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ABSTRACT 

Background: International guidelines for variant interpretation in Mendelian disease set stringent 

criteria to report a variant as (likely) pathogenic, prioritising control of false positive rate over test 

sensitivity and diagnostic yield. Genetic testing is also more likely informative in individuals with well-

characterised variants from extensively studied European-ancestry populations. Inherited 

cardiomyopathies are relatively common Mendelian diseases that allow empirical calibration and 

assessment of this framework. 

Results: We compared rare variants in large hypertrophic cardiomyopathy (HCM) cohorts to reference 

populations to identify variant classes with high prior likelihoods of pathogenicity, as defined by 

etiological fraction (EF). Analysis of variant distribution identified regions in which variants are 

significantly enriched in cases and variant location was a better discriminator of pathogenicity than 

generic computational functional prediction algorithms. Non-truncating variant classes with an 

EF≥0.95, and therefore clinically actionable, were identified in 5 established HCM genes. Applying this 

approach leads to an estimated 14-20% increase in cases with actionable HCM variants.  

Conclusions: When found in a patient confirmed to have disease, novel variants in some genes and 

regions are empirically shown to have a sufficiently high probability of pathogenicity to support a 

“likely pathogenic” classification, even without additional segregation or functional data. This could 

increase the yield of high confidence actionable variants, consistent with the framework and 

recommendations of current guidelines. The techniques outlined offer a consistent, unbiased and 

equitable approach to variant interpretation for Mendelian disease genetic testing. We propose 

adaptations to ACMG/AMP guidelines to incorporate such evidence in a quantitative and transparent 

manner. 
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BACKGROUND 

Advances in sequencing technology have dramatically expanded the scope for genetic testing in rare 

Mendelian diseases, but have exposed variant interpretation as a key limiting factor for clinical 

application. In an effort to standardise variant assessment in clinical settings, guidelines from the 

American College of Medical Genetics and Genomics/Association for Molecular Pathology 

(ACMG/AMP) were produced in 2015[1] and have now been widely adopted[2]. These were in part 

prompted by the plethora of erroneous variant-disease associations in the research literature[3, 4] 

and the increasing realisation that individually rare variants are collectively common for many genes, 

as highlighted by population datasets such as the Exome Aggregation Consortium (ExAC)[5]. A critical 

objective of the guidelines is to limit false positive results in clinical genetic testing in order to avoid 

genetic misdiagnosis or false reassurance through predictive testing of a variant that is not causal. 

The ACMG/AMP guidelines outline how different lines of evidence should be assessed when 

interpreting a variant, and the strength of evidence required for a pathogenic (or likely pathogenic) 

classification. However, they are deliberately broad in scope, with the intention that individual rules 

would be interpreted and adapted for specific diseases within the overall framework[6]. They are 

conservative in nature and require substantial evidence in order to classify a variant as disease-

causing. In practice, while novel truncating variants can be classified as pathogenic (when found in a 

gene where loss of function is a known mechanism of disease and fulfilling other conditions such as 

rarity), variant-specific evidence (such as segregation in the family or prior functional evidence of 

pathogenicity) is required for non-truncating variants to be deemed actionable. 

We have recently shown that clinical laboratories utilising these stringent approaches to variant 

classification are, as expected, under-calling pathogenic variants in well-established cardiomyopathy 

genes[3], prioritising high specificity at a cost of test sensitivity. Clinical outcome data from the SHaRe 

registry of hypertrophic cardiomyopathy (HCM) patients supports this finding, as patients with 

variants of uncertain significance (VUS) had outcomes intermediate between genotype-positive and 

negative patients, indicating a substantial proportion are likely to be pathogenic [in press at 

Circulation]. Some diseases, including cardiomyopathies, are highly genetically heterogeneous with 

thousands of distinct causative variants, many of which are private or only detected in a handful of 

families, so interpretation of previously unseen variants is essential to provide a molecular diagnosis 

to many patients. As a consequence, genetic testing can be somewhat of a lottery for patients, with a 

positive result often dependent on whether the putative causative variant has been previously 

identified and characterised. 

Furthermore, the degree of certainty required to consider a specific variant causal in an individual 

depends on the use of that information. While predictive testing or pre-implantation genetic diagnosis 

requires a high degree of confidence, some treatment decisions may be made at lower confidence. In 

early onset diabetes, a potentially causative variant suggesting possible MODY (maturity onset 

diabetes of the young) might trigger a trial of sulfonylureas even if formally a VUS[7]. Dilated 

cardiomyopathy due to variation in lamin a/c is associated with a poor prognosis, with a propensity 

for life-threatening arrhythmia. A lower threshold for primary prevention ICD implantation may be 

adopted if a novel variant in LMNA is identified, even if formally classified as a VUS and predictive 

testing would not be undertaken on the same variant[8–10]. 

The likelihood of obtaining a definitive result is also dependent on the ethnicity of the patient. Data 

from the Partners Laboratory of Molecular Medicine (LMM) in the United States showed that 

Caucasian patients are more likely to get a positive result in cardiomyopathy genetic testing than 

“underrepresented minorities” (including African-Americans and Hispanics) and that the proportion 
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of patients with inconclusive results was significantly greater in both Asians and “underrepresented 

minorities” compared to Caucasians [11]. Similar findings were observed specifically for HCM - the 

proportion of positive/uncertain results was 34.7%/13.9% for Caucasians and 24.2%/20.6% for non-

Caucasians (p<0.0001) in the LMM cohort (n=2,912)[12]. One of the likely reasons for this discrepancy 

is that much of the research and clinical testing in this condition has been done in Caucasian-majority 

populations and therefore Caucasians are more likely to have a causative variant that has been 

previously characterised. Inequalities in healthcare provision and access to genetic testing in the US 

may also exacerbate this disparity[13]. While more genetic research in non-Caucasian populations is 

clearly required, these findings underline the need for improved variant analysis techniques that 

reduce the reliance on prior characterisation of individual variants and better distinguish poorly 

characterised variants that have a high likelihood of pathogenicity from those that are unlikely to be 

disease-causing. 

For genes with a significant excess of rare variation in case cohorts over the general population, the 

etiological fraction (EF) provides a quantitative estimate of the probability that a rare variant detected 

in an individual with disease is causative, and is dependent on the gene, variant class and variant 

location within the gene/protein. Here, we apply this approach in validated HCM genes to empirically 

determine the probability that a novel variant found in a case is pathogenic before considering other 

evidence and further expand the framework to identify sub-genic regions (“hotspots”) in which 

variants have an increased likelihood of being actionable. This provides a more quantitative approach 

to variant classification, with the aim of both increasing the yield of high confidence pathogenic 

variants detected in these genes and enabling a more unbiased application of genetic testing. We 

outline a potential framework to integrate this approach with the ACMG/AMP guidelines for genes 

and diseases with available case series to derive these estimates, enabling such case-control data to 

be utilised in a more quantitative and transparent manner. While highlighting that variant 

interpretation is highly dependent on the context of gene and disease, this approach is widely 

applicable for other Mendelian diseases for which sufficient cases have been genetically 

characterised. 
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RESULTS 

In established HCM-associated genes, the majority of rare variants found in cases are pathogenic 

We compared the prevalence of rare variants of different classes in established HCM-associated genes 

between HCM cases and population controls, and calculated the odds ratio (OR) for disease. From this 

we derived the etiological fraction (EF) which, under a Mendelian disease model, provides an estimate 

of the proportion of rare variants found in affected individuals that are disease-causing, and therefore 

the probability that an individual variant is pathogenic.  

