD > 0.25mm or DVARS > 2.5%; or ii) global signal 

regression. Both analyses revealed similar group-level effects.  

 

Following artifact detection, nuisance covariates associated with the 12 linear 

head movement parameters (and their temporal derivatives), FD, DVARS, and 

anatomical masks from the CSF and deep cerebral WM were regressed from the 

data using the CompCor strategy (Behzadi et al., 2007). In keeping with previous 

time-resolved connectivity experiments (Bassett et al., 2015), a temporal band 

pass filter (0.071 < f < 0.125 Hz) was applied to the data. Finally, given the 

importance of head motion in functional connectivity analyses, we compared 

mean framewise displacement (Power et al., 2014) across the entire resting state 

session across the three groups (controls, PD ‘On’ and PD ‘Off’). 

 

Brain parcellation 
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Following pre-processing, the mean time series was extracted from 347 pre-

defined parcels. To ensure whole-brain coverage, we extracted: 333 cortical 

parcels (161 and 162 regions from the left and right hemispheres, respectively) 

using the Gordon atlas (Gordon et al., 2014) and 14 subcortical regions from 

Harvard-Oxford subcortical atlas (bilateral thalamus, caudate, putamen, ventral 

striatum, globus pallidus, amygdala and hippocampus; http://fsl.fmrib.ox.ac.uk/) 

for each participant in the study. 

 

Time-resolved functional connectivity 

To estimate functional connectivity between the 347 parcels, we used the 

Multiplication of Temporal Derivatives; MTD metric (Shine et al., 2015). The 

MTD is computed by calculating the point-wise product of temporal derivative 

of pairwise time series (Equation 1). The MTD is averaged by calculating the 

mean value over a temporal window, w. Time-resolved functional connectivity 

was calculated between all 347 brain regions using the MTD within a sliding 

temporal window of 15 time points (~33 seconds), which allowed for estimates of 

signals amplified at approximately 0.1 Hz (Shine et al., 2015). Individual 

functional connectivity matrices were then calculated within each temporal 

window, thus generating a weighted 3-dimensional adjacency matrix (region × 

region × time) for each participant. 

 

        ������ � �
�∑

����������	

����������

�
� ��
��� ��

    [1] 

Equation 1 – Multiplication of Temporal Derivatives, where for each time point, t, the MTD for 

the pairwise interaction between region i and j is defined according to equation 1, where dt is the 

first temporal derivative of the ith or jth time series at time t, σ is the standard deviation of the 

temporal derivative time series for region i or j and w is the window length of the simple moving 
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average. This equation can then be calculated over the course of a time series to obtain an 

estimate of time-resolved connectivity between pairs of regions.  

 

Time- resolved community structure 

The Louvain modularity algorithm was applied to the functional connectivity 

time series using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). 

The Louvain algorithm iteratively maximizes the modularity statistic, Q, for 

different community assignments until the maximum possible score of Q has 

been obtained (Equation 2). The modularity estimate for a given adjacency 

matrix quantifies the extent to which the network may be subdivided into 

communities with stronger within-module than between-module connections. 

Using this technique, time-averaged and time-resolved community structure was 

calculated for each participant.   

 

  �� � �
��
∑ ����


 	 
��
�������� 	 �
��
��

∑ ����
� 	 
�����������  [2] 

 

Equation 2 – Louvain modularity algorithm, where v is the total weight of the network (sum of 

all negative and positive connections), wij is the weighted and signed connection between regions 

i and j, eij is the strength of a connection divided by the total weight of the network, and δMiMj is 

set to 1 when regions are in the same community and 0 otherwise. ‘+’ and ‘–‘ superscripts denote 

all positive and negative connections, respectively.  

 

For each temporal window, regional community assignment was assessed 500 

times and a consensus partition was identified using a fine-tuning algorithm 

from the Brain Connectivity Toolbox. This then afforded an estimate of both the 

time resolved modularity (QT) and cluster assignment (CiT) within each temporal 

window for each participant in the study. To define an appropriate value for the 

γ parameter, we iterated the Louvain algorithm across a range of values (0.5-2.5 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/382994doi: bioRxiv preprint 

https://doi.org/10.1101/382994
http://creativecommons.org/licenses/by-nc-nd/4.0/


   13

in steps of 0.1) for 100 iterations of a single subject’s (sub1) time-averaged 

connectivity matrix and then estimated the similarity of the resultant partitions 

using mutual information. A γ parameter of 1.1 provided the most robust 

estimates of topology across these iterations (quantified by the minimum 

standard deviation across 100 iterations of the Louvain algorithm). 

