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Abstract 

The recent identification of the minimal bacterial genome revealed that nearly one third 

(149) of the 473 encoded genes were of unknown function, demonstrating our limited 

understanding of the essential functions of life.  Application of state of the art in silico 

methods for functional annotation demonstrated that these proteins of unknown 

function lack orthologs, known protein domains, and templates to model their 

structure. Combination of the results from different complementary approaches 

enabled functions to be assigned to 94 of the 149 proteins, although often with general 

terms such as transporter or DNA binding. 22 likely transporter proteins were identified 

indicating the importance of nutrient uptake into and waste disposal out of the minimal 

bacterial cell, where many metabolic enzymes have been removed. These results 

advance our understanding of the minimal bacterial genome and therefore aid 

synthetic biology and its application to biotechnology. 
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Introduction  
A long-term goal of synthetic biology has been the identification of the minimal 

genome, i.e. the smallest set of genes required to support a living organism. This has 

been a systematic process using species of Mycobacteria, which have some of the 

smallest bacterial genomes. Initial sequencing of Mycoplasma genitalium identified a 

genome containing 525 genes and comparison with the Haemophilus influenza 

genome (1815 genes) suggested a common core of 256 genes as a possible minimal 

set of genes essential for life.1 Subsequent global transposon mutagenesis 

experiments suggested this minimal set was larger containing 375 genes.2  

 

The bacterium with the smallest genome generated to date is based on the faster 

growing Mycoplasma mycoides. Its minimal bacterial genome consists of 473 genes 

including essential genes and a set of genes associated with growth, termed 'quasi-

essential'.3 The minimal genome study assigned function to genes from the minimal 

genome by considering matches to existing protein families in the TIGRfam4 database, 

genome context and structural modelling.3 Proteins were annotated with molecular 

functions and grouped into 30 biological process categories (including an unclear 

category, where the biological process was not known). The proteins were further 

grouped into five classes according to the confidence of the functional annotations that 

they had been assigned. The five classes were: equivalog (confident hits to TIGRfam 

families), probable (low confidence match to TIGRfam families supported by genome 

context or threading), putative (multiple sources of evidence but lower confidence), 

generic (general functional information identifiable e.g. DNA binding or membrane 

protein, but specific function unknown) and unknown (unable to infer even a general 

function). The final two confidence classes, unknown (65 genes) and generic (84 

genes) form a group of genes whose function is unknown. Hence, almost a third (149) 

of the encoded 473 proteins are of unknown function, which emphasises our limited 

understanding of biological systems.3   

 

This lack of functional annotation is not restricted to the minimal bacterial genome. 

Recent experimental approaches have begun to identify the function of ‘hypothetical’ 

proteins of unknown function.5 However, the continual improvement of high throughput 
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sequencing methods has resulted in a rapid increase in the number of organisms for 

which genome sequences are available and the functional annotation of the encoded 

gene products lags behind.5 Less than 1% of the 120 million protein sequences in 

UniProt6 are annotated with experimentally confirmed functions in the Gene Ontology 

(GO)7 (as of July 2018). To address this gap, computational methods for protein 

function prediction have been developed and significantly advanced over the past 15 

years as demonstrated by the recent Critical Assessment of Functional Annotation 

(CAFA) challenges.8,9 

 

Here, we performed an extensive in silico analysis of the proteins of unknown function 

encoded by the minimal bacterial genome using an approach that combined sixteen 

different computational methods ranging from identification of basic properties (e.g. 

protein domains, disorder and transmembrane helices) to state of the art protein 

structural modelling and methods that infer GO based protein functions, including 

those that have performed well in CAFA experiments. This enabled us to assign 

functions to 94 of the 149 the previously uncharacterised proteins. 
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Results 
Initially, the basic properties of the proteins encoded within the minimal bacterial 

genome were characterised. This considered the presence of orthologs, domain 

architecture, protein disorder, transmembrane domains, and the ability to model 

protein structure. The properties of the proteins in the five different confidence classes 

(equivalog to unknown) were compared to identify if there were differences between 

the proteins in each of the confidence groups that may relate to the ability to infer their 

function.  