 

 

Gene 
Case Frequency 
(variants/total) 

ExAC Frequency 
(variants/total) 

p-value 
Odds Ratio 

(OR) 
Etiological Fraction 

(EF) 

Non-truncating variants 

MYH7 13.89% (849/6112) 1.11% (672/60469) <0.0001 14.4 (12.9-15.9) 0.930 (0.923-0.938) 

MYBPC3 9.35% (578/6179) 1.21% (555/45794) <0.0001 8.4 (7.5-9.5) 0.881 (0.868-0.895) 

TNNT2 1.69% (103/6103) 0.15% (86/57018) <0.0001 11.4 (8.5-15.2) 0.912 (0.889-0.935) 

TNNI3 2.10% (127/6047) 0.15% (79/52607) <0.0001 14.3 (10.8-18.9) 0.930 (0.912-0.948) 

TPM1 1.44% (64/4447) 0.07% (42/58642) <0.0001 20.4 (13.8-30.1) 0.951 (0.933-0.969) 

MYL2 1.03% (43/4185) 0.11% (69/60521) <0.0001 9.1 (6.2-13.3) 0.890 (0.851-0.930) 

MYL3 0.84% (35/4185) 0.14% (85/60605) <0.0001 6.0 (4.0-8.9) 0.833 (0.772-0.895) 

ACTC1 0.53% (22/4185) 0.06% (37/60198) <0.0001 8.6 (5.1-14.6) 0.884 (0.826-0.941) 

PLN 0.17% (9/5440) 0.02% (15/60475) <0.0001 6.7 (2.9-15.3) 0.850 (0.737-0.964) 

CSRP3 0.62% (30/4866) 0.19% (115/60647) <0.0001 3.3 (2.2-4.9) 0.694 (0.579-0.808) 

FHL1 0.78% (16/2061) 0.09% (53/60278) <0.0001 8.9 (5.1-15.6) 0.888 (0.826-0.949) 

TNNC1 0.24% (8/3335) 0.06% (33/59192) 0.0013 4.3 (2.0-9.3) 0.768 (0.598-0.938) 

FLNC 3.79% (17/448) 2.15% (1225/56897) 0.0314 1.8 (1.1-2.9) 0.442 (0.172-0.712) 

Truncating variants 

MYBPC3 9.16% (566/6179) 0.09% (40/45794) <0.0001 115.3 (83.6-159.1) 0.991 (0.988-0.995) 

TNNT2 0.18% (11/6103) 0.03% (17/57018) <0.0001 6.1 (2.8-12.9) 0.835 (0.722-0.948) 

TNNI3 0.08% (5/6047) 0.01% (5/52607) 0.0019 8.7 (2.5-30.1) 0.885 (0.757-1.013) 

PLN 0.17% (9/5440) 0.01% (4/60475) <0.0001 25.1 (7.7-81.4) 0.960 (0.917-1.003) 

CSRP3 0.14% (7/4866) 0.02% (14/60647) 0.0006 6.2 (2.5-15.5) 0.840 (0.705-0.974) 

FHL1 0.15% (3/2061) 0.00% (0/60278) <0.0001 205.0 (10.6-3969.8) 0.995 (0.981-1.009) 

 

Table 1: Etiological fractions and odds ratios for established HCM genes. Displayed are rare variant 

frequencies (ExAC filtering allele frequency < 4x10-5[14]), Fisher’s exact test p-values and OR and EF 

values (with 95% confidence intervals) for non-truncating and truncating variants in HCM genes. The 

etiological fraction can be interpreted as an estimate of the probability that a rare variant, found in an 

individual with HCM, is causative. This suggests that the majority of variants are pathogenic, and for 

some genes the probability that an individual variant is pathogenic is >0.9, before considering variant-

specific segregation of functional data. Only variant classes with a significant excess of variants in case 

cohorts over ExAC are displayed. 
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The etiological fraction (EF) and odds ratio (OR) for non-truncating and truncating variants in validated 

HCM genes[15] are shown in Table 1. Truncating variants in MYBPC3, causative in over 9% of HCM 

cases, have an EF>0.99. Truncating variants in other genes with an excess over ExAC are less prevalent 

(occurring in <0.2% of cases in each gene) but the probability that a variant found in a case is causal is 

nonetheless high (>0.84). While non-truncating variants are more prevalent in the general population, 

leading to a lower signal to noise ratio and reduced interpretative confidence for individual variants, 

the majority of such variants are causal, when found in an individual with confirmed disease. However, 

at the gene level, only variants in TPM1 yield an EF≥0.95.  

 

Evaluation of missense functional prediction scores 

The EF can be used to assess variant prioritisation algorithms, empirically estimating the proportion 

of variants that are pathogenic after applying a filter or prioritisation strategy. Some of the most 

commonly used tools for evaluating variants are missense functional prediction algorithms.  

To initially evaluate the performance of these computational algorithms for HCM gene variants, the 

results of nine individual predictors (CADD, FATHMM, fMKL, LRT, mutation assessor, mutation taster, 

Polyphen-2, PROVEAN and SIFT) and three consensus methods (MetaLR, MetaSVM[16] and a 

consensus of the nine algorithms) from the dbNSFP database[17] was assessed using known 

pathogenic (n=298) and benign (n=349) variants in the eight sarcomeric genes (see Methods). These 

algorithms generally provide high sensitivity but limited specificity, as has been previously reported, 

although in contrast the FATHMM predictor (and MetaLR and MetaSVM consensus scores that 

incorporate FATHMM) have a low sensitivity for detection of pathogenic variants for MYBPC3 and 

MYL2 (Table S1). We also noted that dbNSFP does not provide predictions for certain gene/algorithm 

combinations (Table S2). 

 

Clustering analysis identifies interpretable “hot spots”, within which novel variants have a high 

probability of pathogenicity 

For genes with an EF<0.95 for rare non-truncating variants, we examined the regional distribution of 

variants found in cases along the protein sequence. A novel clustering algorithm (Methods) identified 

a statistically significant aggregation of distinct variants (in cases) in 6 genes - MYH7, MYBPC3, TNNI3, 

TNNT2, MYL3 and CSRP3 (Figure 1, Table S3). For each cluster, the prevalence of rare variants in cases 

and controls was then used to calculate the EF as described above. Variants in four of these clusters 

(MYH7, MYBPC3, TNNI3, TNNT2) had an EF>0.95 (Table 2). The regions highlighted by clustering 

analysis correspond to key functional and protein-binding domains – the myosin motor domain of 

MYH7, troponin C and actin-binding domains in TNNI3 and the tropomyosin-binding domain in TNNT2. 

