bioRxiv preprint doi: https://doi.org/10.1101/382994; this version posted August 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Dopamine Depletion Alters Macroscopic

Network Dynamics in Parkinson’s Disease

James M. Shine', Peter T. Bell'?, Elie Matar!, Russell A. Poldrack?, Simon J.G.
Lewis!, Glenda M. Halliday* and Claire O’Callaghan'?

Affiliations

1 Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia

2 The University of Queensland, Brisbane, QLD, Australia

3 Department of Psychiatry and Behavioural and Clinical Neuroscience
Institute, University of Cambridge, Cambridge, UK

4 Department of Psychology, Stanford University, Stanford, CA, USA

Corresponding author:

* James M. Shine — mac.shine@sydney.edu.au


https://doi.org/10.1101/382994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/382994; this version posted August 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Abstract

Parkinson’s disease is primarily characterised by diminished dopaminergic
function, however the impact of these impairments on large-scale brain
dynamics remains unclear. It has been difficult to disentangle the direct effects of
Parkinson’s disease from compensatory changes that reconfigure the functional
signature of the whole brain network. To examine the causal role of dopamine
depletion in network-level topology, we investigated time-varying network
structure in 37 individuals with idiopathic Parkinson’s disease, both ‘On” and
‘Off” dopamine replacement therapy, along with 50 age-matched, healthy control
subjects using resting-state functional MRI. By tracking dynamic network-level
topology, we found that the Parkinson’s disease ‘Oft” state was associated with
greater network-level integration than in the ‘On’ state. The extent of integration
in the ‘Off” state inversely correlated with motor symptom severity, suggesting
that a shift toward a more integrated network topology may be a compensatory
mechanism associated with preserved motor function in the dopamine depleted
‘Off’ state. Furthermore, we were able to demonstrate that measures of both
cognitive and brain reserve (i.e., premorbid intelligence and whole brain grey
matter volume) had a positive relationship with the relative increase in network
integration observed in the dopaminergic ‘Off" state. This suggests that each of
these factors plays an important role in promoting network integration in the
dopaminergic ‘Off’ state. Our findings provide a mechanistic basis for
understanding the PD “Off’ state and provide a further conceptual link with
network-level reconfiguration. Together, our results highlight the mechanisms

responsible for pathological and compensatory change in Parkinson’s disease.
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Introduction

Parkinson’s disease (PD) is a common neurological disorder characterised by
degeneration of the dopaminergic midbrain. This pathological insult to the
brainstem results in a severe dopamine depletion throughout ascending neural
pathways innervating the basal ganglia, thalamus and cortex (Braak et al., 2004).
The impact of such extensive dopaminergic loss on brain network dynamics
remains poorly understood, partly due to the fact that dopamine depletion has
been linked to both pathological and compensatory changes in brain network
organisation and connectivity (Bell et al., 2015; Bohnen and Martin, 2014; Poston

et al., 2017).

Studies utilising resting state fMRI in PD consistently show alterations in
functional connectivity that impact a diverse set of brain regions, including both
cortico-cortical and cortico-subcortical architectures. In the dopaminergic ‘Off’
state, cortico-striatal hyper-connectivity is often observed, particularly in motor
networks involving the subthalamic nucleus and primary motor cortex
(Baudrexel et al., 2011; Kwak et al., 2012; Wu et al., 2010). However, alterations in
inter-striatal connectivity, and across a range of cortico-striatal networks, have
also been shown (Bell et al, 2014; Helmich et al.,, 2010; Wu et al., 2010).
Importantly, many of these abnormalities are normalised with dopamine
replacement pharmacotherapy (Kwak et al., 2012; Wu et al., 2010), suggesting that
dopamine medication may play a role in both correcting pathological activity

and alleviating compensatory reorganisation.

