

1 **IPSE, a urogenital parasite-derived immunomodulatory protein, ameliorates ifosfamide-induced**
2 **hemorrhagic cystitis through downregulation of pro-inflammatory pathways**

3

4 Evaristus C. Mbanefo^{1,2}, Loc Le¹, Rebecca Zee^{1,2}, Nirad Banskota¹, Kenji Ishida¹, Luke F. Pennington³, Justin I.
5 Odegaard⁴, Theodore S. Jardetzky³, Abdulaziz Alouff⁵, Franco H. Falcone⁶, Michael H. Hsieh^{1,2,7*}

6

7 **Affiliations**

8 ¹Bladder Immunology Group, Biomedical Research Institute, Rockville, MD, USA

9 ²Division of Urology, Children's National Medical Center, Washington, DC, USA

10 ³Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA

11 ⁴Guardant Health, Redwood City, CA, USA

12 ⁵Life Science & Environment Sector, King Abdulaziz City for Science & Technology (KACST), Saudi Arabia

13 ⁶Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, UK.

14 ⁷Department of Urology, The George Washington University, Washington, D.C., USA

15

16 ***Corresponding author**

17 Michael H. Hsieh, MD, PhD. Bladder Immunology Group, Biomedical Research Institute, 9410 Key West
18 Avenue, Rockville, MD 20850, USA. Tel: +13018813300, Fax: +13018817640, email: mhsieh@afbr-bri.org.

19

20 **Running title:** IPSE downregulates chemotherapy-induced hemorrhagic cystitis

21

22 **Key words:** inflammation, ifosfamide, hemorrhagic cystitis, oxidative stress, parasite protein

23

24 **Financial support:** The Margaret A. Stirewalt Endowment (MHH), NIDDK R01DK113504 (MHH) , NIAID
25 R56AI119168 (MHH), and a Urology Care Foundation Research Scholar Award (ECM).

26

27 **Manuscript notes:** Abstract (240 words), Text (5637 words), Main figures (7), Supplementary information (9)

28

29 **Conflict of interest disclosure statement:** The authors declare no conflict of interest.

30

31 **Abbreviations:** IPSE, interleukin-4 inducing principle from *Schistosoma* eggs; MESNA, 2-mercaptopethane
32 sulfonate Sodium

33

34 **Abstract**

35 Ifosfamide and other oxazaphosphorines can result in hemorrhagic cystitis, a constellation of complications
36 caused by acrolein metabolites. We previously showed that a single dose of IPSE, a schistosome-derived host
37 modulatory protein, can ameliorate ifosfamide-related cystitis; however, the exact mechanisms underlying this
38 urotoxic effect and its prevention are not fully understood. To provide insights into IPSE's protective
39 mechanism, we undertook transcriptional profiling of bladders from ifosfamide-treated mice, with or without
40 IPSE pretreatment. Following ifosfamide challenge, there was upregulation of a range of pro-inflammatory
41 genes. The pro-inflammatory pathway involving the IL-1 β , TNF α and IL-6 triad via NF κ B and STAT3
42 signaling pathways was identified as the key driver of inflammation. The NRF2-mediated oxidative stress
43 response pathway, which regulates both *Hmox1*-mediated heme homoeostasis and expression of antioxidant
44 enzymes, was highly activated. Anti-inflammatory and cellular proliferation cascades implicated in tissue
45 repair, namely Wnt, Hedgehog and PPAR pathways, were downregulated. IPSE administration before
46 ifosfamide injection resulted in significant downregulation of major proinflammatory pathways including the
47 triad of IL-1 β , TNF α and IL-6 pathways, the interferon signaling pathway, and less apparent reduction in
48 oxidative stress responses. Taken together, we have identified signatures of acute phase inflammation and
49 oxidative stress responses in the ifosfamide-injured bladder, which are reversed by pretreatment with IPSE, a
50 parasite derived anti-inflammatory molecule. In addition to providing new insights into the underlying
51 mechanism of IPSE's therapeutic effects, this work has revealed several pathways that could be therapeutically
52 targeted to prevent and treat ifosfamide-induced hemorrhagic cystitis.

53

54 **Introduction**

55 Hemorrhagic cystitis is a serious and difficult to manage complication resulting from exposure to certain
56 chemotherapeutic agents (1-4), radiation therapy (4-7) and various viruses in immunosuppressed patients (8-
57 11). Indeed, anticancer doses of oxazaphosphorines, such as cyclophosphamide and ifosfamide, are limited in
58 part due to the risks of this complication (1-3). In the case of these agents, hepatic drug metabolism generates
59 toxic acrolein which accumulates in bladder urine (12, 13). Fortunately, risks of chemotherapy-induced

50 hemorrhagic cystitis have been decreased through the use of 2-mercaptoproethane sulfonate Na (MESNA), which
51 directly binds and neutralizes acrolein (14-16). However, MESNA fails to treat established hemorrhagic
52 cystitis (14, 15, 17) and can also produce its own adverse reactions (18, 19). Other treatments options,
53 including intravesically administered drugs (20-23), systemically administered agents (14, 24, 25), and
54 nonpharmacological interventions (12, 24, 26-29), are either investigational or feature significant potential side
55 effects (12, 30, 31).

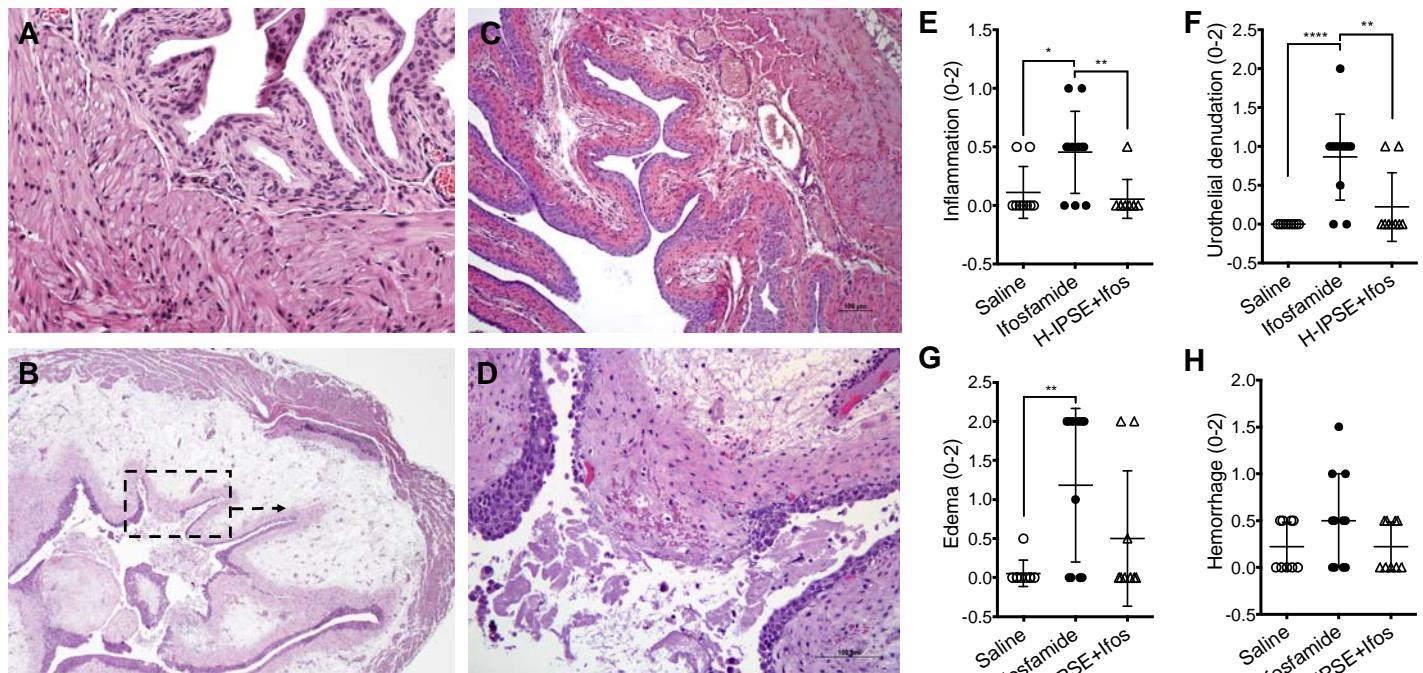
56 The mechanisms underlying the initiation and pathogenesis of the acrolein-induced urotoxic effect are only
57 partially elucidated. Knowledge gained from various studies and as reviewed by Haldar *et al.* (12) has
58 implicated pro-inflammatory, heme homeostasis, and oxidative stress response pathways in the pathogenesis of
59 acrolein-triggered bladder damage. Accumulation of acrolein-containing urine in the bladder lumen depletes the
60 mucosal glycosaminoglycan layer and the asymmetric unit membrane (uroplakin complex), exposing the
61 urothelium. Acrolein induces pyroptosis in the urothelium, a highly inflammatory form of apoptosis. The
62 resulting sloughing and denudation of the urothelial layer exposes the lamina propria, detrusor muscle, and the
63 bladder vasculature to further damage (12). Acrolein catalyzes reactions that generate reactive oxygen and
64 nitrogen species (ROS and RNS) and superoxide radicals in the urothelium, resulting in membrane damage,
65 DNA damage and cell death via the NF κ B pathway (32, 33). The activation and involvement of the
66 inflammasome complex in response to this oxidative stress results in the maturation and release of IL-1 β , which
67 in turn orchestrates a pro-inflammatory microenvironment in the urothelium (34, 35). This stress state also
68 stimulates innate immune pattern recognition receptors (TLRs, NLRS and CLRs), sending signals that activate
69 the NF κ B, STAT3, MAPK and other pro-inflammatory pathways, which lead to transcription of several pro-
70 inflammatory cytokines (IL-1 β , TNF α and IL-6), pro-inflammatory mediators (iNOS and COX-2) and
71 chemokines that promote leukocyte infiltration and further drive inflammation and oxidative stress (34-36). In
72 response to hemorrhage from damaged blood vessels and accumulating superoxide radicals, the heme
73 homeostasis pathway and the oxidative stress response pathways are fully activated via NRF2-mediated
74 mechanisms (37, 38). The clotting, edema and constriction of the bladder results in hyperalgesia.

75 There is a significant need for additional approaches to prevent and treat chemotherapy-induced hemorrhagic
76 cystitis. Several analogs of cyclophosphamide that may enhance cytostatic efficacy while limiting urotoxicity
77 have been explored, albeit with limited success (13, 39, 40). Candidate drugs targeting the inflammatory IL-1 β ,
78 TNF α and IL-6 triad (35, 41) and/or promoting oxidative stress responses show promise for ameliorating
79 hemorrhagic cystitis but have not progressed beyond preclinical testing. Most efforts have been focused towards
80 finding alternatives to MESNA, including anti-inflammatory molecules (42-49), hemostatic agents (50-52),
81 antioxidants (37, 48, 49, 53-59), analgesics (60), anti-depressants (61), vasodilator (62), cytokines (25, 63, 64),
82 platelet rich plasma (65, 66), nutritional approaches (67, 68), and plant extracts (45, 46, 48, 56, 68-71). These

|3 early-stage drug candidates target pro-inflammatory pathways, heme homeostasis pathway and anti-oxidant
|4 homoeostasis.

|5 Another potential approach to treat chemotherapy-induced hemorrhagic cystitis is to administer IL-4 (25), a
|6 potent anti-inflammatory cytokine known to antagonize the IL-1 β , TNF α , and IL-6 pathways. This finding led
|7 us to test and verify that a single dose of an IL-4-inducing, parasite-derived anti-inflammatory molecule (IPSE,
|8 the IL-4-inducing principle from *Schistosoma mansoni* eggs) ameliorated the inflammation, hemorrhage, and
|9 urothelial sloughing associated with ifosfamide-induced hemorrhagic cystitis (42). IPSE binds
|0 immunoglobulins, notably IgE on the surface of basophils and mast cells, inducing secretion of preformed IL-4
|1 (72-74). However, we suspect IPSE may have additional mechanisms underpinning its ability to alleviate
|2 ifosfamide-induced hemorrhagic cystitis. IPSE also sequesters chemokines (75), which likely orchestrate anti-
|3 inflammatory responses. As an infiltrin possessing a nuclear localization sequence (NLS), IPSE is able to
|4 translocate into host cell nuclei to modulate host gene transcription (76-78). Given that the transcriptional
|5 changes during ifosfamide-induced hemorrhagic cystitis are largely unknown, and because the underlying
|6 mechanisms of IPSE's protective effects remain to be elucidated, we undertook transcriptome-wide profiling of
|7 the bladder of ifosfamide-treated mice using RNA-Seq. Furthermore, we studied the gene expression dynamics
|8 in IPSE pretreated mice challenged with ifosfamide. Here, we show that key pro-inflammatory, heme
|9 homeostatic and oxidative stress response pathways are highly activated in the bladder following ifosfamide
|10 insult. Finally, we show that IPSE downregulates pro-inflammatory responses as a potential protective
|1 mechanism, in addition to its involvement in promoting urothelial repair.