FLNC has recently been proposed as a relatively frequent cause of HCM[18], however the high 

frequency of rare variation in ExAC produces only a modest EF (0.44). Although enrichment of case 

variants towards the C-terminus has previously been noted[18, 19], no clusters were detected in this 

study, though this may be due to the limited cohort size available (448 cases[19]).  

The performance of variant clustering and functional prediction scores in distinguishing between 

pathogenic and benign variants was then compared. In contrast to the significant enrichment of 

pathogenic variants obtained by analysis of the regional distribution of variation, functional prediction 

consensus scores only marginally increased EFs, compared to whole-gene estimates (Table 2), 

highlighting the limitations of using such generic predictors. For other HCM genes, no clear clustering 
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of variants in the case cohorts was observed across the protein sequence (Figure S1). Therefore only 

consensus functional prediction scores are currently available for variant prioritisation, but again 

these provide only a marginal increase in EF values for these genes (Table S4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (next page): Clustering analyses identify regions enriched for disease-associated variation, 

and therefore within which variants have a high likelihood of pathogenicity. For six HCM genes, the 

location of rare missense and single amino acid inframe indel variants found in cases (all variants 

regardless of clinical classification) and controls are shown alongside a cartoon of the cDNA structure. 

Darker grey indicates higher variant density (overlapping variants not plotted separately). Regions in 

which variants cluster significantly in cases are shown in red, and regions with clustering in population 

controls (ExAC) are shown in yellow. The HCM clusters detected were: MYH7 (residues 167-931), 

MYBPC3 (485-502, 1248-1266), TNNI3 (141-209), TNNT2 (79-179), MYL3 (143-180) and CSRP3 (44-71). 

For MYH7, existing functional annotations (as described in Discussion) are superimposed: In green key 

residues of the converter kinetic domain and myosin mesa surface area enriched in disease-associated 

variants (Homburger et al[20]); in blue sites of inter- and intramolecular interaction between pairs of 

myosin heads (Alamo et al[21]); and in grey regions previously identified as constrained (intolerant of 

variation as evidenced by depletion of protein-altering variation in population controls), with the 

darker shades indicating higher constraint (Samocha et al[22]). The coordinates describe amino-acid 

position within the canonical protein sequence. 
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Gene 
Case 

Excess 
EF (whole gene) 

Predictor 
method 

Prioritised variants Variants not prioritised 

Case freq. EF Case freq. EF 

MYH7 12.76% 0.930 (0.923-0.938) 

HCM cluster 10.70% 0.976 (0.972-0.981) 3.17% 0.746 (0.706-0.785) 

Consensus 12.55% 0.940 (0.933-0.947) 1.32% 0.783 (0.728-0.839) 

MetaSVM 12.53% 0.944 (0.937-0.951) 1.34% 0.739 (0.675-0.804) 

MetaLR 13.29% 0.944 (0.938-0.951) 0.58%  (p=0.0155) 0.406 (0.185-0.627) 
 

MYBPC3 7.98% 0.879 (0.865-0.893) 

HCM cluster 2.80% 0.979 (0.971-0.987) 6.39% 0.830 (0.809-0.850) 

Consensus 8.42% 0.904 (0.892-0.916) 0.77% 0.524 (0.379-0.670) 

MetaSVM 4.27% 0.945 (0.934-0.957) 4.92% 0.811 (0.786-0.837) 

MetaLR 1.78% 0.900 (0.874-0.925) 7.41% 0.871 (0.855-0.887) 
 

TNNT2 1.54% 0.912 (0.889-0.935) 

HCM cluster 1.23% 0.958 (0.941-0.974) 0.46% 0.787 (0.699-0.874) 

Consensus 1.20% 0.909 (0.880-0.937) 0.49% 0.832 (0.730-0.934) 

MetaSVM 1.11% 0.894 (0.861-0.927) 0.58% 0.905 (0.848-0.961) 

MetaLR 1.11% 0.889 (0.856-0.923) 0.58% 0.921 (0.872-0.971) 
 

TNNI3 1.95% 0.930 (0.912-0.948) 

HCM cluster 1.92% 0.974 (0.963-0.984) 0.18%  (p=0.0918) 0.457 (0.140-0.774) 

Consensus 1.93% 0.957 (0.943-0.970) 0.17%  (p=0.0383) 0.566 (0.280-0.852) 

MetaSVM 1.77% 0.939 (0.921-0.957) 0.33% 0.873 (0.803-0.944) 

MetaLR 1.87% 0.932 (0.913-0.951) 0.23% 0.903 (0.833-0.973) 
 

MYL3 0.70% 0.833 (0.772-0.895) 

HCM cluster 0.55% 0.925 (0.886-0.965) 0.29%  (p=0.0021) 0.655 (0.455-0.856) 

Consensus 0.79% 0.869 (0.817-0.921) 0.05%  (p=0.6503) 0.310 (0-1) 

MetaSVM 0.50% 0.840 (0.763-0.917) 0.34% 0.833 (0.735-0.930) 

MetaLR 0.53% 0.809 (0.722-0.897) 0.31% 0.883 (0.809-0.958) 
 

CSRP3 0.41% 0.683 (0.563-0.803) 

HCM cluster 0.43% 0.882 (0.821-0.943) 0.16%  (p=0.5533) 0.158 (0-0.724) 

Consensus 0.58% 0.735 (0.630-0.839) 0.02%  (p=1.0000) - 

MetaSVM 0.53% 0.779 (0.687-0.871) 0.07%  (p=1.0000) - 

MetaLR 0.55% 0.751 (0.651-0.852) 0.05%  (p=1.0000) - 

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381467doi: bioRxiv preprint 

https://doi.org/10.1101/381467
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

Table 2 (previous page): Comparison of performance of variant clustering and consensus functional 

prediction scores in enriching for disease-associated non-truncating/missense variants in 6 HCM genes 

where the clustering of case variants was detected. For each gene, the EF of all rare variants is shown, 

followed by the EF of variants prioritised by the approach, and the EF of the remaining variants that 

are not prioritised. Clustering analyses identified regions of 4 genes with an EF≥0.95 (bold), and 

generally outperformed consensus functional prediction scores. Fisher’s exact p-values for comparison 

of rare variation in cases and ExAC reference samples were <0.0001 unless otherwise noted. Note – for 

MYBPC3 (italics), the FATHMM predictor was not included in the Consensus scores due to its poor 

performance for this gene, which also affected the MetaSVM and MetaLR consensus scores. 

 

Adapting ACMG/AMP guidelines to incorporate EF prior probabilities 

For non-truncating variants, there are currently two rules in the ACMG/AMP guidelines that can 

incorporate information on the differing frequencies of particular variant classes between case and 

control cohorts and that can be activated by novel variants – PP2 (missense in gene with a low rate of 

benign missense variants and pathogenic missense variants are common) and PM1 (mutational hot 

spot or well-studied functional domain without benign variation). However, activating even the 

stronger of these rules (PM1) will not lift any novel or relatively uncharacterised variant beyond VUS 

without substantial segregation or functional characterisation, even if found in genes or regions that 

are completely intolerant of variation. Additionally, the rules are categorical (despite describing a 

quantitative class of evidence) and must be specified for each gene and disease, with no consensus 

yet on the circumstances in which these should be applied.  