 

Cartographic profiling 

Based on time-resolved community assignments, we estimated within-module 

connectivity by calculating the time-resolved module-degree Z-score (WT; within 

module strength) for each parcel (Equation 3) (Guimerà and Nunes Amaral, 

2005).  

 

      
�� �
�����́���
�	���

     [3] 

Equation 3 – Module degree Z-score, WiT, where κiT is the strength of the connections of region i 

to other regions in its module si at time T, �́
�� is the average of κ over all the regions in si at time 

T, and �����
 is the standard deviation of κ in si at time T. 

 

To calculate between-module connectivity (BT), we used the participation 

coefficient, BT, quantifying the extent to which a region connects across all 

modules (i.e. between-module strength; equation 4). 

 

               ��� � 1 	∑ ��������
�
���

���      [4] 

Equation 4 - Participation coefficient BiT, where κisT is the strength of the positive connections of 

region i to regions in module s at time T, and κiT is the sum of strengths of all positive connections 

of region i at time T. The participation coefficient of a region is therefore close to 1 if its 

connections are uniformly distributed among all the modules and 0 if all of its links are within its 

own module. 
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To track fluctuations in cartography over time, for each temporal window, we 

computed a joint histogram of within- and between-module connectivity 

measures, referred to here as a “cartographic profile” (Figure 1b). Code for this 

analysis is freely available at https://github.com/macshine/integration/. 

 

Regional Flexibility 

The flexibility of each brain parcel was calculated by the percentage of temporal 

windows in which an individual region ‘switched’ between modules, normalized 

to the total number of modules in the data (as estimated in the previous step). 

Code was obtained directly from the original author 

(http://www.danisbassett.com/resources/). As the modular assignment was 

essentially arbitrary within each unique temporal window, we used a version of 

the Hungarian algorithm to assign regions to modules with consistent values 

over time. 

  

Grey matter extraction 

Grey matter extraction was performed using the FMRIB software library package 

FSL (http://www.fmrib.ox.ac.uk/fsl/). Scans were skull-stripped using the BET 

algorithm in FSL (Smith, 2002) and tissue segmentation was completed using 

FMRIB’s Automatic Segmentation Tool (FAST v4.0) (Zhang et al., 2001). A study-

specific grey matter template was created using the maximum equal number of 

scans from both groups (37 from each) and registered to the Montreal 

Neurological Institute Standard space (MNI 152) using a non-linear b-spline 

representation of the registration warp field. Grey matter partial volume maps 

were non-linearly registered to the study template and modulated by dividing 

by the Jacobian of the warp field, to correct for any contraction/enlargement 
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caused by the non-linear component of the transformation; this step corrects for 

total intracranial volume (ICV) so that it does not need to be included as a 

confounding covariate (Good et al., 2002). After normalisation and modulation, 

the grey matter maps were smoothed with an isotropic Gaussian kernel with a 

sigma of 2 mm. 

 

Whole brain grey matter volume (mm3) was then extracted for each participant. 

The total volume of non-zero voxels was extracted from the grey matter mask 

automatically generated from FAST. Using the smoothed and registered images, 

the mean proportion of grey matter per voxel from non-zero voxels was 

extracted for each subject using fslstats. Multiplying the volume within the mask 

by each subjects’ mean grey matter proportion inside the mask gave a measure of 

total grey matter volume for each person. We used whole brain grey matter 

volume (corrected for total ICV), a specific indicator of grey matter structural 

integrity, as our measure of brain reserve. For completeness, we also calculated 

total ICV, as it is a commonly used proxy for brain reserve. Total ICV was 

calculated for each individual by summing the segmented grey matter, white 

matter and cerebrospinal fluid volumes obtained from the FAST procedure. We 

re-ran our analysis using total ICV as a measure of brain reserve to confirm that 

similar results were obtained using both total grey matter volume and total ICV 

as indicators of brain reserve.       

 

Statistical analyses 

To determine whether there were any abnormalities in functional network 

topology between groups, the mean cartographic profile for each PD patient was 

compared between medication states (paired-sample t-test for each bin of the 

cartographic profile; FDR q ≤ 0.05) and between groups (independent-samples t-
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test for each bin; FDR q ≤ 0.05). Regional WT and BT scores were also compared 

across groups using independent-samples t-tests. 