|2

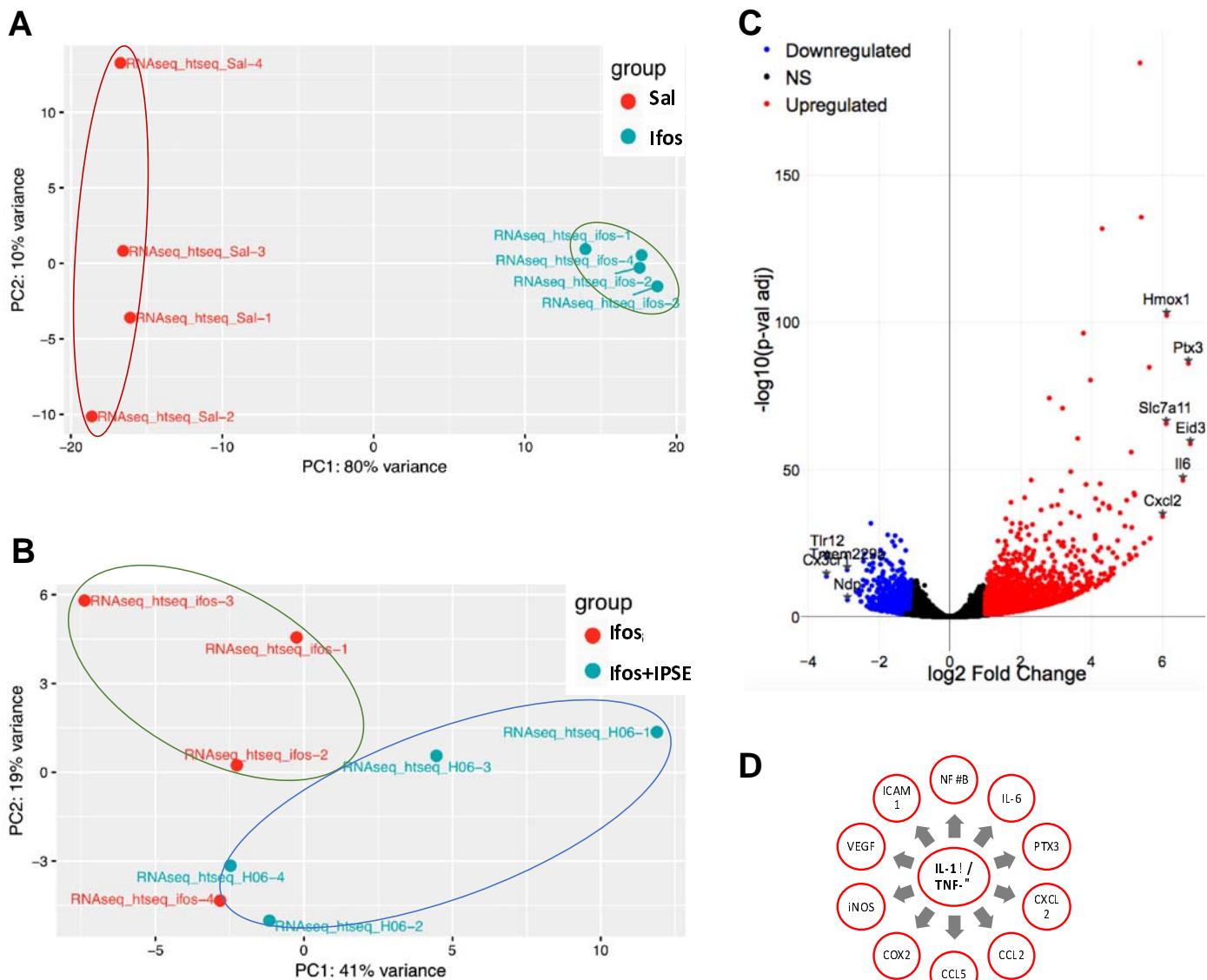

|3 **Results**

|4 ***Ifosfamide-induced hemorrhagic cystitis is ameliorated by IPSE***

|5 We recently showed that a single dose of IPSE was comparable to administration of recombinant IL-4 or three
|6 doses of MESNA in alleviating ifosfamide-induced hemorrhagic cystitis (42). We used these established
|7 methods to obtain bladder samples for transcriptional profiling. Mice were administered: 1) saline or 2) IPSE,
|8 24 hours before ifosfamide challenge, or 3) saline vehicle alone. Twelve hours following ifosfamide insult,
|9 bladder histopathology was analyzed in a blinded fashion. Compared to bladders from saline-treated mice (Fig.
|10 1A), bladders from mice challenged with ifosfamide showed marked edema, dysregulated contraction,
|11 hemorrhage, and urothelial sloughing (Fig. 1B and D). Conversely, bladders from mice treated with IPSE
|12 before ifosfamide challenge were significantly protected from urothelial denudation and inflammation (Fig.
|13 1C). Based on blinded scoring of bladder sections, we observed significant increases in inflammation (Fig. 1E),

14 urothelial denudation (Fig. 1F), and edema (Fig. 1G), and non-statistically significant increases in hemorrhage
15 (Fig. 1H) in ifosfamide-treated mice. These features were markedly reduced in mice administered a single dose
16 of IPSE before ifosfamide treatment, in comparison to ifosfamide-treated mice. Both inflammation and
17 urothelial denudation were significantly reduced (Fig. 1E and F), while edema and hemorrhage were reduced
18 but not statistically significant (Fig. 1G and H). Taken together, this qualitative and quantitative data
19 demonstrate characteristic features of ifosfamide-induced hemorrhagic cystitis, some of which were
20 significantly reduced by IPSE pretreatment.

31

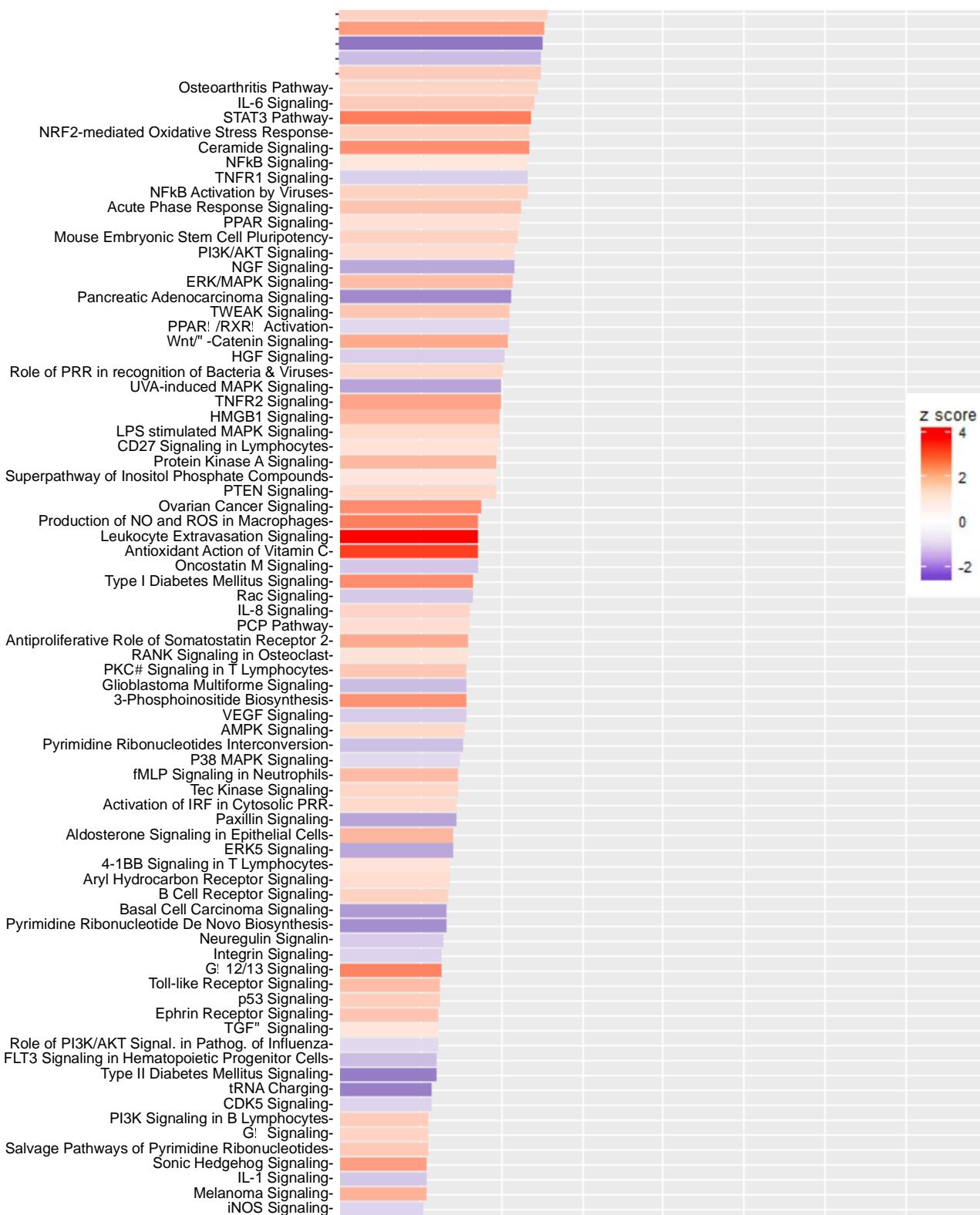


32

33 **Fig. 1. IPSE ameliorates ifosfamide-induced hemorrhagic cystitis.** Mice were pretreated with saline or IPSE
34 24 hours before challenge with 400mg/kg of ifosfamide. Bladders were assessed for histopathologic changes
35 following ifosfamide insult in a blinded fashion. (A) Normal bladder showing intact urothelium with no signs of
36 pathology. (B) Bladder from an ifosfamide-treated mouse (pretreated with saline) showing urothelial sloughing
37 and edema. (C) Bladder from an IPSE-pretreated, ifosfamide-challenged mouse showing significant reduction
38 in inflammation, urothelial denudation and edema. (D) High power view of bladder section shown in dotted box
39 in (B). Graphs showing treatment group differences in bladder (E) inflammation, (F) urothelial denudation, (G)
40 edema, and (H) hemorrhage. Each symbol represents the score for an individual mouse. Cross bar for each
41 group denotes mean score. * $p<0.05$, ** $p<0.01$, **** $p<0.001$ based on post-hoc Students t-tests following
42 significant difference among groups by ANOVA.

