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Abstract 

Face memory abilities are at the core of human social interaction, yet these vary widely within 

the general population, ranging from developmental prosopagnosia to “super-recognizers”. 

Previous work has focused mainly on the contribution of the well described face network to this 

variance. However, given the nature of the face memory task, and the social context in which it 

takes place, we were interested in exploring how the collaboration between different networks 

outside the face network (measured through resting state connectivity) affects performance on 

face memory tasks. We discovered that face recognition memory is supported by a wide 

network of connections between the face patches, memory regions, auditory regions and social 

networks. Moreover, this network was selective for memory for faces, and did not predict 

memory for other visual objects, such as cars. 

 

Introduction 

Memory for faces is one of the core capacities of the human mind. The ability to recognize 

people, and to know whether the person in front of us is familiar or not, is fundamental to our 

social functioning, a cornerstone of humanity. And yet, within the general, healthy population 

there is a great degree of variance in terms of ability to remember and recognize both familiar 

and novel faces 1-3.  

The neural underpinnings of visual face processing have been studied extensively 4-8, resulting 

in the identification of several patches in the ventral visual stream along the fusiform gyrus 

such as the occipital face area (OFA), the fusiform face area (FFA), and more recently, a more 

anterior patch in the ventral anterior temporal lobe (ATL) which are highly selective for face 

stimuli, responding more to faces than to any other visual category 9, 10. These regions, along 

with the amygdala, parts of the lateral occipital sulcus (LOS) and the posterior superior 

temporal sulcus (pSTS) are largely regarded as the elements comprising the face network 11, 12. 

Lesion and stimulation studies have shown that face perception and recognition are impaired 

when these regions are compromised 11, 13. The degree of activation and selectivity within this 

face network in response to face stimuli has been linked to better performance on face 
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memory tasks in numerous studies 1, 14, 15, with patients with congenital prosopagnosia 

demonstrating significantly reduced selectivity within these regions 16, 17. Connectivity between 

nodes of the face network has been shown to correlate with increased selectivity 18, and 

activity in this region can be used to decode faces 19. However, studies investigating the link 

between resting state functional connectivity and face recognition memory abilities have been 

scarce and limited in scope, focusing almost exclusively on correlations within the face network 

itself, and of the face network with early visual cortex. These have shown decreased 

connectivity between these nodes in individuals with congenital prosopagnosia 9, 20, and 

predictive value for the correlation between OFA and FFA for performance on face recognition 

tasks 21. Studies using Diffusion Tensor Imaging (DTI) have identified reduced structural 

connectivity along the ventral occipito-temporal cortex, in white matter tracts projecting from 

the occipital face regions to anterior temporal regions 22. 

The story of face recognition memory, across the full range of abilities, from cases where it is 

severely disrupted without any apparent brain insult, such as in congenital prosopagnosia, 

through typical individuals to those with exceptional abilities, has so far been examined 

primarily if not exclusively through the face network. Yet surely, given the nature of the 

processes involved in face recognition and the context in which it is performed, both memory 

and social networks must also be profoundly involved. We therefore set out on a whole brain 

search to characterize the networks outside the face patches that underpin face recognition 

memory, by searching for regions whose connectivity with the ventral face patches predicts 

face memory ability. 

 

Results 

Behavioral tests and ROI localization 

Prior to the fMRI scan, participants came in for a behavioral testing session, which included 

administration of the Cambridge Face Memory Test (CFMT) 23, a widely utilized measure of face 

memory ability, as well as the Cambridge Car Memory Test (CCMT) 24 in counterbalanced order, 

outside the MRI scanner. Performance on the two tests was significantly correlated across our 
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50 participants (r = 0.45 p < 0.0005, two tailed t-test), and they were well matched for difficulty, 

with no significant difference in the mean scores of the tests (mean score = 78.2 for the CFMT, 

75.1 for the CCMT). Participants then went on to do an fMRI scan, which included two rest 

scans, two face/scene localizer runs, and one movie run. All runs were approximately nine 

minutes long (see methods for more details). We began by using the face/scene localizer runs 

to identify the ventral face patches (bilateral OFA, bilateral FFA, and right ATL), as well as 

bilateral amygdala in each individual participant (N=50). Left ATL was difficult to localize in 

some participants (congruent with the known right bias for the face network and specifically for 

ATL 11) and was therefore excluded. These regions of interest (ROIs) were defined as 6mm 

radius spheres around the center of mass of each cluster. Figure 1 shows the location of these 

regions for a representative participant.  