 

Figure 2: Proposed adaptation of ACMG/AMP guidelines relating to the relative frequencies of non-

truncating variants in case cohorts and population controls.  
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In order to apply a more quantitative approach to these rules, we propose an adaptation of the 

guidelines as shown in Figure 2. The EF enables a unified approach and provides an empirical estimate 

of the probability of pathogenicity for a variant in a given gene (or region of a gene) that allows rules 

to be applied at different strengths. The non-quantitative related rules PP2 and PM1 would be 

replaced with a single rule (PM1) with three (or more) evidence levels depending on pre-defined EF 

for the relevant variant class. For genes where clustering of variants has been observed, regional EFs, 

rather than EFs at the gene level, should be applied. This semi-quantitative approach is similar to the 

PP1 rule for segregation data that allows the rule to be progressed from supporting to moderate to 

strong with increasing evidence[23, 24]. As the EF is calculated for rare variants found in cases, PM1 

would only be activated in combination with the PM2 rule defining rarity. Since PM1_strong (in 

conjunction with PM2) would enable a novel variant to be classified as likely pathogenic, we suggest 

an EF≥0.95 could activate this rule. This is equivalent to an OR of 20, broadly similar to that adopted 

in the Bayesian modelling of the ACMG/AMP guidelines by Tavtigian et al[25].  

Since each level of evidence in the hierarchical ACMG/AMP framework represents a doubling in 

weight, a Bayesian interpretation of the ACMG/AMP guidelines[25] requires that the odds should 

increase by a power of 2 as you move to a higher evidence tier. This yields corresponding EF/OR 

thresholds of 0.776/4.47 for the PM1_moderate rule and 0.527/2.11 for the PM1_supporting rule 

given an EF threshold of 0.95 for PM1_strong. However, we believe a more conservative application 

of these rules may be more appropriate in a real world setting, and therefore for this study we have 

defined PM1_moderate as an EF between 0.90 and 0.95 (minimum OR of 10) and PM1_supporting as 

an EF between 0.80 and 0.90 (minimum OR of 5). Future consensus-derived implementations of these 

rules may choose to incorporate the Bayesian model, although it should be noted that other 

recommendations for translating quantitative data into ACMG/AMP rules also do not account for 

exponentially scaled odds of pathogenicity[23, 24]. 

 

An EF-calibrated tiered application of PM1 increases the yield of actionable variants in HCM  

To evaluate how the EF-based modified ACMG/AMP guidelines could improve the yield of genetic 

testing in HCM, we determined the proportion of VUS in a diagnostic referral cohort that were found 

in genes or regions with an EF≥0.95, that might therefore trigger a PM1_strong rule (i.e. non-

truncating variants throughout TPM1 and in case-enriched clusters of MYH7, MYBPC3, TNNI3 and 

TNNT2). In all, variants in 4.0% of cases could be upgraded to Likely Pathogenic by activating this strong 

evidence rule (Figure 3A). This represents an increase in yield of pathogenic and likely pathogenic 

variants in the eight sarcomeric genes from 28.8% to at least 32.8% (14% relative increase) in this 

cohort. It should be noted this is a conservative estimate, focusing only on PM1_strong, whereas 

variants activating PM1_moderate and PM1_supporting might also lead to a change in interpretation 

when combined with other lines of existing evidence. 

Sarcomeric variants in a prospective cohort of 684 HCM cases[15] were also analysed. 19.1% of cases 

had actionable (pathogenic and likely pathogenic) variants with automatically applied rules (see 

Methods for details), with only 4 additional cases with VUS upgraded to actionable based on manual 

assessment of published evidence from family pedigrees. In contrast, VUS would be upgraded in 31 

cases (of 82 with VUS) using the proposed PM1 modifications (4.5% of the cohort) in addition to 

automatically applied rules. In total, this corresponds to a 20.7% relative increase in actionable 

variants over current guidelines (Figure 3B). See Table S5 for details of the variants detected in this 

cohort. 
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Independent validation of variants upgraded from VUS under this framework 

The distinctive clinical characteristics of genotype-positive and genotype-negative HCM patients offer 

an opportunity to validate variant classifications in the absence of an independent gold-standard set 

of variants for benchmarking. If cases with variants that are upgraded from VUS to P/LP are more 

phenotypically similar to cases with known pathogenic variants, this offers further supportive 

evidence to validate the reclassification. We assessed mean indexed left ventricular (LV) mass and 

event-free survival as clinical variables that are associated with pathogenic sarcomere variants.  

In the prospective HCM cohort, overall LV mass is significantly greater in genotype-negative cases 

(101.0±31.8g/m2) compared to genotype-positive cases (88.7±31.1g/m2), despite the fact that 

patients with pathogenic sarcomeric variants tend to have greater maximum LV wall thickness. Cases 

with variants upgraded from VUS were similar to genotype-positive (86.0±28.1 g/m2, p=0.98), with 

both significantly different from genotype-negative and cases with VUS that are not upgraded 

(104.3±24.7g/m2) (Figure 3C). Genotype-positive cases have significantly worse outcomes than 

genotype-negative cases, as demonstrated most comprehensively by data from the SHaRe registry (in 

press at Circulation). In this dataset, cases with VUS display intermediate outcomes, although more 

similar to genotype-positive (p=0.07) than genotype-negative (p<0.001). Sub-classifying these by EF, 

cases with VUS with an EF≥0.95 had similar outcomes to genotype-positive cases (p=0.9) and were 

significantly different to genotype-negative cases (p=0.001) (Figure 3D). In contrast, cases with VUS 

with an EF<0.95 displayed cumulative outcomes intermediate between genotype-positive (p=0.03) 

and genotype-negative (p=0.03) cases, consistent with the expectation that these cases will include a 

mix of both pathogenic and rare benign variants. 

 

 

Figure 3 (next page): (A) Proportion of cases from the OMGL/LMM HCM cohorts with variants in 8 

sarcomeric genes (only rare variants, ExAC filtering frequency < 4 x 10-5, are shown, excluding non-

essential splice site variants). Coloured shading represents the clinical classification of the original 

diagnostic laboratory (OMGL and LMM), and, for variants originally classified as VUS, the proportion 

that could be reclassified as Likely Pathogenic based on occurrence within a gene or region with 

EF≥0.95. 89 variants in 123 cases for MYH7, 12 variants in 27 cases for MYBPC3, 18 variants in 34 cases 

for TNNI3, 15 variants in 18 cases for TNNT2 and 22 variants in 33 cases for TPM1 would be upgraded 

based on this analysis. (B) Proportion of cases in a prospective HCM cohort classified as actionable 

based on application of fixed and automatable ACMG/AMP rules, alongside the addition of manual 

curation of published evidence and the proposed EF-calibrated PM1 rules. 31 extra cases (4.5%) are 

upgraded with EF-based rules compared to just 4 (0.6%) with manual curation. (C) Comparison of 

indexed LV mass in cases with pathogenic variants, VUS in high EF (≥0.95) regions, and VUS in low EF 

regions (<0.95) in MYH7/MYBPC3 as well as genotype-negative cases, from the prospective HCM 

cohort. The clinical phenotype of individuals with VUS at locations anticipated to be pathogenic is 

indistinguishable from known Pathogenic/Likely Pathogenic variants, while individuals with VUS in 

other regions have a clinical phenotype more similar to individuals without a sarcomere variant. (D) 