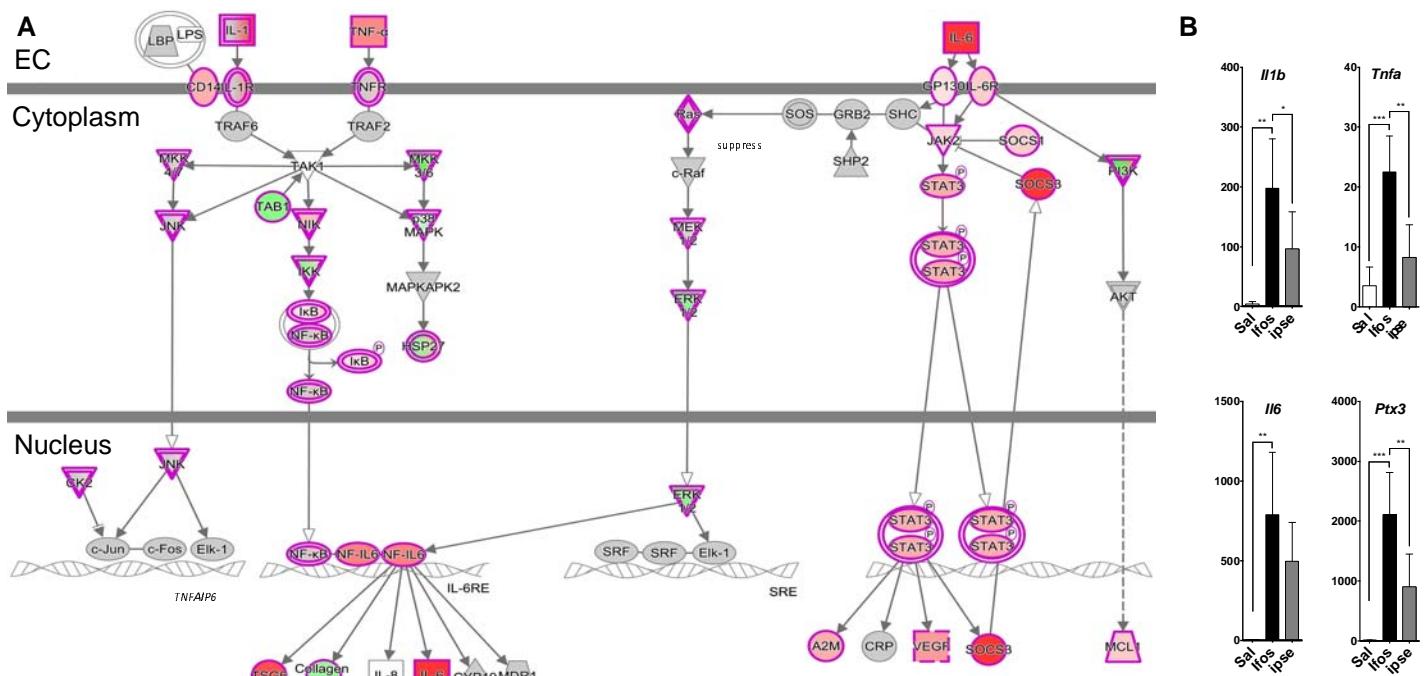
13 **Transcriptional profiles show massive pro-inflammatory response and activation of oxidative stress**
14 **responses during ifosfamide-induced hemorrhagic cystitis**

15 Ifosfamide is metabolized in the liver to generate acrolein, which is secreted in urine and damages the bladder
16 (18). To understand the transcriptional alterations elicited by acrolein in the bladder during ifosfamide-induced
17 hemorrhagic cystitis, mice were treated with saline vehicle or ifosfamide. Gene expression dynamics in the
18 ifosfamide-injured bladder were studied through RNA-Seq performed on bladders harvested 6 hours following
19 ifosfamide injection. RNA sequencing was performed to a considerable depth (20 million reads), more than
20 96% of which were successfully aligned to the *Mus musculus* genome. Principal component analysis indicated
21 gene expression homogeneity among ifosfamide-treated bladders relative to the vehicle control (Fig. 2A) and a
22 slight overlap between bladders from ifosfamide-treated mice and IPSE pretreated mice challenged with
23 ifosfamide (Fig. 2B). Volcano plotting of differentially expressed genes and their associated statistical
24 significance (Fig. 2C) revealed upregulation of a large set of genes ($n = 2061$) and downregulation of an
25 appreciable number of genes ($n = 1114$), based on *p-value* (adjusted) < 0.1 and $\log_2(\text{Fold Change}) > 1$ (at least
26 2-fold). Among the top upregulated genes were *Il6*, a major member of the IL-1 β , TNF α and IL-6 pro-
27 inflammatory triad. These three cytokines together are major drivers of inflammatory responses (see
28 relationship with other downstream proinflammatory genes, regulators and mediators in Fig. 2D). Indeed, the
29 *Il1b*, *Tnfa* and *Il6* genes were upregulated by about two orders of magnitude. The *Ptx3* gene was also one of the
30 top upregulated genes; a member of the pentraxin protein family, major components of the humoral arm of
31 innate immune response highly induced in response to inflammatory stimuli (79). Chemokines were also highly
32 upregulated, especially *Cxcl2* and *Ccl2*. In addition, the *Hmox1* gene encoding the heme oxygenase 1 enzyme,
33 the first enzyme of the heme oxygenase pathway, was also highly upregulated. The *Eid3* gene, also among the
34 most upregulated genes, is involved in cellular responses to stress (Fig. 2C and Supplementary Fig. S1). The
35 cysteine transporter, *Slc7a11*, which has been implicated in glutathione metabolism in the bladder (80, 81), was
36 also significantly upregulated in ifosfamide-injured bladders (Fig. 2C).



57

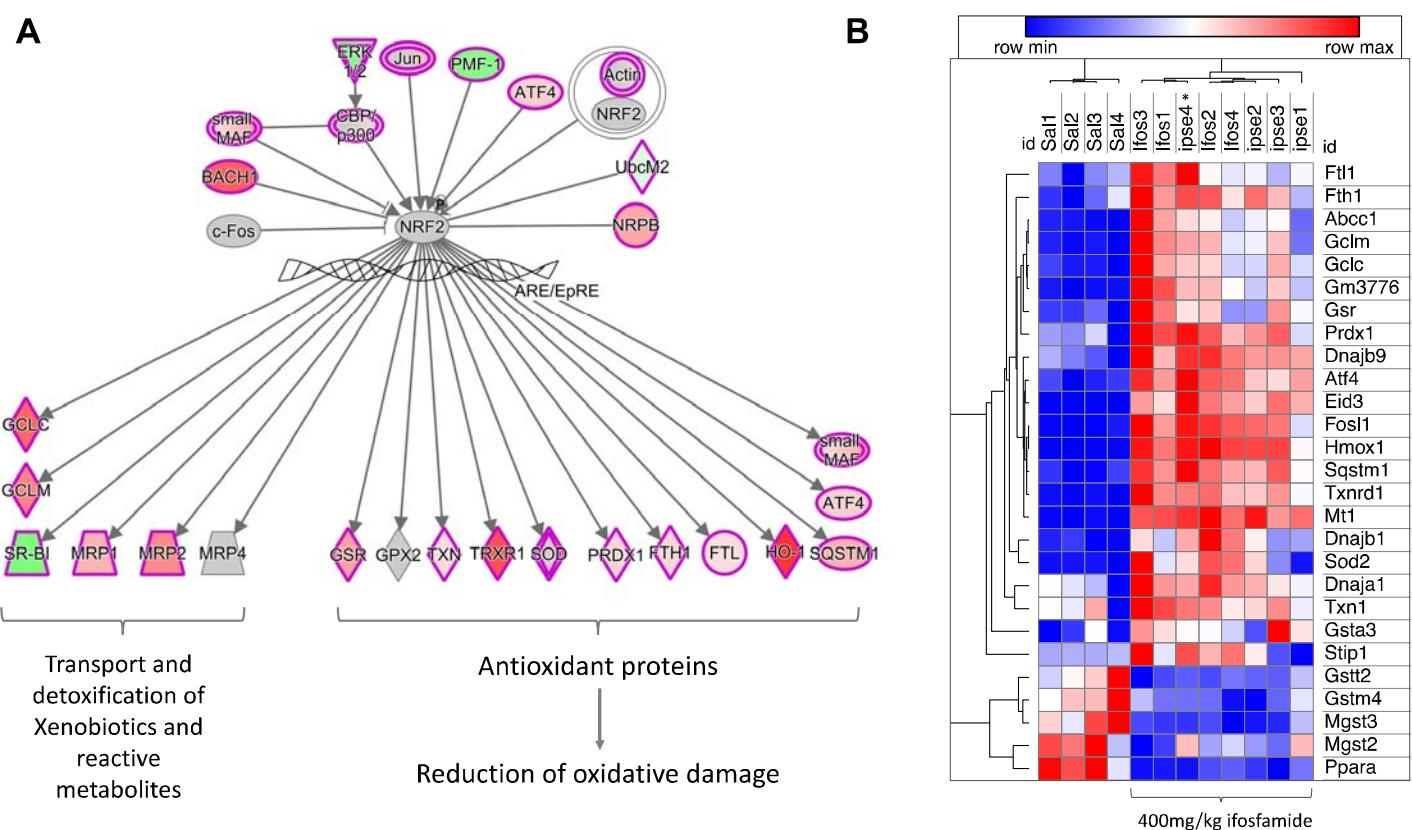
58 **Fig. 2. RNA-Seq analysis of ifosfamide-exposed bladders indicates multiple inflammation and stress**
59 **response-related genes are differentially regulated. Transcriptional changes in bladders from mice**
60 **administered saline were compared to those occurring in bladders from mice given ifosfamide. (A) Principal**
61 **component analysis (PCA) showed homogeneous clustering of gene expression among ifosfamide-treated mice**
62 **(turquoise symbols labeled with “ifos” suffix) and vehicle-treated mice (red symbols labeled with “Sal” suffix).**
63 **(B) Principal component analysis (PCA) showed overlap of gene expression among ifosfamide-treated mice**
64 **mice (red symbols labeled with “Ifos” suffix) and IPSE-treated mice challenged with ifosfamide (turquoise**
65 **symbols labeled with “H06” suffix). (C) Volcano plots demonstrated upregulated and downregulated genes in**
66 **bladders from ifosfamide-versus saline-treated mice. For this comparison, p -value (adjusted) < 0.1 and**
67 **$\log_2(\text{Fold Change}) > 1$ (at least 2-fold) were applied as threshold values. NS: genes with non-significant**
68 **changes in expression levels [black dots]. (D) Schematic representation of the relationships among the IL-1 β ,**
69 **TNF α and IL-6 triad and downstream pro-inflammatory cytokines and mediators.**


30

31 Pathway and functional analysis expectedly revealed signatures of inflammation. Specifically, there was
32 differential activity involving the IL-6 pathway, in which IL-1 β , TNF α and IL-6 play major roles, and other
33 pro-inflammatory pathways implicated in the pathogenesis of ifosfamide-induced hemorrhagic cystitis (35, 41,
34 47, 82-84) (Fig. 2C, Fig. 3 and Supplementary Fig. S1). IL-6 and its cognate receptors were highly upregulated,
35 in addition to STAT3 and the tyrosine protein kinase JAK2, which are both involved in IL-6 signaling (Fig. 4A
36 and Supplementary Fig. S2A). Similarly, IL-1 β , TNF α and their receptors were upregulated. These cascades
37 converge through TAK1 to promote formation of the I κ B-NF κ B complex and drive pro-inflammatory gene
38 transcription in conjunction with NF-IL-6, the nuclear factor of IL-6 expression (Fig. 4A and Supplementary
39 Fig. S2B). Accordingly, the STAT3 and NF κ B pathways, both major drivers of inflammation and immune
40 response via the IL-1 β -TNF α -IL-6 triad, were upregulated following ifosfamide insult transcription
41 (Supplementary Fig. S2A and B). Other major upregulated pro-inflammatory pathways and disease signaling
42 cascades included those related to TNF receptor, iNOS, the acute phase response, diabetes mellitus, HMGB1,
43 oncostatin, generation of ROS and RNS, and major innate immune-related cascades (Fig. 3). Finally, there was
44 noteworthy upregulation of the IL-17F-mediated allergic inflammatory and leukocyte extravasation signaling
45 pathways (Supplementary Fig. S3).