  

Orthologs for the proteins in the minimal genome 

Hutchison et al.3 used BLAST to identify homologs of the minimal genome proteins  in 

a set of 14 species ranging from non-mycoides mycoplasmas to Archaea. They found 

that while many of the proteins from the equivalog, probable, putative and generic 

classes have homologs in all 14 species, very few of the sequences in the unknown 

class had homologs in the 14 species outside of M. mycoides, with none in M. 

tuberculosis, A. thaliana, S. cerevisiae and M. jannaschii.  

Here, eggNOG-mapper7 (See methods) was used to identify orthologs for the minimal 

genome proteins across the three kingdoms of life. Overall the analysis showed that 

very few of the unknown class of proteins (7%) have related sequences in eukaryotes 

or archaea (6%) while just over half (55%) have orthologs in other bacterial species, 

primarily in terrabacteria, the clade that M. mycoides belongs to (Figure 1A, Figure S1, 

Table S1). In contrast, many of the proteins in the other confidence classes have 

orthologs across the three kingdoms (Figure 1A, Figure S1). For example, 63%, 59% 

and 95% of the proteins in the generic class have orthologs in Eukaryotes, Archaea 

and Bacteria respectively (Figure 1A, Figure S1), rising to 91%, 70% and 99% for the 

equivalog class. Only two proteins from the unknown class had many orthologs in both 

Eukaryotes and Archaea. These proteins MMSYN1_0298 and MMSYN1_0302 were 

classified by Hutchison et al. into the Unclear and Cofactor transport and salvage 

functional categories, respectively. Our analysis revealed that MMSYN1_0298 is likely 

to be a ribosomal protein from the family L7AE and MMSYN1_0302 an oxygen-

insensitive NAD(P)H nitroreductase, rdxA, both of which are functions widespread 

across the kingdoms of life (Tables S1-S7). 
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Domain Architecture of Minimal Genome Proteins 

Domain analysis, using Pfam10 (Table S2), revealed that very few (22%) of the  

proteins in the unknown class contain known domains, which is significantly less than 

for any of the other four classes (Figure 1B; p < 8.3e-12; Mann-Whitney-Wilcoxon 

test). In contrast, all proteins in the equivalog class contain at least one domain and 

nearly half of them (44%) have a multi-domain architecture (Figure 1B). Whereas 

multiple domains are present in 21% of the proteins in the generic class and only a 

single protein in the unknown class (Figure 1B).  The proteins in the unknown class 

are also clearly different to those in the generic class, where a domain is present in 

86% of the proteins. This highlights that the unknown class really represents proteins 

that are totally uncharacterised. Further, the proteins in the unknown class also have 

more disordered regions (see methods) than the other groups (Figure 1C), although 

this does not reach statistical significance (p > 0.05; Chi-Square test for categorical 

data). 
 

Structural Modelling of the minimal genome  
Hutchison et al., used threading to support functional assignment from TIGRfam 

maches.3 Here the Phyre211 protein structure prediction server was used to model the 

structures of the minimal genome proteins and in turn the models generated for the 

proteins in the generic and unknown classes were used to infer their function. With the 

exception of the unknown class, high confidence structural templates were identified 

for the vast majority of proteins for at least part of the sequence (Supplementary Figure 

2, Table S3). The proportion of proteins in each confidence class that could be 

accurately modelled was considered by identifying those for which at least 75% of the 

protein sequence could be modelled with a structural model confidence score (from 

Phyre2) of at least 90%. In the unknown class this applied to only nine proteins, 

whereas nearly all proteins in the four other confidence groups could be successfully 

modelled (Figure 1D).  Again, this demonstrates differences between the unknown 

and generic classes, while most of the generic class can be modelled, this was 

possible for only very few proteins in the unknown class (Figure 1D).  
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Identifying Transmembrane Proteins 

Prediction of transmembrane helices revealed that the proteins in the unknown and 

generic classes are enriched with transmembrane proteins with 49% and 32% of their 

proteins predicted to have one or more transmembrane helix respectively (Figure 2A, 

Table S4). This contrasts with very few transmembrane proteins identified in the 

equivalog and probable classes (6% and 12% respectively), while 30% of the proteins 

in the putative class are transmembrane proteins (Figure 2A). These results suggest 

that many of the proteins that have unassigned functions may be associated with 

membranes. For example, 24 proteins in the generic class are predicted to contain six 

or more transmembrane helices (Figure 2B), many of which are likely to be 

transporters of essential nutrients from the media (see below). 