Kaplan-Meier survival curve for the overall composite endpoint (including mortality, ventricular 

arrhythmia and heart failure composites) of the SHaRe cardiomyopathy registry stratified by genotype 

(HCM cases with pathogenic variants; VUS in high EF region (≥0.95); VUS in lower EF regions (<0.95); 

and genotype-negative cases). 
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DISCUSSION 

The accurate and comprehensive interpretation of rare variants underlying Mendelian disease 

remains one of the principle challenges facing genetics and one of the key obstacles to fulfilling the 

potential of genomics in clinical practice. Current guidelines are conservative and prioritise minimising 

false positive results, given the potentially serious adverse consequences of predictive testing based 

on erroneously classified variants. However, this comes at the cost of sensitivity and denies many 

individuals the benefits of a molecular diagnosis. In HCM, case-control comparisons have highlighted 

that the majority of sarcomeric gene variants reported as VUS in leading clinical labs are in fact 

pathogenic variants, particularly for population groups that have not been extensively studied, 

highlighting the need for improved stratification of these variants. For applications of genetic testing 

other than diagnosis and predictive testing, such selection of specific therapies, a different balance 

between sensitivity and specificity may be required, and variants may be actionable with a lower 

burden of proof of causality. It is also recognised that VUS, though not clinically actionable, can create 

uncertainty and confusion for recipients of genetic testing, with patients often over-interpreting their 

effect[26]. New methods for more comprehensive identification of disease-causing variants, while 

maintaining the stringency of clinical guidelines, are urgently required.  

In this study, we have demonstrated that using large case and population cohorts, and applying strict 

population frequency thresholds for variants of interest, we can identify genes and gene regions in 

which variants of specific classes have high likelihoods of pathogenicity. The probability of 

pathogenicity can also be empirically estimated, providing a quantitative measure of interpretative 

confidence. We demonstrate how the ACMG/AMP framework could be adjusted to incorporate this 

information (where suitable case series exist) and enable a more quantitative and transparent 

assessment of this evidence class. Crucially, this new framework allows variants that are novel or 

otherwise not yet well-characterised, but which belong to variant classes with very high prior 

probabilities of pathogenicity, to be classified as actionable. Under existing rules, such variants are 

condemned to remain as VUS unless the family structure permits well powered segregation analysis, 

or there are resources for functional characterisation. 

As variant-specific evidence such as co-segregation data has typically been required to classify 

missense or non-truncating variants as disease-causing, we recognise that the novel approach to 

variant classification described here may require further piloting and replication before adoption a 

clinical setting. However, we believe this method is consistent with the stringent approach to variant 

classification of current guidelines. While the ACMG/AMP guidelines define likely pathogenic as a 

“greater than 90% certainty of a variant being disease-causing”[1], a 95% threshold is arguably more 

in line with standard clinical practice and therefore we have proposed an EF cut-off of 0.95 to define 

strong evidence for this rule. We consider a 95% probability of pathogenicity to be a reasonable level 

of evidence for a “likely pathogenic” classification, and one that provides an effective balance between 

sensitivity and specificity in genetic testing. It is also important to recognise that there is an inherent 

uncertainty associated with all variant interpretation, particularly for those classified as likely 

pathogenic. The confidence of both clinicians and patients in the results of genetic testing could be 

improved by more effective reporting of the evidence for pathogenicity in genetic reports, including 

the EF for relatively uncharacterised variants, and more transparency about the level of certainty 

associated with any classification. 

Importantly, the approach to variant classification described here is compatible with the existing 

framework of the ACMG/AMP guidelines that have been widely adopted in clinical genetics 

laboratories. The translation of EF values into semi-quantitative PM1 rules, with a twofold increase in 

ORs required to progress between evidence classes, is similar to that adopted for another quantitative 
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data type - co-segregation with disease in affected family members. Recent studies have sought to 

translate segregation data into supporting, moderate or strong PP1 rules based on the number of 

meioses of the variant that are informative for co-segregation[23, 24]. The rule adaptations proposed 

here also address the discrepancy between the rules for truncating and non-truncating variants in the 

current guidelines. Truncating variants in genes where loss of function is a known mechanism for the 

disease in question will achieve a classification of at least likely pathogenic, courtesy of the (very 

strong) PVS1 rule, assuming a number of criteria are met[27]. While the weight of this rule partly 

derives from the fact that a non-functional protein is likely to be produced by the truncating variant 

(albeit with the caveats described by Richards et al[1]), it also reflects the rarity of such variants in the 

population and consequently the high odds of a variant detected in a patient being pathogenic (as 

seen with MYBPC3 truncating variants in this study, with an EF>0.99 and an OR of 115). Non-truncating 

variant classes that are similarly highly enriched in case cohorts should also have this evidence more 

appropriately weighted when evaluating variants. 

Our findings highlight the necessity of applying gene and disease-specific expertise to both variant 

classification and the customisation of ACMG/AMP guidelines[6]. As we have shown, variant 

characteristics that are specific to the genes and disease in question, such as clustering of case variants 

in specific protein domains, are more powerful discriminators than generic techniques designed to be 

applied genome wide, such as the widely used missense functional prediction algorithms. This has also 

been recently demonstrated by an analysis of variation in the RYR2 gene in catecholaminergic 

polymorphic ventricular tachycardia[28]. Interestingly, the estimated 14-20% increased yield of 

actionable variants in sarcomeric genes described here is likely to have a greater impact on HCM 

genetic testing than all of the efforts over the last 10-20 years to identify novel, non-sarcomeric 

genetic causes in this condition[15] that have explained very few additional cases. This highlights how 

efforts and resources to improve variant interpretation and the yield of genetic testing can be 

inefficiently allocated. While discovering valid novel genes may advance our understanding of disease 

and identify new therapeutic targets, an over-emphasis on discovering “novel” causes of diseases 

(from both researchers and journal editors/reviewers) may have less translational impact than efforts 

to improve our understanding of variation in known disease genes.  