16

17 **Fig. 3. Most differentially altered gene pathways in the bladder during ifosfamide-induced hemorrhagic**
 18 **cystitis. Functional comparison of the transcriptome of bladders from ifosfamide- versus vehicle-treated mice**
 19 **was performed using Ingenuity Pathway Analysis. Bars are colored according to z-score, with red showing**
 20 **upregulation and blue denoting downregulation. The size of each bar is proportional to its $-\log(p\text{-value})$.**


1

2 **Fig. 4. The IL-1 β , TNF α , and IL-6 triad of pathways are major inflammatory gene pathways upregulated in**
 3 **the bladder during ifosfamide-induced hemorrhagic cystitis. (A) Bladders of ifosfamide-exposed mice**
 4 **upregulated expression of genes from the IL-1 β , TNF α and IL-6 triad of pathways and their corresponding**
 5 **cytokines, receptors and downstream nuclear transcriptional factors. In the case of IL-1 β and TNF α , these**
 6 **cascades converge upon NF κ B. IL-6 also indirectly interacts with NF κ B through ERK1/2 activation of NK-IL6,**
 7 **which works with NF κ B to promote transcription of target genes. Keys: upregulation (red), downregulation**
 8 **(green), cytokines (square), growth factors (dotted square), phosphatase (triangle), kinases (inverted triangle),**
 9 **transmembrane receptors (ellipse), transcriptional regulators (wide circle), peptidase (rhombus), group or**
 10 **complex (double lined shapes), transporter (trapezium), acts on (line with filled arrow), translocate (line with**
 11 **open arrow), inhibition (line with perpendicular line at edge). (B) Both IL-1 β and TNF α gene transcription**
 12 **were increased by ~100 fold in the bladders of ifosfamide-treated mice. Pretreatment with IPSE reduced the**
 13 **level by ~50% relative to the ifosfamide-treated group. Similar trends were observed for cognate receptors and**
 14 **downstream transcription factors (data not shown).**

15

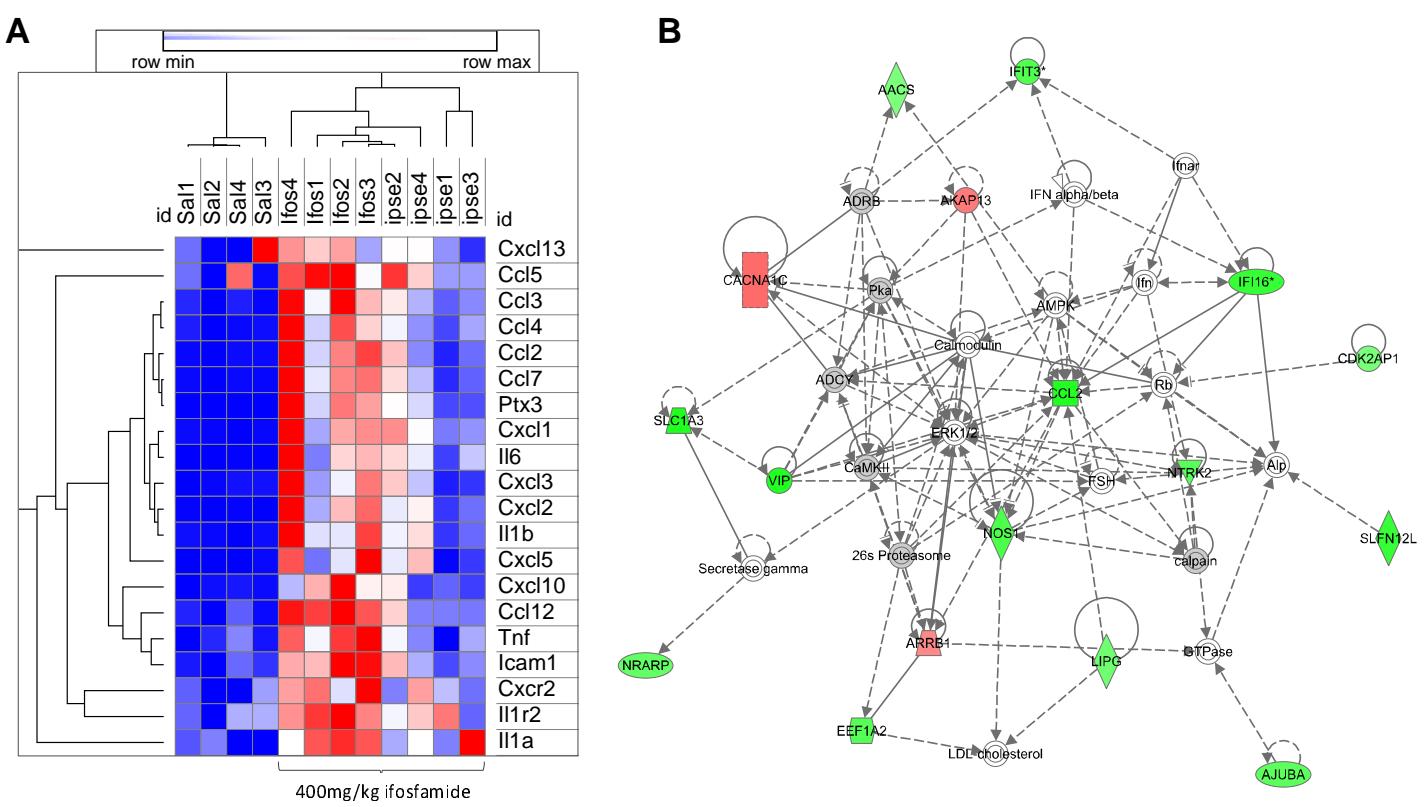
16 Another hallmark of ifosfamide-induced hemorrhagic cystitis is a significant oxidative stress response to
 17 acrolein exposure and resulting hemorrhage (33). Our data underscores a major role for the erythroid-derived
 18 leucine zipper NRF2 as a nuclear factor involved in regulating oxidative stress responses to ifosfamide injury of
 19 the bladder (37, 51, 53) (Fig. 3, 5A and Supplementary Fig. S4). The NRF2-mediated oxidative stress response
 20 gene pathway, which regulates the expression of antioxidant and heme homeostatic proteins, was one of the

most upregulated pathways in the bladder following ifosfamide insult (Fig. 3, 5A and Supplementary Fig. S4). We noted considerable upregulation of genes encoding enzymes including heme oxygenase (HO-1), which catalyzes the first step in heme homeostasis, the antioxidant thioredoxin reductase (TRXR1), which catalyzes the reduction of thioredoxin to restore redox homeostasis, peroxiredoxin (PRDX1), which detoxifies peroxide radicals, and glutathione reductase (GSR), which reduces glutathione disulfide to glutathione, an important antioxidant that scavenges hydroxyl radicals. Also upregulated were thioredoxin (TXN), superoxide dismutase (SOD) and ferritin light and heavy chain proteins (FTL and FTH1), which are involved in redox signaling, superoxide partitioning and iron homeostasis, respectively (Fig. 5A). Genes encoding proteins involved in xenobiotic detoxification were also upregulated in response to acrolein (Fig. 5A). In addition, the p38 MAPK pathway, implicated in responses to stress stimuli (43), was also substantially upregulated.

Fig. 5. Oxidative stress responses of the bladder during ifosfamide-induced hemorrhagic cystitis. (A) Schematic representation of the relationships between NRF2 and antioxidant proteins and proteins involved in heme homeostasis and xenobiotic detoxification. A more detailed version is shown in Supplementary Fig. S4. The keys to the shapes and colors are as detailed in Fig. 4. **(B)** Heat map showing levels of expression of genes encoding major antioxidant enzymes. There were no overt changes in the levels of expression of these genes, except for *Fth1*, *Ftl1*, *Abcc1*, *Gclc*, *Gclm*, *Gm3776* and to some extent for *Gsr*, *Sod2* and *Dnajb1*. Red designates gene upregulation while blue denotes downregulation. The columns represent data for individual

39 mice in each treatment group (“Sal”: saline vehicle treatment, “Ifos”: ifosfamide treatment only, “Ipse”:
40 ifosfamide and IPSE treatment).

41


42 The most downregulated pathway in the ifosfamide-exposed bladder was the peroxisome proliferator-activated
43 receptor (PPAR) signaling pathway, which is involved in lipid homoeostasis (85), in addition to its anti-
44 inflammatory effect (86, 87) and role in the development and maintenance of IL-4 dependent alternatively
45 activated status in macrophages (88) (Fig. 3 and Supplementary Fig. S5). TWEAK, Wnt and Hedgehog, which
46 can mediate anti-inflammatory responses, were likewise downregulated (Fig. 3). The aldosterone signaling in
47 epithelial cells pathway, which is involved in ion transport to maintain electrolyte and water balance across
48 epithelial surfaces, was also downregulated (Fig. 3). Finally, analysis of diseases and functions affected by
49 bladder ifosfamide challenge showed considerable upregulation of functions related to organismal injury and
50 abnormalities, inflammatory diseases, cancer, cell proliferation, cellular movement and hematological
51 development and function (Supplementary Fig. S6). There was also notable upregulation of genes and
52 regulators in the neuro-inflammatory pathways (Supplementary Fig. S7). Analysis of differentially expressed
53 gene members of neuro-inflammatory pathways indicated significant expression of genes encoding
54 proinflammatory cytokines and mediators in neuronal cells. Although this may suggest role in the acrolein-
55 associated hyperalgesia, the presence of astrocytes or microglia in the peripheral nervous system within the
56 bladder is unproven (Supplementary Fig. S7). Finally, the HIF-1 α -mediated hypoxia-related signaling cascade,
57 was upregulated in the bladder after ifosfamide insult, consistent with the hemorrhage associated with
58 hemorrhagic cystitis (Supplementary Fig. S8).

59

60 *Transcriptional modulatory effects of IPSE on the ifosfamide-exposed bladder*

61 We recently reported that IPSE, an immunomodulatory protein of parasite origin, can ameliorate much of the
62 pathology associated with ifosfamide-induced hemorrhagic cystitis ((42) and Fig. 1). To provide insight into the
63 underlying mechanisms of the IPSE’s protective effects, we undertook gene expression profiling of the
64 ifosfamide-challenged bladder, with or without IPSE pretreatment. Mice were treated with saline or IPSE, 24
65 hours before challenge with ifosfamide. Gene expression dynamics were profiled through RNA-Seq analysis of
66 bladders harvested 6 hours following ifosfamide administration. Compared to mice receiving ifosfamide
67 without IPSE pretreatment, genes encoding cytokines driving pro-inflammatory responses (IL-1 β , TNF α and
68 IL-6 triad) were downregulated 50% in the bladders of mice treated with IPSE before ifosfamide challenge (Fig.
69 4B). Similar downward trends in gene expression were observed for these cytokine’s receptors and downstream

genes and other genes and transcriptional factors driving inflammation (Fig. 4B and 6A). The expression of *Cxcl10* (IP-10), a major interferon gamma-induced chemokine, was highly increased in ifosfamide-injured bladders but downregulated in the bladders of IPSE-pretreated, ifosfamide-exposed mice (Fig. 6A). The transcriptional levels of several other chemokines also involved in inflammatory responses and recruitment of cells to sites of stress were highly upregulated in bladders only exposed to ifosfamide, but conversely downregulated in ifosfamide-injured bladders pretreated with IPSE (Fig. 6A). The predicted gene interaction grids associated with IPSE administration featured a network linking downregulation of *Ccl2* (and other chemokines genes) to the downregulation of a number of gamma interferon-inducible proteins and nitric oxide synthase (Fig. 6B and Supplementary Fig. S9). Other mechanistic networks suggesting IPSE induced downregulation of additional pro-inflammatory factors were also noted (Supplementary Fig. S9).

31 **Fig. 6. Effects of IPSE on bladder transcription of inflammation-related genes during ifosfamide-induced**
32 **hemorrhagic cystitis.** (A) Heat map showing levels of expression of genes encoding major proinflammatory
33 proteins, their receptors, and downstream proinflammatory mediators and chemokines. IPSE pretreatment
34 resulted in significant downregulation of major proinflammatory proteins, their receptors, and downstream
35 proinflammatory mediators and chemokines. Red designates gene upregulation while blue denotes
36 downregulation. The columns represent data for individual mice in each treatment group (“Sal”: saline vehicle
37 treatment, “Ifos”: ifosfamide treatment only, “Ipse”: ifosfamide and IPSE treatment). (B) A representative

38 *mechanistic network showing inhibitory relationships among chemokines (Ccl2), nitric oxide synthase and*
39 *several interferon-induced proteins. The keys to the shapes and colors are as detailed in Fig. 4.*

40

41 The most downregulated gene pathway (in terms of statistical significance) in the bladders of IPSE-pretreated,
42 ifosfamide-exposed mice, compared to bladders exposed only to ifosfamide, was the interferon signaling
43 pathway (Fig. 7). Many of the major gene pathways noted to be highly upregulated in ifosfamide-damaged
44 bladders were relatively downregulated in bladders pretreated with IPSE before ifosfamide challenge (Fig. 3
45 and 7). These downregulated pathways included those related to interferon signaling, inflammatory diseases
46 such as osteoarthritis and diabetes mellitus, pattern recognition receptor signaling pathways of the innate
47 immune system, pro-inflammatory pathways including NF κ B, iNOS, neuro-inflammation, TREM1, the acute
48 phase response, HMGB1, STAT3, IL-6, TNFR, IL-1 and pathways involved in the production of ROS and RNS
49 (Fig. 7). We also observed a relative increase in metabolic gene expression relevant to oxidative
50 phosphorylation, glycolysis and PPAR signaling. Interestingly, the most downregulated genes in terms of z-
51 score were those related to the neuro-inflammation signaling pathway (astrocytes and microglia). While a direct
52 effect of IPSE on bladder neurons could not be inferred based on this finding, due to a lack of astrocytes and
53 microglia in the bladder, we have observed significant reduction in bladder pain in IPSE-treated mice
54 challenged with ifosfamide (42).