 

Inferring Protein Function for the Minimal Genome 

Hutchison et al.3 used hits to TIGRfam, genome context and threading to functionally 

characterise the proteins encoded by the minimal genome. However, 149 out of 473 

proteins were classified with low confidence in the unknown and generic classes. Here 

we sought to infer annotation for these proteins and also increase the confidence of 

any existing annotations. 

 

Many different methods have been developed to predict protein function using 

properties ranging from protein sequence to interaction data and predicting features 

ranging from subcellular localisation to Gene ontology (GO) terms and protein 

structure.12 Where available as either a webserver or for download, we applied the top 

performing methods from the recent CAFA assessments and other established 

methods (see methods) to predict functions for the proteins in the generic and 

unknown classes. Briefly we considered, a group of methods that predicted either 

protein structure, domains, GO functional terms, or whether proteins are transporters 

(see methods). Overall functional inferences were made by manually investigating and 

combining the predictions and their consistency with genes from the same operon. 

 

For nearly two thirds of the proteins (94 of 149) either a new function was identified or 

confidence increased in the annotation previously assigned (Figure 3, Table S5). This 
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included 58 proteins where we identified new functional information. 29 of these 

proteins had previously been classed in the unclear functional category. The majority 

of these proteins were predicted to have transporter related functions, with 22 proteins 

added to the 84 already in this functional category (Figure 3A). Further, one protein 

was assigned to the cytosolic metabolism category, three to the preservation of 

genetic information category, and three to the expression of genetic information 

category (Figure 3A). 

 

For 59 proteins the confidence class was increased. 23 proteins were assigned 

additional functional annotations, while for the remaining 36 proteins the confidence in 

the existing annotation was increased. This included 24 proteins that were upgraded 

from the unknown class to either the generic (21) or putative (3) classes. For a further 

35 proteins the confidence class was upgraded from generic to putative. The 

remaining 90 proteins (41 unknown and 49 generic) remained in the same evidence 

class. Despite additional functional information, there was not sufficient data to 

increase the confidence of the annotation for these proteins.  

 

For some proteins while there appeared to be evidence for a given function from 

multiple sources but on closer inspection it was difficult to assign more confident 

annotations (Figure S3). For example, MMSYN_0138, is homologous to the ATP 

binding region of ABC transporters but the ATP binding site is not conserved, which 

casts some doubt on this function (Figure S3A). For MMSYN_0615, matches from four 

methods suggest a Phenylalanine-tRNA ligase function. This includes GO term 

predictions (combined from multiple methods), structural matches based on the beta 

chain of bacterial Phenylalanine-tRNA ligases from both Phyre2 and Gene3D/CATH 

and a hit to the TIGRFam Phenylalanine-tRNA ligase b subunit family (Figure S3B). 

However, MMSYN_0615 only contains 202 residues and the beta chain of bacterial 

Phenylalanine-tRNA ligases contain closer to 800 residues, making it unlikely that 

MMSYN_0615 performs this function and there are many more predictions that agree 

with the existing tRNA binding protein annotation (Figure S3B). 
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While functional annotations have been inferred for a considerable proportion of the 

proteins of unknown function, there remain 50 proteins for which the biological process 

they belong to is still classed as unclear. 28 of these proteins are also in the unknown 

confidence class, while 22 are in the generic class (four of which moved from the 

unknown to the generic class in our analysis) and have basic functional information 

such as Cof-like hydrolase, ATPase AAA family, or DNA-binding protein. Fourteen 

proteins have completely unknown function and remain labelled as 

hypothetical.  These proteins do not contain any known domains or transmembrane 

helices, none have orthologs in other kingdoms of life and only a few within bacteria. 

So it seems that either these are highly species specific proteins that perform an 

important function within Mycobateria or they have diverged significantly such that the 

sequence relationships are not detected. 