The publication and sharing of genetic data, as well as evidence about variant consequences in 

resources like ClinVar, is crucial for expanding our ability to interpret the results of clinical genetic 

testing of Mendelian disease[29]. This study also underscores the importance of clinical laboratories 

and research groups publishing and sharing genetic data with allele frequencies across cases cohorts 

as well as recording observations in individual patients – a large proportion of the HCM data in this 

study was published previously by the LMM[12] and OMGL[3] clinical laboratories. This will be even 

more critical for extending this approach to rarer and less well characterised genetic diseases than 

cardiomyopathies. However, the analysis of the prospective HCM cohort in this study has also exposed 

the limitations of relying on variant-specific evidence such as segregation data for the interpretation 

of variants. Published segregation data was mostly restricted to those variants that are already 

enriched in HCM cases (and therefore can be used to increase confidence in the variant classification 

by upgrading from likely pathogenic to pathogenic) rather than enabling rarer variants to be 

progressed from VUS to actionable, highlighting the necessity of novel approaches to increase the 

sensitivity of genetic testing, such as those described in this study.  
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Comparisons with other methods that assess region pathogenicity 

An alternative approach to identify functionally important genic regions seeks those that are depleted 

in (missense) variation in a reference population[22], in contrast to the analysis presented here that 

seeks a regional enrichment of variation in cases. Here depletion indicates negative selection of 

variation, implying that variation is not tolerated. Sub-genic regions of constraint were identified in 

only three of the HCM genes analysed in this study (MYH7, FLNC, TNNC1). There is partial overlap of 

the regions identified in this study (Figure 1), e.g. a region of high constraint in MYH7 from residues 1-

916 broadly corresponds to our HCM cluster (residues 167-931). Whatever the method for identifying 

a region of interest, empirical comparison of cases and controls provides a direct assessment of the 

strength of association with a specific disease, enabling us to directly estimate the likelihood of 

pathogenicity for variants in specific regions, as well as detecting pathogenic clusters in other genes 

for which no regional constraint data exists. 

The EF (and OR) can of course be applied to calibrate an appropriate PM1 rule strength irrespective 

of the method by which the region is initially highlighted as potentially important. For example, two 

recent studies explored structure-function models in β-cardiac myosin (MYH7) to identify residues 

that are key to protein function (and therefore intolerant of variation), with variants affecting these 

residues enriched in case over population reference cohorts. Homburger et al modelled β-cardiac 

myosin before and after the myosin power stroke and identified the converter kinetic domain and 

myosin mesa surface area as regions enriched in disease-associated variants using a spatial scan 

statistic[20]. Alamo et al defined sites of inter- and intramolecular interaction between pairs of myosin 

heads (the interacting-heads motif - IHM), noting that variants in HCM cases disproportionately alter 

IHM residues[21]. The MYH7 residues identified by these studies largely overlap with the HCM cluster 

we have identified by one-dimensional clustering (Figure 1). Particular groups of residues detected by 

these analyses are highly enriched in disease-associated variants (yielding higher EFs than our cluster), 

with 7 IHM groups yielding an EF>0.99 and accounting for 44% of variants found in HCM cases[21]. EF-

based variant analysis thus requires a balance between specificity and sensitivity, or a tiered approach 

with different confidence levels for pathogenicity.  

 

Issues and limitations of this approach to variant classification 

The calculation of EFs for particular variant classes is dependent on a number of factors. As we have 

previously shown, it is critical to adopt stringent, disease-specific frequency thresholds when assessing 

putative pathogenic variants[14]. Additionally the choice of case and control/population cohorts will 

influence how EFs are generated. For cases, the use of clinical referral cohorts (the diagnostic case 

series from different centres in Europe and North America that we have employed in this study should 

be reasonably representative of real-world referral patterns)) will produce more conservative EF 

values than highly selected case series, but we believe these more cautious, referral EFs are relevant 

to a clinical genetic setting. Nonetheless these may change as referral patterns change (e.g. with 

increasing test availability). Although the use of population reference data without well-defined 

phenotypes has limitations, and is not optimally matched technically (e.g. differences in sequencing 

coverage, as previously discussed[3]), we believe the advantages (population size and ethnic diversity 

allowing more accurate calculation of rare variant frequencies) outweigh the disadvantages. It is also 

crucially important to note that the evidence described here should only be applied to assessing 

variants from patients with the disease in question, and not from incidental or secondary findings in 

healthy individuals or those being sequenced in the context of other conditions, as EFs correspond to 

the probability of pathogenicity given that the variant is identified in an individual with disease. 
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Although we have identified highly pathogenic variant classes in a number of HCM genes, for others 

it is more challenging to effectively differentiate between benign and pathogenic variation. In 

particular, although we detected some small case-enriched clusters of non-truncating variants in 

MYBPC3, these will correspond to only a small proportion of such variants that are responsible for 

HCM in up to 8% of cases. For such genes, further research and larger datasets are needed to identify 

the protein regions and specific residues at which variation is most likely to cause disease. This could 

include analysis of protein structure, as demonstrated in the MYH7 studies described above, or the 

development of computational prediction techniques that are specific to (and validated in) key disease 

genes, given the limitations of the generic and consensus scores that we have observed in this study. 

Genes like MYBPC3, i.e. those with a high diagnostic yield but poor signal-noise ratio that impedes the 

statistical prediction of pathogenicity, could also be prioritised for high-throughput functional 

classification studies[30].  

 

Conclusion 

In conclusion, we have demonstrated that by combining large case and control datasets, stringent 

population frequency thresholds and the detection of pathogenic clusters in key disease genes, we 

can empirically estimate the likelihood that rare variants in specific genes or regions are pathogenic 

and can identify variant classes with a high prior probability of pathogenicity. Using this evidence to 

calibrate the appropriate weighting for rules within the ACMG/AMP framework, we believe the yield 

of genetic testing in diseases like HCM can be significantly increased, with less dependence on the 

prior characterisation of variants to define pathogenicity, while retaining a robust statistical 

framework. This may help to reduce the ethnicity bias associated with obtaining a positive result, 

enabling a more equitable application of genetic testing. This study also reinforces the concept that 

disease and gene-specific approaches are critical for accurate and comprehensive variant analysis. 

Finally, this quantitative approach moves us towards more transparent probabilistic variant 

classification for both for Mendelian disease genetics and precision medicine. 
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METHODS 

Calculation of etiological fraction for significantly enriched variant classes 

The etiological fraction (EF) estimates the proportion of risk that can be attributed to a specific 

exposure, in a population with disease who have been exposed to a risk factor[3]. In the context of 

Mendelian disease, exposure refers to a rare protein-altering variant in a particular gene, and the EF 

estimates the proportion of cases with a rare variant in whom that variant is disease-causing. The EF 

is derived from the attributable risk percent (ARP) among exposed, i.e. expressing the risk as a 

proportion rather than a percentage, and derived from the odds ratio (OR) as described below, where 

the OR provides an accurate estimate of the relative risk (RR) – the ratio of risk among exposed to risk 

among unexposed[31]. The odds ratio (OR) is calculated by (Altman, 1991)[32]: 

𝑂𝑅 = (𝑎 𝑏⁄ ) (𝑐 𝑑⁄ )⁄  

where a = disease cases with a variant, b = controls/reference population with a variant, c = disease 

cases without a variant, d = controls/reference population without a variant. The 95% confidence 

intervals (CI) for OR values are calculated by: 

95% 𝐶𝐼 = 𝑒𝑥𝑝(𝑙𝑛(𝑂𝑅) − 1.96 ∗ 𝑆𝐸{𝑙𝑛(𝑂𝑅)}) 𝑡𝑜 𝑒𝑥𝑝(𝑙𝑛(𝑂𝑅) + 1.96 ∗ 𝑆𝐸{𝑙𝑛(𝑂𝑅)}) 

where the standard error of the log OR was given by: 

𝑆𝐸{𝑙𝑛(𝑂𝑅)} = √
1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
 

The EF is derived from the OR: 

𝐸𝐹 = (𝑂𝑅 − 1) 𝑂𝑅⁄  

95% CIs for EF values are calculated as described by Hildebrandt et al[33].  