The effects of pharmacological manipulation on functional brain network
architecture are often non-linear (Brezina, 2010; Marder, 2012; Tahmasian et al.,

2015). For instance, increases in neural activity when ‘Oft” dopaminergic therapy
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may reflect the compensatory engagement of non-dopaminergic systems of the
brainstem or network reorganisation across the cortex and subcortex. This
concept is supported by a general principal of compensation observed in ageing
and neurodegeneration, wherein relatively spared circuits and networks are
over-engaged to support dystunctional nodes (Grafman, 2000). In PD this effect
can be observed as shifts in the topography of cortico-striatal connectivity. For
example, less dopaminergically-depleted striatal zones (such as the anterior
putamen) may increase their coupling with cortical sensorimotor areas to
overcome relatively severe posterior striatal dopamine pathology (Hacker et al.,
2012; Helmich et al., 2010). Alternatively, cortico-cerebellar connections may be
increasingly engaged to offset impaired cortico-striatal function (O'Callaghan et
al., 2016; Wu and Hallett, 2013). When these instances of hyper-connectivity are
associated with preserved behavioral function, this implies an adaptive
reallocation of activity in response to focal pathological changes (Hillary and
Grafman, 2017). It is also possible that in some instances, functional circuit
reorganisation may represent a pathological loss of network segregation or
specialisation (Fornito ef al., 2015; Hillary and Grafman, 2017). This could
conceivably occur as a “knock-on” effect at the cortical network level, stemming
from a fundamental loss of segregation in basal ganglia sub-circuits (Nieuwhot et
al., 2017), which in turn would cause an increase in correlated activity in
previously segregated neural populations (Bar-Gad et al., 2003; C. ]J. Wilson,
2013).

Whether the changes are compensatory or pathological, the current mechanisms
supporting rearrangement of large-scale cortical patterns in the dopamine-
depleted state are unclear. Ultimately, the degree of compensatory wversus

maladaptive change may be determined by the relative balance between focused
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increases in connectivity and a more general loss of segregation. Importantly,
this concept can be examined using network analytic approaches. Using the
mathematical formalism of graph theory, network communities are taken to
represent densely interconnected neural elements in which local connections are
highly segregated. In contrast, network hubs integrate diverse communities,
enabling channels for effective information integration (Bertolero et al., 2017; van
den Heuvel and Sporns, 2013). These organisational principles are thought to
balance the specialisation of function with the integration of information (Deco et
al., 2015; Park and Friston, 2013), and this balance gives rise to complex neural
dynamics that span multiple spatiotemporal scales (Deco et al., 2013; Honey et al.,

2012).

Here, we used time-resolved functional connectivity of resting state fMRI in
combination with graph theoretical analyses to determine the balance between
integration and segregation in the face of dopaminergic depletion in Parkinson’s
disease. To date, studies of network topology in neurological disease have
largely focused on structural brain networks and time-averaged resting-state
functional networks, which represent an inherently ‘static’ snapshot of brain
architecture (Breakspear, 2017). However, recent advances in the statistical
analysis of time-varying resting-state functional MRI data have demonstrated
that functional brain organisation is dynamic over the course of seconds to
minutes (Betzel et al., 2016; Shine et al., 2016; Zalesky et al., 2014) and that
fluctuating network dynamics are crucial for normal cognitive (Hearne ef al.,
2017; Shine et al., 2016) and motor (Bassett ef al., 2011) function. Examination of
time varying functional network architecture provides an opportunity to explore
the balance between segregated and integrated neural dynamics in both health

and disease.
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In determining the impact of dopamine depletion on dynamic network
architecture in PD, we further aimed to establish whether certain functional
patterns in the “Off’ state may be linked to a compensatory mechanism. Defining
compensatory activity in neurodegeneration is a nontrivial problem (Gregory et
al., 2017). Brain and cognitive reserve, respectively, refer to aspects of structural
integrity that support increased functional resilience, and the preservation of
function in the face of underlying degeneration (Fratiglioni and Wang, 2007).
Importantly, these concepts can be operationalised using grey matter integrity
(as a surrogate of brain reserve) and educational level or general intelligence
quotient (as a surrogate of pre-morbid cognitive reserve) (Stern, 2017). These
metrics can then be compared to network-level topological changes to provide an
estimate of the extent to which brain organisation is related to functional and

structural resilience.

To examine the dynamic network architecture of the resting brain in the ‘Oft’
compared with the ‘On’ dopaminergic state, we related network topology to
motor function in the ‘Off" state, and also to measures of cognitive and brain
reserve. We hypothesised that removal of dopaminergic medications would lead
to a relatively integrated network topology, which should also relate to a
preservation of motor function in the ‘Off” state. In addition, any compensatory
pattern should be observed in the positive relationship between network

topology and both cognitive and brain reserve.