 

To determine the clinical relevance of functional network reconfiguration, we 

measured the correlation of the difference in the cartographic profile between the 

‘Off’ and ‘On’ state with the severity of motor impairments in the ‘Off’ state 

(measured using UPDRS III) using a Spearman’s rho correlation (due to the non-

parametric nature of the data). 

 

To determine whether network level integration related to brain reserve in the 

individuals with PD, we fit a general linear model which fit grey matter volume, 

predicted full scale IQ (as estimated using normalised National Adult Reading 

Test [NART] scores) and the interaction between these two measures of reserve 

(i.e. GM*NART) to the amount of integration present in the ‘Off’ vs ‘On’ state, 

while co-varying for age. Separate analyses were conducted at the global (i.e. 

cartographic profile) and regional (i.e. parcel-wise) level. 

 

Results 

Head motion 

There were no significant differences in head movement between healthy 

controls and individuals with PD in either medication state (mean framewise 

displacement: controls 4.9x10-4 ± 3.3x10-4, PD ‘On’: 5.7x10-4 ± 5.3x10-4; PD ‘Off’: 

5.8x10-4 ± 5.0x10-4; all p > 0.200) or between dopaminergic states in the PD group 

(p > 0.200).  

 

Relationship between network topology and dopaminergic state 
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In the dopaminergic ‘Off’ state, individuals with PD demonstrated a more 

integrated functional network topology than those ‘On’ medication or healthy 

controls (Figure 1a,b; p < 0.001). The magnitude of regional between-module 

integration was significantly higher in the ‘Off’ state (relative to the ‘On’ state) 

across medial and lateral frontoparietal cortical regions (Figure 1b). These 

changes were diffusely mediated across multiple sub-systems, including 

frontoparietal, cingulo-opercular, salience and dorsal attention networks (Figure 

1c,d). 

 

Figure 1 – Network topology as a function of dopaminergic state: a) global mean 

participation coefficient (BT) in controls (blue), PD ‘On’ (teal) and PD ‘Off’ (red) – p < 0.001; 

b) cartographic profile comparing PD ‘Off’ > PD ‘On’ – subjects were more integrated (i.e. 

rightward shift on the BT axis) in the ‘Off’ compared to the ‘On’ state; c) force-directed plots 

comparing PD ‘On’ and ‘Off’ dopaminergic medication – edges represent top 1% of 

connections in time-averaged connectivity matrix and colors of nodes reflect pre-defined 

network identity of each region; d) surface plot of regions with significantly increased 

participation (BT) during ‘Off’ state. 
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Relationship between network topology and motor symptom severity 

There was a significant inverse correlation between network-level integration 

and UPDRS III scores as measured in the ‘Off’ state (Figure 2a) that was maximal 

in right dorsolateral prefrontal cortex, bilateral dorsal anterior cingulate, bilateral 

retrosplenial cortex and sensorimotor cortex (Figure 2b). This is consistent with 

greater integration in those regions being associated with less severe motor 

impairment on UPDRS motor scale.  

                 

Figure 2 – Relationship between network topology and motor severity: a) inverse 

relationship between cartographic profile (PD ‘Off’ > PD ‘On’) and UPDRS III (motor) 

severity (estimated in the dopaminergic ‘Off’ state) – greater integration (i.e. rightward shift 

on the BT axis) was inversely correlated with motor severity; b) parcels with significant 

inverse correlation between BT (‘Off’ > ‘On’) and UPDRS III – FDR q ≤ 0.05. 

 

Effects of dopaminergic state on regional flexibility 

Regions were more likely to switch their modular allegiance more frequently in 

the dopaminergic ‘Off’ state as compared to the ‘On’ state. We observed a 

distributed set of insular, frontal and parietal regions that demonstrated an 
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increase in topological flexibility and/or decreased modular stability in the 

resting state following dopaminergic withdrawal (Figure 3). We did not observe 

a relationship between flexibility and motor severity (all p > 0.05). 

 

 

Figure 3 – Topological flexibility as a function of dopaminergic state: regions with 

increased topological flexibility (increased frequency of modular switching) in the ‘Off’ > 

‘On’ dopaminergic state – FDR q ≤ 0.05. No regions showed a significant decrease in 

flexibility in the ‘Off’ state. 