EF and OR values were calculated for both truncating (frameshift, nonsense, splice donor site, splice 

acceptor site) and non-truncating (missense, small in-frame insertions/deletions) variants in HCM 

genes where a significant excess of rare variants in cases over the ExAC reference population was 

observed[15]. For the eight core sarcomeric genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL2, 

MYL3, ACTC1), the case cohorts were derived from published data from the Oxford Molecular Genetics 

Laboratory (OMGL) and the Laboratory of Molecular Medicine (LMM), Partners Healthcare, 

comprising between 4185 and 6179 unrelated HCM probands[3, 12]. For the minor HCM genes 

(CSRP3, FHL1, PLN, TNNC1), combined cohorts from OMGL and LMM, a prospective research cohort 

from our laboratory and published cohorts were used as previously described[15], comprising 

between 2061 and 5440 unrelated HCM probands. For FLNC, a recently published cohort of 448 HCM 

patients was used[19]. All rare variants were included for these calculations, regardless of the clinical 

classification of the variants. 

For all genes, ExAC was used as the reference population database for background variation as 

previously described[3]. To account for variable coverage of the exome sequencing in ExAC, the 

sample total for each gene was adjusted by calculating the mean number of called genotypes for each 

variant. Rare variants were defined as those with a filtering allele frequency in ExAC below the 

maximum credible allele frequency for HCM[14], defined as 4x10-5 (prevalence = 1 in 500, allelic 

heterogeneity = 0.02, penetrance = 0.5, monoallelic inheritance, as calculated at 

http://cardiodb.org/allelefrequencyapp/).  
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EFs as a means of quantifying performance of variant classifiers 

The EF is dependent on the relative frequencies of variants in cases and population controls. While 

applying strict thresholds for rarity will focus on variants more likely to be disease-causing, thereby 

increasing the EF, this is usually not sufficient to adequately distinguish between benign and 

pathogenic variation for non-truncating variants. Therefore additional methods are required to 

discriminate between causative and background variants. A perfect discriminator of pathogenic and 

benign variants will identify the proportion of causative variants that is equal to the case excess and 

yield an EF of 1.0, with the proportion of benign variants equal to the population reference frequency 

of ExAC (and an EF of 0) – see hypothetical example in Figure 4. In practice, it is unlikely that full 

discrimination will be achieved but this EF-based approach allows us to evaluate methods that aim to 

differentiate between pathogenic and benign variants. In this study we compare the widely used and 

generic missense functional prediction scores with gene and disease-specific variant clustering. This 

EF-based approach also offers the advantage of not requiring predefined lists of irrefutable pathogenic 

and benign variants, which can be limited when performing analyses on specific genes. 

 

 

Figure 4: Illustration of how EFs can be used to evaluate methods for distinguishing pathogenic from 

benign variants (for a hypothetical gene). The overall EF of 0.85 [1] is based on a case frequency of 

9.5% and a reference frequency of 1.5%. The aim of variant classification methods is to fully distinguish 

between pathogenic variants (producing an EF of 1.0 with frequency equal to case excess [2]) and 

benign variants (producing an EF of 0 with frequency equal to population reference, here ExAC [3]). 

We propose that an EF of 0.95 would be required to indicate a likely pathogenic variant. 

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381467doi: bioRxiv preprint 

https://doi.org/10.1101/381467
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

Assessing performance of missense functional prediction scores in HCM genes 

Functional prediction scores from the dbNSFP database[17] (version 3.2) were downloaded for all 

missense variants in the 13 HCM genes. Eight scores that provide binary predictions, i.e. damaging vs 

benign/neutral were assessed – fathmm-MKL coding, FATHMM, LRT, Mutation assessor, 

MutationTaster, Polyphen2-HDIV, PROVEAN and SIFT, as well as the CADD algorithm (damaging 

variants were defined with a CADD phred score ≥ 15). A consensus prediction between the 9 scores 

was defined as being damaging if greater than 50% of the scores predicted a damaging effect. 

Additionally two consensus algorithms, MetaLR and MetaSVM[16], were also evaluated. The 

proportion of available predictions for each score for all potential missense variants in each gene was 

calculated to identify algorithms that do not provide comprehensive predictions for specific genes. 

To test the effectiveness of these prediction scores for individual HCM genes, missense variants of 

known consequence (pathogenic and benign missense) identified. Pathogenic variants were defined 

by rarity in ExAC as described above and:  

1) classified as pathogenic (P) or likely pathogenic (LP) in HCM patients by two or more clinical 

laboratories (OMGL, LMM and ClinVar submitters). 

2) classified as P/LP by one clinical laboratory with no conflicting classifications (VUS or benign) 

by other laboratories. 

3) significantly enriched in the OMGL/LMM cohorts compared to ExAC (Fisher’s exact test).  

Benign variants were defined as:  

1) presence in more than one individual in ExAC and not associated with any disease in ClinVar 

(P/LP/VUS) or HGMD 

2) associated with disease in ClinVar (though not P or LP) or HGMD but at a frequency >0.001 in 

ExAC. 

The sensitivity (true positive rate) and specificity (true negative rate) was calculated for the 9 

functional prediction scores and 3 consensus scores for each of the 8 core sarcomeric genes (there 

were insufficient known pathogenic variants for the minor genes). As an alternative method for 

assessing these predictors, EFs were calculated for deleterious variants using the case and ExAC 

cohorts described above.  

 

Clustering algorithm to detect regional enrichment of variants 

Protein regions enriched for rare variants were identified using a bespoke unsupervised clustering 

algorithm developed within this project. The algorithm is based on a sliding window scanning the 

protein sequences from their N-terminal to C-terminal residues, with a binomial test used to detect 

whether there is significant variation enrichment within the tested window compared with the rest of 

the protein.  

The results of this first step are influenced by the size of the sliding window, with a spectrum ranging 

from small windows enabling detection of smaller, highly enriched variation hotspots but prone 

towards overfitting (in the most extreme case each residue with multiple variant alleles is considered 

a cluster), to large windows enabling detection of more extended enriched regions such as large 

protein domains but at the risk of too low a resolution (in the most extreme case, a unique cluster 

starting at the first variant residue and ending at the last). In terms of model performance, the former 

situation is characterized by specificity=1 (no variant-free residues are within clusters) and sensitivity 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/381467doi: bioRxiv preprint 

https://doi.org/10.1101/381467
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

close to 0 (the vast majority of variant residues are excluded from clusters), whereas the latter results 

in the opposite situation (many variant-free residues are included in the unique cluster [specificity 

close to 0] but also all variant amino-acids are [sensitivity=1]). For this reason, the algorithm 

automatically selects the optimal window size for each protein by searching for one minimizing the 

difference between sensitivity and specificity (in this case the mean difference between cases and 

controls for each gene). Of note, the sparseness of the data (resulting in a strong imbalance between 

positive data points [variant residues] and negative data points [variant-free residues]) make all classic 

model performance measures (e.g. accuracy, AUC, PPV etc.) biased towards results obtained with 

smaller window sizes. 