Materials and Methods

Participants
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37 patients were recruited from the Parkinson’s Disease Research Clinic at the
Brain and Mind Centre, University of Sydney, Australia. All patients satisfied the
United Kingdom Parkinson’s Disease Society Brain Bank criteria and were not
demented (Martinez-Martin et al., 2011). Patients were assessed on the Hoehn
and Yahr Scale and the motor section of the unified Parkinson’s disease rating
scale (UPDRS-III) in the dopaminergic ‘Off’ state. The Mini-mental state

examination (MMSE) was administered as a measure of general cognition.

Participants with Parkinson’s disease were assessed on two occasions: ‘On’ their
regular dopaminergic medications and ‘Oft” following overnight withdrawal (i.e.
12-18 hours) of dopaminergic medications (5.2 = 1.4 weeks between sessions).
Dopaminergic dose equivalence (DDE) scores were calculated for each patient.
Specifically, 10 patients were on L-dopa monotherapy; 9 were on L-dopa plus a
dopaminergic agonist; a further 8 were on L-dopa plus adjuvant therapy
(rasagaline, entacapone or a monoamine oxidase inhibitor); 7 were on a
combination of L-dopa, dopaminergic agonist and adjuvant therapy; one patient
was on dopaminergic agonist monotherapy, and two were on an agonist plus

adjuvant therapy. No participant was taking any psychoactive medications.

50 healthy controls were recruited to participate in the study. Control
participants were screened for a history of neurological or psychiatric disorders,
and no controls were using psychoactive medications. Patients with PD and
healthy controls were matched for age and education. The study was approved
by the local Ethics Committees and all participants provided informed consent in
accordance with the Declaration of Helsinki. See Table 1 for demographic details

and clinical characteristics.
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Behavioural and neuropsychological assessment
Mood was assessed via a self-report questionnaire, the Beck Depression

Inventory-II (BDI-II; Beck et al., 1996). Patients were also administered the
National Adult Reading Test (NART (Bright et al., 2016), and their predicted

pre-morbid full scale IQ was calculated. The NART is an established measure of
premorbid intelligence and serves as a surrogate of cognitive reserve, with the
benefit of offering greater variance than years of education in a homogenous
sample (Stern et al., 2003). These measures were assessed in the dopaminergic

‘On’ state. Results from these measures are also shown in Table 1.

Table 1. Mean (standard deviation) for demographics and patient clinical characteristics.

Control PD
N 50 37
Sex (M:F) 14:36 29:8
Age 65.82 (7.8) 65.05 (7.2)
Education 13.51 (2.8) 13.50 (3.0)
MMSE 29.00 (1.2) 28.59 (2.2)
BDI-II 9.41 (7.3) 10.67 (8.6)
Duration (yrs diagnosed) - 6.41 (4.2)
DDE (mg/day) - 808.54 (503.0)
Hoehn & Yahr stage - 2.14 (0.8)
UPDRS 111, “Off’ - 32.00 (16.3)
NART - 111.08 (10.3)

MMSE = Mini-Mental State Examination; DDE = Dopaminergic dose equivalence; UPDRS III =

Motor section of the unified Parkinson’s disease rating scale; BDI-II = Beck Depression Inventory-
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II. There were no significant differences in age, education, MMSE or BDI-II between the two

groups, though there were differences in gender (p < 0.05).

Imaging acquisition

Imaging was conducted on a General Electric 3 Tesla MRI (General Electric,
Milwaukee, USA). Whole-brain three dimensional T1-weighted sequences were
acquired as follows: coronal orientation, matrix 256 x 256, 200 slices, 1 x 1 mm?
in-plane resolution, slice thickness 1 mm, TE/TR = 2.6/5.8 ms. T2*-weighted echo
planar functional images were acquired in interleaved order with repetition time
(TR) =3 s, echo time (TE) = 32 ms, flip angle 90°, 32 axial slices covering the whole
brain, field of view (FOV) =220 mm, interslice gap = 0.4 mm, and raw voxel size
= 3.9 mm by 3.9 mm by 4 mm thick. Each resting state scan lasted 7 min (140
TRs). During the resting-state scan, patients were instructed to lie awake with

their eyes closed and to let their minds wander freely.