 

Predicted Transporters and Transmembrane proteins  

Transmembrane helices were identified in 41% (61) of the proteins in the unknown 

and generic and classes (Figure 2, Table S4). Seventeen transmembrane proteins 

which were not categorised as transporters were annotated with functions in cell 

division (1), chromosome segregation (1) and proteolysis proteins (4). However, 11 of 

them still remain in the unclear functional category. Our analysis suggests that 44 of 

the 61 predicted transmembrane proteins are likely to be responsible for membrane 

transport (Table S4,S5). Of the 44, 23 were previously annotated by Hutchison et al. 

with a range of functions including ABC transporters, S component of ECF 

transporters, amino acid permeases, lipoproteins, and putative magnesium-importing 

ATPase. Our analysis supported all of the existing transporter functions, and identified 

new transporters among those listed as membrane and hypothetical proteins. Of the 

22 newly proposed transporters (previously listed as hypothetical or with minimal 

information e.g. membrane protein), five gained specific transporter functions. All five 

were previously classed as membrane proteins and have now been annotated as 

transporters; two possible ABC transporters (MMSYN_0138, MMSYN_0411), one S 

component of an ECF transporter (MMSYN_0877), and two belonging to the Major 

facilitator superfamily  (MMSYN_0325, MMSYN_0881)(Tables S1-S6).   
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The remaining 17 proteins annotated as transporters had previously either been 

annotated as membrane or hypothetical proteins and we propose that these are very 

likely transporters but it was not possible to assign them to a specific family/type of 

transporter or to identify a substrate. More detailed annotations were added to some 

of those already identified to have a role in transport including four proteins 

(MMSYN1_0034, MMSYN1_0399, MMSYN1_0531, MMSYN1_0639) that  were 

classed as FtsX-like permeases having previously been given generic transport 

related annotations (e.g. permease or efflux protein). For 16 others the confidence of 

the existing annotation was increased, for example two operons encoding proteins 

that transport oligopeptides (AmiABCDE – MMSYN_0165, MMSYN_0169  and 

PotABCD MMSYN_0195, MMSYN_0197) were moved from the generic to the putative 

confidence class based on support from most of the methods (Table S5). 
 

Fifteen proteins that have been assigned transporter functions do not have 

transmembrane domains. They include mainly lipoproteins and ATP-binding units of 

ABC transporters, most of which (14) were already identified by Hutchison et al. as 

having membrane associated functions.  

 

One of the two proteins proposed to be members of the Major facilitator superfamily, 

MMSYN_0325, was previously classified as a membrane protein (Figure 4). In 

agreement, the transmembrane helix prediction tool TMHMM13 predicted 13 

transmembrane helices in the protein. Further, the structure was confidently modelled 

by Phyre2, with very high confidence of >98% for 26 independent structural templates, 

all of which had transporter functions (including members of the MSF superfamily). 

Gene3D13  (Table S7) also identified matches to an MFS general substrate transporter 

like domain (lactose permease functional family). Supporting this SCMMTP14 predicted 

the protein to be a transporter and function prediction methods predicted a range of 

transporter related functions, including symporter activity (GO:0015293), cation 

transmembrane transporter activity (GO:0008324) and  substrate-specific 

transmembrane transporter activity (GO:0022891) with probabilities greater than 90% 

(Figure 4 and Table S6). While 3DLigandSite predicted heme and zinc binding through 
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matches to Bacterioferritin (for the heme), it seems unlikely that these are relevant to 

the transporter function. 

 

Comparison of predictions made by Danchin and Fang 

Recently Danchin and Fang15 used an “engineering-based” approach to investigate 

the unknown functions within the minimal bacterial genome and provided annotations 

for 58 and 13 proteins in the generic and unknown classes respectively. They set out 

to identify functions that would be expected to be in a minimal genome but were 

missing from the existing annotation and to then identify proteins that could perform 

these functions (although it is not clear how these candidates were identified as no 

methods were provided15).  

Comparison of the results from both studies revealed considerable overlaps. Using 

our approach fourteen proteins remained in the unknown class without any assigned 

function, while Danchin and Fang did not provide any annotations for 26 and 52 

proteins in the generic and unknown classes respectively. The predictions showed  

complete agreement for 34 proteins and minor differences for 18 proteins (Table S8). 