 

Figure 1 

Location of face ROIs. Map 

showing sample location of the 

seven individually localized face 

ROIs, in one representative 

participant. ATL – anterior 

temporal lobe face region, FFA – 

fusiform face area, OFA – 

occipital face area. 
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Face selectivity 

Next, we sought to reproduce previous findings linking selectivity for faces within the face 

regions to performance on the face memory task 1, 14, 15. We first defined selectivity as the 

difference of the beta values of the face > scene condition in the localizer runs for each 

participant, averaged across the voxels in each of our individually defined face patches. We 

then correlated this selectivity value across participants, with their performance on the CFMT 

and CCMT. Selectivity of the right FFA was significantly correlated with performance on the 

CFMT (r = 0.33, p = 0.026), but not with performance on the CCMT (r = 0.15 p = 0.3). Selectivity 

of right OFA was trending toward significant correlation with the CFMT (r = 0.28, p = 0.06) but 

not with the CCMT (r = 0.07, p = 0.62). The other face ROIs were not significantly correlated to 

either CFMT or CCMT performance. The correlation between selectivity and performance on 

the CFMT increased when the selectivity was averaged across several of the face ROIs and was 

strongest when averaged across the three right ventral face patches, right OFA, right FFA and 

right ATL, as displayed in Figure 2 (r = 0.4, p = 0.007). 

 

Figure 2 

Face selectivity. Face-scene beta 

during the two localizer runs 

averaged across all voxels in the 

three right ventral face patches 

(right OFA, right FFA and right 

ATL) shown on the x-axis per 

participant, with CFMT scores 

shown on the y-axis. R = 0.4, P = 

0.007, N=46, as four participants 

were excluded because they had 

been given a different version of 

the localizer task (see methods). 
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Extending the network 

Having reproduced the findings relating to the correlation between selectivity and face memory 

abilities within the face network in the localizer data, we turned to the resting state data. The 

goal was to search for regions beyond the face network, which interact with the face network in 

a meaningful way in relation to face memory abilities. To this end, we took each one of our face 

ROIs as a seed and calculated the correlation of the time course of each voxel in the brain with 

the time course of that seed during rest, for each participant. We then calculated for each 

voxel, across participants, the second order correlations with the CFMT score, by correlating for 

each voxel its correlations to the seed with the CFMT scores. This gave us a measure for each 

voxel of how predictive its correlation with the face seed region was to behavior, as measured 

by the CFMT score. We repeated this analysis for each of the 7 face ROIs, and for both rest 

scans. To validate the findings, we constrained our results for each seed to voxels that had 

significant second order correlations to behavior across both rest scans, corrected for multiple 

comparisons using a strict cluster size permutation test (see methods). The corrected maps 

showing the voxels whose correlation with right ATL, FFA and OFA were significantly predictive 

of behavior are displayed in Supplementary Figures 1-3, respectively, and are largely 

overlapping, as were maps for the other seed regions. A similar analysis was conducted with 

correlation to non-face memory scores, as measured by the CCMT, but no significant clusters 

were found. 
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Figure 3 

Group defined ROI locations. Locations of all 25 group defined ROIs. Light green: somatosensory, dark green: IFG, 

blue: insula and anterior insula, dark purple: STG/auditory cortex, magenta: STS, brown: dorsal attention stream, 

yellow: medial parietal, orange: cuneus, black: thalamus, cyan: hippocampus, red: parahippocampus, dark red: 

parahippocampus2. 

 

We next identified the peaks of the clusters that were predictive of CFMT scores across the two 

rest scans and survived correction for multiple comparisons in any of the second order 

correlation seed maps, and defined those as new ROIs, with 6mm radius spheres. 25 such ROIs 

were identified, some in medial parietal and medial temporal regions, others in inferior frontal 

gyrus (IFG), somatosensory regions, along the insula, auditory cortex in the superior temporal 

gyrus, and the dorsal attention stream. This analysis also picked out a region in the lateral 

occipital sulcus (LOS) and another in posterior superior temporal sulcus (pSTS), both of which 

are often included in the face network. These ROIs are shown in Figure 3. This approach was 
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motivated by the hypothesis that it is the connectivity between the face network and other 

memory/social networks which underlies face memory, congruent with the ROIs identified in 

this manner. However, we also took a completely data driven approach, ignoring the face ROIs 

defined by the localizer scans. Instead, we calculated for each participant for each voxel the 

global connectivity of that voxel (i.e. the average correlation of that voxel to all other voxels), 

and then calculated the second order correlation of the global connectivity with the CFMT 

scores. Figure 4 shows the corrected map of voxels in which this global connectivity was 

significantly correlated to performance on the CFMT in both rest scans separately, with the 