 

Relationship between network topology and brain reserve 

Using a linear mixed effects model specifying GM (Figure S1a), NART (Figure 

S1b) and GM*NART (Figure 4a) adjusting for age and gender as fixed covariates, 

we observed a positive relationship (FDR q ≤ 0.05) between network topology 

and the interaction between grey matter volume and NART-predicted IQ scores) 

that was maximal in frontal cortex, insula, thalamus and amygdala (Figure 4b; 

FDR q ≤ 0.05).  
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Figure 4 – Relationship between network topology and neurocognitive reserve: a) 

relationship between cartographic profile (PD ‘Off’ > PD ‘On’) and interaction between grey 

matter volume and education level (NART) – FDR q ≤ 0.05 – subjects with greater NART and 

GM scores were more integrated (i.e. rightward shift on the BT axis) in the ‘Off’ compared to 

the ‘On’ state; b) regions with significant relationship between BT (‘Off’ > ‘On’) and the 

interactions between brain (mean grey matter) and cognitive (NART) reserve, estimated 

using a linear mixed effects model – FDR q ≤ 0.05. 

 

Discussion 

In this study, we demonstrated causal evidence for large-scale network 

reconfiguration in the ‘Off’ state in individuals with idiopathic Parkinson’s 

disease as compared to the dopaminergic ‘On’ state, consistent with an increase 

in topological integration (Figure 1) and flexibility (Figure 3). Within this general 

shift toward a more integrated state, a distributed set of regions were inversely 

correlated with motor symptom severity (Figure 2), suggesting that increased 

integration may provide compensatory processes that offset clinical motor 

severity. Furthermore, we showed an association between the magnitude of 

integration in the ‘Off’ state and measures of grey matter volume and premorbid 

intelligence. This suggests that a topological shift in response to dopamine 
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depletion is related to neurocognitive reserve (Figure 4). Together these results 

show that the effect of dopamine depletion in PD results in a global shift toward 

integration, and, that this increased integration may serve some compensatory 

function, the extent of which may be determined by underlying cognitive and 

brain reserve.  

 

Withdrawal from dopamine replacement therapy altered network topology in 

the medial frontal, lateral parietal and anterior temporal cortices (Figure 1d). 

Importantly, these regions also exhibited an increase in topological flexibility in 

the ‘Off’ state, suggesting that they were not effectively “locked” into an 

integrated state, a result that may have argued against a possible compensatory 

role for increased integration in ‘Off’ state. Similar regions were inversely 

correlated with ‘Off’ state motor symptom severity (Figure 2b), suggesting that 

regional and network-level integration may help maintain motor function in the 

face of dopamine depletion.   

 

 

The possibility that increased topological integration in the face of dopamine 

depletion may be associated with a compensatory function supports and extends 

a growing literature that highlights the importance of network level hyper-

connectivity as an adaptive response to local pathological change in 

neurodegenerative disorders (Gregory et al., 2018; Hillary and Grafman, 2017; 

O'Callaghan et al., 2016). In PD, this response has previously been observed and 

interpreted based on static measures of resting state fMRI (Helmich et al., 2010; 

O'Callaghan et al., 2016; Wu et al., 2010). Here, we provide a description of the 

underlying dynamic processes that might support these enhanced activations. 
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Prior work has highlighted a link between increased resting state functional 

connectivity and markers of cognitive reserve (e.g., greater years of education) in 

diverse cohorts, including healthy ageing, and those with mild cognitive 

impairment and Alzheimer’s disease (Arenaza-Urquijo et al., 2013; Franzmeier et 

al., 2017; 2018). However, increased functional connectivity does not necessarily 

lend itself to a specific mechanistic interpretation per se. Using the mathematical 

formalism of graph theory, our results identify a relationship between premorbid 

intelligence and the capacity to promote functional integration, suggesting a 

possible dynamic mechanism that underpins the role of cognitive reserve in 

compensation. 

 

The use of overall brain volume as a measure of brain reserve in our study is 

somewhat underspecified. Whole-brain grey matter volume incorporates a host 

of factors, including neuronal count, neuronal integrity and synaptic density, 

which jointly determine the brain’s ability to engage compensatory activity. 