Resting state fMRI data

Preprocessing and analyses of resting state data were conducted using SPM12
(http://www fil.ion.ucl.ac.uk/spm/software/). Scans were first slice-time corrected
to the median slice in each TR, then realigned to create a mean realigned image,
with measures of 6 degrees of rigid head movements calculated for later use in
the correction of minor head movements. For quality assurance, each trial was
analyzed using ArtRepair (Mazaika et al., 2009) and trials with a large amount of
global drift or scan-to-scan head movements greater than 1 mm were corrected
using interpolation. None of the subjects included in this study demonstrated
scan-to-scan head movements >3mm (less than one voxel breadth). Images were

normalized to the Echo Planar Image template, resampled to 3mm isotropic
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voxels and then subsequently smoothed using a 4mm full-width half-maximum

isotropic Gaussian kernel.

Temporal artifacts were identified in each dataset by calculating framewise
displacement (FD) from the derivatives of the six rigid-body realignment
parameters estimated during standard volume realignment (Power et al., 2014),
as well as the root mean square change in BOLD signal from volume to volume
(DVARS). Frames associated with FD > 0.25mm or DVARS > 2.5% were
identified, however as no participants were identified with greater than 10% of
the resting time points exceeding these values, no sessions were excluded from
further analysis. However, to ensure that neither head motion or the global
signal were responsible for any group effects, we re-ran the analysis after: i)
scrubbing data with FD > 0.25mm or DVARS > 2.5%; or ii) global signal

regression. Both analyses revealed similar group-level effects.

Following artifact detection, nuisance covariates associated with the 12 linear
head movement parameters (and their temporal derivatives), FD, DVARS, and
anatomical masks from the CSF and deep cerebral WM were regressed from the
data using the CompCor strategy (Behzadi et al., 2007). In keeping with previous
time-resolved connectivity experiments (Bassett et al., 2015), a temporal band
pass filter (0.071 < f < 0.125 Hz) was applied to the data. Finally, given the
importance of head motion in functional connectivity analyses, we compared
mean framewise displacement (Power et al., 2014) across the entire resting state

session across the three groups (controls, PD ‘On” and PD “Off").

Brain parcellation

10
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Following pre-processing, the mean time series was extracted from 347 pre-
defined parcels. To ensure whole-brain coverage, we extracted: 333 cortical
parcels (161 and 162 regions from the left and right hemispheres, respectively)
using the Gordon atlas (Gordon et al., 2014) and 14 subcortical regions from
Harvard-Oxford subcortical atlas (bilateral thalamus, caudate, putamen, ventral
striatum, globus pallidus, amygdala and hippocampus; http://fsl.tmrib.ox.ac.uk/)

for each participant in the study.

Time-resolved functional connectivity

To estimate functional connectivity between the 347 parcels, we used the
Multiplication of Temporal Derivatives; MTD metric (Shine et al., 2015). The
MTD is computed by calculating the point-wise product of temporal derivative
of pairwise time series (Equation 1). The MTD is averaged by calculating the
mean value over a temporal window, w. Time-resolved functional connectivity
was calculated between all 347 brain regions using the MTD within a sliding
temporal window of 15 time points (~33 seconds), which allowed for estimates of
signals amplified at approximately 0.1 Hz (Shine et al., 2015). Individual
functional connectivity matrices were then calculated within each temporal
window, thus generating a weighted 3-dimensional adjacency matrix (region x

region x time) for each participant.

t+W/, (dtiexdtje)

1
) [1]

1
MTD;j = ;Z

_w
t="/2 (Jdtixo'dtj

Equation 1 — Multiplication of Temporal Derivatives, where for each time point, ¢, the MTD for
the pairwise interaction between region i and j is defined according to equation 1, where dt is the
first temporal derivative of the i or jt time series at time f, ¢ is the standard deviation of the

temporal derivative time series for region i or j and w is the window length of the simple moving
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average. This equation can then be calculated over the course of a time series to obtain an

estimate of time-resolved connectivity between pairs of regions.

Time- resolved community structure

The Louvain modularity algorithm was applied to the functional connectivity
time series using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010).
The Louvain algorithm iteratively maximizes the modularity statistic, Q, for
different community assignments until the maximum possible score of Q has
been obtained (Equation 2). The modularity estimate for a given adjacency
matrix quantifies the extent to which the network may be subdivided into
communities with stronger within-module than between-module connections.
Using this technique, time-averaged and time-resolved community structure was

calculated for each participant.