ROIs from the face patch connectivity analysis overlaid. The peaks of the two analyses overlap 

almost entirely, except that the global connectivity analysis also picks out the face ROIs, which 

are absent in the previous analysis, while a few of the ROIs, most notably bilateral IFG, are 

missing in the global connectivity approach. We carried out a similar analysis looking at the 

correlation between the global connectivity and the CCMT scores but found no significant 

clusters. 

 

Examining the relationship among all nodes 

To gain a better understanding of the network structures involving these ROIs, we calculated 

the full correlation matrix between all 32 ROIs, consisting of the seven face ROIs defined from 

the localizer, and the 25 ROIs added in the face connectivity analysis described above, averaged 

across all participants and both rest scans. The results are shown in Supplementary Figure 4. 

Predictably, correlations between homologous regions are the highest, as are correlations 

between FFA and OFA, and the insula with somatosensory cortex. To see which connections 

were most predictive of face memory abilities, as opposed to simply which areas were most 

strongly correlated, we again carried out the second order correlation analysis, calculating the 

correlation across participants between the correlations of each pair of ROIs, and the CFMT 

scores. This analysis was carried out for each rest scan separately, and we once again 

constrained the results by requiring that these correlations be significant across both rest scans. 
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Figure 4 

Global connectivity. Map shows voxels whose global connectivity, i.e. average connectivity with all the other 

voxels, during rest is significantly correlated to performance on the CFMT, after corrections for multiple 

comparisons. Overlaid are the ROIs defined from the previous analysis which was shown in Figure 3, using the face 

ROIs as seeds. Colors of the ROIs as in Figure 3. 
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The resulting second order correlation matrix, shown in Figure 5, shows all the ROI pairs for 

which the correlation between them was significantly predictive of performance on the CFMT, 

in both rest scans. Surprisingly, correlations within the face ROIs defined by the localizer (i.e. 

OFA, FFA, ATL, amygdala) were not significantly predictive of face memory abilities. The most 

predictive connections were between the face patches and medial temporal lobe structures as 

well as somatosensory cortex, within medial temporal lobe, and between STG/somatosensory 

cortex to the medial temporal lobe. To ensure that the predictive value of an ROI pair was not 

due to the degree of variance between participants in the first order correlation between the 

two nodes, we calculated the variance in the correlations across participants between each pair 

of ROIs and tested whether there was a correlation between this variance and the predictive 

value of the ROI pairs, but found none (r = 0.0015, p = 0.97). 
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Figure 5 

ROI pair correlations with behavior. Second order correlations of the correlation between each of the ROI pairs 

(consisting of the 7 individually localized ROIs from the localizer, and the 25 group-defined ROIs from the seed 

analysis) and CFMT. Values indicate how predictive the correlation between each ROI pair is of performance on the 

CFMT. Blue denotes an insignificant correlation. Note the lack of significant predictive value of the correlation 

between the different face ROIs (top left). 

 

Specificity for face memory  

To further test whether the new ROIs, defined through their predictive value for the CFMT, are 

involved specifically in face memory or rather underpin more domain general memory 

processes, we redid the analysis of the second order correlation of the between ROI pair 

correlations, this time to the CCMT. The only ROI pair whose correlation was significantly 

predictive of scores on the CCMT, was right medial parietal with right LOC (r = 0.44, p = 0.0013). 

To more directly test the degree of variance explained by domain general rather than face 

specific processes in the predictive power of the connections within our network, we calculated 

the second order partial correlations of the correlation of each ROI pair with the CFMT scores, 

accounting for the CCMT scores, and then examined the difference for each ROI between the 

correlation with the CFMT, and the partial correlation. Supplementary Figure 5 shows this 

difference score, between the two correlation measures. We next ran a permutation test to 

determine the threshold at which this difference can be considered significant (see methods), 

and the only significant differences were found in the correlation of the right and left medial 

parietal regions to right LOC (correlation difference = 0.1 and 0.085, p<0.021, p<0.045 

respectively).   