5

6 **Fig. 7. Most differentially altered gene expression pathways in bladders from IPSE-pretreated mice**
7 **challenged with ifosfamide.** Mice were pretreated with saline or IPSE, 24 hours before challenge with
8 400mg/kg of ifosfamide. The bladders were subjected to transcriptional profiling (RNA-Seq) and functional
9 analysis using Ingenuity Pathway Analysis. Bars are colored according to z-score, with red showing
10 upregulation and blue denoting downregulation. The size of each bar is proportional to its $-\log(p\text{-value})$.

1

2 Compared to bladders pretreated with IPSE before ifosfamide insult, bladders exposed only to ifosfamide
3 relatively upregulated gene expression of some antioxidant enzymes, including *Fth1*, *Ftl1*, *Abcc1*, *Gclc*, *Gclm*,
4 *Gm3776* and to some extent for *Gsr*, *Sod2* and *Dnajb1* (Fig. 5B). It is notable that the downregulated gene
5 expression of proteins in this pathway were those involved in DNA damage sensing, superoxide partitioning
6 and detoxification of xenobiotics, and metal ion homeostasis (Fig. 5B). In particular, relatively lower expression
7 of genes encoding the ferritin proteins (*Fth1* and *Ftl1*) suggest relatively earlier restoration of iron homeostasis
8 in IPSE pretreated mice, supporting the observed decrease in bladder hemorrhage induced by IPSE pretreatment
9 before IFS challenge (42). Taken together, these data suggest in IPSE-pretreated bladders exposed to
10 ifosfamide, that there is a significant anti-oxidant response following accumulation of acrolein, but lower
11 expression of genes related to detoxification of xenobiotics, DNA damage sensing and iron homeostasis.

2

3 Discussion

4 Herein we describe the first transcriptome-wide profiling of the bladder during ifosfamide-induced hemorrhagic
5 cystitis. To accomplish this, we used a tractable mouse model which recapitulates the pathogenesis of
6 hemorrhagic cystitis (25) resulting from the urotoxic effect of acrolein, a byproduct of ifosfamide metabolism.
7 This study has verified a number of important findings regarding specific biological aspects of ifosfamide-
8 induced hemorrhagic cystitis. We have expanded upon this body of work by defining multiple key pathogenetic
9 mechanisms through comprehensive transcriptomics. Furthermore, our RNA-Seq data extends our prior work
10 on the therapeutic effect of IPSE in ifosfamide-induced hemorrhagic cystitis (42). This study has revealed a
11 central role played by the IL-1 β , TNF α and IL-6 triad in driving the substantial inflammation associated with
12 ifosfamide-induced hemorrhagic cystitis (35, 41, 47, 82-84). A 100-fold increase in expression of IL-1 β , TNF α
13 and IL-6 was reduced ~50% by pretreatment with a single dose of IPSE. We also confirmed that gene
14 members of the heme hemostasis and oxidative stress response biological systems were highly transcribed
15 following ifosfamide-induced hemorrhagic cystitis, presumably to restore antioxidants to normal levels (37, 48,
16 50-53, 56-58). Moreover, we have shown that these urotoxicity-associated transcriptional changes, especially
17 inflammatory responses, were downregulated by IPSE when administered before ifosfamide challenge.

18 Unlike MESNA, which binds to and neutralizes acrolein directly to prevent urotoxicity, IPSE prevents or
19 reverses the inflammatory changes that drive bladder damage following ifosfamide exposure. We postulate that
20 IPSE, through its inhibitory transcriptional effects on IL-1 β , TNF α and IL-6, key upstream cytokines driving
21 inflammation via NF κ B and STAT3, limits ifosfamide-triggered inflammation, urothelial denudation and

12 vascular pathogenesis. The ability of IPSE to induce gene expression of uroplakins (42), crucial urothelial
13 barrier function genes, is a likely contributor to IPSE's therapeutic effect on the bladder following chemical
14 insult (59, 89, 90). Other candidate drugs for ifosfamide-induced hemorrhagic cystitis have also been shown to
15 specifically target the IL-1 β -TNF α -IL-6 pathway. Dantas *et al.* (2010) showed that simvastatin attenuated
16 cyclophosphamide-induced urothelial inflammation by decreasing the expression and activities of IL-1 β , TNF α
17 and IL-6 (47). Recombinant IL-4, quinovic acid glycosides, oleuropein, anakinra, pentoxifylline, diallyl
18 disulfide and other anti-inflammatory candidates were separately shown to reduce the pathogenesis of
19 hemorrhagic cystitis by inhibition of the expression of these inflammatory cytokines and their receptors (25, 41,
20 43, 45, 48, 49). In accord with our observations, other drug studies have identified a therapeutic requirement for
21 downregulation of IL-1 β , TNF α and IL-6 associated transcriptional factors (NF κ B and STAT3) (32, 43) and
22 downstream inflammatory mediators (iNOS and COX-2) (25, 32, 48, 83, 84, 91, 92).

23 Besides effects on the IL-1 β , TNF α and IL-6 triad, IPSE may also mediate critical gene expression changes in
24 chemokines in ifosfamide-induced hemorrhagic cystitis. A range of major chemokines genes (*Ccl2*, *Ccl3*, *Ccl4*,
25 *Ccl5*, *Ccl7*, *Ccl12*, *Cxcl1*, *Cxcl2*, *Cxcl3*, *Cxcl5*, *Cxcl10* and *Cxcl13*) acting as chemo-attractants to site of stress
26 were significantly downregulated by IPSE pretreatment before ifosfamide insult. For instance, *Cxcl10*
27 transcription is upregulated in the bladder following ifosfamide insult, and is significantly decreased by
28 comparison in IPSE-pretreated, ifosfamide-exposed bladders. Indeed, CXCL10 blockade has been shown to
29 significantly dampen cyclophosphamide-induced hemorrhagic cystitis (93). Interleukin 8 receptor (*Cxcr2*) was
30 also relatively downregulated by IPSE pretreatment before ifosfamide challenge. Notably, *Cxcr2* was
31 previously identified to play an important role in cyclophosphamide induced hemorrhagic cystitis (94).

32 IPSE likely orchestrates a portion of its therapeutic effects through actions on other cytokines. Gene expression
33 network analysis revealed a link between the observed downregulation of CCL2 in the bladders of IPSE-
34 pretreated, ifosfamide-challenged mice (versus the bladders from mice receiving only ifosfamide) and several
35 gamma interferon-inducible proteins. Also, the interferon signaling pathway was the most downregulated
36 pathway in the bladders of IPSE-pretreated mice as compared to bladders only exposed to ifosfamide. Our
37 results point to an association between downregulation of the interferon signaling pathway and amelioration of
38 acrolein-induced urotoxicity, a mechanism that has not been previously linked to protection from hemorrhagic
39 cystitis. The interferon signaling pathway has been previously shown to cross-talk with inflammasomes
40 activated during inflammatory responses to irritants (95, 96). Some of these gamma interferon inducible genes
41 are in turn linked to the development of pyroptosis, a highly inflammatory form of programmed cell death (Fig.
42 6B). Acrolein-induced pyroptotic cell death is a major determining factor of the severity of ifosfamide-induced
43 urotoxicity (12, 32, 59). Pyroptosis can be compounded by activation of the inflammasome complex, which
44 generates reactive species which perpetuate a vicious cycle of cell death (34, 36). The ability of IPSE to

75 downregulate the interferon pathway, in conjunction with downregulation of major inflammatory pathways,
76 may limit inflammasome activation and thus reduce acrolein-induced pyroptotic cell death. We hypothesize that
77 IPSE, by bringing these processes to heel, subsequently modulates downstream urothelial damage, hemorrhage,
78 oxidative stress and cellular infiltration.

79 The therapeutic efficacy of IPSE in ifosfamide-induced hemorrhagic cystitis may also partially depend on its
80 modulation of oxidative stress cascades. Acrolein is a potent inducer of oxidative stress (33). Indeed, the NRF2-
81 mediated oxidative stress responses pathway, which restores heme homeostasis and antioxidant responses, was
82 highly expressed in the setting of ifosfamide-induced hemorrhagic cystitis (37). Accordingly, *Hmox1* and
83 *Slc7a11* were among the top upregulated genes from this transcriptomic analysis. *Slc7a11* is a cysteine
84 transporter, which has been implicated in glutathione metabolism in the bladder (80, 81). NRF2 induces the
85 expression of heme oxygenase 1 (HO-1), the first enzyme of the heme oxygenase pathway, and several
86 antioxidant enzymes including glutathione reductase (GSR), thioredoxin (TXN), thioredoxin reductase
87 (TRXR1), superoxide dismutase (SOD), peroxiredoxin 1 (PRDX1), ferritin light chain (FTL) and ferritin heavy
88 chains (FTH) (38). An association between an increase in the expression of NRF2 and protection from
89 ifosfamide-induced hemorrhagic cystitis is consistent with a previous report linking hemostasis to reduction in
90 hemorrhagic cystitis (37, 51, 53). In addition, there is a strong pathophysiological relationship between
91 inflammation and oxidative stress (97). Severe pyroptosis can lead to enzymatic tissue damage and cellular
92 DNA damage, which generate reactive species and superoxide radicals that induce oxidative stress (12, 97).
93 When the bladder vasculature is exposed and injured following inflammation-driven urothelial damage, the
94 resulting hemorrhage and release of heme further promotes oxidative stress. Based on the rationale that limiting
95 inflammation reduces oxidative stress, and restoration of oxidative homeostasis initiates tissue repair processes,
96 hemostatic agents and antioxidants have been widely tested as alternative therapies for preventing or reducing
97 ifosfamide-induced hemorrhagic cystitis (37, 48-59). The link between inflammation and oxidative stress is
98 evident from findings that most antioxidants showing efficacy in ifosfamide-induced hemorrhagic cystitis also
99 downregulate pro-inflammatory cytokines and their downstream mediators (53, 56, 58, 61). In the same vein,
100 anti-inflammatory drug candidates with efficacy in ifosfamide-induced hemorrhagic cystitis can also restore
101 antioxidant enzyme activity to homoeostatic levels (43, 48, 49). In this study, however, we did not observe overt
102 differential transcriptional changes in oxidative stress responses induced by IPSE pretreatment, although some
103 antioxidant enzymes in bladders of IPSE-treated mice returned to basal levels. Nevertheless, it was interesting
104 to observe that the genes encoding the proteins involved in iron homeostasis (*Fth* and *Ftl*) were relatively
105 restored to baseline in bladders from the IPSE treated group. Also, some antioxidant proteins involved in
106 xenobiotic detoxification and hemostasis (*Gclm*, *Gclc*, *Gsr* and *Gm3776*), superoxide detoxification (*Sod2*) and
107 stress induced chaperones (*Stip1* and *Dnajb1*) were also reduced to normal levels in bladders from the IPSE-

8 pretreated group. In addition, multidrug resistance protein 1 (*Abcc1*, *Mrp1*), which functions as an anion
9 transporter with glutathione as a substrate (98), returned to basal levels in the ifosfamide-exposed bladder
10 following IPSE pretreatment. Taken together, these differences suggest reduced levels of oxidative stress are
11 present in ifosfamide-exposed bladders from IPSE-pretreated group, evident in reduced levels of genes related
12 to detoxification of xenobiotics, DNA damage sensing and iron homeostasis.

13 Ifosfamide injury of the bladder may disrupt homeostasis of pathways besides oxidative stress. The PPAR
14 pathway was downregulated in the ifosfamide-exposed bladder, which would presumably impair restoration of
15 lipid homeostasis following epithelial membrane damage by acrolein. The PPAR pathway is also a modulator of
16 inflammatory responses (86, 87) in addition to its role in the development and maintenance of IL-4 dependent
17 alternatively activated status in macrophages (88), which we speculate may be inhibited in the highly
18 inflammatory environment of the ifosfamide-injured bladder. Interestingly, we did not observe any significant
19 effects of IPSE pretreatment on transcription of gene members of the PPAR pathway, suggesting a post-
20 translational mechanism not captured by our early time point. In contrast, the most IPSE-downregulated genes
21 in the ifosfamide-exposed bladder were those related to the neuro-inflammation signaling pathway (specifically,
22 pathways active in central nervous system cells, i.e., astrocytes and microglia). We have previously reported
23 that IPSE alleviates ifosfamide-induced allodynia (42). It remains to be shown whether this observed
24 downregulation of neuro-inflammatory signaling is directly linked to this protective effect on allodynia,
25 especially given the absence of astrocytes and microglia in the bladder.