For a further 15 proteins the prediction was more detailed in one study than the other 

(Table S8). For example Danchin and Fang proposed that MMSYN1_0822, is an S 

component of ECF transporter and is part of a folate transporter, whereas we identified 

three possible folate transporters (MMSYN_0314, MMSYN_0822, MMSYN_0836) and 

could not confidently assign substrates to any of them.  

Four of the predictions differed considerably (Table S8). They are represented by 

proteins such as MMSYN1_0388 which here was annotated as a transmembrane 

protein, possibly a cation transporter while Danchin and Fang suggested that it has a 

role in double strand break repair. For three of the proteins Danchin and Fang inferred 

more functional characteristics. They annotated MMSYN1_0853, MMSYN1_0530, 

MMSYN1_0511 with the functions energy-sensing regulator of translation, 

promiscuous phosphatase and double strand break repair protein respectively, while 

here they were retained as hypothetical since there was little  agreement between the 

multiple methods used to be able to infer protein function. 
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Discussion 
The synthesis of a bacterium with a minimal bacterial genome resulted in an 

astounding number (149 of 473) of proteins of unknown function and emphasised the 

gaps in our understanding of the basic principles of life. We have demonstrated that 

many of these proteins of unknown function i) typically do not contain known protein 

domains ii) typically lack homology to proteins with known structure, and iii) are 

enriched for transmembrane proteins, many of which are likely to be transporters. 

Further, most proteins in the unknown confidence class appear to be bacteria- and 

probably clade-specific. These are highlighted by the 50 proteins for which the 

biological process is still classed as unclear and in particular for the 14 proteins that 

remain hypothetical with completely unknown function.  

 

With the expanded functional assignments, 50% of the proteins encoded by the 

minimal genome perform functions associated with two fundamental life processes; 

preserving and expressing genetic information (Figure 3). Most notably many proteins 

were assigned transporter functions, and these proteins now represent 22% of the 

minimal genome. In generating the minimal genome, 32 M.mycoides genes with 

membrane transport functions, including several ABC transporters, PTS system 

proteins, amino acid permeases, Major Facilitator Superfamily proteins, were 

removed.3  Given that the experiment also removed many proteins with metabolic 

functions, the minimal genome bacterium is therefore reliant on obtaining many 

nutrients from the medium, and also the need to remove from the cell toxic molecules 

that may be generated. Thus it may not be surprising that transporters are essential 

for the bacterium. It was not possible to assign substrates for these transporters and 

it has been suggested that the mycoplasmal transport systems have broad specificity. 

 

Our results demonstrate that the combination of a range of complementary advanced 

methods for protein function inference is superior to the use of individual approaches 

in the assignment of function for these ‘difficult’ proteins for which there is limited pre-

existing knowledge. Using a combination of results from 16 different methods we were 

able to reduce the number of proteins in the unknown confidence class to 41. Although, 

this approach was successful in general, there are still limitations and a need for further 
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improvement. While functions have been assigned to many of the proteins that were 

previously unclassified, the assignments are often limited to general functions. Most 

changes of confidence elevated the classification from unknown to generic. For some 

proteins, more detailed functions were predicted by some of the methods, however in 

manually combining the predictions, there was insufficient evidence to assign them to 

a category higher than the putative class. Nevertheless, these functions should be 

sufficient to direct further research and experimental characterisation. 

 

There is clearly a need for the development of additional approaches. Although 

multiple methods were combined to infer functions, many of these methods were 

homology based. However, most of the proteins of unknown function were 

homologous to few proteins with known functions and also lacked orthologs. Thus for 

many of the proteins where functions have been assigned, methods that are not 

dependent on homology were prevalent (e.g. FFPred16, Figure S4). This highlights the 

importance of developing further methods that do not rely on homology. 

 

Comparison of our approach with that used by Danchin and Fang15 revealed 

considerable overlaps but also that our approach annotated many more proteins. It is 

difficult to expand on this comparison due to the lack of detailed methods provided by 

Danchin and Fang. It seems that their approach of looking for functions that appear to 

be currently missing from the annotated proteins in the minimal genome; requires 

significant knowledge of likely essential functions in a minimal cell, assumes that we 

know all of the essential  functions within such a cell, and is further likely to exclude 

other functions that may not be considered essential in a minimal genome. In contrast, 

our approach sought to assign function to as many proteins as possible and then 

consider how these functions may relate to the minimal genome. 
 