 

Comparing rest to movie viewing 

Finally, we asked whether the network we uncovered could in some way be relevant only 

during rest, or whether the same network is also predictive of face memory abilities during a 

behaviorally pertinent task, such as naturalistic movie viewing of a scene involving faces. To 
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examine this, we took the data from the movie viewing run, calculated the global connectivity 

for each voxel as above, and the second order correlation across participants of the global 

connectivity of each voxel with the CFMT scores. We then compared the predictive value of 

each voxel during rest, to its predictive value during the movie. These were highly correlated 

across voxels (r = 0.56, p = 0), as is shown in Figure 6.  

 

Figure 6 

Comparison to movie data. Second order correlation of the global connectivity of each voxel with performance on 

the CFMT at rest (x-axis) and during the movie (y-axis). Predictiveness of the voxels across rest and movie viewing 

was highly correlate (r = 0.54), indicating that these networks are relevant for face memory during naturalistic 

viewing of faces, and not only during rest. 
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Discussion 

The focus of this current work was to identify additional networks beyond the traditional face 

network which are involved in face recognition memory. Using second order correlations to 

search for links between connectivity and behavior, we were able to uncover a number of 

regions whose connectivity either with the ventral face patches, or with each other, strongly 

and significantly predicted face memory abilities, as measured by the CFMT (Figures 3-4). 

Surprisingly, it was not correlations within the face regions which were most predictive, and in 

fact correlations between FFA/OFA/ATL and amygdala did not significantly predict face memory 

abilities (Figure 5, and note also the prominent absence of the other face patches in the seed 

based correlation maps shown in Supplementary Figures 1-3), although the degree of selective 

activation for faces within those regions was predictive (Figure 2). The combination of these 

two findings suggests that while these visual regions are clearly crucial for face memory, as 

evidenced by the link to selective activation for faces, the information transfer between them is 

not what drives face memory abilities. Rather, looking at the whole brain analysis, we find 

evidence that memory for faces, even unknown faces such as those presented in the CFMT, 

extends well beyond the visual face patches, and is supported by widespread networks involved 

in memory, social cognition, and even auditory processing.  

The predictive peaks that came up in our analysis can be roughly divided as belonging to 

memory related, social, visual/attention and auditory regions. Medial temporal lobe regions, 

such as the hippocampus and parahippocampus, have long been associated with memory 

processes 25, 26, as have medial parietal regions 27, 28.On the other hand, somatosensory cortex 

has been found in multiple studies to be implicated in social processing 29-31, and this same 

region of somatosensory cortex identified here, was previously found to be under-connected 

both globally, and specifically to other social brain regions such as STS, in patients with Autism 

Spectrum Disorder compared with typically developing individuals 32-34. Insular cortex has been 

shown to receive input from somatosensory cortex among others 35, and to also be involved in 

social/emotional processing 36, 37.One of the most unexpected findings was that face memory 

performance was strongly predicted by the correlation between the peaks found in STG, along 

Heschel’s gyrus 38-40 and regions of the face processing network, (in particular right FFA; r = 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382739doi: bioRxiv preprint 

https://doi.org/10.1101/382739
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.45). This is congruent with previous findings linking listening to voices to FFA activation, even 

in the absence of face stimuli 41, 42.   

The same key predictive regions were also found using the data driven global connectivity 

approach, with the most obvious difference between the seed based analysis and global 

connectivity analysis being the presence of peaks in FFA, OFA and amygdala in the latter. These 

face regions were absent from the seed based analysis, as the correlation between the face 

regions is not predictive of performance on the CFMT. However, their correlations with many 

other regions are relevant to behavior (as can be seen in Figure 5), which is why they come to 

light in the global connectivity analysis. There was an additional peak found in this analysis 

centered around ATL, but it did not survive the cluster size correction for multiple comparisons. 