Qr = %Zi]’(wi—;’ - 6;})5MiMj - ;Zij(wi; - ei;)(SMiMf 2l

I

Equation 2 - Louvain modularity algorithm, where v is the total weight of the network (sum of
all negative and positive connections), wj is the weighted and signed connection between regions
i and j, ey is the strength of a connection divided by the total weight of the network, and omiy is
set to 1 when regions are in the same community and 0 otherwise. ‘+’ and '~ superscripts denote

all positive and negative connections, respectively.

For each temporal window, regional community assignment was assessed 500
times and a consensus partition was identified using a fine-tuning algorithm
from the Brain Connectivity Toolbox. This then afforded an estimate of both the
time resolved modularity (Qr) and cluster assignment (Cir) within each temporal
window for each participant in the study. To define an appropriate value for the

Y parameter, we iterated the Louvain algorithm across a range of values (0.5-2.5
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in steps of 0.1) for 100 iterations of a single subject’s (subl) time-averaged
connectivity matrix and then estimated the similarity of the resultant partitions
using mutual information. A y parameter of 1.1 provided the most robust
estimates of topology across these iterations (quantified by the minimum

standard deviation across 100 iterations of the Louvain algorithm).

Cartographic profiling

Based on time-resolved community assignments, we estimated within-module
connectivity by calculating the time-resolved module-degree Z-score (Wr; within
module strength) for each parcel (Equation 3) (Guimera and Nunes Amaral,

2005).

_ KiT_kS'T
Wy = o ]
"sir
Equation 3 — Module degree Z-score, Wir, where wir is the strength of the connections of region i
to other regions in its module si at time T, £, is the average of x over all the regions in s: at time

T, and Oy, is the standard deviation of k in si at time T.
L

To calculate between-module connectivity (Br), we used the participation
coefficient, Br, quantifying the extent to which a region connects across all

modules (i.e. between-module strength; equation 4).

By =1 -y, (%)’ f

Kir
Equation 4 - Participation coefficient Bir, where it is the strength of the positive connections of
region i to regions in module s at time T, and i is the sum of strengths of all positive connections
of region i at time T. The participation coefficient of a region is therefore close to 1 if its
connections are uniformly distributed among all the modules and 0 if all of its links are within its

own module.
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To track fluctuations in cartography over time, for each temporal window, we
computed a joint histogram of within- and between-module connectivity
measures, referred to here as a “cartographic profile” (Figure 1b). Code for this

analysis is freely available at https://github.com/macshine/integration/.

Regional Flexibility

The flexibility of each brain parcel was calculated by the percentage of temporal
windows in which an individual region ‘switched” between modules, normalized
to the total number of modules in the data (as estimated in the previous step).
Code was obtained directly from the original author
(http://www.danisbassett.com/resources/). As the modular assignment was
essentially arbitrary within each unique temporal window, we used a version of
the Hungarian algorithm to assign regions to modules with consistent values

over time.

Grey matter extraction

Grey matter extraction was performed using the FMRIB software library package
FSL (http://www.fmrib.ox.ac.uk/fsl/). Scans were skull-stripped using the BET
algorithm in FSL (Smith, 2002) and tissue segmentation was completed using
FMRIB’s Automatic Segmentation Tool (FAST v4.0) (Zhang et al., 2001). A study-
specific grey matter template was created using the maximum equal number of
scans from both groups (37 from each) and registered to the Montreal
Neurological Institute Standard space (MNI 152) using a non-linear b-spline
representation of the registration warp field. Grey matter partial volume maps
were non-linearly registered to the study template and modulated by dividing

by the Jacobian of the warp field, to correct for any contraction/enlargement

14
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caused by the non-linear component of the transformation; this step corrects for
total intracranial volume (ICV) so that it does not need to be included as a
confounding covariate (Good et al., 2002). After normalisation and modulation,
the grey matter maps were smoothed with an isotropic Gaussian kernel with a

sigma of 2 mm.

Whole brain grey matter volume (mm?®) was then extracted for each participant.
The total volume of non-zero voxels was extracted from the grey matter mask
automatically generated from FAST. Using the smoothed and registered images,
the mean proportion of grey matter per voxel from non-zero voxels was
extracted for each subject using fslstats. Multiplying the volume within the mask
by each subjects’ mean grey matter proportion inside the mask gave a measure of
total grey matter volume for each person. We used whole brain grey matter
volume (corrected for total ICV), a specific indicator of grey matter structural
integrity, as our measure of brain reserve. For completeness, we also calculated
total ICV, as it is a commonly used proxy for brain reserve. Total ICV was
calculated for each individual by summing the segmented grey matter, white
matter and cerebrospinal fluid volumes obtained from the FAST procedure. We
re-ran our analysis using total ICV as a measure of brain reserve to confirm that
similar results were obtained using both total grey matter volume and total ICV

as indicators of brain reserve.