In summary, we successfully applied a combined bioinformatics approach to 

characterise the proteins with unknown function from the minimal genome that had not 

been annotated by previous approaches.  Our approach utilised many state of the art 

methods including those that do not use homology. This has identified that a 

considerable proportion of the newly annotated proteins probably have transporter 
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functions. These transporters are likely to be involved in the uptake of nutrients and 

efflux of waste products in a minimal genome organism that lacks many metabolic 

enzymes. Additionally, we identified that many of the unknown proteins were difficult 

to classify due to the limited information available about them (lack of orthologues and 

proteins domains and homology to known protein structures). Hence, we identified a 

need for additional, complementary approaches that enable assignment of functions 

to such proteins. Due to the physical limitations of the detailed experimental analysis 

of protein function on a large scale, such approaches will be critical for progress in 

synthetic biology and biotechnology applications. 
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Methods 

Identifying basic protein properties. 
Protein domains were  determined by running PfamScan against the library of Pfam 

30.0 HMMs10. GO terms associated with Pfam domains were extracted using the 

pfam2go file10 (version 11 February 2017). The e-value of the domain matches were 

used to indicate the confidence of a GO term describing the function of the query 

protein. GO terms were clustered using REViGO17. 

 

Orthologs were identified using EggNOG-mapper18 against HMM databases for the 

three kingdoms of life. Additionally, precision of predictions was prioritised by 

restricting results to only one-to-one orthologs. The EggNOG-mapper API was used 

to predict the orthologous groups in EggNOG that the minimal genome proteins 

belonged to. The proteins present in these orthologous groups were extracted and the 

species associated with the sequences were mapped to the NCBI Taxonomy to group 

them into phyla and used to identify the phyla where orthologues were present.  

Predicted features including GO terms, KEGG pathways and functional categories of 

Cluster of Orthologous Groups were also obtained from EggNOG-mapper. 

 

Identifying Membrane transporters and Lipoproteins 

Proteins were classified as lipoproteins (SPaseI-cleaved proteins), SPaseI-cleaved 

proteins, cytoplasmic and transmembrane proteins using LipoP19. Similarly, proteins 

were distinguished between membrane transporters and non-transporters using 

TrSSP20 and SCMMTP14. TrSSP predicted substrates of the proteins from seven 

groups: amino acid, anion, cation, electron, protein/mRNA, sugar and other. The 

functions of membrane transporters and lipoproteins were further supported by 

identifying transmembrane helices, signal peptides and protein topology using 

TMHMM21. 

 

Inferring Gene Ontology based protein function 

These methods included FFPred16, CombFunc22,23, Argot24 and LocTree325 and CATH 

structural domains and functional families 26. Further functional information was 

extracted from the initial protein characterisation methods using TIGRFAM families of 
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equivalogs, Pfam domains10, eggNOG orthologous groups 18, the top BLAST hit from 

UniProt and the protein structure modelled by Phyre211. Additionally, where Phyre2 

generated a confident model the structural methods firestar27, 3DLigandSite28and 

ProFunc29 were used. Given the large number of proteins in the generic and unknown 

groups that were predicted to be transmembrane, TrSSP20 and SCMMTP14 were used 

to infer transporter functions and lipoproteins were identified using LipoP 19.  

 

GO terms were predicted using FFPred316, Argot2.524, CombFunc22,30 (only Molecular 

Function terms) and LocTree325 (only Celullar Component terms). As the FFPred3 

SVMs were trained only on human proteins from UniProtKB, predicted GO terms were 

additionally filtered using the frequency of terms in UniProtKB-GOA (version 5 June 

2017). Predicted GO terms that were not annotated to any bacterial proteins in 

UniProtKB-GOA were removed from the set of FFPRED3 predicted functions as they 

were likely to be functions that are not present in prokaryotes. 

 

Argot2.5 was run with the taxonomic constraints option. As scores returned by 

Argot2.5 have a minimum score of zero and no upper bound, the linear spline function 

recommended by the method developers (personal communication) was applied to 

rescale them to the range of 0 to 1. CombFunc 22 was run using standard settings.  