26 While this study has revealed potential mechanistic changes associated with ifosfamide-induced hemorrhagic
27 cystitis, and presented evidence of possible underlying mechanisms of IPSE's therapeutic effect, our RNA-Seq-
28 based approach cannot establish a causal relationship between observed gene expression and phenomena of
29 interest (including IPSE's therapeutic effects). This dataset did not reveal whether the therapeutic effects of
30 IPSE are due to its IL-4-inducing properties, chemokine sequestration, or nuclear translocation-related, direct
31 transcriptional effects. For instance, the downregulation of interferon signaling and its related genes is
32 intriguing, but it is unclear to which extent this can be ascribed to IPSE-induced IL-4. Also, RNA-Seq does not
33 capture epigenetic or post-translational regulation of gene or protein expression and activity. Moreover, we
34 focused on a single, early time point following ifosfamide exposure. Although we observed differential
35 transcription of multiple genes of interest at this time point, it is unlikely that this cross-sectional analysis has
36 captured all relevant gene expression. Finally, this study focused on transcriptional changes in the bladder
37 alone, and did not examine systemic gene expression induced by ifosfamide and IPSE. It is possible that such
38 gene expression may account for some of ifosfamide and IPSE's *in vivo* effects.

39 In conclusion, we have elucidated transcriptional dynamics associated with ifosfamide-induced hemorrhagic
40 cystitis. These data provide new insights into the underlying mechanisms driving acrolein-induced urotoxicity
41 associated with the use of ifosfamide and other oxazaphosphorines. We also showed that IPSE, an anti-
42 inflammatory, parasite-derived molecule with therapeutic potential for ifosfamide-induced hemorrhagic cystitis
43 (42), downregulates major inflammatory pathways potentially related to its mechanisms of effect. Our work
44 demonstrates that there may be therapeutic potential for naturally occurring anti-inflammatory molecules,
45 including pathogen-derived factors, as alternative or complementary therapies for ifosfamide-induced
46 hemorrhagic cystitis. Apart from inhibition of inflammation and modest restoration of normal levels of
47 antioxidants, we did not observe complete prevention of acrolein-induced oxidative stress by IPSE
48 pretreatment. This is probably due to IPSE's inability to directly bind to and neutralize acrolein (the mechanism
49 of MESNA). Thus, IPSE is playing only a limited role on oxidative stress while suppressing inflammation.
50 However, we have only compared one dose of IPSE given before ifosfamide challenge against three doses of
51 MESNA. It remains to be shown whether IPSE will produce more ameliorative effects when given in multiple
52 doses or through alternative routes. Ongoing work is focusing on optimization of IPSE, specifically related to its
53 IL-4 induction and chemokine binding properties, to enhance its efficacy while preventing toxicity. Our hope is
54 that these variations on IPSE and its administration will result in significantly improved efficacy, and
55 ultimately, an alternative to MESNA in preventing ifosfamide-induced hemorrhagic cystitis.

56

57 **Materials and Methods**

58 ***Ethical Approval***

59 Animal experiments reported in this study were conducted in a humane manner, adhering to relevant U.S. and
60 international guidelines. Our animal handling and experimental protocols were reviewed and approved by the
61 Institutional Animal Care and Use Committee (IACUC) of the Biomedical Research Institute, Rockville,
62 Maryland, USA. Our IACUC guidelines comply with the U.S. Public Health Service Policy on Human Care and
63 Use of Laboratory Animals.

64 ***Animals, reagents and drugs***

65 Female 7-week-old C57BL/6 mice (Charles River Laboratories, Wilmington, MA, USA) were housed using 12-
66 h light-dark cycles in temperature-controlled holding rooms, with an unlimited supply of dry mouse chow and
67 water. Ifosfamide (>98% purity) was purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA).
68 IPSE cloning, expression and purification was performed as previously described (42, 78).

59 ***Ifosfamide-induced hemorrhagic cystitis model***

70 The ifosfamide-induced hemorrhagic cystitis model presented in this study was performed following methods
71 previously described by Macedo et al., 2012 (25). Mice were intravenously injected with 25 μ g of IPSE or saline
72 24 hours before intraperitoneal ifosfamide injection (400mg/kg). Mice were then monitored for 6 hours post-
73 ifosfamide injection before they were sacrificed for downstream experiments. Bladders were aseptically
74 collected for RNA purification.

75 ***RNA purification***

76 RNA was isolated from mouse bladders using TRIzol Reagent and PureLink RNA Mini Kit (Invitrogen),
77 according to manufacturers' instructions. Briefly, aseptically excised bladders were homogenized in 1 ml
78 TRIzol Reagent by bead-beating using ceramic beads (Omni International) and a mini-beadbeater (Biospec).
79 Following a 5-min incubation, 0.2 ml chloroform was added and again incubated for 3 min before
80 centrifugation at 12,000 \times g for 15 min to separate homogenates into aqueous and organic phases. The aqueous
81 supernatant (~400ul) was mixed with an equal volume of 70% ethanol before binding the mixture to RNA
82 binding columns by centrifugation. On-column DNase digestion (Invitrogen) was performed for 30 minutes,
83 following the manufacturer's protocols. After column washes and drying, RNA was eluted in RNase-free water,
84 quantified and its quality checked using a NanoDrop 1000 spectrophotometer (Thermo Scientific) and
85 Bioanalyzer 2100 (Agilent).

86 ***RNA sequencing and RNA-seq analysis pipeline***

87 RNA sequencing was performed using the Illumina-HiSeq2500/4000 NGS platform at a depth of ~20 million
88 reads. Analyses were conducted using the RNA analysis tools of the Galaxy platform (www.usegalaxy.org).
89 Raw sequence reads were aligned to the mouse genome (Mm10) by HISAT2 (99). The resulting alignment files,
90 along with the corresponding mouse genome annotation file, were used as the input for HTSeq-count (100).
91 DESeq2 (101) was used to determine differentially expressed genes between each pair of treatment groups.
92 PCA plots were also generated by DESeq2. The DESeq2 results files containing gene IDs, log2 fold change and
93 standard deviation, p-values and adjusted p-values were processed further downstream for functional analysis.

94 ***Functional and pathway analysis, statistics and plots***

95 Pathway, mechanistic network and functional analyses were generated using Ingenuity Pathways Analysis
96 (QIAGEN Inc., <https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis>) (102). The
97 threshold cut-off was set at adjusted p-value < 0.1 for gene expression comparisons between bladders exposed

8 to ifosfamide versus saline vehicle, and $p < 0.05$ for gene expression comparisons between IPSE-pretreated,
9 ifosfamide-exposed bladders versus bladders only exposed to ifosfamide. The cut off for $\log_2(\text{fold change})$ was
10 set at > 1 (2 fold). Other data analyses and plots were generated using GraphPad Prism v 6.00, and *ggplot2* and
11 *plotly* packages in R. For comparisons among groups, one way analysis of variance (ANOVA) was performed
12 and if significant, was followed by *post hoc* Student *t*-tests for pairwise comparisons after confirming a normal
13 distribution. Plotted data show individual data points with error bars representing means and standard deviation.

14 ***Histology***

15 Bladders were fixed in 10% neutral-buffered formalin and later dehydrated and embedded in paraffin. Paraffin-
16 embedded bladders were cut into 5 micron sections and then processed for hematoxylin and eosin staining. The
17 stained sections were evaluated microscopically (in a blinded fashion by J.I.O.) for the presence of urothelial
18 denudation, lamina propria edema, hemorrhage, and cellular infiltration.

19

20 **References**

1. Young SD, Whissell M, Noble JCS, Cano PO, Lopez PG, and Germond CJ. Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. *Clinical Cancer Research*. 2006;12:3092-8.
2. Advani SH. The role of ifosfamide in paediatric cancer. *Aust N Z J Med*. 1998;28(3):410-3.
3. Lawson M, Vasilaras A, De Vries A, Mactaggart P, and Nicol D. Urological implications of cyclophosphamide and ifosfamide. *Scandinavian Journal of Urology and Nephrology*. 2008;42(4):309-17.
4. Traxer O, Desgrandchamps F, Sebe P, Haab F, Le Duc A, Gattegno B, et al. [Hemorrhagic cystitis: etiology and treatment]. *Prog Urol*. 2001;11(4):591-601.
5. Mendenhall WM, Henderson RH, Costa JA, Hoppe BS, Dagan R, Bryant CM, et al. Hemorrhagic radiation cystitis. *Am J Clin Oncol*. 2015;38(3):331-6.
6. Rajaganapathy BR, Jayabalan N, Tyagi P, Kaufman J, and Chancellor MB. Advances in Therapeutic Development for Radiation Cystitis. *Low Urin Tract Symptoms*. 2014;6(1):1-10.
7. Alesawi AM, El-Hakim A, Zorn KC, and Saad F. Radiation-induced hemorrhagic cystitis. *Curr Opin Support Palliat Care*. 2014;8(3):235-40.
8. Arora R, Jasmita, Singh M, Garg A, Gupta M, and Gupta N. Successful Treatment of BK Virus Hemorrhagic Cystitis (HC) Post Allogenic Hematopoietic Stem Cell Transplantation with Low Dose Cidofovir. *J Assoc Physicians India*. 2017;65(5):93-4.
9. Kato J, Mori T, Suzuki T, Ito M, Li TC, Sakurai M, et al. Nosocomial BK Polyomavirus Infection Causing Hemorrhagic Cystitis Among Patients With Hematological Malignancies After Hematopoietic Stem Cell Transplantation. *Am J Transplant*. 2017;17(9):2428-33.
10. Perez-Huertas P, Cueto-Sola M, Escobar-Cava P, Fernandez-Navarro JM, Borrell-Garcia C, Albert-Mari A, et al. BK Virus-Associated Hemorrhagic Cystitis After Allogeneic Hematopoietic Stem Cell Transplantation in the Pediatric Population. *J Pediatr Oncol Nurs*. 2016.
11. delaCruz J, and Pursell K. BK Virus and Its Role in Hematopoietic Stem Cell Transplantation: Evolution of a Pathogen. *Curr Infect Dis Rep*. 2014;16(8):417.
12. Haldar S, Dru C, and Bhowmick NA. Mechanisms of hemorrhagic cystitis. *Am J Clin Exp Urol*. 2014;2(3):199-208.
13. Sarosy G. Ifosfamide--pharmacologic overview. *Semin Oncol*. 1989;16(1 Suppl 3):2-8.
14. Sakurai M, Saijo N, Shinkai T, Eguchi K, Sasaki Y, Tamura T, et al. The protective effect of 2-mercapto-ethane sulfonate (MESNA) on hemorrhagic cystitis induced by high-dose ifosfamide treatment tested by a randomized crossover trial. *Jpn J Clin Oncol*. 1986;16(2):153-6.
15. Andriole GL, Sandlund JT, Miser JS, Arasi V, Linehan M, and Magrath IT. The efficacy of mesna (2-mercaptoethane sodium sulfonate) as a uroprotectant in patients with hemorrhagic cystitis receiving further oxazaphosphorine chemotherapy. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 1987;5(5):799-803.
16. Higgs D, Nagy C, and Einhorn LH. Ifosfamide: a clinical review. *Semin Oncol Nurs*. 1989;5(2 Suppl 1):70-7.