The other intriguing finding relates to the specificity of these connections for face memory. The 

Cambridge Car Memory Test is identical to the Cambridge Face Memory Test in format and is 

matched for difficulty 24, and therefore involves the same general cognitive and memory 

processes, with the only difference being the object of memory, cars in one and faces in the 

other. That there were no significant second order correlations elsewhere in the brain to the 

CCMT with the face patches is expected, as the face patches were defined specifically by their 

selectivity for faces, and it is therefore unsurprising that they are not involved in memory for 

other visual objects such as cars. However, the 25 new ROIs which were defined could equally 

underlie domain general memory processes rather than face specific ones, and yet the only ROI 

pair which significantly predicted performance on the CCMT was the right medial parietal ROI, 

with right LOC. Similarly, when regressing out the variance explained by the CCMT, the 

predictive value of most ROI pairs to the CFMT did not significantly change (Supplementary 

Figure 5), with the only exception again being the medial parietal ROIs with right LOC. Without 

an individual car/object localizer it is difficult to directly compare the predictive value of each of 

these ROIs separately for face memory vs. car memory, but from the above partial correlation 

analysis it appears that the network described in these results, with connections not only 

between the face patches and memory/social regions, but also within memory/social regions, is 

largely specialized specifically for face memory (with the possible exception of the medial 

parietal regions). 
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The data driven approach, using the global connectivity of each voxel as an input to the second 

order correlations with performance on the CCMT, also failed to find any significant clusters 

whose connectivity predicts the CCMT scores. This approach is limited in that it is biased toward 

regions with widespread task-relevant connectivity. Regions with limited relevant connectivity 

will not be identified by this method, as was the case for IFG in correlation with the CFMT 

scores, as IFG connects to only a few other ROIs in a way that is relevant for CFMT 

performance. It is therefore possible that there are other regions which subserve memory for 

other types of objects, but this network is more spatially constrained than the one for faces. 

Seed regions identified through a specific localizer for cars/objects might have uncovered 

regions which underpin memory for objects. 

Correlations observed during resting state scans are generally interpreted as representing the 

baseline of the brain, echoing meaningful structures which exist during task performance 43, 44. 

It is therefore interesting to compare the results from the resting state scans to the results 

during the movie, where participants were viewing actual faces in a naturalistic setting. Apart 

from adding an additional independent dataset, the high correspondence between the 

predictive value across voxels at rest and during the movie helps fortify the claim that these 

networks have real-world relevance for face memory.  

Taken together, these findings suggest a more holistic identity processing underlying face 

memory, which is more widespread than memory processing for cars. The networks underlying 

face memory seem to integrate visual information with social and auditory cues, perhaps taking 

into account elements such as voice, and the emotions elicited by particular faces. That this 

same network underlies unknown faces such as those in the CFMT, is an indicator of the 

framework in which we process a novel face. Some of the memory regions identified in this 

study, such as the region in hippocampus as well as the parahippocampal regions, appear to be 

strongly biased toward face processing if not specific to faces, and warrant further study to 

determine the degree of their selectivity. 
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Methods 

Participants 

Fifty three participants (24 female) aged 16 – 30 (mean age = 23.1) were recruited for this 

experiment. All participants were screened for any history of neurological and psychiatric 

disorders. In addition, all participants had normal to corrected to normal vision. One participant 

was excluded from analysis because of abnormal brain structure, and two were excluded due to 

inattention on behavioral testing. The experiment was approved by the NIMH Institutional 

Review Board (protocol 10-M-0027). Written informed consent was obtained from all 

participants.  

 

Behavioral testing 

Prior to the scan, all participants completed two memory tasks: the Cambridge Face Memory 

Task (CFMT) 23 and the Cambridge Car Memory Test (CCMT) 24. All but 4 subjects completed the 

memory tasks directly before the scan. The CFMT is comprised of three parts; in the first part, 

participants are shown three views of a target face, and then presented with a forced-choice 

test with the target face and two distractor faces. Participants had to select the face that 

matched the original target face. There are six target faces, each of which was presented three 

times, for a total for eighteen trials. In the second part, participants were presented with 

frontal views of the six target faces for 20 seconds, followed by 30 forced-choice tests with one 

target face and two distractor faces. Next, subjects were presented with the frontal views of 

the six target faces for 20 seconds, followed by 24 more forced-choice test displays presented 

with a Gaussian noise overlay. The CCMT uses the same structure as the CFMT, but uses cars, 

instead of faces. For both the CFMT and the CCMT, recognition scores were the sum correct 

responses on the three sections. Subjects who had two or more incorrect trials ln the first 

introductory phase of the memory tests were excluded due to concerns about attention to 

tasks. 
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Imaging data collection and MRI parameters 