 

Structural Analysis 
The CATH FunFHMMer web server was used to identify the functional families of 

structural domains, CATH FunFams.26,31 Where results did not identify a match to a 

FunFam, matches to CATH domains were considered. Concurrently, Gene3D13 was 

used to identify GO terms associated with CATH FunFams as well as to proteins with 

a similar multi domain architecture. Since UniProt accession codes were not provided 

for the minimal cell proteins, their closest UniProt homologs were determined by 

running BLAST32 against UniProtKB (version October 2016).6  

 

Protein disorder was predicted using Disopred3.33 For each of the proteins, the 

percentage of disordered regions was calculated based on the Disopred3 results. 

Firestar27 and 3DLigandSite28 were used to predict ligands binding to the proteins. For 
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Firestar only results marked as cognate were considered. Phyre211 was run using 

standard mode to model the structure of the minimal genome proteins. Information 

provided by the name and description of the best matching models was used in the 

process of inferring function of the proteins. To make sure that each residue was 

covered with the highest possible confidence, the matches were firstly sorted by e-

value and then selected gradually if they covered residues that were not covered 

before by a match with lower e-value. Structural models with at least 80% confidence 

were submitted to ProFunc29 to predict protein function from structure.  

 

Identifying operons 
Genes in the synthetic M. mycoides (JCVI-syn1.0) were grouped into operons based 

on the predictions made for both M. mycoides subsp capri LC str 95010 and M. 

mycoides subsp mycoides SC str PG1 by two methods DOOR234  and MicrobesOnline 
35. The proteins of the synthetic M. mycoides were first mapped to the proteins of M. 

mycoides subsp capri LC str 95010 and M. mycoides subsp mycoides SC str PG1 

downloaded from GenBank. 36 This was done by using BLAST to search against 

databases constructed from proteomes of these two species and extracting the best 

hit. A protein from M. mycoides subsp capri LC str 95010 or M. mycoides subsp 

mycoides SC str PG1 was considered a corresponding homolog of a protein from 

synthetic M. mycoides if the coverage and identity were greater than or equal to 80%. 

Via the corresponding homologs, operons predicted for these two species by DOOR2 

and MicrobesOnline were mapped to the proteins of the synthetic M. mycoides. 

 

Combined Protein Function Prediction 

The results from the following methods were removed from the analysis if their e-value 
was above 0.001: TIRGFAM, Pfam, eggNOG-mapper, CathDB FunFams and 
domains. Models predicted by Phyre2 were kept if the probability of the match was 
above 80%, only results from Firestar marked as cognitive were retained. ProFunc 
results were not considered if scored as “long shots”. The best BLAST hit from UniProt 
was used to identify a UniProt identifier for the protein which was used for submission 
to  Gene3D. Additionally, all the predictions of Gene Ontology terms were combined 
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together and the probability of particular terms being predicted by any of the methods 
were calculated using the following formula: 
 

 

 
Only the best and consistently predicted Gene Ontology terms were examined for 
each of the proteins. For the final prediction of protein function results from all the 
methods were manually reviewed. The initial proposition of protein function was based 
on combining the results from TIGRFAM equivalog families, Pfam domains, eggNOG 
orthologous groups, CATH structural domains and functional families, the best BLAST 
hit from UniProt and Phyre2 model of structure. It was then verified using the best 
Gene Ontology terms, information on predicted ligands (Firestar, ProFunc, 
3DLigandSite28) and transmembrane helices (TMHMM). Transporters and lipoproteins 
was predicted using  membrane transporter (TrSSP, SCMTTP) and lipoprotein signal 
sequences (LipoP) respectively. Finally, it was considered if the predicted function was 
consistent within a group of genes in the same operon. If a specific function including 
a substrate and a biological role was determined and confirmed by multiple sources 
of evidence, a protein was classified in the putative confidence class. Similarly, if a 
general function was predicted and supported by several lines of evidence, a protein 
was classified in the  generic functional class. Functional category was assigned to a 
protein if they were indicated coherently by any of the methods, e.g. if one method 
pointed confidently to transport and the other to proteolysis, the functional category 
remained Unclear.  
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Figure Legends 

 

Figure 1. Basic characterisation of proteins in the minimal bacterial genome. A) 

Orthologs identified in bacteria b) proteins domains present in the minimal genome 

split into functional confidence (unknown, generic, putative, probable and equivalog c) 

predicted protein disorder in the minimal genome proteins d) percentage of protein 

structure that can be confidently modified by Phre2. 