Despite this caveat, the structural integrity of nodes (and hence, the grey matter 

volume) is proposed to mediate network controllability, and therefore may 

explain the role of brain reserve in supporting resilience of large-scale networks 

in ageing and neurodegeneration (Medaglia et al., 2017). Such nodes may indeed 

mediate the overall flexibility of brain networks, and allow for transitions 

between segregated and integrated states (Pasqualetti et al., 2014). Here, we 

identified a relationship between brain volume and the capacity to move toward 

a more integrated state. This result is consistent with the proposed hypothesis 

that brain volume may serve as a proxy for network controllability, as it captures 

within it a measure of the structural integrity of nodes involved in network 

control  (Medaglia et al., 2017).  
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The prospect of compensatory network-level integration in the dopamine-

depleted state raises the question of the potential mechanism for this effect. One 

plausible hypothesis is the relative integrity of other neuromodulatory 

neurotransmitter systems that contribute to global brain network dynamics 

(Brezina, 2010). Aside from the widespread dopaminergic loss that characterises 

PD, the disease is also associated with neuropathological alterations within the 

brainstem nuclei that supply the brain with noradrenaline (Rye and DeLong, 

2003), acetylcholine (Müller and Bohnen, 2013) and serotonin (Politis and 

Niccolini, 2015). In the ‘Off’ state, compensatory drive may be determined by the 

degree of relative preservation in these nuclei and the ascending projections 

throughout the brain.  

 

In the context of promoting network level integration, in healthy individuals a 

link has been observed between the ascending noradrenergic neuromodulatory 

system and global functional integration (Shine et al., 2016; Shine, Aburn, et al., 

2018; Shine, van den Brink, et al., 2018), suggesting effective functioning of this 

system is crucial for modulating the gain and responsiveness of ongoing 

neuronal processing (Shine, Aburn, et al., 2018). In addition, it has been proposed 

that activation of the locus coeruleus noradrenergic system across the lifespan is 

a crucial determinant of later-life cognitive reserve (R. S. Wilson et al., 2013), 

potentially through brain derived neurotrophic factor-mediated neuroplasticity 

(Mather and Harley, 2016; Robertson, 2013). It follows that one possible 

mechanism supporting compensatory increases in integration in the 

dopaminergic ‘Off’ state may reflect a long-term compensatory strategy, 

mediated at least partially by the noradrenergic locus coeruleus. The implication 
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is that as system begins to fail, as is the case when locus coeruleus develops high 

levels of alpha-synuclein (Surmeier et al., 2017), the compensatory reserve is lost 

and a failure to effectively integrate the brain unmasks the clinical severity of 

symptoms of Parkinson’s disease. 

 

In addition to noradrenergic function, the multi-scale nature of the brain’s 

neuromodulatory network (Brezina, 2010) means it is likely that other 

neurotransmitter systems play a crucial role in mediating adaptive brain 

dynamics in the face of dopaminergic cell loss. For instance, there is a well-

demonstrated loss of cholinergic cell bodies in the basal nucleus in Parkinson’s 

disease (Müller and Bohnen, 2013). Given the recent links between the global 

brain signal and ascending cholinergic activity (Turchi et al., 2018), it is also 

plausible that impairments in the cholinergic system could adversely affect the 

topological signature of the network, or that the relative preservation of the 

cholinergic system might contribute to compensatory neural dynamics. The 

presence of serotonergic deficits (Politis and Niccolini, 2015) further points to a 

complex, multi-system pathological mechanism for compensation and 

impairment in Parkinson’s disease.  

 

In summary, we used a combination of time-resolved resting fMRI, graph 

theoretical analysis and the manipulation of dopaminergic therapy in individuals 

with idiopathic Parkinson’s disease to provide evidence for alterations in 

network topology that related to motor severity. These topological signatures 

demonstrated a relationship with both brain and cognitive reserve, suggesting a 

possible compensatory role, which may be mediated by the relative integrity of 

other neuromodulatory systems. Future work that disambiguates the causal 

relationships between neuromodulatory systems and large scale network 
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dynamics in PD, perhaps as a function of differing disease stage, will help to 

better clarify this and potentially uncover new avenues for pharmacological 

treatments.  
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Supplementary Figures 

 

Figure S1 – Relationship between network topology and neurocognitive reserve: a) 

relationship between cartographic profile (PD ‘Off’ > PD ‘On’) and education level (NART); 

b) relationship between cartographic profile (PD ‘Off’ > PD ‘On’) and grey matter volume (p 

< 0.05; not corrected for multiple comparisons). 
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