All scans were performed at the Functional Magnetic Resonance Imaging Core Facility on a 32 

channel coil GE 3T (GE MR 750 3.0T) magnet and receive-only head coil, with online slice time 

correction. The scans included a 6 minute T1-weighted magnetization prepared rapid gradient 

echo (MPRAGE) sequence for anatomical co-registration, which had the following parameters: 

TE = 2.7, Flip Angle = 12, Bandwidth = 244.141, FOV = 30 (256 x 256), Slice Thickness = 1.2, axial 

slices. Functional images were collected using multi-echo acquisition using the following 

parameters: TR = 2s, voxel size = 3*3*3, flip angle = 60, multi-echo slice acquisition with 3 

echos, TE = 17.5ms, 35.3ms, and 53.1ms, Matrix = 72x72, slices = 28. 270 TRs were collected for 

the rest scans, 250 TRs for the face/scene localizer scans, and 285 TRs for the movie. All scans 

used an accelerated acquisition (GE’s ASSET) with a factor of 2 in order to prevent gradient 

overheating.  

 

Scan stimuli and task 

Each scan started with two 9 minute rest scans. During this scan, participants were presented 

with a uniformly grey screen with a fixation cross. Participants were instructed to lie still, not 

fall asleep and look at the screen. After the rest scans, participants completed two runs of an 8 

minute and 20 second face/scene localizer scan. Four subjects completed a different, 9 minute 

20 second localizer scan, and they were excluded from the face selectivity analysis relying on 

beta weights, as those were not comparable between localizer types. Each localizer began with 

a 20 second blank grey screen, followed by sixteen 20 second presentation blocks and a 10 

second blank grey screen with a fixation cross. During presentation blocks, 20 pictures of faces 

(face blocks) or scenes (scene blocks) were presented (stimulus duration = 200ms, inter-

stimulus interval = 700ms), with one or two images repeating in succession in each block. 

Subjects were instructed to look for these repetitions (1-back task) and respond using a button 

box. There were 8 face blocks and 8 scene blocks in each localizer run, with 320 exemplars from 

each category. Each exemplar repeated no more than twice in each run. After the two localizer 

runs, all subjects were shown a clip from The Princess Bride. This video started with 30 seconds 
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of uniformly grey screen with a fixation cross at the center, followed by a 9 minute clip from the 

movie. For the movie, subjects were instructed to stay still, keep their eyes open and watch the 

video.  

 

MRI offline data pre-processing 

Post-hoc signal pre-processing for the functional images was performed in AFNI 45. The first four 

EPI volumes from each run were removed to ensure all volumes were at magnetization steady 

state. Any large transients that remained were removed using a squashing function (AFNI’s 

3dDespike). Volumes were slice-time corrected and motion parameters were estimated with 

rigid body transformations (using AFNI’s 3dVolreg function). Volumes were co-registered to the 

anatomical scan. The data were then processed using AFNI’s meica.py to perform a multi-echo 

ICA analysis (ME-ICA). This process removes nuisance signals such as hardware-induced 

artifacts, physiological artifacts and residual head motion 46.    

 

ROI Selection 

The localizer data was used to define individual face ROIs for each subject. A standard General 

Linear Model was used with a 20 second long boxcar function. This was convolved with a 

canonical hemodynamic response function, and deconvolved using the AFNI function 

3dDeconvolve. Face selective ROIs were found using the faces>scenes contrast. The functional 

and anatomical datasets were co-registered using AFNI, then transformed to Talaraich space. 

All ROIs for each individual participant, were defined in Talaraich space. In the faces>scenes 

contrast, we identified the center of mass for the bilateral fusiform face area (FFA), occipital 

face area (OFA) and amygdala, in addition to the right anterior temporal lobe (ATL) face patch. 

We then defined a spherical ROI of 6mm radius around each of these centers of mass to obtain 

7 individually localized visual ROIs.  