 

Figure 2. Transmembrane proteins encoded by the minimal bacterial genome. A) The 

number of proteins predicted by TMHMM to have transmembrane helices. B) The 

number of transmembrane helices present in each of the proteins in the minimal 

genome that is predicted to have one or more transmembrane helix.  

 

Figure 3. Functional annotations of the minimal bacterial genome. The number of 

proteins in each of the A) protein biological process categories and B) functional 

confidence classes is shown with the original minimal genome annotation and the 

annotations identified here. C) Shows the change in functional confidence classes, 

coloured based on original group. 

 

Figure 4. MMSYN_0615 is predicted to be a transporter and member of the Major 

Facilitator Superfamily. The results from Phyre2, TMHMM, the combination of GO term 

prediction methods (numbers shown are probability associated with each function) and 

CATH/Gene3D. All of these methods supported a transporter function with Phyre2 and 

CATH/Gene3D confidently identifying association with the Major Facilitator 

Superfamily. 
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Supplementary Figure Legends 
 

Figure S1. Orthologs to the proteins in the minimal bacterial genome. The number of 

orthologs for each proteins identified in A) archea and B) eurkaryota. C) Summary of 

the total number of orthologs identified across different phyla for each of the 

functional confidence groups.  

 

Figure S2. Confidence of the top structural template identified by Phyre2. The 

confidence score (0-100) is shown for the top scoring template identified for each of 

the proteins in the minimal genome. The score indicates the confidence that the 

template protein sequence and the minimal genome protein sequence are homologs. 

 

Figure S3. Examples of proteins in the minimal bacterial genome that where it was 

difficult to predict their function. A)Protein MMSYN_0138 was previously completely 

uncharacterised and listed as a hypothetical proteins. Predictions for MMSYN_0138 

by multiple methods identify a relationship to ATP binding domains of ABC 

transporters but the functional residues involved in ATP binding are not conserved 

making this function less likely. B)  Protein MMSYN_0615 was previously classified 

as a tRNA binding protein in the generic confidence class. Multiple predictions 

suggest that it could be a Phenylalanine-tRNA ligase b subunit, however the b 

subunit in other bacteria typically contains around 800 residues, whereas 

MMSYN_0615 is only 202 residues. It therefore seems that tRNA binding is likely but 

the role of this function is not known. 

 

Figure S4. Predictions made by the different individual methods used to infer 

functions of the minimal genome. For each protein in the unknown and generic 

confidence classes the methods that made predictions are shown. In each group, 

darker colours indicate that confident results were obtained from a method, whereas 

light colours indicate that a method did not provide a result that was useful.   A) 

predictions from each method for proteins reclassified from the generic to putative 

class (on the left) and from the unknown to the generic class (on the right). B) the 
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results from each method for proteins that remained in the generic (on the left) and 

the unknown classes.  

 

List of Supplementary Tables 
 

Table S1. Orthologs of the minimal genome proteins identified using eggnog. 
 

Table S2. Domains identified in the minimal genome proteins. Results are 

shown for search against the Pfam database of protein families. 
 

Table S3. Structural modelling of the minimal genome proteins. Results are 

shown for modelling of the proteins using the Phyre2 server. 

 

Table S4. Membrane protein predictions for the minimal genome proteins.  

 

Table S5. Inferred functions of the proteins encoded by the minimal bacterial 

genome. The original annotation and the predicted functions from the analysis 

performed here are shown. 

 

Table S6. Gene Ontology based function predictions for the proteins encoded 

by the minimal genome. 
 

Table S7. Gene3D predictions for the proteins encoded by the minimal 
bacterial genome. 

 
Table S8. Comparison of the predicted functions of the minimal genome 
proteins with predictions made by Danchin and Fang. 
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Figures 
 

Figure 1. 
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Figure 2 
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Figure 3 
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Figure 4 
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