Statistical analyses

To determine whether there were any abnormalities in functional network
topology between groups, the mean cartographic profile for each PD patient was
compared between medication states (paired-sample t-test for each bin of the

cartographic profile; FDR q < 0.05) and between groups (independent-samples t-
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test for each bin; FDR q < 0.05). Regional Wr and Br scores were also compared

across groups using independent-samples t-tests.

To determine the clinical relevance of functional network reconfiguration, we
measured the correlation of the difference in the cartographic profile between the
‘Off and ‘On’ state with the severity of motor impairments in the ‘Off’ state
(measured using UPDRS III) using a Spearman’s rho correlation (due to the non-

parametric nature of the data).

To determine whether network level integration related to brain reserve in the
individuals with PD, we fit a general linear model which fit grey matter volume,
predicted full scale IQ (as estimated using normalised National Adult Reading
Test [NART] scores) and the interaction between these two measures of reserve
(i.e. GM*NART) to the amount of integration present in the ‘Off" vs ‘On’ state,
while co-varying for age. Separate analyses were conducted at the global (i.e.

cartographic profile) and regional (i.e. parcel-wise) level.

Results

Head motion

There were no significant differences in head movement between healthy
controls and individuals with PD in either medication state (mean framewise
displacement: controls 4.9x10* + 3.3x104, PD ‘On”: 5.7x10* + 5.3x104;, PD “Off":
5.8x10 £ 5.0x10*; all p > 0.200) or between dopaminergic states in the PD group
(p > 0.200).

Relationship between network topology and dopaminergic state
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In the dopaminergic ‘Off’ state, individuals with PD demonstrated a more
integrated functional network topology than those ‘On” medication or healthy
controls (Figure lab; p < 0.001). The magnitude of regional between-module
integration was significantly higher in the ‘Off” state (relative to the ‘On’ state)
across medial and lateral frontoparietal cortical regions (Figure 1b). These
changes were diffusely mediated across multiple sub-systems, including

frontoparietal, cingulo-opercular, salience and dorsal attention networks (Figure

1c,d).
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Figure 1 — Network topology as a function of dopaminergic state: a) global mean
participation coefficient (Br) in controls (blue), PD ‘On’ (teal) and PD ‘Off’ (red) - p < 0.001;
b) cartographic profile comparing PD ‘Off’ > PD ‘On’ - subjects were more integrated (i.e.
rightward shift on the Br axis) in the ‘Off’ compared to the ‘On’ state; c) force-directed plots
comparing PD ‘On’ and ‘Off dopaminergic medication — edges represent top 1% of
connections in time-averaged connectivity matrix and colors of nodes reflect pre-defined
network identity of each region; d) surface plot of regions with significantly increased

participation (Br) during ‘Off’ state.
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Relationship between network topology and motor symptom severity

There was a significant inverse correlation between network-level integration
and UPDRS III scores as measured in the ‘Off” state (Figure 2a) that was maximal
in right dorsolateral prefrontal cortex, bilateral dorsal anterior cingulate, bilateral
retrosplenial cortex and sensorimotor cortex (Figure 2b). This is consistent with
greater integration in those regions being associated with less severe motor

impairment on UPDRS motor scale.
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Figure 2 — Relationship between network topology and motor severity: a) inverse
relationship between cartographic profile (PD ‘Off > PD ‘On’) and UPDRS III (motor)
severity (estimated in the dopaminergic ‘Off" state) — greater integration (i.e. rightward shift
on the Br axis) was inversely correlated with motor severity; b) parcels with significant

inverse correlation between Br (‘Off’ > ‘On’) and UPDRS III - FDR q < 0.05.

Effects of dopaminergic state on regional flexibility
Regions were more likely to switch their modular allegiance more frequently in
the dopaminergic ‘Off’ state as compared to the ‘On’ state. We observed a

distributed set of insular, frontal and parietal regions that demonstrated an
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increase in topological flexibility and/or decreased modular stability in the
resting state following dopaminergic withdrawal (Figure 3). We did not observe

a relationship between flexibility and motor severity (all p > 0.05).