  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/382739doi: bioRxiv preprint 

https://doi.org/10.1101/382739
http://creativecommons.org/licenses/by-nc-nd/4.0/


Whole brain analysis cluster size correction 

In addition to these individually localized ROIs, we obtained 25 group-defined ROIs, by using 

each of the seven individually defined ROIs as a seed, and calculating for each voxel the second 

order correlation across participants between that voxel’s correlation with the seed for each 

participant (transformed to z-scores using Fisher’s transform), and the CFMT / CCMT scores, as 

appropriate. We did this for each of the rest scans separately, and then combined the resulting 

maps for each seed across both rest scans, by requiring that voxels be significantly correlated 

with behavior in both rest scans at either p<0.05 or p < 0.01 in order to be counted, resulting in 

seven maps, one per seed. We then ran a permutation test cluster size correction for multiple 

comparisons, for all seven maps together, by permuting the CFMT scores 10,000 times and then 

testing second order correlations for each voxel, for each seed, and requiring that voxels be 

significantly correlated in both rest scans at either p<0.05 or p < 0.01 to be counted. We then 

took the largest cluster at the 95% percentile across all maps as our minimum cluster size for 

p<0.05 and p<0.01. We identified peaks in the surviving clusters across the seven seed maps at 

either significance threshold, and defined new ROIs as 6mm spheres around the peaks, 

resulting in 25 ROIs for CFMT, and none for CCMT. The 7 individually localized visual ROIs, in 

addition to the 25 group-defined ROIs, were used as targets in subsequent analyses. Minimum 

cluster size for the global connectivity analysis was determined in the same way. 

 

Data Analysis 

All data were analyzed with in-house software written in Matlab, as well as the AFNI software 

package. Data on the cortical surface were visualized with SUMA (SUrface MApping) 47. Two-tail 

t-tests were used for all p-values on correlations, unless otherwise stated. For the permutation 

test used to determine the threshold of significance for the difference between the second 

order Pearson’s correlation of each ROI pair’s correlation (per participant) with the CFMT 

scores, to the same second order correlation but with the CCMT scores as a regressor, the 

correlation and partial correlation (calculated used MATLAB’s partialcorr function) scores for 

each ROI pair were first converted to z-scores using Fisher’s transform, and the difference 
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between them was calculated. For each ROI pair, for 10,000 iterations, we then permuted the 

subject labels on the correlation values between that ROI pair, and calculated the permuted 

second order correlation to the CFMT, the second order partial correlation to the CFMT with 

the CCMT scores regressed, and the difference between them, for each rest scan. We then took 

the average for each iteration across the two rest scans, and set as the threshold the result of 

the 95th percentile across all iteration across all possible ROI pairs. Supplemtary Figure 5 shows 

the difference between the correlation to the partial correlation for all ROI pairs, averaged 

across the two rest scans, though only two ROI pairs showed a significant difference in scores. 
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Supplementary Figures 

 

 
Supplementary Figure 1 

Clusters showing voxels in which there was a significant second order correlation between their 
correlation to the ATL seed and performance on the CFMT, indicating that the correlation with 
ATL is predictive of behavior, in both rest scans separately. Maps corrected for multiple 
comparisons through a cluster permutation test analysis (see methods). Note large clusters in 
the parahippocampus and along the occipital part of the parieto-occipital sulcus, in 
somatosensory cortex, IFG, insula, STG, STS and along the dorsal visual attention stream. 
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Supplementary Figure 2 

Clusters showing voxels in which there was a significant second order correlation between their 
correlation to the right FFA seed and performance on the CFMT, indicating that the correlation 
with right FFA is predictive of behavior, in both rest scans separately. Maps corrected for 
multiple comparisons through a cluster permutation test analysis as above (see methods). Note 
peaks in the parahippocampus, in somatosensory cortex, insula, STG, STS, medial parietal 
cortex and hippocampus. 
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Supplementary Figure 3 

Clusters showing voxels in which there was a significant second order correlation between their 
correlation to the right OFA seed and performance on the CFMT, indicating that the correlation 
with right OFA is predictive of behavior, in both rest scans separately. Maps corrected for 
multiple comparisons through a cluster permutation test analysis as above (see methods). Note 
peaks in the parahippocampus, in somatosensory cortex, STG, STS, medial parietal cortex and 
hippocampus. 
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Supplementary Figure 4 

First order correlations between all 32 pairs of ROIs identified either through the localizer, or 
through  the second order correlation seed analysis. Correlations between homologous regions 
are strongest, as expected, as are correlations between FFA and OFA and LOC. 
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Supplementary Figure 5 

The difference between second order correlation of correlations between each ROI pair with 
CFMT scores, and the partial correlation of that ROI pair with CFMT while controlling for CCMT 
scores, averaged across both rest runs. The only significant difference was found between the 
right and left medial parietal ROIs, to right LOC. 
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