16. 17. Shepherd JD, Pringle LE, Barnett MJ, Klingemann H-G, Reece DE, and Phillips GL. Mesna versus hyperhydration for the prevention of cyclophosphamide- induced hemorrhagic cystitis in bone marrow transplantation. *Journal of Clinical Oncology*. 1991;9:2016-20.
17. 18. Furlanet M, and Franceschi L. Pharmacology of ifosfamide. *Oncology*. 2003;65 Suppl 2:2-6.
18. 19. Shimogori K, Araki M, Shibasaki S, Tuda K, and Miura K. Nonimmediate allergic reactions induced by Mesna. *J Gen Fam Med*. 2017;18(5):285-7.
19. 20. Behnam K, Patil UB, and Mariano E. Intravesical instillation of Formalin for hemorrhagic cystitis secondary to radiation for gynecologic malignancies. *Gynecol Oncol*. 1983;16(1):31-3.
20. 21. Donahue LA, and Frank IN. Intravesical formalin for hemorrhagic cystitis: analysis of therapy. *J Urol*. 1989;141(4):809-12.
21. 22. Montgomery BD, Boorjian SA, Ziegelmann MJ, Joyce DD, and Linder BJ. Intravesical silver nitrate for refractory hemorrhagic cystitis. *Turk J Urol*. 2016;42(3):197-201.
22. 23. Ziegelmann MJ, Boorjian SA, Joyce DD, Montgomery BD, and Linder BJ. Intravesical formalin for hemorrhagic cystitis: A contemporary cohort. *Can Urol Assoc J*. 2017;11(3-4):E79-e82.
23. 24. Russo P. Urologic emergencies in the cancer patient. *Semin Oncol*. 2000;27(3):284-98.
24. 25. Macedo FY, Mourao LT, Freitas HC, Lima RC, Jr., Wong DV, Oria RB, et al. Interleukin-4 modulates the inflammatory response in ifosfamide-induced hemorrhagic cystitis. *Inflammation*. 2012;35(1):297-307.
25. 26. Levenback C, Eifel PJ, Burke TW, Morris M, and Gershenson DM. Hemorrhagic cystitis following radiotherapy for stage Ib cancer of the cervix. *Gynecol Oncol*. 1994;55(2):206-10.
26. 27. Kaplan JR, and Wolf JS, Jr. Efficacy and survival associated with cystoscopy and clot evacuation for radiation or cyclophosphamide induced hemorrhagic cystitis. *J Urol*. 2009;181(2):641-6.
27. 28. Kaur D, Khan SP, Rodriguez V, Arndt C, and Claus P. Hyperbaric oxygen as a treatment modality in cyclophosphamide-induced hemorrhagic cystitis. *Pediatr Transplant*. 2018:e13171.
28. 29. Andriole GL, Yuan JJ, and Catalona WJ. Cystotomy, temporary urinary diversion and bladder packing in the management of severe cyclophosphamide-induced hemorrhagic cystitis. *J Urol*. 1990;143(5):1006-7.
29. 30. West NJ. Prevention and treatment of hemorrhagic cystitis. *Pharmacotherapy*. 1997;17(4):696-706.
30. 31. Matz EL, and Hsieh MH. Review of Advances in Uroprotective Agents for Cyclophosphamide- and Ifosfamide-induced Hemorrhagic Cystitis. *Urology*. 2017;100:16-9.
31. 32. Korkmaz A, Topal T, and Oter S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; Implication of reactive oxygen and nitrogen species as well as PARP activation. *Cell Biology and Toxicology*. 2007;23:303-12.
32. 33. Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. *Toxicol Sci*. 2015;143(2):242-55.
33. 34. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. *Nat Immunol*. 2010;11(1):63-9.
34. 35. Gomes TN, Santos CC, Souza-Filho MV, Cunha FQ, and Ribeiro RA. Participation of TNF-alpha and IL-1 in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. *Braz J Med Biol Res*. 1995;28(10):1103-8.
35. 36. Takeuchi O, and Akira S. Pattern recognition receptors and inflammation. *Cell*. 2010;140(6):805-20.
36. 37. Gore PR, Prajapati CP, Mahajan UB, Goyal SN, Belemkar S, Ojha S, et al. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression. *Int J Biol Sci*. 2016;12(8):944-53.
37. 38. Nguyen T, Nioi P, and Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. *J Biol Chem*. 2009;284(20):13291-5.
38. 39. Hingorani P, Zhang W, Piperdi S, Pressman L, Lin J, Gorlick R, et al. Preclinical activity of palifosfamide lysine (ZIO-201) in pediatric sarcomas including oxazaphosphorine-resistant osteosarcoma. *Cancer Chemother Pharmacol*. 2009;64(4):733-40.
39. 40. Kopp HG, Kanz L, and Hartmann JT. Hypersensitivity pneumonitis associated with the use of trofosfamide. *Anticancer Drugs*. 2004;15(6):603-4.
40. 41. Leite CA, Alencar VT, Melo DL, Mota JM, Melo PH, Mourao LT, et al. Target Inhibition of IL-1 Receptor Prevents Ifosfamide Induced Hemorrhagic Cystitis in Mice. *J Urol*. 2015;194(6):1777-86.
41. 42. Mbanebo EC, Le L, Pennington LF, Odegaard JI, Jardetzky TS, Alouff A, et al. Therapeutic exploitation of IPSE, a urogenital parasite-derived host modulatory protein, for chemotherapy-induced hemorrhagic cystitis. *Faseb J*. 2018;fj201701415R.
42. 43. Kim SH, Lee IC, Ko JW, Moon C, Kim SH, Shin IS, et al. Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-kappaB Pathways. *Biomol Ther (Seoul)*. 2015;23(2):180-8.
43. 44. Wrobel A, Doboszewska U, Rechberger E, Rojek K, Serefko A, Poleszak E, et al. Rho kinase inhibition ameliorates cyclophosphamide-induced cystitis in rats. *Naunyn Schmiedebergs Arch Pharmacol*. 2017;390(6):613-9.
44. 45. Dietrich F, Pietrobon Martins J, Kaiser S, Madeira Silva RB, Rockenbach L, Albano Edelweiss MI, et al. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice. *PLoS One*. 2015;10(7):e0131882.

46. Santos AA, Jr., Leal PC, Edelweiss MI, Lopes TG, Calixto JB, Morrone FB, et al. Effects of the compounds MV8608 and
47. MV8612 obtained from Mandevilla velutina in the model of hemorrhagic cystitis induced by cyclophosphamide in rats.
Naunyn Schmiedebergs Arch Pharmacol. 2010;382(5-6):399-407.
48. Dantas AC, Batista-Junior FF, Macedo LF, Mendes MN, Azevedo IM, and Medeiros AC. Protective effect of simvastatin in
49. the cyclophosphamide-induced hemorrhagic cystitis in rats. *Acta Cir Bras.* 2010;25(1):43-6.
50. Sherif IO, Nakshabandi ZM, Mohamed MA, and Sarhan OM. Uroprotective effect of oleuropein in a rat model of
51. hemorrhagic cystitis. *Int J Biochem Cell Biol.* 2016;74:12-7.
52. Abo-Salem OM. Uroprotective effect of pentoxifylline in cyclophosphamide-induced hemorrhagic cystitis in rats. *J Biochem
53. Mol Toxicol.* 2013;27(7):343-50.
54. Kilic O, Akand M, Karabagli P, and Piskin MM. Hemostatic Efficacy and Histopathological Effects of Ankaferd Blood
55. Stopper in an Experimental Rat Model of Cyclophosphamide-induced Hemorrhagic Cystitis. *Urology.* 2016;94:313.e7-e13.
56. Chow YC, Yang S, Huang CJ, Tzen CY, Huang PL, Su YH, et al. Epinephrine promotes hemostasis in rats with
57. cyclophosphamide-induced hemorrhagic cystitis. *Urology.* 2006;67(3):636-41.
58. Chow YC, Yang S, Huang CJ, Tzen CY, Su YH, and Wang PS. Prophylactic intravesical instillation of epinephrine prevents
59. cyclophosphamide-induced hemorrhagic cystitis in rats. *Exp Biol Med (Maywood).* 2007;232(4):565-70.
60. Matsuoka Y, Masuda H, Yokoyama M, and Kihara K. Protective effects of bilirubin against cyclophosphamide induced
61. hemorrhagic cystitis in rats. *J Urol.* 2008;179(3):1160-6.
62. Kanat O, Kurt E, Yalcinkaya U, Evrensel T, and Manavoglu O. Comparison of uroprotective efficacy of mesna and
63. amifostine in Cyclophosphamide- induced hemorrhagic cystitis in rats. *Indian J Cancer.* 2006;43(1):12-5.
64. Boeira VT, Leite CE, Santos AA, Jr., Edelweiss MI, Calixto JB, Campos MM, et al. Effects of the hydroalcoholic extract of
65. Phyllanthus niruri and its isolated compounds on cyclophosphamide-induced hemorrhagic cystitis in mouse. *Naunyn
66. Schmiedebergs Arch Pharmacol.* 2011;384(3):265-75.
67. Hamsa TP, and Kuttan G. Protective role of Ipomoea obscura (L.) on cyclophosphamide-induced uro- and nephrotoxicities
68. by modulating antioxidant status and pro-inflammatory cytokine levels. *Inflammopharmacology.* 2011;19(3):155-67.
69. Yildirim I, Korkmaz A, Oter S, Ozcan A, and Oztas E. Contribution of antioxidants to preventive effect of mesna in
70. cyclophosphamide-induced hemorrhagic cystitis in rats. *Cancer Chemother Pharmacol.* 2004;54(5):469-73.
71. Sadir S, Devenci S, Korkmaz A, and Oter S. Alpha-tocopherol, beta-carotene and melatonin administration protects
72. cyclophosphamide-induced oxidative damage to bladder tissue in rats. *Cell Biochem Funct.* 2007;25(5):521-6.
73. Zupancic D, Jezernik K, and Vidmar G. Effect of melatonin on apoptosis, proliferation and differentiation of urothelial cells
74. after cyclophosphamide treatment. *J Pineal Res.* 2008;44(3):299-306.
75. Ozguven AA, Yilmaz O, Taneli F, Ulman C, Vatansever S, and Onag A. Protective effect of ketamine against hemorrhagic
76. cystitis in rats receiving ifosfamide. *Indian J Pharmacol.* 2014;46(2):147-51.
77. Sakura M, Masuda H, Matsuoka Y, Yokoyama M, Kawakami S, and Kihara K. Rolipram, a specific type-4
78. phosphodiesterase inhibitor, inhibits cyclophosphamide-induced haemorrhagic cystitis in rats. *BJU Int.* 2009;103(2):264-9.
79. Yigitaslan S, Ozatik O, Ozatik FY, Erol K, Sirmagul B, and Baseskioglu AB. Effects of tadalafil on hemorrhagic cystitis and
80. testicular dysfunction induced by cyclophosphamide in rats. *Urol Int.* 2014;93(1):55-62.
81. Vela-Ojeda J, Tripp-Villanueva F, Sanchez-Cortes E, Ayala-Sanchez M, Garcia-Ruiz Esparza MA, Rosas-Cabral A, et al.
82. Intravesical rhGM-CSF for the treatment of late onset hemorrhagic cystitis after bone marrow transplant. *Bone Marrow
83. Transplant.* 1999;24(12):1307-10.
84. Mota JM, Brito GA, Loiola RT, Cunha FQ, and Ribeiro RdA. Interleukin-11 attenuates ifosfamide-induced hemorrhagic
85. cystitis. *International braz j urol : official journal of the Brazilian Society of Urology.* 33:704-10.
86. Ozyuvali E, Yildirim ME, Yaman T, Kosem B, Atli O, and Cimentepe E. Protective Effect of Intravesical Platelet-Rich
87. Plasma on Cyclophosphamide-Induced Hemorrhagic Cystitis. *Clin Invest Med.* 2016;39(6):27514.
88. Donmez MI, Inci K, Zeybek ND, Dogan HS, and Ergen A. The Early Histological Effects of Intravesical Instillation of
89. Platelet-Rich Plasma in Cystitis Models. *Int Neurourol J.* 2016;20(3):188-96.
90. Freitas RD, Costa KM, Nicoletti NF, Kist LW, Bogo MR, and Campos MM. Omega-3 fatty acids are able to modulate the
91. painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice. *J Nutr Biochem.* 2016;27:219-32.
92. Keles I, Bozkurt MF, Cemek M, Karalar M, Hazini A, Alpdagtas S, et al. Prevention of cyclophosphamide-induced
93. hemorrhagic cystitis by resveratrol: a comparative experimental study with mesna. *Int Urol Nephrol.* 2014;46(12):2301-10.
94. Vieira MM, Macedo FY, Filho JN, Costa AC, Cunha AN, Silveira ER, et al. Ternatin, a flavonoid, prevents
95. cyclophosphamide and ifosfamide-induced hemorrhagic cystitis in rats. *Phytother Res.* 2004;18(2):135-41.
96. Assreuy AM, Martins GJ, Moreira ME, Brito GA, Cavada BS, Ribeiro RA, et al. Prevention of cyclophosphamide-induced
97. hemorrhagic cystitis by glucose-mannose binding plant lectins. *J Urol.* 1999;161(6):1988-93.
98. Arafa HM. Uroprotective effects of curcumin in cyclophosphamide-induced haemorrhagic cystitis paradigm. *Basic Clin
99. Pharmacol Toxicol.* 2009;104(5):393-9.
100. Meyer NH, Mayerhofer H, Tripsianes K, Blindow S, Barths D, Mewes A, et al. A Crystallin Fold in the Interleukin-4-
101. inducing Principle of Schistosoma mansoni Eggs (IPSE/alpha-1) Mediates IgE Binding for Antigen-independent Basophil
102. Activation. *The Journal of biological chemistry.* 2015;290(36):22111-26.
103. Schramm G, Falcone FH, Gronow A, Haisch K, Mamat U, Doenhoff MJ, et al. Molecular characterization of an interleukin-
104. 4-inducing factor from Schistosoma mansoni eggs. *The Journal of biological chemistry.* 2003;278(20):18384-92.