" (s o) Mmooy paseonup

Figure 3 - Topological flexibility as a function of dopaminergic state: regions with
increased topological flexibility (increased frequency of modular switching) in the ‘Off’ >
‘On” dopaminergic state — FDR q < 0.05. No regions showed a significant decrease in

flexibility in the ‘Off’ state.

Relationship between network topology and brain reserve

Using a linear mixed effects model specifying GM (Figure Sla), NART (Figure
S1b) and GM*NART (Figure 4a) adjusting for age and gender as fixed covariates,
we observed a positive relationship (FDR q < 0.05) between network topology
and the interaction between grey matter volume and NART-predicted IQ scores)
that was maximal in frontal cortex, insula, thalamus and amygdala (Figure 4b;

FDR q < 0.05).
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Figure 4 — Relationship between network topology and neurocognitive reserve: a)
relationship between cartographic profile (PD ‘Off’ > PD ‘On’) and interaction between grey
matter volume and education level (NART) - FDR q < 0.05 — subjects with greater NART and
GM scores were more integrated (i.e. rightward shift on the Br axis) in the “Off’ compared to
the ‘On’ state; b) regions with significant relationship between Br (‘Off’ > ‘On’) and the
interactions between brain (mean grey matter) and cognitive (NART) reserve, estimated

using a linear mixed effects model — FDR q < 0.05.

Discussion

In this study, we demonstrated causal evidence for large-scale network
reconfiguration in the ‘Off’ state in individuals with idiopathic Parkinson’s
disease as compared to the dopaminergic ‘On’ state, consistent with an increase
in topological integration (Figure 1) and flexibility (Figure 3). Within this general
shift toward a more integrated state, a distributed set of regions were inversely
correlated with motor symptom severity (Figure 2), suggesting that increased
integration may provide compensatory processes that offset clinical motor
severity. Furthermore, we showed an association between the magnitude of
integration in the ‘Off’ state and measures of grey matter volume and premorbid

intelligence. This suggests that a topological shift in response to dopamine
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depletion is related to neurocognitive reserve (Figure 4). Together these results
show that the etfect of dopamine depletion in PD results in a global shift toward
integration, and, that this increased integration may serve some compensatory
function, the extent of which may be determined by underlying cognitive and

brain reserve.

Withdrawal from dopamine replacement therapy altered network topology in
the medial frontal, lateral parietal and anterior temporal cortices (Figure 1d).
Importantly, these regions also exhibited an increase in topological flexibility in
the ‘Off state, suggesting that they were not effectively “locked” into an
integrated state, a result that may have argued against a possible compensatory
role for increased integration in ‘Off’ state. Similar regions were inversely
correlated with ‘Off" state motor symptom severity (Figure 2b), suggesting that
regional and network-level integration may help maintain motor function in the

face of dopamine depletion.

The possibility that increased topological integration in the face of dopamine
depletion may be associated with a compensatory function supports and extends
a growing literature that highlights the importance of network level hyper-

connectivity as an adaptive response to local pathological change in

neurodegenerative disorders (Gregory et al., 2018; Hillary and Grafman, 2017;

O'Callaghan et al., 2016). In PD, this response has previously been observed and

interpreted based on static measures of resting state fMRI (Helmich et al., 2010;
O'Callaghan et al., 2016; Wu et al., 2010). Here, we provide a description of the

underlying dynamic processes that might support these enhanced activations.
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Prior work has highlighted a link between increased resting state functional
connectivity and markers of cognitive reserve (e.g., greater years of education) in
diverse cohorts, including healthy ageing, and those with mild cognitive
impairment and Alzheimer’s disease (Arenaza-Urquijo ef al., 2013; Franzmeier et
al., 2017; 2018). However, increased functional connectivity does not necessarily
lend itself to a specific mechanistic interpretation per se. Using the mathematical
formalism of graph theory, our results identify a relationship between premorbid
intelligence and the capacity to promote functional integration, suggesting a
possible dynamic mechanism that underpins the role of cognitive reserve in

compensation.