To look for the optimal window size, the algorithm starts by testing 19 different sizes ranging from 5% 

of the protein to 95%. Subsequently, the algorithm picks the best one (if any) and tests 18 sizes around 

it at a 10-fold finer resolution (e.g. if the initial best window size is 10%, the next iteration will be on 

windows between 5.5% and 14.5%). This iterative process is repeated until a performance plateau is 

reached (i.e. none of the 18 new window sizes decreases the difference between sensitivity and 

specificity by more than 0.001 compared with the previous iteration). Once the optimal window size 

is detected, multiple testing correction is applied to each definitive window significantly enriched for 

variation, on the basis of the average number of times each protein residue has been tested (which 

depends on the number of iterations made, and on the size of the tested windows). Whenever a 

significant enrichment is detected within a window, its coordinates (start/end) are stored until the 

whole protein is scanned and, subsequently, merged with any other significantly enriched window to 

obtain a first “raw” set of variation-rich clusters. 

After this first step, the algorithm performs a “boundary trimming” procedure at both ends of each 

cluster. This step controls for potential inclusion of variant-free (or non-enriched) distal cluster tails 

that may have been included within a significantly enriched window due to variants occurring more 

proximally. The algorithm performs the same procedure at both the N- and the C-terminal cluster 

boundaries, starting with a single-residue window including only the most external amino-acid, and 

iteratively extending it as far as the cluster median residue. Before each extension, the binomial test 

is used to check if there is a significant depletion of variants compared to the rest of the cluster. The 

algorithm stores each test’s p-value and tested region coordinates, and eventually trims the cluster 

by removing the most (if any) significantly variation-depleted tail, to obtain a final, refined set of 

clusters. One last binomial test is performed on the refined clusters to measure the significance of 

their rare variant enrichment. 

 

Distinguishing pathogenic from benign variants using clustering in case and control cohorts 

EFs were calculated based on these clusters and compared to those produced by a consensus of 

missense functional prediction scores from the dbNSFP database[17] (MetaLR, MetaSVM and a 

consensus of 9 individual predictors as described above). These consensus scores were also evaluated 

in genes where no clustering of case variants was observed. 

 

Using EFs to increase the yield of putatively pathogenic variants in HCM cohorts 

Sarcomeric gene rare variants in the OMGL/LMM clinical cohort[3] were re-assessed based on the 

analysis described above. The proportion of patients with variants that would be upgraded to Likely 

Pathogenic based on the revised ACMG/AMP guidelines was calculated, i.e. those previously classified 
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as VUS but in a variant class with an EF≥0.95 for missense variants or EF≥0.90 for inframe indels (as 

inframe indels will also activate the PM4 rule regarding variants that change protein length and 

therefore only the moderate PM1 rule would be required for a likely pathogenic classification).  

 

Analysis of prospective HCM cohort 

The effect of the new EF-based ACMG/AMP rules on the yield of actionable variants was assessed on 

a prospective cohort of 684 HCM patients recruited at the Royal Brompton & Harefield Hospitals NHS 

Foundation Trust, London UK[15]. The ACMG/AMP rules described below were used to classify 

variants from the valid HCM genes defined in this study, with rule implementation as described in the 

CardioClassifier resource[6]. The following rules could be activated by automated script: 

 PM2 – filtering allele frequency in ExAC < 4 x 10-5. This rule must be activated to denote a 

causative variant for this analysis.  

 PVS1 – truncating variants in MYBPC3, TNNT2, TNNI3, CSRP3, FHL1, PLN (genes statistically 

enriched in HCM cohorts versus ExAC). 

 PS4 – individual variant statistically enriched in cases over controls, based on LMM/OMGL 

cohort versus ExAC with the rule activated if the case count was >2 and the Fisher’s exact test 

p-value < 1.79x10-6 (Bonferroni correction). 

 PM4 – protein length changing variant, i.e. an inframe indel or stop lost variant. 

 PP3 – missense variant with multiple lines of computational evidence suggesting a deleterious 

effect, i.e. of the 8 predictors assessed (SIFT, PolyPhen2 var, LRT, Mutation Taster, Mutation 

Assessor, FATHMM, CADD and Grantham scores), only 1 predicts benign and <3 have unknown 

classifications or if ≥3 have unknown classifications, all others predict damaging.  

 PM5/PS1 – novel missense change at an amino acid where a different missense variant is 

pathogenic (PM5) or novel missense variant with same amino acid change as an established 

pathogenic variant (PS1). Pathogenicity here is defined as a pathogenic classification in ClinVar 

by multiple submitters with no conflicting evidence. 

Rare variants (i.e. with rule PM2 activated) were then manually assessed for human genetic evidence 

in ClinVar entries and published reports using the following rules: 

 PP1 – co-segregation with disease. This rule was defined as supporting for ≥3 observed 

meioses, moderate for ≥5 meioses and strong for ≥7 meioses. 

 PS2/PM6 – de novo inheritance (with/without confirmed paternity and maternity). 

 The PS3 rule relating to effects in functional studies was not applied due to the lack of 

standardisation and validation in functional assays for HCM variants. 

The number of patients with variants that still remained as VUS, i.e. unactionable according to current 

guidelines, but that would be upgraded to at least Likely Pathogenic based on the revised ACMG/AMP 

guidelines was calculated as described for the clinical HCM cohort, i.e. those in a variant class with an 

EF≥0.95 for missense variants (activating PM1_strong) or EF≥0.90 for inframe indels (activating 

PM1_moderate). 
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Genotype-phenotype analyses to validate variant pathogenicity  

The clinical characteristics of two HCM cohorts were used to support the pathogenicity of variants 

upgraded on the basis of an EF≥0.95. For the prospective HCM cohort, left ventricular (LV) mass values 

indexed to body surface area were derived from cardiac magnetic resonance imaging and compared 

between cases with pathogenic or likely pathogenic variants (current ACMG/AMP guidelines), VUS 

upgraded to likely pathogenic with EF rules, other VUS and genotype-negative cases (only variants in 

thick filament genes MYH7 and MYBPC3 were analysed due to the distinctive patterns of LV 

hypertrophy observed in cases with variants in thin filament genes[34]).  

Outcome data was assessed using the Sarcomeric Human Cardiomyopathy Registry (SHaRe), a multi-

centre international repository that aggregates clinical and genetic data from patients with 

cardiomyopathies including HCM. A total of 2694 HCM patients with both right-censored outcome 

data and known sarcomeric genotype were analysed - 1254 patients with at least one pathogenic or 

likely pathogenic variant in any of the 8 sarcomeric genes; 1199 patients with no sarcomeric variants; 

and 241 patients with VUS in any of the sarcomeric genes. Of the 241 patients with VUS, 69 were 

reclassified as pathogenic as they had variants with an EF≥0.95. Survival curves were calculated by 

Kaplan-Meier analysis with log-rank test for the proportion of patients free of the overall composite 

outcome [in press at Circulation] for each of the four genotype groups. 
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Figure S1: Distribution of rare, non-truncating variants in HCM cohorts and ExAC for validated genes without observed clustering of variants in cases (variant 

density increases with darker shades of grey). Regional constraint boundaries described by Samocha et al are also highlighted.
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