- 36 74. Schramm G, Mohrs K, Wodrich M, Doenhoff MJ, Pearce EJ, Haas H, et al. Cutting edge: IPSE/alpha-1, a glycoprotein from
37 Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo.
38 *Journal of immunology (Baltimore, Md : 1950)*. 2007;178(10):6023-7.
- 39 75. Smith P, Fallon RE, Mangan NE, Walsh CM, Saraiva M, Sayers JR, et al. Schistosoma mansoni secretes a chemokine
40 binding protein with antiinflammatory activity. *The Journal of experimental medicine*. 2005;202(10):1319-25.
- 41 76. Kaur I, Schramm G, Everts B, Scholzen T, Kindle KB, Beetz C, et al. Interleukin-4-inducing principle from Schistosoma
42 mansoni eggs contains a functional C-terminal nuclear localization signal necessary for nuclear translocation in mammalian
43 cells but not for its uptake. *Infection and immunity*. 2011;79(4):1779-88.
- 44 77. Meyer NH, Schramm G, and Sattler M. 1H, 13C and 15N chemical shift assignments of IPSEDeltaNLS. *Biomolecular NMR
45 assignments*. 2011;5(2):225-7.
- 46 78. Pennington LF, Alouffi A, Mbanefo EC, Ray D, Heery DM, Jardetzky TS, et al. H-IPSE is a pathogen-secreted host nucleus
47 infiltrating protein (infiltrin) expressed exclusively by the Schistosoma haematobium egg stage. *Infect Immun*.
48 2017;85(12):e00301-17.
- 49 79. Magrini E, Mantovani A, and Garlanda C. The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? *Trends
50 Mol Med*. 2016;22(6):497-510.
- 51 80. Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, et al. Reduced expression of miRNA-27a modulates
52 cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. *Clin Cancer Res*.
53 2014;20(7):1990-2000.
- 54 81. Wei L, Chintala S, Ciamporcero E, Ramakrishnan S, Elbanna M, Wang J, et al. Genomic profiling is predictive of response
55 to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. *Oncotarget*. 2016;7(47):76374-
56 89.
- 57 82. Dejima T, Shibata K, Yamada H, Takeuchi A, Hara H, Eto M, et al. A C-type lectin receptor pathway is responsible for the
58 pathogenesis of acute cyclophosphamide-induced cystitis in mice. *Microbiol Immunol*. 2013;57(12):833-41.
- 59 83. Ribeiro RA, Freitas HC, Campos MC, Santos CC, Figueiredo FC, Brito GA, et al. Tumor necrosis factor-alpha and
60 interleukin-1beta mediate the production of nitric oxide involved in the pathogenesis of ifosfamide induced hemorrhagic
61 cystitis in mice. *J Urol*. 2002;167(5):2229-34.
- 62 84. Wang CC, Weng TI, Wu ET, Wu MH, Yang RS, and Liu SH. Involvement of interleukin-6-regulated nitric oxide synthase in
63 hemorrhagic cystitis and impaired bladder contractions in young rats induced by acrolein, a urinary metabolite of
64 cyclophosphamide. *Toxicol Sci*. 2013;131(1):302-10.
- 65 85. Dunning KR, Anastasi MR, Zhang VJ, Russell DL, and Robker RL. Regulation of fatty acid oxidation in mouse cumulus-
66 oocyte complexes during maturation and modulation by PPAR agonists. *PLoS One*. 2014;9(2):e87327.
- 67 86. Reynders V, Loitsch S, Steinhauer C, Wagner T, Steinhilber D, and Bargen J. Peroxisome proliferator-activated receptor
68 alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes. *Respir Res*. 2006;7:104.
- 69 87. Cardell LO, Haggé M, Uddman R, and Adner M. Downregulation of peroxisome proliferator-activated receptors (PPARs) in
70 nasal polyposis. *Respir Res*. 2005;6:132.
- 71 88. Chawla A. Control of macrophage activation and function by PPARs. *Circ Res*. 2010;106(10):1559-69.
- 72 89. Choi SH, Byun Y, and Lee G. Expressions of Uroplakins in the Mouse Urinary Bladder with Cyclophosphamide-Induced
73 Cystitis. *Journal of Korean Medical Science*. 2009;24:684-9.
- 74 90. Lee G. Uroplakins in the lower urinary tract. *Int Neurourol J*. 2011;15:4-12.
- 75 91. Macedo FYB, Baltazar Ft, Almeida PRC, T??vora Fb, Ferreira FV, Schmitt FC, et al. Cyclooxygenase-2 expression on
76 ifosfamide-induced hemorrhagic cystitis in rats. *Journal of Cancer Research and Clinical Oncology*. 2008;134:19-27.
- 77 92. Oter S, Korkmaz A, Oztas E, Yildirim I, Topal T, and Bilgic H. Inducible nitric oxide synthase inhibition in
78 cyclophosphamide induced hemorrhagic cystitis in rats. *Urol Res*. 2004;32(3):185-9.
- 79 93. Sakthivel SK, Singh UP, Singh S, Taub DD, Novakovic KR, and Lillard JW, Jr. CXCL10 blockade protects mice from
80 cyclophosphamide-induced cystitis. *J Immune Based Ther Vaccines*. 2008;6:6.
- 81 94. Dornelles FN, Andrade EL, Campos MM, and Calixto JB. Role of CXCR2 and TRPV1 in functional, inflammatory and
82 behavioural changes in the rat model of cyclophosphamide-induced haemorrhagic cystitis. *Br J Pharmacol*. 2014;171(2):452-
83 67.
- 84 95. Kopitar-Jerala N. The Role of Interferons in Inflammation and Inflammasome Activation. *Front Immunol*. 2017;8:873.
- 85 96. Malireddi RK, and Kanneganti TD. Role of type I interferons in inflammasome activation, cell death, and disease during
86 microbial infection. *Front Cell Infect Microbiol*. 2013;3:77.
- 87 97. Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox?
88 *Oxidative Medicine and Cellular Longevity*. 2016;2016:9.
- 89 98. Cole SP. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter. *J Biol
90 Chem*. 2014;289(45):30880-8.
- 91 99. Kim D, Langmead B, and Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. *Nat Methods*.
92 2015;12(4):357-60.
- 93 100. Anders S, Pyl PT, and Huber W. HTSeq--a Python framework to work with high-throughput sequencing data.
94 *Bioinformatics*. 2015;31(2):166-9.
- 95 101. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
96 *Genome Biol*. 2014;15(12):550.

- 17 102. Kramer A, Green J, Pollard J, Jr., and Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis.
18 *Bioinformatics*. 2014;30(4):523-30.
19

30 **Acknowledgments**

31 We gratefully acknowledge our funding sources, the Margaret A. Stirewalt Endowment (MHH), NIDDK
32 R01DK113504 (MHH) , NIAID R56AI119168 (MHH), and a Urology Care Foundation Research Scholar
33 Award (ECM).

34

35 **Author contributions**

36 Designed research studies (ECM, MHH), conducted experiments (ECM, LL, RZ, LFP, AA), acquired data
37 (ECM, LL, RZ, KI, NB, LFP, AA, JIO), analyzed data (ECM, KI, NB, LL, LFP, MHH, JIO), providing
38 reagents (LFP, TSJ, FHF, MHH), and wrote the manuscript (ECM, KI, TSJ, FHF, MHH).

39

40 **Supplementary Figure Legends**

41 **Supplementary Fig. S1. Summary of the Pathways, Functional and Network analysis using Ingenuity
42 Pathway Analysis.** This file shows top 5 each of canonical pathways, upstream regulators, diseases and
43 disorders, molecular and cellular functions, physiological system development and functions, tox functions
44 (hepatotoxicity, nephrotoxicity and cardiotoxicity), regulator effect networks, mechanistic networks, top 10
45 upregulated and downregulated genes.

46 **Supplementary Fig. S2. Major upregulated pro-inflammatory pathways during ifosfamide induced
47 hemorrhagic cystitis.** Following ifosfamide injection and acrolein induced urotoxicity, there was upregulation
48 of upstream cytokines (IL-6, IL-1 β and TNF α), their receptors, adaptor proteins, protein kinases and nuclear
49 transcriptional factor (STAT3 and NF κ B) in the (A) STAT3 pathway and (B) NF κ B pathway. Keys:
50 upregulation (red), downregulation (green), cytokines (square), growth factors (dotted square), phosphatase
51 (triangle), kinases (inverted triangle), transmembrane receptors (ellipse), transcriptional regulators (wide
52 circle), peptidase (rhombus), group or complex (double lined shapes), transporter (trapezium), acts on (line
53 with filled arrow), translocate (line with open arrow), inhibition (line with perpendicular line at edge).

- 54 **Supplementary Fig. S3. Other upregulated pro-inflammatory pathways during ifosfamide induced**
55 **hemorrhagic cystitis. Other major upregulated proinflammatory pathways associated with ifosfamide induced**
56 **hemorrhagic cystitis were Role of IL-17F in Allergic Airway Diseases, p38 MAPK signaling, Leucocyte**
57 **Extravasation signaling, HMGB1 signaling, TREM1 signaling. For the key to the annotations, see description**
58 **in Supplementary Fig. S2 legend.**
- 59 **Supplementary Fig. S4. NRF2 mediated oxidative stress responses pathway.** NRF2 is the major pathway
60 regulating response to oxidative stress. It induces the expression of heme oxygenase pathway, the first enzyme
61 of the heme homoeostasis pathway, and the expression of several antioxidant enzymes and proteins. An
62 abridged version of this figure is shown in Fig. 5. For the key to the annotations, see description in
63 Supplementary Fig. S2 legend.
- 64 **Supplementary Fig. S5. PPAR signaling pathway.** This is the major pathway regulating lipid homoeostasis.
65 PPAR has been shown to play an anti-inflammatory role (87), thus, here downregulated in response to
66 ifosfamide induced cystitis. For the key to the annotations, see description in Supplementary Fig. S2 legend.
- 67 **Supplementary Fig. S6. Diseases and Function Tree map.** This is a graphical representation of changes in the
68 diseases and disorders, molecular and cellular functions, physiological system development and functions
69 altered due to ifosfamide induced cystitis. We saw high upregulation of functions related to organismal injury
70 and abnormalities, inflammatory diseases, cancer, cell proliferation, cellular movement and hematological
71 systems development and function, and downregulation of cell death in response to ifosfamide induced cystitis.
- 72 **Supplementary Fig. S7. Neuro-inflammation pathway.** There was potential neurotoxic effect due to ifosfamide
73 induced hemorrhagic cystitis. We observed notable upregulation of proinflammatory cytokines and pro-
74 inflammatory mediators in astrocytes and microglia cells. This is consistent with the known neurotoxic effect of
75 ifosfamide. For the key to the annotations, see description in Supplementary Fig. S2 legend.
- 76 **Supplementary Fig. S8. Hypoxia signaling pathway.** As a result of hemorrhage, there was indication of
77 hypoxia in the bladder as depicted by the upregulation of HIF-1 α mediated hypoxia. For the key to the
78 annotations, see description in Supplementary Fig. S2 legend.
- 79 **Supplementary Fig. S9. Mechanistic network analysis.** Mechanistic network analysis of transcriptome of IPSE
80 pretreated mice compared to ifosfamide only mice showed downregulation of interactions between several
81 proinflammatory genes. In addition to the network interaction between chemokines and interferon induced
82 proteins, we also recorded more downregulatory mechanistic network interaction between genes encoding
83 interferons induced proteins. For the key to the annotations, see description in Supplementary Fig. S2 legend.