The use of overall brain volume as a measure of brain reserve in our study is
somewhat underspecified. Whole-brain grey matter volume incorporates a host
of factors, including neuronal count, neuronal integrity and synaptic density,
which jointly determine the brain’s ability to engage compensatory activity.
Despite this caveat, the structural integrity of nodes (and hence, the grey matter
volume) is proposed to mediate network controllability, and therefore may
explain the role of brain reserve in supporting resilience of large-scale networks
in ageing and neurodegeneration (Medaglia ef al., 2017). Such nodes may indeed
mediate the overall flexibility of brain networks, and allow for transitions
between segregated and integrated states (Pasqualetti ef al., 2014). Here, we
identified a relationship between brain volume and the capacity to move toward
a more integrated state. This result is consistent with the proposed hypothesis
that brain volume may serve as a proxy for network controllability, as it captures
within it a measure of the structural integrity of nodes involved in network

control (Medaglia et al., 2017).
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The prospect of compensatory network-level integration in the dopamine-
depleted state raises the question of the potential mechanism for this effect. One
plausible hypothesis is the relative integrity of other neuromodulatory
neurotransmitter systems that contribute to global brain network dynamics
(Brezina, 2010). Aside from the widespread dopaminergic loss that characterises
PD, the disease is also associated with neuropathological alterations within the
brainstem nuclei that supply the brain with noradrenaline (Rye and DeLong,
2003), acetylcholine (Miiller and Bohnen, 2013) and serotonin (Politis and
Niccolini, 2015). In the “Off’ state, compensatory drive may be determined by the
degree of relative preservation in these nuclei and the ascending projections

throughout the brain.

In the context of promoting network level integration, in healthy individuals a
link has been observed between the ascending noradrenergic neuromodulatory
system and global functional integration (Shine et al., 2016; Shine, Aburn, et al.,
2018; Shine, van den Brink, ef al., 2018), suggesting effective functioning of this
system is crucial for modulating the gain and responsiveness of ongoing
neuronal processing (Shine, Aburn, ef al., 2018). In addition, it has been proposed

that activation of the locus coeruleus noradrenergic system across the lifespan is
a crucial determinant of later-life cognitive reserve (R. S. Wilson et al., 2013),

potentially through brain derived neurotrophic factor-mediated neuroplasticity
(Mather and Harley, 2016; Robertson, 2013). It follows that one possible
mechanism supporting compensatory increases in integration in the
dopaminergic ‘Off’ state may reflect a long-term compensatory strategy,

mediated at least partially by the noradrenergic locus coeruleus. The implication

23


https://doi.org/10.1101/382994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/382994; this version posted August 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

is that as system begins to fail, as is the case when locus coeruleus develops high
levels of alpha-synuclein (Surmeier et al., 2017), the compensatory reserve is lost
and a failure to effectively integrate the brain unmasks the clinical severity of

symptoms of Parkinson’s disease.

In addition to noradrenergic function, the multi-scale nature of the brain’s
neuromodulatory network (Brezina, 2010) means it is likely that other
neurotransmitter systems play a crucial role in mediating adaptive brain
dynamics in the face of dopaminergic cell loss. For instance, there is a well-
demonstrated loss of cholinergic cell bodies in the basal nucleus in Parkinson’s
disease (Miiller and Bohnen, 2013). Given the recent links between the global
brain signal and ascending cholinergic activity (Turchi et al., 2018), it is also
plausible that impairments in the cholinergic system could adversely affect the
topological signature of the network, or that the relative preservation of the
cholinergic system might contribute to compensatory neural dynamics. The
presence of serotonergic deficits (Politis and Niccolini, 2015) further points to a
complex, multi-system pathological mechanism for compensation and

impairment in Parkinson’s disease.

In summary, we used a combination of time-resolved resting fMRI, graph
theoretical analysis and the manipulation of dopaminergic therapy in individuals
with idiopathic Parkinson’s disease to provide evidence for alterations in
network topology that related to motor severity. These topological signatures
demonstrated a relationship with both brain and cognitive reserve, suggesting a
possible compensatory role, which may be mediated by the relative integrity of
other neuromodulatory systems. Future work that disambiguates the causal

relationships between neuromodulatory systems and large scale network

24


https://doi.org/10.1101/382994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/382994; this version posted August 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

dynamics in PD, perhaps as a function of differing disease stage, will help to
better clarify this and potentially uncover new avenues for pharmacological

treatments.
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Figure S1 - Relationship between network topology and neurocognitive reserve: a)
relationship between cartographic profile (PD ‘Off" > PD ‘On’) and education level (NART);
b) relationship between cartographic profile (PD ‘Off’ > PD ‘On’) and grey matter volume (p

< 0.05; not corrected for multiple comparisons).
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